Acknowledgements: The authors thank Wellesley College for financial support.
ABSTRACT

The historic boom and bust in the stock market over the past decade had the potential to significantly alter the retirement behavior of older workers. Previous research examining the impact of wealth shocks on labor supply support the plausibility of this hypothesis. In this paper, we examine the relationship between stock market performance and retirement behavior using the Health and Retirement Study (HRS), Current Population Survey (CPS), and Survey of Consumer Finances (SCF). We first present a descriptive analysis of the wealth holdings of older households and simulate the labor supply response among stockholders necessary to generate observed patterns in retirement. We show that few households have substantial stock holdings and that they would have to be extremely responsive to market fluctuations to explain observed labor force patterns. We then exploit the unique pattern of boom and bust along with variation in stock exposure to generate a double quasi-experiment, comparing the retirement patterns over time of those more and less exposed to the market. Any difference in retirement behavior that emerged during the boom should have reversed itself during the bust. We find no evidence that changes in the stock market drive aggregate trends in retirement.
I. INTRODUCTION

After posting record gains in the late 1990s, the U.S. stock market dropped precipitously starting in the year 2000, as illustrated in Figure 1. In the twelve months following the market peak in March 2000, the benchmark S&P 500 Index lost over one-quarter of its value and the NASDAQ Composite Index lost over 60 percent of its value; by October 2002, the S&P 500 had fallen by 50 percent from its peak and the NASDAQ had fallen by nearly 80 percent.

This remarkable decline in stock value occurred at a time when more Americans were exposed to the stock market than ever before, often through participation in their pension plans. Friedberg and Webb (2003) report that 79 percent of full-time workers with pensions had a 401(k) plan or other type of defined contribution plan in 1998, rising from 40 percent in 1983. Poterba (2001) finds that 52 percent of households held some stock in 1998, either through direct ownership of individual stocks or stock mutual funds or in their defined contribution plan or individual retirement account (IRA), up from 36 percent in 1989. As a result, it was widely predicted that the stock market drop would force many older workers to postpone retirement.¹ In fact, in an AARP (2002) study of 50 to 70 year old stock holders, 21 percent of those who had lost money in stocks and not yet retired reported that they have postponed retirement.

Aggregate labor force statistics appear to offer some support for this hypothesis. Eschtruth and Gemus (2002) note that the two percentage point increase in labor force participation rate for older workers (aged 55 to 64) that occurred between early 2000 and early 2002 is unprecedented in the U.S. since World War II and is particularly noteworthy for having occurred during a recession, when labor force participation is typically flat or declining. They

¹For instance, in response to plummeting stock prices the July 29, 2002 cover of Time Magazine asked, “Will You Ever be Able to Retire?”
suggest that “plunging stock portfolios may have caused some older workers to postpone
retirement and convinced some early retirees to rejoin the labor force.”

However, there are reasons to be skeptical that the drop in the stock market had much of
an impact on aggregate labor force behavior. First, if the bear market led people to delay
retirement, one may have predicted that the bull market in the late 1990s would have led
individuals to retire earlier. Yet data from the Bureau of Labor Statistics indicate that the labor
force participation rate for individuals 55 to 64 actually rose by about 2 percentage points during
the 1995 to 1999 boom years. Moreover, as we discuss in more detail below, the fraction of
older households with significant exposure to the stock market was still relatively low in the late
1990s. Although individual investors may have altered their retirement plans, the ability of stock
fluctuations to drive aggregate labor force patterns may be limited.

In this paper, we examine the relationship between stock market performance and
retirement behavior over the past two decades, paying particular attention to the boom and bust
periods of 1995-1999 and 2000-2002, respectively. For our analysis, we use data from the first
Current Population Surveys (CPS), and from the 1992, 1995, and 1998 Surveys of Consumer
Finances (SCF). We first provide a descriptive analysis that begins by documenting trends in
retirement patterns using the CPS and HRS data. We also present descriptive statistics detailing
the stock market holdings of older households in the late 1990s and then provide a “back-of-the-
envelope” calculation to simulate the magnitude of the response to the recent stock market
decline that would be required to generate the observed drop in retirement rates. Second, we

2 These data were accessed from the Bureau’s customized table-maker, available at data.bls.gov and accessed on
July 5, 2004. Although this pattern may be partly attributable to the robust economy during the period, our own
calculations (described subsequently) show that even cyclically-adjusted annual retirement rates were unaffected by
the boom.
undertake a reduced-form analysis to compare the effect of the stock market on the retirement behavior of individuals who are likely to have been differentially affected by changes in the market, such as persons with and without defined contribution pension plans. Evidence supporting an impact of the stock market on retirement behavior would require that those who are more likely to own stock are also more likely to retire in booms and less like to retire in busts.

This paper makes several contributions to the existing literature on the stock market and retirement. First, along with Kezdi and Sevak (2004), we are the first to look at both the boom period of the late 1990s and the bust period that followed. But our methodology more directly imbeds these two periods into a quasi-experimental framework, taking advantage of what amounts to a double experiment in which differences across groups that are predicted to emerge during the boom are also predicted to reverse during the bust. Second, we focus on the aggregate response to market movements rather than estimating individual wealth effects. Our goal is to estimate the relationship between market fluctuations and aggregate changes in retirement rather than the relationship between wealth and retirement.

Our results suggest that the stock market has very little influence on aggregate retirement behavior. This conclusion is based on the relatively small number of households with sizeable stock holdings, the magnitude of their retirement response that would be required to generate the types of retirement patterns observed recently, and the fact that we are unable to find any evidence that population subgroups who should be more responsive to market fluctuations are more responsive. This is not to say that changes in an individual’s wealth are unrelated to his/her decision to remain in the labor market, but that the number of individuals for whom market fluctuations are meaningful is simply too small to drive any aggregate patterns.
II. LITERATURE REVIEW

Economic theory suggests that the consumption of leisure, like the consumption of goods and services, should increase when the household experiences a positive wealth shock and likewise decrease when the household experiences a negative wealth shock. For households nearing retirement age, a positive (negative) wealth shock may lead family members to retire earlier (later), especially if workers lack the flexibility to change the number of hours they work at their current job. Dramatic and arguably unexpected changes in stock market returns may generate shocks of this nature. Therefore, the broader literature on the impact of wealth shocks as well as those studies directly examining the role of stock market fluctuations can inform this study.

Recent research examining the role of wealth shocks more broadly has relied on sources of variation in retirement wealth that are exogenous to an individual’s preferences for leisure. For instance, several authors have focused on inheritances and lottery winnings. Joulfaian and Wilhelm (1994) estimate relatively modest effects of inheritances on the retirement decisions of older men, while Holtz-Eakin, Joulfaian, and Rosen (1993) find that working-age individuals receiving large inheritances are three to four times more likely to exit the labor force than individuals receiving small inheritances. Imbens, Rubin, and Sacerdote (2001) estimate that lottery winners consume about 11 percent of their winnings in the form of reduced labor earnings and that the effect is about one-third larger for individuals aged 55 to 65. Other authors have exploited natural experiments resulting from policy changes. Krueger and Pischke (1992) find little evidence of an increase in labor supply for workers born between 1917 and 1921, who
experienced a dramatic reduction in Social Security benefits due to a law change. Thus the general evidence regarding wealth effects on labor supply is mixed.

