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Abstract

In theory the potential for credit risk diversification for banks could be substantial. Portfolios
are large enough that idiosyncratic risk is diversified away leaving exposure to systematic risk.
The potential for portfolio diversification is driven broadly by two characteristics: the degree
to which systematic risk factors are correlated with each other and the degree of dependence
individual firms have to the different types of risk factors. We propose a model for exploring these
dimensions of credit risk diversification: across industry sectors and across different countries
or regions. We find that full parameter heterogeneity matters a great deal for capturing tail
behavior in credit loss distributions, and that this tail behavior is often not captured using
standard value-at-risk (VaR) measures. Instead, the coherent risk measure expected shortfall
(ES) is needed. Symmetric shocks to observable risk factors result in asymmetric loss outcomes,
and this asymmetry is especially pronounced when full parameter heterogeneity is allowed for.
While neither industry nor regional (geography) fixed effects are sufficient to capture this firm-
level heterogeneity, controlling for industry effects seems to generate results which are closer to
the fully unrestricted heterogeneous model.
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1 Introduction

In theory the potential for credit risk diversification for banks can be considerable. To the degree

that different industries or sectors are more or less pro-cyclical, banks can alter their lending policy

and capital allocation across those sectors. Similarly, internationally active banks are able to

apply analogous changes across countries. In addition to such passive credit portfolio management,

financial engineering, using instruments such as credit derivatives, enable banks (and other financial

institutions) to engage in active credit portfolio management by buying and selling credit risk (or

credit protection) across sectors and countries. Credit exposure to the U.S. chemical industry, say,

can be traded for credit exposure to the Korean steel sector. One may therefore think of a global

market for credit exposures where credit risk can be exported and imported.

Within such a global context, default probabilities are driven primarily by how firms are tied

to business cycles, both domestic and foreign, and how business cycles are linked across countries.

In order to implement such a global approach in the analysis of credit risk, we have developed in

Pesaran, Schuermann and Weiner (2004), hereafter PSW, a global vector autoregressive macro-

econometric model (GVAR) for a set of 25 countries accounting for about 80% of world output.

Importantly, the foreign variables in the GVAR are tailored to match the international trade pattern

of the country under consideration.

In Pesaran, Schuermann, Treutler and Weiner (2004), hereafter PSTW, we then link returns for

a portfolio of 119 firms to this global macroeconometric model, which allows us to isolate macro

effects from idiosyncratic shocks as they relate to default (and hence loss). The GVAR effectively

serves as the economic engine reflective of the environment faced by an internationally active global

bank. Domestic and foreign business cycle effects are allowed to impact each firm differently. In

this way we are able to account for firm-specific heterogeneity in an explicitly interdependent global

context. Since we are keenly interested in the impact of different yet equi-probable shock scenarios

from observable risk factors, developing such a conditional modeling framework is key.

In this paper we extend the analysis of PSTW along three dimensions. First, we provide

some analytical results on the limits of credit risk diversification. Second, we use this framework

to understand the degree of diversfication with five models which differ in the their degree of

parameter heterogeneity, from fully homogenenous, allowing for industry and regional heterogeneity

but homogeneous factor sensitivities all the way to the fully heterogeneous model. Third, we have

more than doubled the number of firms in the portfolio from 119 to 243 firms providing for more

robust results and allowing us to explore the importance of exposure granularity. We go on to

explore the impact of shocks to real equity prices, interest rates and real output on the resulting

loss distribution as implied by the five different models.

Such conditional analysis using shock scenarios from observable risk factors is not possible in

the most commonly used model in the credit risk literature, namely the Vasicek (1987, 1991, 2002)
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adaption of the Merton (1974) default model. In addition to being driven by a single and unobserved

risk factor, this model also assumes that risk factor sensitivities, analogous to CAPM-style betas,

are the same across all firms in all regions and industries, yielding a fully homogeneous model.

This single factor model also underlies the risk-based capital standards in the New Basel Accord,

as shown in Gordy (2003).

We find that full parameter heterogeneity matters a great deal for capturing tail behavior in

credit loss distributions, and that this tail behavior is often not captured using standard value-at-

risk (VaR) measures. Instead, the coherent risk measure expected shortfall (ES) is needed. Sym-

metric shocks to observable risk factors result in asymmetric loss outcomes, and this asymmetry is

especially pronounced when full parameter heterogeneity is allowed for. While neither industry nor

regional (geography) fixed effects are sufficient to capture this firm-level heterogeneity, controlling

for industry effects seems to generate results which are closer to the fully unrestricted heterogeneous

model. Interestingly, adding firm fixed effects to the regional fixed effects model does not seem to

improve matters. This points to the importance of firm heterogeneity in the risk factor sensitivities,

the firm "betas," and neglecting such firm differences can either result in too much implied risk

capital, under adverse shocks, or too little capital under benign shock scenarios.

The plan for the remainder of the paper is as follows: Section 2 provides a model of firm value

and default, and Section 3 lays out how firm returns and hence default may be cross-sectionally

correlated. Section 4 develops analytical results for the credit portfolio loss distribution. Section 5

presents the framework for conditional credit risk modeling including a brief overview of the global

macroeconometric model. In Section 6 we introduce the credit portfolio and present the results from

the multi-factor return regressions that link firm returns to the observable systematic risk factors

from the macroeconomic engine. We present results for five models ranging from the homogeneous

Vasicek model to one allowing for full heterogeneity, with industry and geography effects along the

way. In Section 7 we analyze how those models impact the resulting loss distributions under a

variety of macroeconomic scenarios, and we provide some concluding remarks in Section 8.

2 Firm Value and Default1

Any credit default model requires a model of the evolution of firm value as well as conditions under

which default occurs. Specification of those conditions imply a model for a default threshold. In

this section we provide a simple model of firm value, where the firm is leveraged (i.e. has debt),

and its corresponding default threshold. Our approach adapts the option theoretic default model

due to Merton (1974). Merton recognized that a lender is effectively writing a put option on the

assets of the borrowing firm; owners and owner-managers (i.e. shareholders) hold the call option.

If the value of the firm falls below a certain threshold, the owners will put the firm to the debt-

1This section follows closely the approach introduced in PSTW.
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holders. Thus a firm is expected to default when the value of its assets falls below a threshold value

determined by its liabilities.

The problem of modeling firm default inherits all the asymmetric information and agency prob-

lems between borrower and lender well known in the banking literature. The argument is roughly as

follows. A firm, particularly if it is young and privately held, knows more about its health, quality

and prospects than outsiders, e.g. lenders. Banks are particularly well suited to help overcome these

informational asymmetries through relationship lending; learning by lending. Moreover, managers

and owners of firms have an incentive to substitute higher risk for lower risk investments as they

are able to receive upside gains (they hold a call option on the firm’s assets) while lenders are not

(they hold a put option); see the survey by James and Smith (2000) for a more extensive discus-

sion, as well as Garbade (2001). If the firm is public, we have other sources of information such as

quarterly and annual reports which, though accounting based, are then digested and interpreted

by the market. Stock and bond prices serve as summary statistics of that information.

The scope for diversification of credit risk thus can enter through two channels: how firm

value reacts to changes in the systematic risk factors and through differentiated default thresholds.

Both channels need to be modeled. As we explore the impact of two dimensions of diversification,

geography and industry or sector, we will denote a firm j in country or region i and sector s having

asset values Vjis,t at time t, and an outstanding stock of debt, Djis,t. Under the Merton (1974)

model default occurs at the maturity date of the debt, t+H, when the firm’s assets, Vjis,t+H , are

less than the face value of the debt at that time, Djis,t+H . This is in contrast with the first-passage

models where default would occur the first time that Vjis,t falls below a default boundary (or

threshold) over the period t to t+H.2 Under both models the default probabilities are computed

with respect to the probability distribution of asset values at the terminal date, t+H in the case

of the original Merton model, and over the period from t to t +H in the case of the first-passage

models. Although our approach can be adapted to the first-passage model, for simplicity we follow

the Merton approach here.

The value of the firm at time t is the sum of debt and equity, namely

Vjis,t = Djis,t +Ejis,t, with Djis,t > 0. (1)

Conditional on time t information, default will take place at time t+H if

Vjis,t+H ≤ Djis,t+H .

Because bankruptcies are costly and violations to the absolute priority rule in bankruptcy proceed-

ings are so common, in practice the shareholders have an incentive to put the firm into receivership

2See Black and Cox (1976). More recent modeling approaches include direct strategic default considerations (e.g.

Mella-Barral and Perraudin (1997)). For a review of these models, see, for example, Lando (2004, Chapter 3).
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even before the equity value of the firm hits the zero value.3 Similarly the bank might also have

an incentive of forcing the firm to default once the firm’s equity falls below a non-zero threshold.4

Technical default definitions used by banks and bondholders are typically weaker than outright

bankruptcy, a notion we follow here. Hence we assume that default takes place if

Ejis,t+H < Cjis,t+H , (2)

where Cjis,t+H is a positive default threshold, which could vary over time and with firm’s partic-

ular characteristics (region and sector being two of them, of course). Natural candidates include

quantitative factors such as leverage, profitability, firm age and perhaps size, most of which appear

in models of firm bankruptcy,5 as well as more qualitative factors such as management quality.

Obviously some of these factors will be easier to observe and measure than others. The observ-

able accounting-based factors are at best noisy and at worst reported with bias, highlighting the

information asymmetry between managers (agents) and shareholders and debtholders (principals).6

To overcome these measurement difficulties and information asymmetries, we make use of a

firm’s credit ratingR.7 This will help us specifically in nailing down the default threshold. Naturally
rating agencies have access to, and presumably make use of, private information about the firm to

arrive at their firm-specific credit rating, in addition to incorporating public information such as,

for instance, financial statements and equity returns. Thus we make the assumption that rating

agencies benchmark their ratings on past returns and volatilities of all firms that have been rated

R in the past (say over the past 10 to 20 years, see below).8

Consider now a particular R−rated firm at time t, and assume that the credit rating agency

uses the following geometric random walk model of equity values:

ln(ER,t+1) = ln(ERt) + µR + σRηR,t+1, ηR,t+1 ∼ IIDN(0, 1), (3)

with a non-zero drift, µR, and idiosyncratic Gaussian innovations with a zero mean and fixed

volatility, σR.9 Hence, over the period (t, t+H)

ln(ER,t+H) = ln(ERt) +H µR + σR
HX
s=1

ηR,t+s,

3See, for instance, Leland and Toft (1996).
4For a treatment of this scenario, see Garbade (2001).
5See, for instance, Altman (1968), Lennox (1999) and Shumway (2001).
6Duffie and Lando (2001), with this in mind, allow for imperfect information about the firm’s assets and default

threshold in the context of a first-passage model.
7R may take on values such as ’Aaa’, ’Aa’, ’Baa’,..., ’Caa’ in Moody’s terminology, or ’AAA’, ’AA’, ’BBB’,...,

’CCC’ in S&P’s terminology.
8For an overview of the rating industry, see Cantor and Packer (1995); Jafry and Schuermann (2004) provide

detailed default probability estimates by rating.
9Clearly non-Gaussian innovations can also be considered. But for quarterly data that we shall be working with

Gausssian innovations seems a good first approximation.
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and by (2) default occurs if

ln(ER,t+H) = ln(ERt) +H µR + σR
HX
s=1

ηR,t+s < ln (CR,t+H) , (4)

Therefore, the default probability for the R−rated firms at the terminal date t+H is given by

πR(t,H) = Φ
µ
ln (CR,t+H/ERt)−H µR

σR
√
H

¶
. (5)

Denote the H-period forward log threshold-equity ratio to be λR(t,H) = ln (CR,t+H/ERt) so that

λR(t,H) = HµR +QR(t,H) σR
√
H,

where

QR(t,H) = Φ−1 [πR(t,H)] ,

is the quantile associated with the default probability πR(t,H).