A second related strand of the literature explores the impact of unexpected changes in wealth associated with stock market fluctuations, and largely the boom of the late 1990s, on retirement decisions. Coronado and Perozek (2003) find that those who received unanticipated equity gains during the market boom of the late 1990s retired earlier than they had anticipated. Sevak (2001) finds a relationship between unexpected capital gains and retirement as well. Yet she also recognizes that the relationship between unexpected wealth gains and earlier retirement are relevant only for the reasonably small share of the population that has considerable holdings in stocks. She reports that “the data finds quite large wealth effects, (but) because many individuals have negligible wealth gains over the period, the aggregate effect is quite small.” These studies are subject to the critique that differences in unexpected gains are strongly (if not perfectly) correlated with previous differences in the amount of stock ownership. These differences may be correlated with other unobservable characteristics, like individuals’ preferences for leisure or their ability to plan for retirement.3

A third set of analyses has introduced quasi-experimental methods, examining whether retirement behavior responds differently to market variation among those with more and less exposure to the stock market.4 Sevak (2001) finds that men in defined contribution (DC) pension plans were more likely to retire between 1996 and 1998 compared to men with defined benefit (DB) pensions, using the difference in the retirement rates of these groups in an earlier period to

3 Coronado and Perozek (2003) acknowledge a related concern, stating that their results “might be biased if unobservable characteristics are correlated with both stock ownership and a willingness to revise retirement plans.” Although they find no evidence of this with regard to a measure of risk aversion, other such characteristics may still present problems.

4 Hurd and Reti (2001) use similar methods to examine the impact of market fluctuations on the subjective probability of retirement after age 62. They find no evidence that changes between 1996 and 1998 in this measure differ by stock ownership status or pension plan type.
control for any underlying difference in their propensities to retire. One limitation of this analysis is that it does not control for possible differences in underlying trends in retirement behavior between groups. One feature that may contribute to this problem is the restriction that baseline retirement hazards are the same for the different groups, but any difference in underlying trends would bias their results.\(^5\) Our double experiment addresses this problem.

In a later paper also incorporating the bust period, Kezdi and Sevak (2004) find that CPS respondents with dividend income are less likely to retire in 2001 and 2002 than respondents without dividend income. Unfortunately, those with dividend income represent a small fraction of those exposed to stock fluctuations. Moreover, their results also indicate that this group is less likely to retire during the boom, suggesting that differences in underlying preferences for retirement explain their findings, and not market fluctuations. The authors also find that the labor force transition rates for HRS respondents with risky assets (stocks, mutual funds, DC plans, or IRAs) are not significantly different in the 1998-2000 and 2000-2002 periods. This analysis is the most similar to ours, except that we look over a longer time period, allow baseline hazards to vary by group, and use additional measures of stock exposure. Taken as a whole, the existing for greater labor supply responses to changes in the stock market for those with greater exposure to the market is far from conclusive.\(^6\)

\(^5\) Sevak (2001) acknowledges our concern, stating that her method provides an “unbiased estimate as long as there were no other unobserved changes occurring over the time period that differentially affected the retirement patterns of DC workers.” Beyond ambiguous types of unobservable heterogeneity, it also seems to us that mechanical features of the different types of plans will create such problems. Individuals in defined contribution and defined benefit pension plans have different underlying incentives to retire at particular ages, so as the HRS sample grows older, the surges in retirement may occur at different times for different groups (as discussed in Friedberg and Webb, 2003). Sevak talks about the different pension incentives, but does not relate them to the limitations of her identification strategy.

\(^6\) Other studies have also examined stock market fluctuations and retirement behavior using an approach where relevant elasticities are either taken from other studies or estimated within the framework of a structural retirement model and then used to predict responses to market fluctuations (Cheng and French, 2003; Gustman and Steinmeier, 2002). The labor supply responses to the stock market boom and bust estimated in these papers are quite large, on
This paper offers a number of contributions relative to past research. First, along with Kezdi and Sevak (2004), we explore the relationship between the stock market and retirement in both the boom and bust period. Beyond extending the time frame of the analysis, the second contribution of our analysis is to use both the boom and the bust in our quasi-experimental framework to provide a stronger causal test of the impact of market fluctuations. These two periods provide a unique double experiment. Any differences that emerge in retirement behavior across groups during the boom of the late 1990s should be reversed during the bust of the early 2000s if stock market fluctuations cause individuals to change their retirement behavior. This approach enables us to dismiss the possibility that differences in the labor market trends in groups with more and less stock market exposure may confound estimates of the effect of market fluctuations. Third, our quasi-experimental approach builds upon those employed in past studies by using many more measures of potential stock market exposure and estimating regressions separately for each of these groups using data from both the CPS and HRS. Finally, while many previous papers have been primarily concerned with estimating the effect of stock market wealth on labor supply for the relatively small number of people experiencing large changes in wealth, we are primarily concerned with exploring whether wealth effects can explain observed aggregate movements in labor supply.

III. DATA AND EMPIRICAL STRATEGY

We utilize three different sources of data, each of which has distinct strengths and weaknesses that make it better suited for certain parts of the analysis. Where possible, each analysis is replicated using a second data source to confirm the results.
The first data set is the Health and Retirement Study (HRS). The HRS began in 1992 as a longitudinal study of persons born between 1931 and 1941 and their spouses, with re-interviews of these 7,500 households every two years; in 1998, additional birth cohorts were added to the survey so that it now includes persons born in all years through 1947. The HRS contains richly detailed information on demographics, labor supply, finances, and health. The principal advantage of the HRS is that it provides comprehensive data for a sample of near-retirement age households and follows them over time.

In this paper, we use two main components of the HRS: information on retirement behavior and on wealth holdings. For our analysis of retirement behavior, we use longitudinal data on wave 1 (1992) respondents for the first six waves of the survey (1992-2002). In one part of that analysis, respondents contribute person-year observations for all years between 1992 and 2001 in which they were aged 55 to 70, were working at the beginning of the calendar year, and had not previously retired; retirement is defined as reporting a labor force status of retired or disabled by the end of the calendar year.\(^7\) In a second part of that analysis, we construct an analogous sample of person-month observations, making use of the availability of data on month of retirement. We also present a descriptive analysis of household wealth holdings; we use wave 4 (1998) data for that because it is the last interview available prior to the stock market crash.\(^8\) In the both the descriptive and retirement analyses, several variables are used to proxy for likely exposure to the stock market: educational attainment, ownership of a DC plan or IRA within the

\(^7\) Persons who exit the labor force by other pathways (e.g., exit to homemaker status, exit to other or no labor force status, or leave survey) do not provide a retirement date and thus are used in the sample only for the years in which it is known they worked the full year and omitted thereafter. Results are very similar if exits to disability are treated in the same manner. If persons report multiple labor force status codes at a point in time, the following hierarchy is used: working, retired, disabled, all other.

\(^8\) We acknowledge that the values of these holdings immediately prior to the bust would likely be somewhat higher due to continued growth in the market through March 2000.
household, and ownership of individual stocks or stock-based mutual funds. A designation of having “high value” DC and IRA or stock balances refers to having balances in excess of $50,000 in 2003 dollars.

The Current Population Survey (CPS) is a monthly survey of approximately 50,000 households and forms the basis for most published U.S. labor statistics; we use data from annual March CPS surveys from 1981 to 2003, referencing behavior in 1980 through 2002. Compared to the HRS, the CPS includes a roughly similar number of older households but it collects less information on them and does not follow the same households over time. CPS data, however, are available for a longer period of time so that we can observe greater cyclical variability in the stock market to compare to retirement behavior. The March surveys not only provide current labor market activity, but they also provide retrospective reports from the past calendar year. From these data, we define a transition into retirement as one in which an individual reports working at least 13 weeks in the preceding calendar year, but s/he is currently out of the labor force on the survey date. Although data on the wealth holdings of CPS respondents are limited, we are able to use some information on whether or not the individual was included in a pension plan (defined benefit or defined contribution) and on their educational attainment to provide a rough proxy for stock holdings.

9 IRA and stock ownership status and asset values come from the RAND HRS data file, which imputes missing values using bracketed data (e.g., does your account amount to more or less than $10,000) and other information. Because asset allocation of DC balances is observed for only a small fraction of DC plans, DC plan participation is used as a proxy for stock market wealth in the analysis, though of course not all participants will invest their DC balances in stock.

10 In the regression analysis, asset ownership is determined based on ownership at wave 1, so as to be exogenous to the subsequent boom and bust in the stock market. In the descriptive analysis, asset ownership is based on ownership at wave 4, as the point of the exercise is to describe assets in the pre-crash period.

11 Assuming those 13 weeks working last year all took place in the first quarter, then this definition is comparable to an annual window where retirements are observed between March of one year and the next.
The Survey of Consumer Finances (SCF) is a survey of about 4,500 households conducted every three years to collect detailed data on the finances of U.S. households. Compared to the HRS, the SCF has more in-depth information on stock holdings. It provides no information that would enable us to detect retirement transitions, however, so these data can only contribute to our descriptive analysis of wealth holdings. In the analysis, data from the 1992, 1995, and 1998 SCF is pooled to generate sample sized large enough to estimate descriptive statistics of the wealth holdings of older households and of subgroups of this population.

Our empirical analysis of the link between the stock market and retirement is divided into two parts, a descriptive analysis and a reduced-form analysis. The goal of the descriptive analysis is to explore the plausibility of a large labor supply response to the recent drop in the stock market. First, we present detailed statistics on the wealth holdings of older households in the late 1990s to examine the level of stock market exposure in this population. Second, we conduct a “back-of-the-envelope” calculation to estimate the magnitude of the response to the stock market shock that would be necessary to explain the drop in the average retirement rate; this exercise is described in more detail below.

In the reduced-form analysis, the empirical strategy is to compare the response to changes in the stock market among individuals likely to have been differentially affected by such changes. The identification of stock market effects relies on quasi-experimental variation in exposure to the stock market, which comes from factors such as education level, participation in a defined contribution pension plan or IRA, and ownership of stocks or stock mutual funds. We hypothesize that if the stock market affects people’s retirement behavior, then the response to changes in the stock market should be larger among groups with greater exposure to the stock
Importantly, any differential in retirement behavior across groups generated during the boom should be reversed during the bust. Findings to that effect in response to this double experiment would provide strong evidence of a causal effect of stock market fluctuations.

Specifically, we estimate regressions of the following form:

\[\text{retire}_{ist} = \beta_0 + \beta_1 \text{bust}_i + \beta_2 \text{boom}_i + \beta_3 X_{ist} + \gamma_s + \epsilon_{ist} \]

where: retire is a dummy variable for whether the individual i residing in state/region s who worked in year t-1 retires in year t, bust and boom are dummy variables for whether the person-year observation occurs in a bust year (2000-2001 in the HRS or 2000-2002 in the CPS) or a boom year (1995-1999), X is a set of demographic characteristics including exact age dummy variables, race and ethnicity, gender, marital status, the unemployment rate (state-level in the CPS or region-level in the HRS), and state or regional fixed effects. This model is estimated first for all workers aged 55-70. But the true test of the impact of market fluctuations comes by estimating this model separately for groups who may be differentially affected by changes in the stock market and comparing coefficients for the boom and bust periods across groups.\(^{13}\)

Estimation of equation (1) provides a way to identify whether there is a relationship between the stock market and retirement, but does not determine the magnitude of the impact of market fluctuations on retirement behavior. To do so, a second set of regressions of the following form are estimated:

\[\text{retire}_{ist} = \beta_0 + \beta_1 \Delta S & P500_i + \beta_2 X_{ist} + \gamma_s + \epsilon_{ist} \]

\(^{12}\) We could analogously explore differences in labor market re-entry across groups and over time, but chose not to do so because of the relatively low rate of labor force re-entry. Kezdi and Sedak (2004) do examine labor market re-entry and do not find any impact of market fluctuations.

\(^{13}\) We also estimate these models for individuals 60 to 65 and obtained qualitatively similar results, but opted for the broader age range because of the improved precision of our estimates. We choose to estimate the model separately by group rather than interacting the group dummy variable with the boom and bust dummies in order to allow the other covariates, notably the age dummies, to differ by group.
where $\Delta S&P500$ is the percent change in the S&P 500 Index over the previous twelve months. As before, the model is estimated for all workers and separately for groups of workers likely to have been differentially affected by changes in the stock market. Note that the identification strategy is similar to that underlying equation (1), but this analysis allows for the effect to be parameterized. On the other hand, it loses the value of the double experiment in providing a stronger causal interpretation of the results.

IV. RESULTS

A. Descriptive Analysis

We begin our analysis by offering data from the CPS and HRS in Figures 2A and 2B, respectively, that track changes in retirement patterns over time. Since the economy moved from a significant expansion in the late 1990s to a period of recession and weak growth in the beginning of the current decade, we use the available data to generate “cyclically-adjusted” retirement rates.

Results from both surveys are consistent with the statistics reported in Eschtruth and Gemus (2002) in that retirement rates took a noticeable and significant drop exactly in 2000, which corresponds with the plunge in the stock market. In both datasets, despite the differences in the definition of retirement transitions, older workers appear to have reduced their likelihood of retiring by about two percentage points during the market bust, or about 17 percent from an approximate baseline retirement rate of about 12 percent.

As previewed earlier, however, there are reasons to be skeptical of a causal relationship between recent market performance and retirement even based on this preliminary analysis.

14 These estimates are obtained from regression models of the retirement rate on state-level (in the CPS) and region-level (in the HRS) unemployment rates and year fixed effects (and no constant); reported results reflect the year fixed effects assuming a 5 percent unemployment rate. In the CPS, year labels are associated with the survey conducted in March of the following year since most of the retirement that is captured in that survey is likely to reflect behavior that occurred last year, as described above.
First, the change in the retirement rate in 2000 is quite large, especially considering the timing of the market decline. Although the S&P 500 did peak for the year on March 24th at 1,527 and declined to 1,320 by the end of the year (a 14 percent decline), on September 1, the value stood at 1,521. This means that the most of the retirement response to this drop should have occurred in the last quarter of the year. Although the argument is not quite as strong with the NASDAQ, which hit its annual peak of 5,049 on March 10th and fell to 1,320 by the end of the year (a 74 percent decline), the market’s index stood at 4,275 as of July 17th. This also suggests that much of the response had to take place late in the year and must have represented a very large change in behavior over a very short period of time.

Second, the CPS data provide little evidence of a symmetric response to the booming stock market of the late 1990s. Cyclically adjusted retirement rates between 1995 and 1999 were actually lower over that period than they had been previously despite the greater wealth generated by exceptional stock market returns. However, other time varying factors may confound this simple analysis of the effect of the stock market on retirement, so this evidence is informative, but far from conclusive.

The limited stock holdings of most older households also suggest that market fluctuations may not have a sizable effect on aggregate labor market behavior.15 The nature of these holdings is reported in Tables 1A and 1B, using data from the HRS and SCF, respectively. Statistics reflect the holdings of workers nearing retirement age (55 to 60). Data from the 1998

15 Engen, et al. (2004) make a similar point regarding the impact of stock market fluctuations on the adequacy of retirement savings, stating “because most stocks are held by households with substantial wealth, and most households hold very little equity, fluctuations in stock market values … have little effect on households’ ability to save adequately for retirement.”
HRS and from the 1992, 1995, and 1998 SCF are employed to assess holdings prior to the stock market plunge in early 2000.16

In the HRS (Table 1A), over two-thirds of older households now have retirement accounts – 46 percent of households have one or more members with a defined contribution (DC) pension plan, 47 percent of households have an IRA, and 68 percent of households have one or both types of retirement account. Yet it is important to keep in mind that these accounts are not necessarily invested entirely, or even mainly, in stocks; older households making more conservative investments based on their age may reduce their holdings in stock-based investments because of their riskier nature. Ownership of individual stocks or stock mutual funds outside of retirement accounts is less prevalent but still significant, with 38 percent of households owning these assets. Overall, 75 percent of families have some type of account (DC pension, IRA, or stocks) that may include stock holdings, although this statistic is also likely to overstate exposure to the stock market.