An estimate of λR(t,H) can now be obtained using past observations on returns, rR,t+1 =

ln(ER,t+1/ERt), and the empirical default frequencies, π̂R(t,H), of R−rated firms over a given
period of say t = 1, 2, ..., T . Denoting the estimates of µR and σR by µ̂R, and σ̂R, respectively, we

have

λ̂R(t,H) = Hµ̂R + Q̂R(t,H) σ̂R
√
H, (6)

where

µ̂R = T−1
TX
t=1

rRt, σ̂2R = T−1
TX
t=1

(rRt − µ̂R)
2 ,

and

Q̂R(t,H) = Φ−1 [π̂R(t,H)] . (7)

The estimates of µ̂R and σ̂R can also be updated using a rolling window of size 7-8 years (the

average length of the business cycle).

In practice, π̂R(t,H) might not provide a reliable estimate of πR(t,H) as it is likely to be based

on very few defaults over any particular period (t, t + H). One possibility would be to use an

average estimate of λR(t,H) obtained over a reasonably long period of 10 to 20 years (on a rolling

basis).10 For example, based on the sample observations t = 1, 2, ..., T we would have

λ̂R(H) = H µ̂R + Q̂R(H) σ̂R
√
H, (8)

where the (average) quantile estimate Q̂R(H) is given by

Q̂R(H) = T−1
TX
t=1

©
Φ−1 [π̂R(t,H)]

ª
. (9)

10For a comparison of default estimation approaches, see Jafry and Schuermann (2004).
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We assume that rating agencies use about a one-year horizon (H = 4 quarters) when assessing a

firm.

We allow for the possibility of time-varying default thresholds, provided that Cjis,t+H/Ejis,t =

CR,t+H/ERt, meaning that the ratio of the future threshold to today’s firm capital, is the same for

all firms of a particular credit rating R. Moreover, given sufficient data for a particular region or
country i (the U.S. comes to mind) or sector s, one could in principle have π0s varying over those

dimensions as well. However, since a particular firm j’s default is only observable once, multiple

(serial) bankruptcies notwithstanding, it makes less sense to allow π to vary across j.11 Empirically,

then, we will abstract from possible variation in default rates across regions and sectors, so that

probabilities of default vary only across credit ratings and over time.

An important source of heterogeneity is likely the large variation in bankruptcy laws and reg-

ulation across countries. However, by using rating agency default data, we use their homogeneous

definition of default and are thus not subject to these heterogeneities.

2.1 Firm-Specific Defaults

We continue with the return of firm j in region i and sector s over the period t to t + 1 denoted

by rjis,t+1 = ln (Ejis,t+1/Ejis,t) , and assume that conditional on the information available at time

t, Ωt, it can be decomposed as

rjis,t+1 = µjis,t + ξjis,t+1, (10)

where µjis,t is the (forecastable) conditional mean, and ξi,t+1 is the (non-forecastable) innovation

component of the return process. It may contain firm-specific idiosyncratic as well as systematic

risk factor innovations. Following the standard Merton model we shall assume that

ξjis,t+1 | Ωt ∼ N(0, ω2ξ,jis). (11)

We can now characterize the separation between a default and a non-default state with an indicator

variable I (rji,t+1 < λjis(t, 1)) , where λjis(t, 1) = ln (Cjis,t+1/Ejis,t) is the one period forward log

default threshold-equity ratio, such that, using (4),

I (rjis,t+1 < λjis(t, 1)) = 1 if rjis,t+1 < λjis(t, 1) =⇒ Default, (12)

I (rjis,t+1 < λjis(t, 1)) = 0 if rjis,t+1 ≥ λjis(t, 1) =⇒ No Default.

11To be sure, one is not strictly prevented from obtaining firm-specific default probabilities estimates at a given

point in time. The bankrupcty models of Altman (1968), Lennox (1999) and Shumway (2001) are such examples, as

is the industry model by KMV (Kealhofer and Kurbat (2002)). However, all of these studies focus on just one country

at a time (the U.S. and U.K in this list) and do not address the formidable challenges of point in time bankruptcy

forecasting with a multi-country portfolio.
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Using the same approach as above, the one quarter ahead (with T = 1) default probability for firm

j is given by

πjis,t = Φ

µ
λjis(t, 1)− µjis,t

ωξjis

¶
. (13)

µjis,t and ωξjis can be estimated using the firm-specific multi-factor regressions. λjis(t, 1) will be

estimated using the rating information of this firm at time t. If the firm is rated R, then λjis(t, 1)

will be estimated by λ̂R(t, 1) as in (6), on the assumption that all R−rated firms have the same
default threshold-equity ratio. In this way variation in the firm-specific default likelihood πjis,t will

be driven largely by that firm’s return volatility ωξjis.

The default condition for firm j with credit rating R can now be written as

I
³
rjis,t+1 < λ̂R(t, 1)

´
= 1 if rjis,t+1 < λ̂R(t, 1) =⇒ Default, (14)

and is thus the same for all firms with rating R. Once again due to the small number of defaults
over a single period (t, t + 1), in practice it might be more appropriate to use a (rolling) average

estimate such as λ̂R(H) defined by (8).

Mappings from credit ratings to default probabilities are typically obtained using corporate

bond rating histories over many years, often 20 years or more, and thus represent some average

across business cycles. The reason for such long samples is simple: default events for investment

grade firms are quite rare; for example, the annual default probability of an ‘A’ rated firm is

approximately one basis point for both Moody’s and S&P rated firms. We will further make the

indentifying interpretation of credit ratings as being "cycle-neutral" (Saunders and Allen (2002),

Amato and Furfine (2004)), meaning that ratings are assigned only on the basis of firm-specific

information and not on systematic or macroeconomic information.

Credit ratings from rating agencies, being neither buyers nor sellers of credit assets, have the

potential of playing an important, albeit crude, informational role, especially since in assigning

their rating, they typically have access to private (inside) information on the firm they are rating.

In arriving at the firm-specific estimated default probability, π̂jis,t, we thus independently combine

information from the perspective of the two main principals of the firm: the shareholder’s view,

namely stock returns which are public information, and the debtholder’s view, given by rating agen-

cies. This combination allows us to gain potentially rich insight into firms’ behavior, particularly

with respect to the default decision, by overcoming the inherent information asymmetries vis à vis

the firm.

2.2 Multi-period Default Conditions

The default condition for one period ahead is trivially the same under the Merton and first-passage

models. However, for multiple periods these two approaches diverge. To begin, consider the two-

period problem. The Merton model considers default only at the terminal date. Firm j will default
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if

rjis,t+1 + rjis,t+2 < 2µ̂R + σ̂R
√
2Q̂R(2),

where the quantile estimate Q̂R(2) is given in (9). Matters are complicated a bit in the first-passage

model. In this case firm j will default if either

rjis,t+1 < µ̂R + σ̂RQ̂R(1),

or

rjis,t+1 ≥ µ̂R + σ̂RQ̂R(1) and rjis,t+1 + rjis,t+2 < 2µ̂R + σ̂R
√
2Q̂R(2).

Extending this results to H periods is straight forward for the Merton model, namely

Rjis,T+H ≡
HX
τ=1

rjis,t+τ < Hµ̂R + σ̂R
√
HQ̂R(H). (15)

3 Cross-Firm Return and Default Dependence

We now turn to the problem of considering cross-firm correlation through returns resulting in

default correlation. This dependence arises through the systematic risk factors so that conditional

on a realization of those factors, firm returns, and hence defaults, are independent. An extreme

case is when all risk is idiosyncratic. Of course in this case there is no systematic risk, and in the

limit the credit portfolio is fully diversified: unexpected loss vanishes as N → ∞. As the number
of exposures or obligors (firms) in the portfolio increases without bound, the portfolio default/loss

will converge to the average firm-level default probability. If LGD < 1, then the portfolio loss will

simply be proportionately less.

This extreme case is quite unrealistic as we would like to allow for some degree of cross-sectional

correlation of returns. Indeed the credit risk literature has recognized for some time the importance

of modeling correlated or dependent defaults (see for instance ch. 9 in Lando (2004)). The extent

to which credit risk can be diversified crucially depends on the nature and degree of dependence

in defaults across firms. The most widely used model of default dependence is the common factor

model where the dependence is characterized in terms of a common set of risk factors, either directly

via firm-specific default probabilities, or indirectly through firm returns. Vasicek (1987, 1991) was

amongst the first to develop such a credit risk factor model, using a single factor model of firm

returns.12 This approach also forms the basis of New Basel Accord as outlined in detail by Gordy

(2003).13

12Extensions to multiple factors were proposed by Wilson (1997a,b) and Gupton, Finger and Bhatia (1997) in the

form of the industry credit portfolio model, CreditMetrics. For recent published accounts and further developments

see Vasicek (2002) and Schönbucher (2000, 2002).
13There are also a number of other approaches to modeling default correlations which we do not consider in this

paper. These include the correlated default intensities approach of Schönbucher (1998), Duffie and Singleton (1999)
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Using (10) and suppressing the region (i) and sector (s) subscripts for convenience, the multi-

factor version of the return equation can be written as

rj,t+1 = µjt + γ0jft+1 + σjηj,t+1, ηj,t+1 ∼ iidN (0, 1) (16)

where ft+1 is an m× 1 vector of common risk factors, γj is the associated vector of factor loadings,
and ηj,t+1 is the firm-specific idiosyncratic shock, assumed to be distributed independently across

j. In this section, along with much of the credit risk literature, we shall treat the common factors

as unobserved and assume that returns are unpredictable, namely µjt = µj and ft+1 are serially

uncorrelated.14 Specifically, we assume that ft+1 ∼ iidN (0, Im), where Im is an identity matrix of

order m.15.

Before exploring the implications of (16) for the credit risk modeling, some of the features of

the multifactor model are worth emphasizing:

1. Under homogeneous factor loadings with γj = γ for all j, the distinction between a single and

multiple factors will become redundant. This is because under the homogeneity assumption

γ0jft+1 = γ0ft+1 can be treated as a single factor with a factor loading of
√
γ0γ.

2. The individual returns, rj,t+1, are serially uncorrelated, but cross-sectionally correlated. De-

noting the cross section correlation of returns of firm j and j0, by ρjj0 we have

ρjj0 =
δ0j0δj¡

1 + δ0j0δj0
¢1/2 ¡

1 + δ0jδj
¢1/2 , (17)

where δj = γj/σj .

3. If δj = δ for all j, then clearly the pair-wise correlations are the same across all firms, and

ρjj0 = ρ.

4. If δj and δj0 are independently distributed, the average pair-wise correlation of asset returns

is given by

E
¡
ρjj0

¢
= E

 δ0jq
1 + δ0jδj

E

 δj0q
1 + δ0j0δj0

 ,

and Duffie and Gârleanu (2001), the contagion model of Davis and Lo (2001), as well as Giesecke and Weber’s (2003)

indirect dependence approach, where default correlation is introduced through local interaction of firms with their

business partners as well as via global dependence on economic risk factors. More general models of dependence,

using copulas, have been discussed in Li (2000), Embrechts, McNeil and Straumann (2001), Frey and McNeil (2001)

and Schönbucher (2002).
14The case of observable risk factors is discussed below, where ft+1 is linked to the variables in a global vector

autoregressive model recently developed in Pesaran, Schuermann and Weiner (2004).
15The more general case where the factors may exhibit time varying volatility can be readily dealt with by allowing

the factor loadings to be time varying, in line with market volatilities. But in this paper we shall not pursue this line

of research, primarily because the focus of our empirical analysis is on quarterly and annual default risks: over such

horizons asset return volatilities appear to be rather limited and of second order importance.
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and will be exactly zero if δj is symmetrically distributed around zero.

Consider now the correlation of defaults across firms. As before, let zj,t+1 to be the default

outcome for firm j, such that

zj,t+1 = I (rj,t+1 < λj) , (18)

and denote the pair-wise default correlation of firm j and j0 by ρ∗jj0 . It is now easily seen that

ρ∗jj0 =
E
¡
zj,t+1zj0,t+1

¢− πjπj0p
πj(1− πj)

p
πj0(1− πj0)

(19)

where

πj = E (zj,t+1) = Φ

 αjq
1 + δ0jδj

 , (20)

E (zi,t+1zj,t+1) = E
£
Φ
¡
αj − δ0jft+1

¢
Φ
¡
αj0 − δ0j0ft+1

¢¤
,

and

αj =
λj − µj

σj
.

In the above expression, expectations are taken with respect to the distribution of the factors.

Clearly, ρ∗jj0 = 0 if ρjj0 = 0. For non-zero values of ρjj0 the relationship between ρ∗jj0 and ρjj0 is

non-linear, and depends on πj , δj , and the probability densities assumed for εj,t+1 and ft+1, in a

complicated manner. This relationship is simplified considerably under the homogeneous double-

Gaussian case (where εj,t+1 and ft+1 are assumed to be jointly Gaussian) discussed by Vasicek. In

this case using (17) and (20) we first note that

δ0δ =
ρ

1− ρ
, and α =

1√
1− ρ

Φ−1(π).

Hence the default correlation,

ρ∗ij = ρ∗ (ρ, π) =
Ex

h
Φ2
³

1√
1−ρΦ

−1(π)− x
q

ρ
1−ρ
´i
− π2

π(1− π)
, (21)

where expectations are taken with respect to x ∼ N(0, 1), which can be carried out using stochastic
simulations. Figure 1 provides simulated plots of ρ∗ (ρ, π) against ρ, for a few selected values of π.

It is clear that the default correlation, ρ∗, is related non-linearly to ρ, and tends to be considerably

lower than ρ. Also there is a clear tendency for the (ρ∗, ρ) relationship to shift downwards as π is

reduced. For very small values of π, sizable default correlations are predicted by the double-Gaussian

Vasicek model only for very high values of return correlations.
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Figure 1: Default correlation (rho_star) as a function of return correlation in the Vasicek Model

4 Credit Loss Distribution

The complicated relationship between return correlations and defaults manifest itself at the portfolio

level. Consider a credit portfolio composed of N different credit assets such as loans, each with

exposures Ajt. Suppose further that loss-given-default (LGD) of obligor j is denoted by ϕj,t+1

assumed to lie in the range [0, 1]. The portfolio loss over the period t to t+ 1 is given by

LN,t+1 =
NX
j=1

Ajtϕj,t+1zj,t+1, (22)

where as before, zj,t+1 = I(rj,t+1 < λjt).

The loss defined as a fraction of total exposure, At =
PN

j=1Ajt, is given by

cN,t+1 =
NX
j=1

ajtϕj,t+1zj,t+1,

where cN,t+1 = LN,t+1/At, and ajt = Ajt/
PN

j=1Ajt. To simplify the exposition we assume that the

exposure shares, ajt, and the LGD’s, ϕj,t+1, are given and distributed independently of the default

indicators, zj,t+1. This is not a limiting restriction as far as the exposure shares are concerned,

since they are set before the default outcomes are realized. The possible dependence of ϕj,t+1
on zj,t+1, however, can not be ruled out and is a subject of ongoing research.16 But in what

16One would expect loss severity to be higher in recessions than expansions (see Frye (2000) and Altman et al.
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follows we abstract from this complication and assume that ϕj,t+1 is drawn exogenously from a

Beta distribution whose parameters are calibrated to historical LGD data. Under these conditions

we have

cN,t+1 =

 NX
j=1

ajϕj

 NX
j=1

wjzj,t+1

 ,

where wj = ajϕj/
PN

j=1 ajϕj . Therefore, the fraction of portfolio lost is equal to the product of

the average LGD,
PN

j=1 ajϕj , and the average fraction of defaults,
PN

j=1wjzj,t+1. To simplify the

exposition we set the former to unity and consider the distribution of

cN,t+1 =
NX
j=1

wjzj,t+1,

where wj ≥ 0 and
PN

j=1wj = 1.

In the extreme case, assuming firm returns are independently distributed, for the (unconditional)

variance of cN,t+1 we have17

V ar (cN,t+1) =
NX
j=1

w2jV ar (zj,t+1) <
1

4

 NX
j=1

w2j

 .

Hence, the effects of the remaining idiosyncractic shocks to the credit risk portfolio will be fully

diversified if
NX
j=1

w2j → 0, as N →∞. (23)

A sufficient condition for this to hold is given by wj = O
¡
N−1¢, which is the standard “granularity”

condition where no single exposure dominates the portfolio. This result is quite general and holds

irrespective of whether the underlying processes of firm returns are homogeneous or not.

When the underlying returns are correlated there is a non-zero lower bound to V ar (cN,t+1),

and full diversification will not be possible. For example, under the Vasicek model

V ar (cN,t+1) = π(1− π)

 NX
j=1

w2j

+ π(1− π)ρ∗
 NX

j 6=j0
wjwj0

 ,

where π = E (zj,t+1) and ρ∗ is defined by (21). Since,
PN

j=1wj = 1, it is easily seen that

NX
j=1

w2j +
NX

j 6=j0
wjwj0 = 1,

(2002)). Bankruptcies are pro-cyclical, flooding the market with distressed assets which drive down their price (or

increasing severity).
17Note that V ar (zj,t+1) = E z2j,t+1 − [E (zj,t+1)]2 = πj,t+1(1− πj,t+1) ≤ 1/4.
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and hence

V ar (cN,t+1) = π(1− π)

ρ∗ + (1− ρ∗)
NX
j=1

w2j

 . (24)

Under the granularity condition, (23), for N sufficiently large the second term in brackets become

negligible, and V ar (cN,t+1) converges to the first term which will be non-zero for ρ∗ 6= 0. Hence, in
the limit the unexpected loss is bounded by

p
π(1− π)ρ∗. For a finite value of N , the unexpected

loss is minimized by adopting an equal weighted portfolio, with wj = 1/N . For sufficiently large

N , only the granularity condition (23) matters, and nothing can be gained by further optimization

with respect of the weights, wj .

The loss distribution associated with this perfectly homogeneous model is derived in Vasicek

(1991, 2002). Denoting the fraction of the portfolio lost to defaults by x, he obtains the following

limiting density (as N →∞)

fc (x | It) =
r
1− ρ

ρ

φ
h√

1−ρΦ−1(x)−Φ−1(π)√
ρ

i
φ [Φ−1(x)]

 , for 0 < x ≤ 1, ρ 6= 0, (25)

where φ (·) is the density function of a standard normal. The associated cumulative loss distribution
function is

Fc (x | It) = Φ
·√
1− ρΦ−1(x)− Φ−1(π)√

ρ

¸
.

Not surprisingly, Vasicek’s limiting (as N → ∞) distribution is also fully determined in terms
of π and ρ. The former parameter sets the expected loss of the portfolio, whilst the latter controls

the shape of the loss distribution. In effect one parameter, ρ, controls all aspects of the loss

distribution: its volatility, skewness and kurtosis. It would not be possible to calibrate two Vasicek

loss distributions with the same expected and unexpected losses, but with different degrees of

fat-tailedness, for example.

Further, Vasicek’s distribution does not depend on the portfolio weights so long as (23) is

satisfied. Therefore, for sufficiently large portfolios that satisfy the granularity condition, (23), there

is no further scope for credit risk diversification if attention is confined to the homogeneous return

model that underlie Vasicek’s loss distribution. Also, Vasicek’s set up does not allow conditional

risk modeling where the effects of macroeconomic shocks on credit loss distribution might be of

interest. With these considerations in mind, we allow for macroeconomic factors and heterogeneity

along several dimensions. These are: 1) multiple and observable factors, 2) firm fixed effects, 3)

differentiated default thresholds, and 4) differentiated factor sensitivities (analogous to firm "betas")

by region, sector or even firm-specific. If the Vasicek model lies at the fully homogeneous end of

the spectrum, the model laid out in Section 2 above describes the fully heterogeneous end. How

much does accounting for heterogeneity matter for credit risk? The outcomes we are interested in

exploring are different measures of credit risk, be it means or volatilities of credit losses (expected
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and unexpected losses in the argot of risk management), as well as quantiles in the tails or value-

at-risk (VaR). To get there we first introduce very briefly the macroeconomic or systematic risk

model.