Median assets values in these accounts are high by historical standards, but still low relative to family income. Among households holding each type of asset, median holdings in DC accounts and IRAs are about $40,000 each, while median stock holdings are $33,900. Among households with any of these three accounts, median combined holdings are $68,900. This represents less than one and a half times median income, which was $48,728 (in 2003$) for households aged 55 to 64 in 1998 (U.S. Census Bureau, 1999).

Moving across Table 1A, it is evident that the distribution of these assets is highly skewed. While 68 percent of families own a DC plan or IRA, only 28 percent of families have combined balances of over $50,000 in these assets, and median combined holdings for this

16 We have also relaxed the sample restrictions placed on the analysis performed here and verified that we can replicate official SCF results on wealth holdings, published in Kennickel, et al. (2000).
subset of families are $208,800. Similarly, only 17 percent of families have holdings of stocks in excess of $50,000; median combined holdings for these families are $311,600. Asset holdings also vary significantly by education level – 89 percent of college-educated households have some type of account that may include stocks, but only 52 percent of high school dropouts do so. The median combined holdings are $146,700 for college-educated households compared to $20,300 for high school dropout households. These differences in stock holdings are an important component of our quasi-experimental methodology.

Table 1B replicates these statistics using the SCF. The SCF statistics are broadly similar to those in Table 1A, though ownership of DC pensions and stocks is less prevalent and asset values are somewhat lower, as one would expect given the pooling of data with earlier years. Yet the SCF data provide the advantage that they include better information on whether DC pension and IRA assets are invested in stock. Figure 3 illustrates that the fraction of households reporting that their DC plan or IRA is invested mostly in stocks is consistently less than 50 percent. This is also true for IRA plans as reported in the HRS. When DC pension and IRA assets are counted only if invested mostly in stock, both the fraction of households holding each type of asset and the median value of assets decrease significantly. While 41 percent of households have DC pensions, only 15 percent have pensions invested mostly in stocks; for IRAs, the equivalent figures are 48 percent and 21 percent, respectively. Overall, only 48 percent of households have any assets invested mostly in stock, and the median value of such assets among these households is $42,900, which is less than the 1998 median household income for this age group (in 2003$).

The key point from these descriptive statistics is that the labor supply response to the drop in the stock market in 2000 is unlikely to come from the median person. Fewer than half of
older households have any assets invested mostly or all in stock, and median asset holdings for households that do are on the order of one year of household income. It seems unlikely that even a sizeable decrease in the value of these assets would generate a large labor supply response.

To explore this point further, we conduct a “back-of-the-envelope” calculation to estimate the magnitude of the response to the 2000 stock market shock that would be necessary to explain the observed drop in the average retirement rate; the results of this analysis are shown in Table 2. We first divide the sample of HRS respondents who were aged 55 to 70 and working at the beginning of 2000 according to the value of their stock assets at that time (greater or less than $0, $25,000, $50,000, $100,000, and $250,000), making assumptions that are likely to overstate the value of stocks.\(^\text{17}\) We then calculate the monthly annuitized value of the loss incurred in a portfolio of each of these amounts as a result of the stock market drop during 2000. For example, a portfolio invested 70 percent in the S&P 500 Index and 30 percent in the Nasdaq (the approximate current relative market capitalization of the two indices) would have dropped 25 percent between the market peak in March 2000 and the end of the year, resulting in a $6,250 loss on a $25,000 portfolio; annuitized at a 5 percent real interest rate over 20 years, this is equivalent to a $41 decrease in monthly income. We use these values to help determine which individuals would likely respond to the stock market crash. Clearly, workers with no stock assets should not respond since they lose nothing. Workers under the $25,000 cutoff are also unlikely to respond, as they face a maximum annuitized loss of just $41 per month. Using this

\(^{17}\) The HRS has information on how IRAs are invested (“mostly in stock, mostly in interest-earning assets, or about evenly split”) but collects such information for only a minority of DC plans, so this information was not used in Table 1A. Here, we assume that invested mostly in stock means 100 percent in stock, mostly in interest-earning means 1/3 in stock, and evenly split means 2/3 in stock. For people with missing DC or IRA asset allocation, we assign the mean stock percentage in this asset class for their education group. For a small number of people with missing DC asset values, we assign the median value for their education group. Asset values are those reported in the 1998 HRS, increased to the year 2000 level using the asset returns between the wave 4 interview date and March 2000 for a portfolio invested 70 percent in the S&P500 and 30 percent in the Nasdaq; values are then adjusted to 2003$ using the CPI.
logic, it seems reasonable that workers with stock assets up to perhaps $100,000 (and even beyond) may not respond, as they face a maximum annuitized loss of no more than $164 per month.

Next, we estimate a retirement regression model using 1992-1999 HRS data and use it to predict retirement probabilities in the year 2000 if the stock market was unchanged.18 Finally, using these predicted probabilities for the households below each asset cutoff point, we calculate what the average retirement rate would have to be among those above the cutoff in order to generate a weighted average retirement rate matching that actually observed in the sample in the year 2000, 8.9 percent.19 For the most conservative assumption that only those without stocks fail to respond to the market crash, we estimate that the average retirement rate in the rest of the sample would need to have dropped from the predicted level of 12.8 percent to 7.0 percent. Under the alternative assumption that individuals in households with up to $25,000, $50,000, or even $100,000 would not respond, the required retirement rate among those above the cutoff falls to 5.3 percent, 3.6 percent, and 1.1 percent, respectively. Using the $100,000 cutoff, it would need to be the case that virtually no one with more than $100,000 in stock assets retired during the year 2000 for the observed drop in the retirement rate to be due to the stock market crash, which seems highly implausible. This problem is intensified when one recognizes that the change in retirement behavior was unlikely to begin until later in 2000 based on the monthly movements in market indices, as described earlier. If the asset cut-off is defined to be $250,000, it is actually impossible to simulate the observed behavior. Overall, this simulation points out

18 The regression includes the unemployment rate and various demographic characteristics (age dummies, race/ethnicity, gender, region, and marital status).

19 Note that this statistic is smaller than that displayed in Figure 2B, largely because the sample used here includes workers 55 to 70 compared to a sample of those 60 to 65 in that figure.
that the response to the 2000 stock market decline had to have been extremely strong (and possibly implausible or even impossible) to explain the observed drop-off in retirement rates.

B. Reduced-Form Analysis

The hypothesis that some workers should have responded more to the stock market crash than other workers is explored further in a series of figures that preview the regression analysis. Figures 4A and 4B plot the cyclically-adjusted retirement rates over time for workers aged 60 to 65 by educational attainment in the CPS and HRS, respectively. As Tables 1A and 1B show that ownership of stock assets and median stock values rise with education, we expect highly educated workers to increase their probability of retirement during the boom period relative to less educated workers and the reverse during the bust period. The figures show no such pattern. In the CPS figure, there is no noticeable increase in retirement rates for college graduates during the boom period; the biggest drop in retirement rates in 2000 occurs for high school graduates. In the HRS figure, high school dropouts and graduates experience a large drop in retirement rates in 2000, while college graduates do not.

Figures 5A and 5B conduct the same analysis by pension status. In the CPS figure, the drop in retirement rates in 2000 is identical for those with and without a pension. It is interesting to note that retirement rates for the two groups diverge in 1998, indicating a possible differential response during the boom period, but just in that one year. However, the CPS does not distinguish between defined contribution and defined benefit pension plans; only the former would be expected to affect retirement. This shortcoming is addressed in Figure 5B, which uses HRS data, and the result is the same: individuals with no DC plan or IRA, those with a DC plan

20 Since we cannot observe retirement patterns for a uniform sample of 60 to 65 year olds in the HRS prior to the boom, it will be difficult to draw strong conclusions about retirement responses during this period in these data.
or IRA, and those with DC and IRA combined balances in excess of $50,000 all experience similar drops in retirement between 1999 and 2000. Individuals with high value DC and IRA balances do have much higher retirement rates in 1996-1998, but that differential disappears in 1999. Moreover, it is not possible to determine whether this is a response to the boom or simply a difference in the underlying propensity to retire because the HRS sample is too young in the pre-boom years.