5 Conditional Credit Risk Modeling

5.1 The Macroeconomic Engine: GVAR

The conditional loss distribution of a given credit portfolio can now be derived by linking up the

return processes of individual firms, initially presented in equation (10), explicitly to the macro

and global variables in the GVAR model. The macroeconomic engine driving the credit risk model

is described in detail in Pesaran, Schuermann and Weiner (2004), hereafter PSW. We only provide

a very brief, non-technical overview here. The GVAR is a global quarterly model estimated over

the period 1979Q1-1999Q1 comprising a total of 25 countries which are grouped into 11 regions,

(shown in bold in Table 1 from PSTW, reproduced here for convenience). The advantage of the

GVAR is that it allows for a true multi-country setting; however, it can become computationally

demanding very quickly. For that reason we model the seven key economies of the U.S., Japan,

China, Germany, U.K., France and Italy as regions of their own while grouping the other 18

countries into four regions.18

Table 1

Countries/Regions in the GVAR Model

U.S.A. Germany Japan China

Western Europe South East Asia Latin America Middle East

·Spain ·Korea ·Argentina ·Kuwait
·Belgium ·Thailand ·Brazil ·Saudi Arabia
·Netherlands ·Indonesia ·Chile ·Turkey
·Switzerland ·Malaysia ·Peru

·Philippines ·Mexico
·Singapore

U.K. Italy France

The output from these countries comprise around 80% of world GDP (in 1999).

In contrast to existing modeling approaches, in the GVAR the use of cointegration is not confined

to a single country or region. By estimating a cointegrating model for each country/region sepa-

rately, the model also allows for endowment and institutional heterogeneities that exist across the

different countries. Accordingly, specific vector error-correcting models (VECM) are estimated for

18See PSW, Section 8, for details on cross-country aggregation into regions.
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individual countries (or regions) by relating domestic macroeconomic variables such as GDP, infla-

tion, equity prices, money supply, exchange rates and interest rates to corresponding, and therefore

country-specific, foreign variables constructed exclusively to match the international trade pattern

of the country/region under consideration. By making use of specific exogeneity assumptions re-

garding the ‘rest of the world’ with respect to a given domestic or regional economy, the GVAR

makes efficient use of limited amounts of data and presents a consistently-estimated global model

for use in portfolio applications and beyond.

The GVAR allows for interactions to take place between factors and economies through three

distinct but interrelated channels:

• Contemporaneous dependence of domestic on foreign variables and their lagged values;

• Dependence of country specific variables on observed common global effects such oil prices;

• Weak cross-sectional dependence of the idiosyncratic shocks.
The individual models are estimated allowing for unit roots and cointegration assuming that

region-specific foreign variables are weakly exogenous, with the exception of the model for the

U.S. economy which is treated as a closed economy model. The U.S. model is linked to the outside

world through exchange rates, which in turn are themselves determined by rest of the region-specific

models. PSW show that the careful construction of the global variables as weighted averages of the

other regional variables leads to a simultaneous system of regional equations that may be solved

to form a global system. They also provide theoretical arguments as well as empirical evidence in

support of the weak exogeniety assumption that allows the region-specific models to be estimated

consistently.

The conditional loss distribution of a given credit portfolio can now be derived by linking up

the return processes of individual firms, initially presented in equation (10), explicitly to the macro

and global variables in the GVAR model. We provide a synopsis of the model developed in full

detail in PSTW.

5.2 Firm Returns Based on Observed Common Factors Linked to GVAR

Here we extend the firm return model by incorporating the full dynamic structure of the systematic

risk factors captured by the GVAR. We present a notationally simplified version of the model

outlined in detail in PSTW; readers wishing details are asked to consult that paper. Accordingly,

a firm’s change in value (or return) is assumed to be a function of changes in the underlying

macroeconomic factors (the systematic component), domestic and foreign, the exogenous global

variables (in our application oil prices)19 and the firm-specific idiosyncratic shocks ηjis,t+1:

rjis,t+1 = αjis + γ0jisft+1 + ηjis,t+1, t = 1, 2, ..., T, (26)

19 In PSTW we allow for more than one global factor. For simplicity we restrict ourselves here to just one.
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where rjis,t+1 is the equity return from t to t+1 for firm j (j = 1, ..., nci) in region i and sector s, αjis

is a regression constant, γjis are the factor loadings (firm “betas”), and ft+1 collects all the observed

macroeconomic variables plus oil prices in the global model (totaling 64 in PSW). To be sure, these

return regressions are not prediction equations per se as they depend on contemporaneous variables.

As in the unobserved factor model, ft+1 captures the common effects that induce correlated defaults.

The GVAR model provides forecasts of all the global variables that directly or indirectly affect

the returns. If the model captures all systematic risk, the idiosyncratic risk components of any two

companies in the model would be uncorrelated, namely the idiosyncratic risks ought to be cross-

sectionally uncorrelated. In practice it will be hard to absorb all of the cross-section correlation

with the systematic risk factors modeled by the GVAR, and so a model whose residuals are less

correlated will in general be preferred to one where they are more correlated.

Note that we started by decomposing firm return into forecastable and non-forcastable com-

ponents in (10), namely rjis,t+1 = µjis,t + ξjis,t+1. The composite innovation ξjis,t+1 contains the

idiosyncratic innovation ηjis,t+1, and innovations from the macroeconomic variables in the GVAR.

The predictable component is likely to be weak and will depend on the size of the factor loadings,

γjis, and the extent to which the underlying global variables are cointegrating. In the absence of

any cointegrating relations in the global model, none of the asset returns are predictable. As it

happens the econometric evidence presented in PSW strongly supports the existence of 36 cointe-

grating relations in the global model and is, therefore, compatible with some degree of predictability

in asset returns, at least at the quarterly horizon modeled here. The extent to which asset returns

are predicted could reflect time-varying risk premia and does not necessarily imply market ineffi-

ciencies. Our modelling approach provides an operational procedure for relating excess returns of

individual firms to all the observable macro factors in the global economy.

5.3 Expected Loss Due to Default

Given the value change process for firm j, defined by (26), and the log threshold-equity ratio,

λ̂R(t,H), obtainable from an initial credit rating (see Section 2), we are now in a position to

compute expected loss. Suppose we have data for firms and systematic factors in the GVAR for a

sample period t = 1, ..., T.We need to define the expected loss to firm j at time T given information

available to the lender (e.g. a bank) at time T, which we assume is given by ΩT . Following (14),

default occurs when the firm’s value (return) falls below the default threshold-equity ratio λ̂R(T, 1).

Expected loss at time T (but occurring at T + 1), ET (Ljis,T+1) = E (Ljis,T+1 | ΩT ) , is given by

ET (Ljis,T+1) = Pr
³
rjis,T+1 < λ̂R(T, 1) | ΩT

´
×Ajis,T ×ET (ϕjis,T+1), (27)

where Ajis,T is the exposure assuming no recoveries (typically the face value of the loan) and is

known at time T, and ϕjis,T+1 is the percentage of exposure which cannot be recovered in the event

of default or LGD. Typically ϕjis,T+1 is not known at time of default and will be treated as a
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random variable over the unit interval. In the empirical application we make the typical assumption

that ϕjis,T+1 are draws from a beta distribution with given mean and variance calibrated to (pooled)

historical data on default severity.20

Substituting (26) into (27) we obtain:

ET (Ljis,T+1) = πjis,T+1|T ×Ajis,T ×ET (ϕjis,T+1), (28)

where

πjis,T+1|T = Pr
³
αjis + γ0jisfT+1 + ηjis,T+1 < λ̂R(T, 1) | ΩT

´
,

is the conditional default probability over the period T to T + 1, formed at time T . Our modeling

framework allows us to derive an explicit expression for this probability, πjis,T+1|T :

πjis,T+1|T = Pr
³
ξjis,T+1 < λ̂R(T, 1)− µjis,T | ΩT

´
, (29)

where ξjis,T+1 are the composite innovations (idiosyncratic and systematic) and µjis,T is the ex-

plained or expected component of firm returns containing the GVAR forecasts. Note that although

the firm in question operates in country/region i, its probability of default could be affected by

macroeconomic shocks worldwide.

Under the assumption that all these shocks are jointly normally distributed and the parameter

estimates are given, we have the following expression for the probability of default over T to T +1

formed at T 21

πjis,T+1|T = Φ

 λ̂R(T, 1)− µjis,T+1|Tq
V ar

¡
ξjis,T+1 | ΩT

¢
 . (30)

The expected loss due to default of a loan (credit) portfolio can now be computed by aggregating

the expected losses across the different loans. Denoting the loss of a loan portfolio over the period

T to T + 1 by LT+1 we have

ET (LT+1) =
NX
i=0

nciX
j=1

πjis,T+1|T ×Ajis,T ×ET (ϕjis,T+1), (31)

where nci is the number of obligors (which could be zero) in the bank’s loan portfolio resident in

country/region i.

5.4 Simulation of the Loss Distribution

The expected loss as well as the entire loss distribution can be computed once the GVAR model

parameters, the return process parameters in (26) and the thresholds in (8) have been estimated for

20The beta distribution is usually chosen since it is bounded, typically on the unit interval, with two shape para-

meters which can be expressed in terms of mean and standard deviation of losses.
21Joint normality is sufficient but not necessary for ξji,t+1 to be approximately normally distributed. This is

because ξji,t+1 is a linear function of a large number of weakly correlated shocks (63 in our particular application).
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a sample of observations t = 1, 2, ..., T . We do this by stochastic simulation using draws from the

joint distribution of the shocks, �T+1 = (ε0T+1,η
0
T+1)

0, where εT+1 is the vector of systematic shocks

(associated with the macroeconomic variables in the GVAR model plus oil prices) and ηT+1 is the

vector of firm-specific shocks. These draws could either be carried out parametrically from normal

or t-distributed random variables, or if sufficient data points are available, can be implemented

non-parametrically using re-sampling techniques. Under the parametric specification the variance

covariance matrix of �t+1 is given by

V ar (�T+1) =

Ã
Σε 0

0 Ση

!
, (32)

where Ση is a diagonal matrix with elements ω2η,jis, j = 1, 2, ..., nci, i = 0, 1, ...,N.

Denote the rth draw of this vector by �(r)T+1, and compute the firm-specific return, r
(r)
iT,t+1, noting

that

r
(r)
ijs,T+1 = µjis,T+1|T + ξ

(r)
jis,T+1, (33)

where µjis,T+1|T is the return forecast, and

ξ
(r)
jis,T+1 = η

(r)
jis,T+1 + θ0jisε

(r)
T+1 (34)

is the composite innovation, with θjis being a vector of coefficients; details on the precise com-

position of θjis can be found in Section 3 of PSTW. One may then simulate the loss in period

T + 1 using (known) loan face values, Ajis,T , as exposures, and draws from a beta distribution for

severities (as described above):

L
(r)
T+1 =

NX
i=0

nciX
j=1

I
³
r
(r)
ijs,T+1 < λ̂R(T, 1)

´
Ajis,T ϕ

(r)
jis,T+1. (35)

The simulated expected loss due to default is given by (using R replications)

L̄R,T+1 =
1

R

RX
r=1

L
(r)
T+1. (36)

When �
(r)
T+1 are drawn from a multivariate normal distribution with a covariance matrix given by

(32), then

L̄R,T+1
p→ ET (LT+1) , as R→∞.