Figure 6 compares retirement rates by an even more direct measure of stock market exposure, whether the household owns individual stocks or stock mutual funds – information that is only available in the HRS. The expected larger response to the stock market drop by those exposed to the market again fails to materialize – in fact, the drop in the retirement rate between 1999 and 2000 is twice as large for individuals with no stock than for individuals with any stock or with stock holdings in excess of $50,000. The high value stock group has a higher retirement rate in 1997 during the boom, but not during the rest of that period. Overall, the figures provide no support for the hypothesis that workers who were more likely to be affected by the drop in the stock market in 2000 reduced their retirement relative to other workers. Evidence regarding the hypothesis that these workers increased their retirement rate in the boom period of the late 1990s is somewhat more mixed, but offers inconsistent support at best for that position.

The regression analysis incorporates the intuition of these figures in a framework that also controls for demographic characteristics, the unemployment rate, and state- or region-specific fixed effects. The first column of Table 3A reports the linear probability model estimates of equation (1) for the full sample of workers in the CPS.21 This column largely presents a parameterized version of Figure 2A, except that years have been aggregated into

21 In the CPS regressions, standard errors are clustered at the year level to correct for arbitrary forms of serial correlation in the error term across individuals within the same survey year.
periods, demographic controls are included, and we use a sample of workers who are 55 to 70 rather than 60 to 65 to improve our precision. Consistent with that figure, we see that retirement rates fell during the bust period (2000-2002) relative to the baseline (1980-1984), but also fell during the boom period (1995-1999), albeit not to the same extent.

More interesting for our purposes is the comparison of the boom and bust coefficients across columns in the rest of the table. As in the figures, we examine whether the retirement rate fell by more in the bust period and whether it rose by more (or fell by less) relative to the omitted period for groups with greater exposure to the stock market. A comparison of the bust coefficients by pension status contradicts this hypothesis. The retirement rate in the bust period is 2.6 percentage points lower for those without a pension plan and only 1.0 percentage points lower for those with a pension plan. The education specifications generate similar results – the retirement rates is 2.4 percentage points lower for high school dropouts and only 0.9 percentage points lower for college graduates, despite college graduates’ much higher exposure to the stock market. The differences between these coefficients are statistically significant. We do find that those with pensions retired more frequently than those without pensions during the boom period, but there is no consistent pattern across workers with different levels of educational attainment.

Table 3B repeats this analysis using the HRS, which has better information on which individuals are likely to hold stocks but is only available starting in 1992. Relative to the previous table, the standard errors are larger due to the smaller sample sizes, but the principal findings are similar. Retirement rates are not significantly lower in the bust period for groups

22 Besides the obvious advantages of a regression analysis relative to the figures reported earlier, an important advantage of these regression models is our ability to control for age-specific differences in retirement rates. This enables us to include all years of available HRS data (1992-2001) and to provide comparisons of the boom period relative the period preceding it. In all HRS regressions, standard errors are clustered at the household level to correct for arbitrary forms of serial correlation in the error term across individuals within the same household over time.
with greater exposure to the stock market. For example, the retirement rate in the bust period is 5.0 percentage points lower than in the early 1990s for those who do not own stocks, compared to 3.5 percentage points lower for those who do own stocks and 4.6 percentage points lower for the subset of these with greater than $50,000 in stock assets. In the case of a DC plan or IRA, the retirement rate is 3.7 percentage points lower for individuals without such assets compared to 5.2 percentage points lower for individuals with $50,000 or more in such assets, but the difference is not statistically significant. The education results mirror those in Table 3A. For the boom coefficients, as in Table 3A, there are cases where those with greater exposure to the stock market are more likely to retire in the boom period. But this pattern in point estimates is spotty and the differences across groups are not statistically significant. Overall, we find no evidence in either the CPS or HRS regressions that workers with greater exposure to the stock market reduce their retirement rate during the bust period relative to other workers. Although the evidence is not quite as strong regarding the boom periods, we do not find much support for the notion that those with greater exposure are more likely to retire when the market is doing well.

Tables 4A and 4B present the linear probability model estimates of equation (2), which quantifies the relationship between the stock market and retirement. The key explanatory variable in this specification is the percentage change in the S&P 500 Index over the previous twelve months. The coefficient on this variable is expected to be positive, as workers should be more likely to retire when the stock market rises due to wealth effects. In the full CPS sample, a 10 percent rise in the S&P 500 is associated with a 0.18 percentage point increase in the annual retirement rate, although the effect is not statistically significant at conventional levels.

As in the earlier tables, our primary interest is in testing whether this effect is larger for workers who are more likely to be exposed to the stock market, and once again, the results do not
support this hypothesis. The effect of a 10 percent rise in the S&P 500 is virtually identical for workers with and without a pension plan, 0.16 and a 0.20, respectively. The education trend is the opposite of what is expected – the effect of a 10 percent rise in the S&P is a 0.21 percentage point increase in the annual retirement rate for high school dropouts compared to 0.11 for college graduates.

Table 4B repeats this analysis in the HRS. The availability of month of retirement in the data allows the analysis to be conducted using person-month observations. Results are similar to those in Table 4A, though the magnitude of the coefficients is smaller, as would be expected when comparing the effect of a given change in the S&P 500 Index on annual relative to monthly retirement rates. For all workers, a 10 percent rise in the S&P is associated with a 0.066 increase in the monthly retirement rate; the effect is statistically significant.

Comparing this coefficient across groups, there is no evidence that groups with greater stock market exposure are more responsive to change in the S&P. For example, a 10 percent rise in the S&P is associated with a 0.059 percentage point increase in the monthly retirement rate for workers with no DC plan or IRA, vs. 0.072 for all workers with such assets and 0.088 for workers with balances of $50,000 or more in such assets, but these differences are small and not statistically significant. The results are even more striking in the case of stock ownership – the S&P coefficients for workers with and without stock are identical and the coefficient for those with stock assets of $50,000 or more is half as large as that for workers with no stock. The education pattern is the reverse of what is expected, with college graduates responding less to an increase in the S&P than high school dropouts. In sum, neither the figures nor the regression results provide support for the hypothesis that those with greater exposure to the stock market
alter their retirement behavior in response to changes in market conditions relative to others with less exposure.

V. CONCLUSIONS

This paper has explored the impact of stock market fluctuations, and particularly the recent boom and bust, on retirement behavior. We take advantage of a unique double experiment which compares labor force exits for groups that were more and less exposed to those fluctuations to determine whether differences emerged during the boom and then reversed in the bust. Our focus is exclusively on the ability of the market to generate changes in aggregate retirement behavior, and not on the estimation of wealth effects for individuals. These two features distinguish our work from that which precedes it. The results of our analysis provide little support for an impact of the boom and bust. As we illustrate, there are simply too few older workers sufficiently exposed to the market for it to drive broad labor market trends.

Although our findings may seem to contradict the results of past studies described earlier, we do not believe they are inconsistent. One strand of the previous literature more broadly addresses the question of wealth effects using shocks arising from things like inheritances and lotteries and finds evidence that they influence labor supply. A second strand focuses more directly on stock market returns by examining unanticipated capital gains; these studies also support the existence of a wealth effect, although they are subject to methodological concerns described earlier. Regardless, individuals’ retirement behavior may respond to wealth shocks, even quite dramatically, and yet generate no identifiable aggregate impact if too few individuals have significant wealth holdings. That is what we show in our descriptive analysis.
Despite our findings, stock market fluctuations still may have broader implications for workers’ behavior and well-being. In terms of labor market activity, we focus on the immediate impact of market fluctuations on workers at or near retirement age. Other workers further from retirement may alter their longer-term retirement plans. They may also alter their savings and investment activities in correspondence with their updated retirement plans. Of course, future developments in the market will also influence the paths of these workers – indeed since the market’s recent trough, the S&P 500 has recovered almost half of its lost value (as of July 2004) relative to its previous peak. In addition, even older workers may respond in other ways that would affect their well-being. For instance, AARP (2002) states that three-quarters of those 50 to 70 who lost money in stocks report that they have modified their current lifestyle or their expectations of their retirement lifestyles.

Our results still leave unexplained the recent patterns in labor force behavior among older workers. Published reports on labor force participation rates and our cyclically-adjusted estimates of retirement rates, presented earlier, both show substantial drops in labor market activity among older workers in the year 2000. Although we do not know specifically the cause of this decline, one possibility is that it is merely a realization of a longer-term decline in retirement among older workers. Burtless and Quinn (2002) state that since the mid 1980s “male participation rates at older ages have stabilized or even increased slightly.” A casual examination of the figures we presented earlier is not inconsistent with this hypothesis. Nevertheless, we are able to definitively rebut the idea that the drop in retirement in 2000 was linked to the stock market.

Table 1A: Financial Holdings of Workers Age 55 to 60 in the 1998 Health and Retirement Study

<table>
<thead>
<tr>
<th>All Workers</th>
<th>No DC Pension or IRA</th>
<th>Has DC Pension or IRA</th>
<th>“High Value” DC Pension or Stock Mutual Fund</th>
<th>No Stocks or Stock-Related Mutual Fund</th>
<th>Has Stocks or Stock-Based Funds</th>
<th>“High Value” Stocks or Stock-Based Funds</th>
<th>High School Dropout</th>
<th>High School Graduate</th>
<th>Some College</th>
<th>College Graduate</th>
</tr>
</thead>
<tbody>
<tr>
<td>% in Category</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>31.6</td>
<td>68.4</td>
<td>28.1</td>
<td>61.6</td>
<td>38.4</td>
<td>17.1</td>
<td>17.0</td>
<td>32.9</td>
<td>21.6</td>
<td>28.5</td>
</tr>
<tr>
<td>% Holding</td>
<td></td>
</tr>
<tr>
<td>Stocks/StockFunds</td>
<td>38.4</td>
<td>20.9</td>
<td>46.5</td>
<td>58.3</td>
<td>0</td>
<td>100.0</td>
<td>100.0</td>
<td>14.2</td>
<td>32.4</td>
<td>43.2</td>
</tr>
<tr>
<td>DC Pension</td>
<td>46.2</td>
<td>0</td>
<td>67.5</td>
<td>67.6</td>
<td>41.3</td>
<td>54.0</td>
<td>58.9</td>
<td>36.6</td>
<td>41.0</td>
<td>49.5</td>
</tr>
<tr>
<td>IRA</td>
<td>47.1</td>
<td>0</td>
<td>68.9</td>
<td>81.9</td>
<td>35.5</td>
<td>65.7</td>
<td>71.4</td>
<td>22.7</td>
<td>43.5</td>
<td>49.2</td>
</tr>
<tr>
<td>Any Type</td>
<td>75.0</td>
<td>20.9</td>
<td>100.0</td>
<td>100.0</td>
<td>59.4</td>
<td>100.0</td>
<td>100.0</td>
<td>51.8</td>
<td>72.4</td>
<td>78.3</td>
</tr>
<tr>
<td>Median Value of Holdings, if Any (in $1,000s of 2003 $)</td>
<td></td>
</tr>
<tr>
<td>Stocks/StockFunds</td>
<td>33.9</td>
<td>18.1</td>
<td>41.9</td>
<td>67.7</td>
<td>0</td>
<td>33.9</td>
<td>169.3</td>
<td>16.9</td>
<td>22.6</td>
<td>28.7</td>
</tr>
<tr>
<td>DC Pension</td>
<td>39.5</td>
<td>0</td>
<td>39.5</td>
<td>88.0</td>
<td>22.6</td>
<td>67.7</td>
<td>84.7</td>
<td>13.5</td>
<td>29.2</td>
<td>30.5</td>
</tr>
<tr>
<td>IRA</td>
<td>40.6</td>
<td>0</td>
<td>40.6</td>
<td>101.6</td>
<td>28.2</td>
<td>56.4</td>
<td>84.7</td>
<td>20.3</td>
<td>29.9</td>
<td>39.5</td>
</tr>
<tr>
<td>All Types</td>
<td>68.9</td>
<td>18.1</td>
<td>80.1</td>
<td>208.8</td>
<td>35.0</td>
<td>125.3</td>
<td>311.6</td>
<td>20.3</td>
<td>45.2</td>
<td>62.1</td>
</tr>
</tbody>
</table>

Notes: The sample is restricted to households in which the respondent and/or spouse is between age 55 and 60 and is employed on the survey date. “High value” is defined as having at least a $50,000 combined balance in a defined contribution pension plan and IRA account or in stocks and stock-based mutual funds. Statistics reflect the holdings of all individuals in the worker’s family.
Table 1B: Financial Holdings of Workers Age 55 to 60 in the 1992, 1995, and 1998 Surveys of Consumer Finances

<table>
<thead>
<tr>
<th>All Workers</th>
<th>No DC Pension or IRA</th>
<th>Has DC Pension or IRA</th>
<th>“High Value” DC Pension/IRA</th>
<th>No Stocks or Stock-Based Funds</th>
<th>Has Stocks or Stock-Based Funds</th>
<th>“High Value” Stocks or Stock-Based Funds</th>
<th>High School Dropout</th>
<th>High School Graduate</th>
<th>Some College</th>
<th>College Graduate</th>
</tr>
</thead>
<tbody>
<tr>
<td>% in Category</td>
<td>100</td>
<td>33.5</td>
<td>66.5</td>
<td>28.0</td>
<td>66.7</td>
<td>33.3</td>
<td>12.3</td>
<td>19.4</td>
<td>31.2</td>
<td>19.9</td>
</tr>
<tr>
<td>% Holding:</td>
<td></td>
</tr>
<tr>
<td>Stocks/Stock Funds</td>
<td>33.3</td>
<td>16.2</td>
<td>41.9</td>
<td>60.1</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>9.5</td>
<td>24.8</td>
<td>37.7</td>
</tr>
<tr>
<td>DC Pension</td>
<td>40.6</td>
<td>0</td>
<td>61.0</td>
<td>68.8</td>
<td>37.2</td>
<td>47.3</td>
<td>49.3</td>
<td>33.9</td>
<td>34.2</td>
<td>48.9</td>
</tr>
<tr>
<td>DC Pension (mostly in stocks)</td>
<td>15.0</td>
<td>0</td>
<td>22.5</td>
<td>29.2</td>
<td>10.8</td>
<td>23.3</td>
<td>23.5</td>
<td>8.9</td>
<td>12.4</td>
<td>17.5</td>
</tr>
<tr>
<td>IRA</td>
<td>47.5</td>
<td>0</td>
<td>71.4</td>
<td>82.5</td>
<td>37.3</td>
<td>67.9</td>
<td>76.3</td>
<td>24.2</td>
<td>43.8</td>
<td>47.4</td>
</tr>
<tr>
<td>IRA (mostly in stocks)</td>
<td>20.8</td>
<td>0</td>
<td>31.2</td>
<td>38.5</td>
<td>13.5</td>
<td>35.3</td>
<td>45.3</td>
<td>7.7</td>
<td>16.9</td>
<td>20.6</td>
</tr>
<tr>
<td>Any Types</td>
<td>71.9</td>
<td>16.2</td>
<td>100</td>
<td>100</td>
<td>57.9</td>
<td>100</td>
<td>100</td>
<td>49.7</td>
<td>68.7</td>
<td>79.3</td>
</tr>
<tr>
<td>Any Stock-Based Types</td>
<td>47.5</td>
<td>16.2</td>
<td>63.2</td>
<td>77.9</td>
<td>21.3</td>
<td>100</td>
<td>100</td>
<td>23.1</td>
<td>40.2</td>
<td>53.7</td>
</tr>
</tbody>
</table>