The simulated loss distribution is given by ordered values of L(r)T+1, for r = 1, 2, ..., R. For a desired

percentile, for example the 99%, and a given number of replications, say R = 10, 000, credit value

at risk is given as the 100th highest loss.
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6 Empirical Results

6.1 The Credit Portfolio

To analyze the effects of different model specifications, parameter homogeneity vs. heterogeneity,

we constuct a fictitious large-corporate loan portfolio. This portfolio is an extended version used in

PSTW and is summarized in Table 2. It contains a total of 243 companies, resident over 10 of the

11 regions. In order for a firm to enter our sample, several criteria had to be met. We restricted

ourselves to major, publicly traded firms which had a credit rating from either Moody’s or S&P.

Thus, for example, Chinese companies are not included for lack of a credit rating. The firms should

be represented within the major equity index for that country. We favored firms for which equity

return data was available for the entire sample period, i.e. going back to 1979. Typically this would

exclude large firms such as telephone operators which in many instances have been privatized only

recently, even though they might now represent a significant share in their country’s dominant

equity index today. The data source is Datastream, and we took their Total Return Index variable

which is a cum dividend return measure.

The column to the right in Table 2 indicates the inception of the equity series available for the

multi-factor regressions. We allocated exposure by share of output of the region (in our "world" of

25 countries). Within a region, loan exposure is randomly assigned. The expected severity for loans

to U.S. companies is the lowest at 20%, based upon studies by Citibank, Fitch Investor Service and

Moody’s Investor Service.22 All other severities are based on assumptions, reflecting the idea that

severities are higher in less developed countries. Table 2 gives the portfolio composition, regional

weights, individual exposures and expected (µβ) and unexpected (σβ) severities.

22As cited in Saunders and Allen (2002).
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Table 2a

The Composition of the Sample Portfolio for Regions

Equity Series1 Credit Rating2 Portfolio Severity3

Region # Obligors Quarterly Range Per cent Mean S.D.

(µβ) (σβ)

U.S. 63 79Q1 - 99Q1 AAA to BBB- 20 20% 10%

U.K. 24 79Q1 - 99Q1 AA to BBB+ 8 35% 15%

Germany 21 79Q1 - 99Q1 AAA to BBB- 10 35% 15%

France 14 79Q1 - 99Q1 AA to BBB 8 35% 15%

Italy 10 79Q1 - 99Q1 A to BBB- 8 35% 15%

W. Europe23 24 79Q1 - 99Q1 AAA to BBB+ 11 35% 15%

Middle East24 4 90Q3 - 99Q1 B- 2 60% 20%

S.E. Asia25 34 89Q3 - 99Q1 A to B 14 50% 20%

Japan 35 79Q1 - 99Q1 AAA to B+ 14 35% 15%

L. America26 14 89Q3 - 99Q1 A to B- 5 65% 20%

Total 243 - - 100 - -

1. Equity prices of companies in emerging markets are not available over the full sample period used for the estimation

horizon of the GVAR. We have a complete series for all firms only for the U.S., U.K., Germany and Japan. For

France, Italy and W. Europe, although some of the series go back through 1979Q1, data was available for all firms

from 1987Q4 (France), 1987Q4 (Italy), 1989Q3 (W. Europe). For these regions the estimation of the the APT

regressions were based on the available samples. For L. America we have a observations for all firms from 1990Q2.

2. The sample contains a mix of Moody’s and S&P ratings, although S&P rating nomenclature is used for convenience.

3. Severity is drawn from a beta distribution with mean µβ and standard deviation σβ .

Table 2b provides summary information of sample size by industry.

23Western Europe is made up of Spain, the Netherlands, Belgium and Switzerland.
24The Middle East, while made up of Kuwait, Saudi Arabia and Turkey, contains only firms from Turkey.
25The countries in South East Asia are Indonesia, Korea, Malaysia, Philippines, Singapore and Thailand.
26Latin America is comprised of Argentina, Brazil, Chile, Mexico and Peru.
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Table 2b: Breakdown by Industry

# of Firms

Agriculture, Mining 24

& Construction

Communication, 45

Electric & Gas

Durable Mfg. 30

FIRE† 71

Non-durable Mfg. 27

Service 6

Wholesale & 40

Retail Trade

Total 243

† : FIRE: Finance, Insurance and Real Estate.

6.2 Risk, Return and Default by Credit Rating

In order to obtain estimates for the rating-specific default thresholds, we make use of the rating

histories from Standard and Poor’s spanning 1981-1999, roughly the same sample period as is

covered by our GVAR model. The results are presented in Table 3 below for the range of ratings

that are represented in our portfolio of firms, namely AAA to B. The estimates of the four-quater
ahead threshold-equity ratio, CR,t+4/ERt, are computed using exp(λ̂R(H)) with H = 4, where

λ̂R(H) is defined by (8).27 Empirical default probabilities, π̂R(t,H), are obtained using default

intensity-based estimates detailed in Lando and Skødeberg (2002).

27Return means and standard deviations are computed daily for all U.S. firms of rating R alive in period t. Returns

are computed using data from CRSP. Details on the estimation of µ̂R and σ̂R are available from the authors upon

request. Ratings and rating histories are from Standard and Poors CreditPro Database V. 6.2. We use the sample

period 1981Q1-1999Q1.
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Table 3

Rating-Specific Return and Equity-Threshold Estimation

S&P Rating µ̂R σ̂R µ̂R/σ̂R π̄R (in bp) \CR,4/ER
AAA 4.34% 13.87% 0.33 0.026 0.37

AA 4.06% 15.16% 0.27 0.369 0.33

A 4.13% 15.31% 0.27 0.714 0.35

BBB 3.80% 17.37% 0.22 10.63 0.37

BB 3.21% 24.12% 0.13 49.21 0.30

B 2.04% 34.82% 0.06 351.66 0.30

\CR,4/ER denotes the sample estimate of the four-quarter ahead default equity ratio,

µ̂R and σ̂R are the sample estimates of the mean and standard deviations of quarterly

returns for R-rated firms, computed using daily data.

We note that average quarterly volatility, σ̂R, increases monotonically as we descend the rating

spectrum to the point where the volatility of a B-rated firm is more than twice that of an AA-
rated firm. Average returns do not keep pace with the increasing volatility, resulting in similarly

declining Sharpe ratios (µ̂R/σ̂R). Annual default probabilities display the familiar pattern of

increasing dramatically as we descend the credit spectrum, especially once the investment grade

boundary crosses (i.e. BB and below).
Of particular interest is the behavior of the four-quarter forward threshold-equity ratio \CR,4/ER

which exhibits very little variation across ratings, and ranges from 0.30 for BB to 0.37 for AAA
rated firms.

In order to examine the stability of these estimates over time, we take the maximum sample

length available, 1981Q1 - 2002Q4, and split it evenly into two sub-periods of 11 years each. The

results are summarized in Table 4.28 Mean returns µ̂R seem systematically lower in the second

half than in the first with the exception of B-rated firms whose mean return is slightly higher in
the second sub-sample. Volatilities appear more stable, though higher for the two lowest rating

categories, BB and B. The Sharpe-ratio µ̂R/σ̂R declines monotonically across ratings and is quite
consistent between the two sub-samples.

Not surpringly default probabilities exhibit considerable variations across the two sub-samples,

28Return means and standard deviations are computed quarterly for all U.S. firms of rating R alive in period

t. Returns are computed data from CRSP. Ratings and rating histories are from Standard and Poors CreditPro

Database V. 6.2.
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especially for the higher credit grades (AAA to A). 29 Nonetheless, despite this the four-quarter
forward threshold-equity ratio is remarkably stable across the two sample periods. To be sure, the

thresholds are systematically lower for the second sample period, indicating that it takes a higher

level of capital to attain a similar default threshold than previously. This evidence is consistent

with Blume, Lim and MacKinlay (1998) who report that credit rating agencies have raised their

standards.

Table 4

Rating-Specific Return and Equity-Threshold Estimation

Sample Range AAA AA A BBB BB B
µ̂R 1981Q1-1991Q4 4.72% 4.60% 4.55% 4.27% 3.42% 0.81%

1992Q1-2002Q4 3.99% 3.34% 3.64% 2.74% 2.23% 1.26%

σ̂R 1981Q1-1991Q4 12.49% 13.26% 14.80% 17.09% 23.84% 29.39%

1992Q1-2002Q4 12.44% 12.13% 14.77% 17.94% 27.60% 42.09%

µ̂R/σ̂R 1981Q1-1991Q4 0.38 0.35 0.31 0.25 0.14 0.03

1992Q1-2002Q4 0.32 0.28 0.25 0.15 0.08 0.03

π̂R (in bp) 1981Q1-1991Q4 0.075 0.844 1.725 14.71 84.44 470.66

1992Q1-2002Q4 0.007 0.031 0.541 10.16 61.61 534.77
\CR,4/ER 1981Q1-1991Q4 0.41 0.44 0.42 0.43 0.37 0.39

1992Q1-2002Q4 0.36 0.38 0.37 0.37 0.28 0.27

# of obs.30 1981Q1-1991Q4 776 4,131 7,510 4,437 3,193 3,877

1992Q1-2002Q4 569 2,785 7,593 8,300 6,610 5,780

6.3 Multi-factor Return Regressions: Specification and Selection

With the GVAR framework serving as the global economic engine, multi-factor return regressions

are specified in terms of the observed macro factors in the GVAR model. A general form of such

return regressions is given by (26). Given the diverse nature of the firms in our portfolio, one

is tempted to include all the domestic, foreign and global factors (i.e. oil price changes) in the

multi-factor regressions. Such a general specification may be particularly important in the case

where a multinational is resident in one country, but the bulk of its operations takes place in the

29These probability values are very small (they are reported in basis points!) simply because there are so few

defaults for the very high credit grades. In fact, there were no defaults by AAA-rated firms at all. We use a duration
approach to estimate transition matrices, the last column of which is the transition to default. In this way we may

obtain a positive probability of default for highly rated obligors even though no default was observed during the

sampling period. It suffices that an obligor migrated from, say, AAA to AA to A, and that a default occurred from
A to contribute probability mass to πAAA. See also Jafry and Schuermann (2004).
30These are firm-quarters.
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global arena. However, because there is likely to be a high degree of correlation between some

of the domestic and foreign variables (e.g. domestic and foreign real equity prices), it is by no

means obvious that a general-to-specific model selection process would be appropriate, particularly

considering the short time series data available relative to the number of different factors in the

GVAR.

An alternative model selection strategy, which we adopt in this paper, is to view the 243 multi-

factor regressions as forming a panel data model with heterogeneous coefficients. Such panels have

been studied by Pesaran and Smith (1995) and Pesaran, Smith and Im (1996) where it is shown

that instead of considering firm-specific estimates one could base the analysis on the means of the

estimated coefficients, referred to as the mean group estimators (MGE). This approach assumes

that the variations of factor loadings across firms in different regions are approximately randomly

distributed around fixed means. This is the standard random coefficient model introduced into the

panel literatue by Swamy (1970) and used extensively in the empirical literature.31 The choice of

the factors in the multi-factor regressions can now be based on the statistical significance of the

(population) mean coefficients by using the MGE to select a slimmed-down regressor set.32

In addition to the above fully heterogeneous specification, to evaluate the quantitative impor-

tance of parameter heterogeneity, we also consider a number of specifications with differing degrees

of slope and error variance homogeneity. It is worth emphasizing that the specifications considered

here will be based on the same set of factors and only differ as far as the degree to which their

parameters are allowed to vary across firms. The models, arranged from most to least homogeneous

are:

M1: The fully homogeneous model with the same “alpha” and “beta” across all the 243

firms in the portfolio, estimated by a pooled OLS regression. The default threshold λ

is also identical for all firms and is calibrated to generate the same one-year expected

loss as the fully heterogeneous model (M5).

M2: The pooled model with industry fixed effects; there are seven industry dummies.

M3: The pooled model with regional effects; there are ten regional dummies.

M4: The pooled model with regional and firm fixed effects (firm "alphas") model.

M5: The fully heterogeneous model with firm "alphas" and "betas," firm specific error

variances and rating-specific default thresholds.

Models 2 and 3 can be thought of allowing us to explore the impact of industry and regional

effects on the resulting credit loss distribution, while Model 4 is a partial step to the fully het-

erogeneous specification. Only the last model allows for threshold heterogeneity by making use of

31A recent review of the random coefficient models is provided by Hsiao and Pesaran (2004).
32The appropriate test statistics for this purpose are given in PSTW, Section 6.
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credit ratings along the lines described in Section 2.1. Although, as was noted earlier in Table 3,

the default thresholds show little variations across firms with different credit ratings. This should

be born in mind in comparing loss distribution outcomes across the different model specifications.

Another consideration in our comparative analysis is the extent to which the five alternative

parametric specifications affect cross section correlations of the simulated returns. Since all the five

models are based on the same set of observed factors, cross section correlations of the simulated

returns will be affected significantly by parameter heterogeniety only if the differences of parameters

across firms are systematic. In the case of pure random differences, it is easily seen that all

specifications imply similar amount of cross return correlations.

It also follows that by pinning down the expected losses, one would also fix the unexpected losses

if parameter differences across firms are non-systematic. This is because the loss distribution of

heterogeneous factor models with purely random factor laodings and Gaussian shocks is primarily

governed by the expected loss and the cross section correlation of asset returns.

6.4 Return Regression Results

In this section we present the estimation results for Models 1 through 5. To set the stage we begin

with Model 5, presented in Table 5, which allows for full parameter heterogeneity. The pooled

regression results for Models 1 through 3 are presented in Table 6. Based on the MG test results

from the first stage the statistically most significant factors are, perhaps not surprisingly, changes

in domestic and foreign real equity prices (∆q or ∆q∗), domestic interest rate (∆r) and oil price

changes (∆po). We ran two sets of multi-factor regressions (including the interest rate and oil price

variables); one with ∆q and another with ∆q∗, and selected the regression with the higher R̄2. For

three-quarters of the portfolio (183 firms) the domestic equity market return was chosen. To allow

for easier comparison of models we kept this choice for Models 1 through 4 as well.

The summary of the final set of multi-factor regressions and the associated MG estimates are

given in Table 5. In this specification changes in equity prices, interest rates and oil prices remain

the key driving factors in the multi-factor regressions.
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Table 5

Mean Group Estimates of Factor Loadings

Heterogeneous Model (Model 5)

Factors MGE S.E. of MGE t-ratios

β̂ s.e.
³
β̂
´

constant 0.022 0.002 10.175

∆q̃t+1
33 0.885 0.026 34.457

∆r -2.997 0.528 -5.676

∆po 0.147 0.042 3.475

R2 0.240

# of firm quarters 17,114

The portfolio equity "beta" is below one, indicating that our portfolio is somewhat less correlated

than the global market. An increase in the rate of interest results in a decline in firm returns while

the overall effect of the oil price changes is, positive. This seems a reasonable outcome for energy

and petrochemical companies and for some of the banks, although one would not expect this result

to be universal. In fact we do observe considerable variations in the individual estimates of the

coefficients of oil prices changes across different firms in our portfolio. In the final regressions, of

the 243 firm regressions, the coefficient on oil price changes was positive for 144 firms (about 59%

of the total), and negative for the remaining firms. The MGE for each subset was also significant.

The lack of other observable systematic risk factors entering the return model confirms that

most information relevant for firm returns is contained in the contemporaneous market return.

Only interest rates and oil prices changes provided marginal explanatory power. To be sure, when

forecasting the macroeconomic variables, and when conducting scenario analysis, the dynamics of

all the variables modeled in the GVAR (all 63 of them, plus oil prices) can still affect returns

through their possible impacts on equity returns and interest rates. A direct presence in the firm

return equation is not necessary for real output, for example, to influence returns. Output shocks

influence returns and credit losses to the extent that real output, interest rates and stock market

returns are contemporaneously correlated.

Turning now to the results of the other models, we see in Table 6 (Models 1 to 3) that there

is little variation in the firm equity "beta" across models, and that it is always quite close to

the MGE beta of the heterogeneous model (Model 5). As far as the goodness of the fit of the

alternative models is concerned, adding regional fixed effects (Model 3) seems to be somewhat

more important than adding industry effects (Model 2) as the former has an R2 of 0.151 while for

the latter R2 = 0.145, nearly the same as for the pooled, fully homogeneous model (0.144). The

33∆q̃t+1 is equal to ∆qt+1 or ∆q∗t+1 depending on which yields a better in-sample fit.
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only industry sector which has a strongly significant effect (at the 1% level) is Finance, Insurance

and Real Estate (FIRE), while Wholesale & Retail Trade is marginally significant at the 10% level.

Regional effects are estimated relative to the U.S.. They are strongly significant (1% level) for

Western Europe (positive), Japan (positive) and Latin America (positive), and significant at the

5% level for Italy (positive) and South East Asia (negative). If in addition to the regional effects

we also add firm fixed effects, M4, the overall R2 increases to 0.160, and the factor sensitivities

("betas") are nearly identical to M3.34 Note that in all of the homogeneous models M1 through

M4 the pooled coefficient on oil price changes is positive. Thus any heterogeneity to oil price

changes by firms is lost. That this particular factor heterogeneity is important was borne out by

the results from the fully heterogeneous model. This false restriction will carry forward into the

loss distribution.

Finally, we computed the average pairwise return correlation across all firms in our portfolio.

This turned out to be about 12%; recall this is quarterly data. The three factors used in the

five model specifications are able to absorb a significant amount of the cross-firm dependence: the

residual correlations are about 5%.

Before proceeding to the results, we recap each of the model specifications, starting with the

most general specification, M5.

6.4.1 Fully Heterogeneous Model (M5)

The return for firm j in region i and sector s from t to t+1 is denoted rjis,t+1. The fully heterogeneous

model is

rjis,t+1 = αjis + γ1,jis∆q̃t+1 + γ2,jis∆rt+1 + γ3,jis∆p
o
t+1 + ξjis,t+1, (37)

where ∆q̃t+1 is equal to ∆qt+1 or ∆q∗t+1 depending on which yields a better in-sample fit, and

ξjis,t+1 | Ωt ∼ N(0, ω2ξ,jis),

are the compound innovations, allowing for firm-specific error variance heterogeneity. This is the

only model where cross section error variance heterogeneity is allowed. Finally, default thresholds

are differentiated by rating: λR, although as discussed above the differences in λR across R is

rather limited.

6.4.2 Fully Homogeneous Model (M1)

Thus the fully homogeneous model, which we have called (perhaps inappropriately) the Vasicek

model, will be specified as

rjis,t+1 = α+ γ1∆q̃t+1 + γ2∆rt+1 + γ3∆p
o
t+1 + ξjis,t+1, (38)

34These results are not presented due to space constraint but are available from the authors upon request.
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where the error variances are assumed to be the same for all firms: ω2ξ,jis = ω2ξ . Note that the same

systematic risk factors appear in (38) as in (37). There is only one default threshold, λ̄, which is

calibrated to yield the same EL across models.

6.4.3 Industry Fixed Effects (M2)

Next we allow for industry fixed effects:

rjis,t+1 = α+ δ1Is + γ1∆q̃t+1 + γ2∆rt+1 + γ3∆p
o
t+1 + ξjis,t+1, (39)

where Is is a dummy variable which takes the value of 1 for industry/sector s and 0 otherwise, with

the Communication, Electric & Gas as the omitted sector. This is the only difference to the fully

homogeneous model in (38).

6.4.4 Region Fixed Effects (M3)

Next we allow for region fixed effects:

rjis,t+1 = α+ δ2Ri + γ1∆q̃t+1 + γ2∆rt+1 + γ3∆p
o
t+1 + ξjis,t+1, (40)

where Ri is a dummy variable which takes the value of 1 for region i and 0 otherwise, with the U.S.

as the omitted region. This is the only difference to the fully homogeneous model in (38).

6.4.5 Firm and Region Fixed Effects (M4)

Next we add firm fixed effects to the regional model. One needs to be careful to leave out one firm

in each region in the fixed effects specification to avoid collinearity of the dummy variable and firm

fixed effects. We may denote this as α̃j in the fourth specification:

rjis,t+1 = α̃j + δ2Ri + γ1∆q̃t+1 + γ2∆rt+1 + γ3∆p
o
t+1 + ξjis,t+1. (41)

Otherwise the model specification in (41) is the same as in (40).

7 Simulated Credit Loss Distributions

7.1 Model Heterogeneity and Baseline Losses

With the estimated GVAR model serving as the economic scenario generator and the fitted multi-

factor regressions as the linkage between firms and the global economy, we simulated loss distribu-

tions one through four quarters ahead.35 A one year horizon is typical for credit risk management
35The important issue of credit risk model evaluation, especially for a regulator under the New Basel Capital

Accord, is beyond the scope of this paper; we plan to address it in subsequent work. See also Lopez and Saidenberg

(2000). Lucas (2001) illustrates the difficulty of this validation process in the easier context of market risk.
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and thus of particular interest. We carried out 100,000 replications for each scenario using Gaussian

innovations. For the forecasts and shock scenarios, we computed expected loss results using the

analytic formula (using (31)) as well as by stochastic simulations, (36). The two sets of estimates

turn out to be very close indeed so we only report the simulated ones.