Median Value of Stock-Based Holdings, if Any (in $1,000s of 2003 $)

Stocks/Stock Funds	26.6	21.0	27.5	39.3	0	26.6	120.7	9.2	13.0	22.3	39.3
DC Pension	30.2	0	30.2	90.5	18.1	50.8	90.5	14.5	24.8	18.3	64.0
DC Pension (mostly in stocks)	22.6	0	22.6	72.4	13.3	33.9	72.4	6.2	15.7	22.6	43.9
IRA	30.2	0	30.2	75.6	16.9	47.4	72.1	7.1	21.4	25.3	42.6
IRA (mostly in stocks)	34.4	0	34.4	88.0	20.5	52.4	79.0	8.5	15.2	36.7	52.4
All Types	46.1	21.0	47.4	170.4	26.6	112.8	253.9	17.4	32.8	35.0	106.7
All Stock-Based Types	42.9	21.0	46.1	112.8	21.4	63.3	197.5	8.5	22.6	28.6	78.7

Notes: The sample is restricted to households in which the respondent and/or spouse is between age 55 and 60 and is employed on the survey date. Sampling weights are used to provide nationally representative statistics for this group. “High value” is defined as having at least a $50,000 combined balance in a defined contribution pension plan and IRA account. Statistics reflect the holdings of all individuals in the worker’s family.
Table 2: Simulated Retirement Rates for those Aged 55 to 70 Holding Stocks Required to Match Observed Retirement Rates

<table>
<thead>
<tr>
<th>Stock Assets at Beginning of 2000 (in 2003$)</th>
<th>≥ 0</th>
<th>$\geq 25K$</th>
<th>$\geq 50K$</th>
<th>$\geq 100K$</th>
<th>$\geq 250K$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Monthly annuitized value of loss associated with stock market decline in 2000 at lower bound of range</td>
<td>0</td>
<td>41</td>
<td>82</td>
<td>164</td>
<td>409</td>
</tr>
<tr>
<td>2) Percent of HRS sample with stock assets at lower bound or greater</td>
<td>67.8</td>
<td>48.8</td>
<td>39.5</td>
<td>31.0</td>
<td>18.2</td>
</tr>
<tr>
<td>3) Percent of HRS sample with stock assets below the lower bound</td>
<td>32.3</td>
<td>51.2</td>
<td>60.5</td>
<td>69.0</td>
<td>81.8</td>
</tr>
<tr>
<td>4) Predicted 2000 retirement rate for those with stock assets less than lower bound</td>
<td>12.1</td>
<td>12.3</td>
<td>12.3</td>
<td>12.1</td>
<td>12.2</td>
</tr>
<tr>
<td>5) Predicted 2000 retirement rate for those with stock assets at lower bound or greater and no response to stock market decline</td>
<td>12.8</td>
<td>12.4</td>
<td>12.4</td>
<td>12.4</td>
<td>12.4</td>
</tr>
<tr>
<td>6) Simulated retirement rate for those with stock assets at lower bound or greater</td>
<td>7.0</td>
<td>5.3</td>
<td>3.6</td>
<td>1.1</td>
<td>-6.5</td>
</tr>
</tbody>
</table>

Notes:
A Each column of this table represents the characteristics of the sample whose stock market values at the beginning of 2000 are above or below the defined level. See footnotes in text for greater detail regarding the construction of these values.
B The 2000 market decline is calculated as a weighted average of the decline in the S&P 500 (70% weight) and the NASDAQ (30% weight), where the weights are determined according to the relative market values of the two indices at the end of 1999.
C Predicted retirement rates represent the rates that would have been expected based on labor market conditions and the demographic characteristics (age, race/ethnicity, gender, region, and marital status) of the sample of respondents still working at the beginning of 2000. These predictions are obtained from regression models of retirement behavior using 1992-1999 HRS data.
D Those with stock market assets below the lower bound are assumed to be unaffected by the market decline. The simulated retirement rate for those with stock assets at or above the cut-off is calculated to be the value necessary for the weighted average of the predicted rate for those below the cut-off and the simulated rate for those above the cut-off to match the aggregate rate observed in the 2000 HRS of 8.9 percent.
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Workers</td>
<td>Not Included in Pension Plan</td>
<td>Included in Pension Plan</td>
<td>HS Dropout</td>
<td>HS Graduate</td>
<td>Attended Some College</td>
<td>College Graduate</td>
</tr>
<tr>
<td>Bust (2000-2002)</td>
<td>-1.834</td>
<td>-2.550</td>
<td>-0.965</td>
<td>-2.402</td>
<td>-0.833</td>
<td>-1.234</td>
<td>-0.877</td>
</tr>
<tr>
<td></td>
<td>(0.275)</td>
<td>(0.302)</td>
<td>(0.362)</td>
<td>(0.626)</td>
<td>(0.398)</td>
<td>(0.484)</td>
<td>(0.510)</td>
</tr>
<tr>
<td>Boom (1995-1999)</td>
<td>-0.868</td>
<td>-1.551</td>
<td>-0.060</td>
<td>-1.118</td>
<td>0.191</td>
<td>0.024</td>
<td>-0.695</td>
</tr>
<tr>
<td></td>
<td>(0.197)</td>
<td>(0.241)</td>
<td>(0.289)</td>
<td>(0.608)</td>
<td>(0.417)</td>
<td>(0.629)</td>
<td>(0.436)</td>
</tr>
<tr>
<td>Years 1990-1994</td>
<td>-0.353</td>
<td>-0.977</td>
<td>0.316</td>
<td>-0.498</td>
<td>0.004</td>
<td>0.106</td>
<td>0.809</td>
</tr>
<tr>
<td></td>
<td>(0.161)</td>
<td>(0.240)</td>
<td>(0.235)</td>
<td>(0.309)</td>
<td>(0.274)</td>
<td>(0.717)</td>
<td>(0.334)</td>
</tr>
<tr>
<td>Years 1985-1989</td>
<td>0.552</td>
<td>0.255</td>
<td>0.820</td>
<td>0.515</td>
<td>1.140</td>
<td>0.061</td>
<td>0.852</td>
</tr>
<tr>
<td></td>
<td>(0.201)</td>
<td>(0.266)</td>
<td>(0.295)</td>
<td>(0.370)</td>
<td>(0.341)</td>
<td>(0.409)</td>
<td>(0.599)</td>
</tr>
<tr>
<td># of Obs.</td>
<td>236,459</td>
<td>124,232</td>
<td>112,227</td>
<td>55,285</td>
<td>87,805</td>
<td>42,064</td>
<td>51,305</td>
</tr>
</tbody>
</table>

Notes: The sample includes all respondents between the ages of 55 and 70 who worked at least 13 weeks in the preceding calendar year. Regressions also include controls for race, ethnicity, exact age dummy variables, marital status, gender, the state unemployment rate, and state-specific fixed effects. Coefficients and standard errors (in parentheses) multiplied by 100.