To make the simulated loss results from the different model specifications comparable, we cal-

ibrated the single default threshold used in models M1 through M4 to be such that the one-year

expected loss, EL, was within one basis point of the one-year EL from the heterogeneous model,

M5; that turned out to be 42.7bp.

Table 7 gives summary statistics for the baseline (i.e. no macroeconomic shocks) loss distribution

for the five models. EL is very close across models by construction. Unexpected losses (UL) vary

little across the different specifications, and largely reflects the fact that all the specifications under

consideration imply very similar simulated cross firm asset return correlations. Indeed the simulated

loss volatilities are not only close to one another but also close to the asymptotic loss volatility

implied by the Vasicek model as discussed in Section 4. This asymptotic expression, given in (24),

is driven by the average default rate across the portfolio (equal to the EL if LGD = 100%), π, and

the default correlation, ρ∗, itself a function of π and the average return correlation of the firms in

the portfolio, ρ, which is 12% for our portfolio; see (21) in Section (3). Thus for π = 0.427%, this

yields a default correlation of ρ∗ = 0.266% and an asymptotic UL =
p
π(1− π)ρ∗ = 0.336% or

33.6bp, somewhat below the simulated UL’s, as it should be.

However, the behaviour of the loss distributions begin to diverge as we consider their tail

properties. The 99.9% value-at-risk, or VaR, is lowest for the heterogeneous model at 184.6bp,

though not the expected shortfall, ES, at the same percentile, which at 214.5bp is close to the

figures obtained under M1 and M2, and somewhere between the figures for M4 and M3. Indeed this

discrepancy between VaR and ES is best captured by their ratio which is around 1.1 for models

M1 to M4, but much higher at 1.43 for the fully heterogeneous model.

It is by now well known that VaR is not a coherent risk measure (see Artzner, Delbaen, Eber,

and Heath (1999)), plagued among other things by a lack of sensitivity to tail behavior. Simply put,

VaR treats all beyond-VaR events the same and hence fails to capture tail heterogeneity. ES, being

the expectation of the beyond-VaR tail, however is a coherent risk measure and thus of interest

in this discussion. The ratio of ES to VaR in general exceeds one for fat-tailed distributions (it

approaches one for the Gaussian distribution). It is clear from Table 7 that only the heterogenous

model is able to capture the tail events properly, and that those are only measured with the ES risk

measure, not with the VaR measure. Interestingly, more conventional measures of depatures from

the normal distribution, such as skewness and kurtosis, also fail to reveal the tail differences that

exist across the models. See the last two columns of Table 7. This could be due to the relatively

small cross firm return correlations of the underlying portfolio, in turn reflecting the global nature

of the portfolio being considered. It would be interesting to see that the same results prevail if we
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turn to exclusively domestic portfolios with higher cross from retun correlations.

7.2 Model Heterogeneity and Macroeconomic Shocks

One of the main advantages of our conditional modeling approach lies in the fact that allows us

to consider the impact of different macroeconomic shock scenarios. The ability to conduct shock

scenario analysis with observable risk factors is clearly important for policy analysis, be it business

or public policy.

The risk factors in the firm return models are equity returns, interest rates and oil prices.

In addition we shall explore the impact of business cycle heterogeneity across different countries,

by considering shocks to real output, which (as noted earlier) can influence the loss distributions

indirectly through their contemporaneous correlations with equity returns and interest rates. Ac-

cordingly, for each horizon we examined the following equi-probable scenarios, though others are

possible, of course:36

• a −2.33σ shock to real U.S. equity, corresponding to a quarterly drop of 14.28%,

• a +2.33σ shock to the German short term interest rate, corresponding to a quarterly rise of

0.33%,

• a −2.33σ shock to real U.S. output, corresponding to a quarterly drop of 1.85%.

In addition we experimented with a symmetric positive shocks to U.S. equity prices which are

of particular interest here since their impacts on losses will not be (negatively) symmetric due to

the nonlinearity of the credit risk model. In order to learn more about the tail properties of the

various loss distributions, we also consider an extreme stress scenario for the U.S. equity market

as reported in PSTW, namely an adverse shock of 8.02σ. This corresponds to a quarterly drop of

49% which is the largest quarterly drop in the S&P 500 index since 1928, that occurred over the

three months to May of 1932. Finally, we include an intermediate negative equity shock of −5σ
which corresponds to a quarterly decline of 30.64%. Details of how the macroeconomic shocks are

generated and how they feed through firm returns to the loss distribution can be found in PSTW.

The results for the adverse shock scenarios can be found in Tables 8 and 9; we start the

discussion with the −2.33σ shock to real U.S. equity summarized in Table 8a. Both EL and UL are
similar across the resticted models M1 through M4, and they are systematically above the mean

and volatility of losses implied by the heterogeneous model M5. Industry fixed effects, M2, seem to

yield loss results that are closest to allowing for full parameter heterogeneity, yet even this model

is unable to generate the tail behavior of M5; the ratio ES/VaR is the same across models M1

36 2.33σ corresponds, in the Gaussian case, to the 99% Value-at-Risk (VaR), a typical benchmark in risk manage-

ment.
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through M4 at 1.08, much below the 1.48 figure obtained for the heterogeneous model. Despite

this riskiness revealed only by the fully heterogeneous model, if capital were set using 99.9% VaR,

the various restricted models would require between 23% and 29% more capital. Interestingly, this

discrepenancy shrinks to between 12% and 17% if capital were set using the coherent risk measure

ES, though the implied capital remains lower with the fully heterogeneous model, presumably due

to better portfolio diversification. Similar conclusions can be reached if we consider the other two

adverse equi-probable shock scenarios: the increase in German interest rates and the drop in U.S.

real output. The ratio of ES to VaR at the 99.9 percentile is around 1.4 for the heterogeneous

model but only around 1.1 for the other models.

Next, we turn our attention to comparing the effects of benign and adverse shocks, and ask

if symmetric shocks generate symmetric loss outcomes? The answer is clearly no, although the

extent of asymmetry depends on model parameters. The asymmetry is especially pronounced for

the fully heterogeneous model. In Table 9 we present the results for ±2.33σ shocks to real U.S.
equity returns. We repeat the results for the baseline and the adverse shock from Tables 7 and 8a

for easy comparison. First, all models exhibit some degree of asymmetry: benign shocks do not

mitigate losses as much as adverse shock increase them, relative to the baseline. This is the case

wether measured by expected or unexpected losses, or even VaR or ES. Benign shocks generate

loss distributions that are more skewed and have higher kurtosis relative to adverse shocks, a result

that holds across all models. However, models M1 through M4 are all more "optimistic" when it

comes to loss reduction from a benign shock when compared to the heterogeneous model M5. Recall

that baseline EL is calibrated to be nearly the same across models. The benign shock results in

an EL of 33.5bp for the heterogeneous model, M5, compared with 25.7 (M4) to 27bp (M3) for the

restricted models. This discrepancy is especially noticable for VaR and ES: for example, while ES

ranges from 171.2bp (M2) to 178.5 (M4), all are well below the 191.0bp for M5.While the restricted

models would assign too much capital for the adverse shocks, they would assign too little under

the benign shock scenarios. Obviously firm parameter heterogeneity matters a great deal for credit

risk, and fixed effects, either at the industry, regional or even firm level, do not seem to be sufficient

to capture the heterogeneity relevant for credit risk.

Finally, we consider the effect of extreme shocks to the resulting distribution of credit losses

under different model specfications. Tables 10a and 10b present results from two different U.S. real

equity shock scenarios: −5.00σ and −8.02σ, the latter matching the largest quarterly drop in the
S&P 500 index since 1928. To be sure, a shock as extreme as −8.02σ is, of course, outside the
bounds of the estimated model. It would be unreasonable to believe that such a large shock would

not result in changes to the underlying parameters. However, it is still instructive to examine the

impact of an extreme shock, one way one might stress a credit risk model. Moreover, 5σ events are

more common at higher frequencies than the quarterly data we have available to us, and in this

way our results will likely underestimate the true loss outcomes.
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Model parameter heterogeneity becomes especially important during such crisis scenarios. First,

no matter how loss is measured, be it EL, UL, VaR or ES, model M5 losses are always significantly

below the other four restricted models. For instance, consider just EL for the −5σ shock in Table
10a: the fully heterogeneous model generates 85bp of EL while the other models range from 123.7

(M2) to 141 (M4). Once again industry fixed effects (M2) seem to yield results that are closer to the

fully heterogenenous model. Second, VaR is even a worse risk measure for these extreme shocks,

though this is not apparent when using the restricted models. The ES to VaR ratio never exceeds

1.08 for models M1 through M4, but it is 1.56 for the −5σ and 1.85 (!) for the extreme −8.02σ
shock under model M5. Curiously for all models the resulting loss distribution becomes less skewed

and fat-tailed, as measured by kurtosis, as the shocks sizes are increased.

7.3 Idiosyncratic Risk and Granularity

Portfolio-level results of credit risk models such as those discussed in Vasicek (1987, 2002) assume

that the portfolio is sufficiently large that all idiosyncratic risk has been diversified away. More

generally we consider a credit portfolio composed of N different credit assets such as loans, each

with exposures or weights wi, for i = 1, 2, .., N , such that the atomistic condition (23) holds. Recall

that a sufficient condition for (23) to hold is given by wi = O
¡
N−1¢.37 The lower the average firm

return correlation, the greater the potential for diversification, but a larger N is required to attain

that limit than if correlations are higher. A common rule of thumb for return diversification of a

portfolio of equities is N ≈ 50. But as seen in Section 3, default correlations are much lower than
return correlations, meaning that more firms are needed to reach the diversification limits of credit

risk.

Thus it seems reasonable to ask if a portfolio of N = 243 firms large enough to diversify away

the idiosyncratic risk. To answer this question we took the simple Vasicek model with homogeneous

factor loadings, a single default threshold and fixed LGD, and analyzed the impact of increasing N

on simulated compared to analytic (asymptotic) unexpected loss (UL). The results are summarized

in Table 11 below.

Table 11: Impact of Granularity

# of loans in portfolio (N)

119 243 1000 10,000

Deviation from asymtotic lower bound 49% 27% 11% 5%

Fully homogeneous model with fixed LGD.

37Conditions (23) on the portfolio weights was in fact embodied in the initial proposal of the New Basel Accord

in the form of the Granularity Adjustments which was designed to mitigate the effects of significant single-borrower

concentrations on the credit loss distribution. See Basel Committee (2001, Ch.8).

33



The first value of N = 119 relates to the number of firms in the PSTW portfolio. By more than

doubling N we cut idiosyncratic risk nearly in half. But to come within 5% of the asymptotic UL of

the portfolio, more than 10,000 firms are needed! Thus credit portfolios or credit derivatives such

as CDOs which contains rather fewer number of firms will likely still retain a significant degree of

idiosyncratic risk, an observation also made by Amato and Remolona (2004). To be sure, these

results may be different for different firm return specifications as the Vasicek model, for which

closed form solutions for the asymptotic loss distribution are know, forces all firm-level variability

into just two, in our case five, parameters (see (38)): "alpha," three risk factor sensitivities and the

single default threshold.

8 Concluding Remarks

In this paper we made use of a conditional credit risk model with observable risk factors, developed

in Pesaran, Schuermann, Treutler and Weiner (2004), to explore several dimensions of credit risk

diversification: across industry sectors and across different countries or regions, either in a restrictive

fixed effect or allowing for full firm-level heterogeneity. Specifically, we fix the number of risk factors

— there are three: market equity returns and changes in domestic interest rates and oil prices —

and only vary the amount of parameter heterogeneity across models. We find that allowing for

full parameter heterogeneity can matter a great deal for capturing tail behavior in credit loss

distributions. Moreover, this tail behavior is not captured using standard value-at-risk (VaR)

measures; instead, the coherent risk measure expected shortfall (ES) is needed. We examine the

effect of symmetric shocks to observable risk factors and show that they result in asymmetric

loss outcomes, and this asymmetry is especially pronounced when full parameter heterogeneity is

allowed for. Neglecting firm heterogeneity in the risk factor sensitivities, the firm "betas," can

either result in too much implied risk capital, under adverse shocks, or too little capital under

benign shock scenarios. While neither industry nor regional (geography) fixed effects are sufficient

to capture this firm-level heterogeneity, controlling for industry effects seems to generate results

which are closer to the fully unrestricted heterogeneous model.

The results raise a number of questions and issues that merit further exploration. Our portfolio,

by virtue of being allocated across 24 countries in 10 regions, is already quite diversified as evi-

denced by an average pairwise return correlation of 12%. Concentrating all of the nominal exposure

into just one region or one industry would undoubtedly have significant impact on the resulting

loss distribution, in addition to yielding differences across models. A difficulty one would quickly

encounter in exploring this problem are the rating or default probability differences across those

dimensions. The average rating in the U.K., for instance, is much higher than for the Latin Amer-

ican obligors, especially if one follows the rule that an obligor rating cannot exceed the sovereign
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rating.38

It is also worth exploring the impact of fat-tailed innovations on the resulting loss distributions.

The current application is limited to the double-Gaussian assumption (both idiosyncratic and

systematic innovations are normal), but it seems reasonable to relax this assumption by considering,

say, draws from Student-t distributions with low degrees of freedom.

38This rule seems quite reasonable when one considers debt denominated in, say, USD (or euros), but perhaps less

so if the debt is exclusively in the local currency.
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Tables

Table 6: Return Regression Results for Models 1-3

M1: Pooled M2: Pooled + M3: Pooled +

Industry Dummies Region Dummies

constant 0.020 (0.001)*** -0.006 (0.005) 0.014 (0.005)***

∆q/∆q∗ 0.869 (0.016)*** 0.870 (0.016)*** 0.865 (0.016)***

∆r 0.018 (0.050) 0.016 (0.050) 0.033 (0.050)

∆po 0.063 (0.021)*** 0.063 (0.020)*** 0.063 (0.020)***

Agric., Mining & Construction -0.006 (0.005)

Communication, Electric & Gas† —

Durable Manufacturing -0.003 (0.004)

FIRE39 0.020 (0.003)***

Non-durable Manufacturing 0.006 (0.008)

Service 0.003 (0.004)

Wholesale & Retail Trade 0.009 (0.005)*

U.S.† —

U.K. -0.007 (0.005)

Germany 0.008 (0.006)

France 0.007 (0.007)

Italy 0.010 (0.005)**

W. Europe40 0.113 (0.014)***

Middle East41 -0.005 (0.005)

S.E. Asia42 -0.008 (0.004)**

Japan 0.044 (0.008)***

L. America43 0.017 (0.002)***

R2 0.144 0.145 0.151

Number of firm quarters: 17,114

* indicates significance at the 10% level, ** at the 5% level, and *** at the 1% level.

†indicates omitted category.
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Table 7

Baseline Scenario
Statistics of Simulated Losses for Models 1-5, Four Quarters Ahead

(in Basis Points of Exposure, where applicable)

  Model EL UL 99.9% VaR 99.9% ES ES/VaR Skewness Kurtosis

M1) Pooled 45.2 35.2 200.9 217.7 1.08 1.10 4.29

M2) Industry Fixed Effect 42.0 34.6 191.3 213.0 1.11 1.05 4.20

M3) Region Fixed Effect 43.5 35.7 205.8 224.5 1.09 1.10 4.30

M4) Region + Firm Fixed Effect 42.6 34.3 188.9 208.4 1.10 1.01 4.09

M5) Heterogeneous 43.7 34.6 184.6 214.5 1.43 1.05 4.25



Table 8a

-2.33σ Shock to Real U.S. Equity Returns: Quarterly Decline of 14.28%
Statistics of Simulated Losses for Models 1-5, Four Quarters Ahead

(in Basis Points of Exposure, where applicable)

  Model EL UL 99.9% VaR 99.9% ES ES/VaR Skewness Kurtosis

M1) Pooled 70.6 44.4 252.1 272.9 1.08 0.64 3.72

M2) Industry Fixed Effect 68.2 43.1 245.3 266.0 1.08 0.62 3.69

M3) Region Fixed Effect 72.8 44.8 257.1 277.5 1.08 0.62 3.69

M4) Region + Firm Fixed Effect 72.8 44.8 257.1 277.5 1.08 0.62 3.69

M5) Heterogeneous 56.3 39.0 199.2 237.5 1.48 0.75 3.81



Table 8b

+2.33σ Shock to German Interest Rates: Quarterly Increase of 0.33%
Statistics of Simulated Losses for Models 1-5, Four Quarters Ahead

(in Basis Points of Exposure, where applicable)

  Model EL UL 99.9% VaR 99.9% ES ES/VaR Skewness Kurtosis

M1) Pooled 46.9 36.3 200.8 219.0 1.09 0.89 3.93

M2) Industry Fixed Effect 46.2 36.0 202.7 221.0 1.09 0.93 4.06

M3) Region Fixed Effect 47.5 36.8 210.3 229.1 1.09 0.99 4.19

M4) Region + Firm Fixed Effect 46.9 35.8 203.2 223.3 1.10 0.94 4.09

M5) Heterogeneous 45.3 35.5 191.6 218.3 1.40 0.95 4.07



Table 8c

-2.33σ Shock to U.S. Real Output: Quarterly Decline of 1.85%
Statistics of Simulated Losses for Models 1-5, Four Quarters Ahead

(in Basis Points of Exposure, where applicable)

  Model EL UL 99.9% VaR 99.9% ES ES/VaR Skewness Kurtosis

M1) Pooled 41.1 34.6 199.2 215.6 1.08 1.18 4.40

M2) Industry Fixed Effect 40.6 33.9 189.4 212.2 1.12 1.10 4.30

M3) Region Fixed Effect 42.3 35.1 198.0 218.2 1.10 1.12 4.30

M4) Region + Firm Fixed Effect 41.7 34.1 191.8 211.6 1.10 1.08 4.23

M5) Heterogeneous 41.5 34.2 184.1 208.4 1.39 1.04 4.16



Table 9

±2.33σ Shock to U.S. Real Equity Returns

Statistics of Simulated Losses for Models 1-5, Four Quarters Ahead
(in Basis Points of Exposure, where applicable)

  Model, shock type EL UL 99.9% VaR 99.9% ES ES/VaR Skewness Kurtosis

M1) Pooled:                                 adverse 70.6 44.4 252.1 272.9 1.08 0.64 3.72

Baseline 45.2 35.2 200.9 217.7 1.08 1.10 4.29

benign 26.6 28.1 159.0 173.4 1.09 1.66 4.83

M2) Industry Fixed Effect:            adverse 68.2 43.1 245.3 266.0 1.08 0.62 3.69

Baseline 42.0 34.6 191.3 213.0 1.11 1.05 4.20

benign 26.7 28.0 155.3 171.2 1.10 1.62 4.77

M3) Region Fixed Effect:             adverse 72.8 44.8 257.1 277.5 1.08 0.62 3.69

Baseline 43.5 35.7 205.8 224.5 1.09 1.10 4.30

benign 27.0 28.6 159.4 178.5 1.12 1.71 4.91

M4) Region + Firm Fixed Effect: adverse 72.8 44.8 257.1 277.5 1.08 0.62 3.69

Baseline 42.6 34.3 188.9 208.4 1.10 1.01 4.09

benign 25.7 27.2 152.3 172.1 1.13 1.74 4.99

M5) Heterogeneous:                   adverse 56.3 39.0 199.2 237.5 1.48 0.75 3.81

Baseline 43.7 34.6 184.6 214.5 1.43 1.05 4.25

benign 33.5 30.9 170.1 191.0 1.37 1.28 4.45



Table 10a

Extreme Shocks to Real U.S. Equity Returns: -5σ, Quarterly Decline of 30.6%
Statistics of Simulated Losses for Models 1-5, Four Quarters Ahead: Baseline Scenario

(in Basis Points of Exposure, where applicable)

  Model EL UL 99.9% VaR 99.9% ES ES/VaR Skewness Kurtosis

M1) Pooled 133.6 58.6 358.6 385.0 1.07 0.33 3.40

M2) Industry Fixed Effect 123.7 56.4 341.1 368.9 1.08 0.37 3.44

M3) Region Fixed Effect 138.6 58.9 366.7 391.7 1.07 0.33 3.40

M4) Region + Firm Fixed Effect 141.0 59.2 361.5 386.3 1.07 0.31 3.32

M5) Heterogeneous 85.0 46.6 237.5 298.0 1.56 0.54 3.66



Table 10b

Extreme Shocks to Real U.S. Equity Returns: -8.02σ, Quarterly Decline of 49%
Statistics of Simulated Losses for Models 1-5, Four Quarters Ahead: Baseline Scenario

(in Basis Points of Exposure, where applicable)

  Model EL UL 99.9% VaR 99.9% ES ES/VaR Skewness Kurtosis

M1) Pooled 290.8 81.1 575.7 601.0 1.04 0.13 3.11

M2) Industry Fixed Effect 258.5 76.4 533.9 561.0 1.05 0.15 3.17

M3) Region Fixed Effect 301.7 80.8 585.7 617.3 1.05 0.14 3.13

M4) Region + Firm Fixed Effect 310.2 81.8 601.9 629.0 1.05 0.13 3.12

M5) Heterogeneous 169.7 60.3 291.1 427.1 1.85 0.29 3.38