Source: Authors’ calculations from the Current Population Survey.
Table 3B: HRS Estimates of the Impact of Market Cycles on Retirement Behavior, by Group

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
<th>(11)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Workers</td>
<td>Not Included in DC Pension / IRA</td>
<td>Included in DC Pension / IRA</td>
<td>High Value DC Pension / IRA</td>
<td>Does Not Own Stocks or Stock Funds</td>
<td>Owns Stocks or Stock Funds</td>
<td>High Value Stocks or Stock Funds</td>
<td>HS Dropout</td>
<td>HS Graduate</td>
<td>Attended Some College</td>
<td>College Graduate</td>
</tr>
<tr>
<td>bust (2000-2001)</td>
<td>-4.54</td>
<td>-3.71</td>
<td>-5.04</td>
<td>-5.16</td>
<td>-5.00</td>
<td>-3.48</td>
<td>-4.64</td>
<td>-6.78</td>
<td>-4.82</td>
<td>-2.19</td>
<td>-3.52</td>
</tr>
<tr>
<td></td>
<td>(0.87)</td>
<td>(1.31)</td>
<td>(1.15)</td>
<td>(2.01)</td>
<td>(1.04)</td>
<td>(1.56)</td>
<td>(2.89)</td>
<td>(2.00)</td>
<td>(1.48)</td>
<td>(1.74)</td>
<td>(1.70)</td>
</tr>
<tr>
<td>boom (1995-1999)</td>
<td>-0.85</td>
<td>-0.65</td>
<td>-0.94</td>
<td>-0.02</td>
<td>-1.02</td>
<td>-0.45</td>
<td>-1.96</td>
<td>-2.47</td>
<td>-1.02</td>
<td>1.23</td>
<td>-0.89</td>
</tr>
<tr>
<td></td>
<td>(0.56)</td>
<td>(0.86)</td>
<td>(0.73)</td>
<td>(1.24)</td>
<td>(0.68)</td>
<td>(1.01)</td>
<td>(1.85)</td>
<td>(1.27)</td>
<td>(0.92)</td>
<td>(1.15)</td>
<td>(1.15)</td>
</tr>
<tr>
<td># of person-year obs.</td>
<td>32,005</td>
<td>12,966</td>
<td>19,039</td>
<td>7,254</td>
<td>22,070</td>
<td>9,935</td>
<td>3,162</td>
<td>7,012</td>
<td>11,164</td>
<td>6,633</td>
<td>7,196</td>
</tr>
</tbody>
</table>

Notes: The sample of person-year observations includes all HRS Wave 1 respondents in all years (from 1992 to 2001) in which they were between the ages of 55 and 70, were working at the beginning of the calendar year and had not previously retired. Participation in DC pension plan, IRA, or stocks is based on ownership of these assets at Wave 1; “high value” indicates Wave 1 assets of $50,000 or more (in 2003 dollars). Regressions also include controls for race, ethnicity, exact age dummy variables, marital status, gender, regional unemployment rates, and region-specific fixed effects. Coefficients and standard errors (in parentheses) multiplied by 100; standard errors are clustered at the household level to correct for arbitrary forms of serial correlation in the error term across individuals within the same household over time.

Source: Authors’ calculations from the Health and Retirement Study
Table 4A: Parameterized Estimates of the Impact of Market Cycles on Retirement Behavior from the CPS, by Group

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Workers</td>
<td>Not Included in Pension Plan</td>
<td>Included in Pension Plan</td>
<td>HS Dropout</td>
<td>HS Graduate</td>
<td>Attended Some College</td>
<td>College Graduate</td>
</tr>
<tr>
<td>12 Month Percentage</td>
<td>0.018</td>
<td>0.02</td>
<td>0.016</td>
<td>0.021</td>
<td>0.015</td>
<td>0.016</td>
<td>0.011</td>
</tr>
<tr>
<td>Change in the S&P 500</td>
<td>(0.011)</td>
<td>(0.013)</td>
<td>(0.009)</td>
<td>(0.014)</td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.013)</td>
</tr>
<tr>
<td># of Observations</td>
<td>236,459</td>
<td>124,232</td>
<td>112,227</td>
<td>55,285</td>
<td>87,805</td>
<td>42,064</td>
<td>51,305</td>
</tr>
</tbody>
</table>

Notes: The sample includes all respondents between the ages of 55 and 70 who worked at least 13 weeks in the preceding calendar year. Regressions also include controls for race, ethnicity, exact age dummy variables, marital status, gender, state unemployment rates, and state-specific fixed effects. Coefficients and standard errors (in parentheses) multiplied by 100.

Source: Authors’ calculations from the Current Population Survey.
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
<th>(11)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Not</td>
<td>Included</td>
<td>High</td>
<td>Does Not</td>
<td>Owns</td>
<td>High</td>
<td>HS</td>
<td>HS</td>
<td>Attended</td>
<td>College</td>
</tr>
<tr>
<td></td>
<td>Workers</td>
<td>Included in DC Pension / IRA</td>
<td>in DC Pension / IRA</td>
<td>Value DC Pension / IRA</td>
<td>Owns Stocks or Stock Funds</td>
<td>Stocks or Stock Funds</td>
<td>Value Stock or Stock Funds</td>
<td>Dropout</td>
<td>Graduate</td>
<td>Some College</td>
<td>Graduate</td>
</tr>
<tr>
<td>12 Month Percentage Change in the S&P 500</td>
<td>0.0066</td>
<td>0.0059</td>
<td>0.0072</td>
<td>0.0088</td>
<td>0.0067</td>
<td>0.0066</td>
<td>0.0034</td>
<td>0.0077</td>
<td>0.0076</td>
<td>0.0054</td>
<td>0.0046</td>
</tr>
<tr>
<td></td>
<td>(0.0012)</td>
<td>(0.0017)</td>
<td>(0.0016)</td>
<td>(0.0026)</td>
<td>(0.0014)</td>
<td>(0.0021)</td>
<td>(0.0042)</td>
<td>(0.0027)</td>
<td>(0.0020)</td>
<td>(0.0026)</td>
<td>(0.0021)</td>
</tr>
<tr>
<td># of person-month obs.</td>
<td>354,482</td>
<td>144,121</td>
<td>210,361</td>
<td>79,978</td>
<td>244,515</td>
<td>109,967</td>
<td>35,070</td>
<td>77,316</td>
<td>123,438</td>
<td>73,760</td>
<td>79,968</td>
</tr>
</tbody>
</table>

Notes: The sample of person-month observations includes all HRS Wave 1 respondents in all months (from 1992 to 2001) in which they were between the ages of 55 and 70, were working at the beginning of the calendar year and had not previously retired. Participation in DC pension plan, IRA, or stocks is based on ownership of these assets at Wave 1; “high value” indicates Wave 1 assets of $50,000 or more (in 2003 dollars). Regressions also include controls for race, ethnicity, exact age dummy variables, marital status, gender, regional unemployment rates, and region-specific fixed effects. Coefficients and standard errors (in parentheses) multiplied by 100; standard errors are clustered at the household level to correct for arbitrary forms of serial correlation in the error term across individuals within the same household over time.

Source: Authors’ calculations from the Health and Retirement Study
Figure 1: Stock Market Performance, 1980-2003
Figure 2A: Cyclically Adjusted Retirement Rates for Workers 60 to 65 in the Current Population Survey

Note: Year t reflects retirements that take place roughly between March of year t and March of year t+1.
Figure 2B: Cyclically Adjusted Retirement Rates for Workers 60 to 65 in the Health and Retirement Survey
Figure 3: Investment Allocation in IRAs and Defined Contribution Pensions

[Diagram showing investment allocation in IRAs and Defined Contribution Pensions with categories: Interest-Bearing, Stocks, Combination, Other.]
Figure 4A: Cyclically Adjusted Retirement Rates for Workers 60 to 65 in the Current Population Survey, by Educational Attainment

Note: Year t reflects retirements that take place roughly between March of year t and March of year t+1.
Figure 4B: Cyclically Adjusted Retirement Rates for Workers 60 to 65 in the Health and Retirement Survey, by Educational Attainment

Year

Rate

HS Dropout

HS Graduate

College Graduate
Figure 5A: Cyclically Adjusted Retirement Rates for Workers 60 to 65 in the Current Population Survey, by Pension Status

Note: Year t reflects retirements that take place roughly between March of year t and March of year t+1.
Figure 5B: Cyclically Adjusted Retirement Rates for Workers 60 to 65 in the Health and Retirement Survey, by Defined Contribution Pension/IRA Status.
Figure 6: Cyclically Adjusted Retirement Rates for Workers 60 to 65 in the Health and Retirement Survey, by Stock Holdings Status