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I:			Introduction		
	

	 This	paper	describes	2-1/2	highly	speculative	ideas	about	how	artificial	
intelligence	(AI)	and	behavioral	economics	may	interact,	particular	in	future	
developments	in	the	economy	and	in	research	frontiers.	First	note	that	I’ll	use	the	
terms	AI	and	machine	learning	(ML)	interchangeably	(although	AI	is	broader)	
because	the	examples	I	have	in	mind	all	involve	ML	and	prediction.	A	good	
introduction	to	ML	for	economists	is	Mullainathan	and	Spiess	(2017).	

	 The	first	idea	is	that	AI	can	be	used	in	the	search	for	new	“behavioral”-type	
variables	that	affect	choice.	Two	examples	are	given,	from	experimental	data	on	
bargaining	and	on	risky	choice.		
	
	 The	second	idea	is	that	some	common	limits	on	human	prediction	might	be	
understood	as	the	kinds	of	errors	made	by	poor	implementations	of	machine	
learning.	That	is,	people	are	thinking	as	if	they	are	executing	machine	learning	
algorithms	but	are	doing	a	mediocre	job	of	it.		
	
	 The	half	idea—	it’s	short--	is	that	it	is	important	to	study	how	AI	technology	
used	in	firms	and	by	other	institutions	can	both	overcome	and	exploit	human	limits.	
The	fullest	understanding	of	this	tech-human	interaction	will	require	new	
knowledge	from	behavioral	economics	about	attention	and	perceived	fairness.	
	
	 Please	accept	my	apologies	for	limits	of	this	paper:	I	know	a	bit	about	AI,	
from	teaching	neural	networks	in	the	1990s,	teaching	data	analytics	more	recently,	
and	having	generous	smart	colleagues	at	Caltech	and	elsewhere,	as	teachers.	But	I’m	
not	an	expert.		And	I	wrote	this	version	in	a	hurry!		
	
II:		Machine	learning	to	find	behavioral	variables	
	
	 Behavioral	economics	can	be	defined	as	the	study	of	natural	limits	on	
computation,	willpower	and	self-interest,	and	the	implications	of	those	limits	for	
market	equilibrium.	A	different	approach	is	to	define	behavioral	economics	more	



generally,	as	simply	being	open-minded	about	what	variables	are	likely	to	influence	
economic	choices.		
	 One	way	to	describe	this	open-mindedness	is	to	list	neighboring	social	
sciences	which	are	likely	to	be	the	most	fruitful	source	of	explanatory	variables—
psychology,	perhaps	sociology	(e.g.,	norms),	anthropology	(cultural	variation	in	
cognition),	neuroscience,	etc.	Call	this	the	“behavioral	economics	borrows	from	its	
neighbors”	view.	
	 But	the	open-mindedness	could	also	be	characterized	even	more	generally,	
as	an	invitation	to	machine-learn	how	to	predict	from	the	largest	possible	feature	
set.	In	the	“behavioral	economics	borrows	from	its	neighbors”	view,	features	are	
constructs	and	their	measures	contributed	by	different	sciences.	These	could	be	
loss-aversion,	identity,	moral	norms,	in-group	preference,	inattention,	habit,	model-
free	reinforcement	learning,	etc.		
	 But	why	stop	there?		
	 In	a	general	ML	approach,	predictive	features	could	be—and	should	be--	any	
variables	that	predict.	These	can	be	measurable	properties	of	choices,	the	set	of	
choices,	affordances	and	motor	interactions	during	choosing,	measures	of	attention,	
psychophysiological	measures	of	biological	states,	social	influences,	properties	of	
individuals	doing	the	choosing	(SES,	wealth,	moods,	personality,	genes),	and	so	
forth.	The	more	variables,	the	merrier.	
	
	 From	this	perspective,	we	can	think	about	what	sets	of	features	are	
contributed	by	different	disciplines	and	theories.	What	features	does	textbook	
economic	theory	contribute?		Constrained	utility-maximization	in	its	most	familiar	
form	points	to	only	three	kinds	of	variables—	prices,	information	(which	can	inform	
utilities)	and	constraints.		
	 Most	propositions	in	behavioral	economics	add	some	variables	to	this	list	of	
features,	such	as	reference-dependence,	context-dependence	(menu	effects),	
anchoring,	etc.		
	
	 Another	way	to	search	for	predictive	variables	is	to	specify	a	very	long	list	of	
candidate	variables	(=features)	and	include	all	of	them	in	an	ML	approach1.	This	
approach	has	two	advantages:	First,	simple	theories	can	be	seen	as	bets	that	only	a	
small	number	of	features	will	predict	well.	Second,	if	longer	lists	of	features	predict	
better	than	a	short	list	of	theory-specified	features,	then	that	finding	establishes	a	
plausible	upper	bound	on	how	much	potential	predictability	is	left	to	understand.	
The	results	are	also	likely	to	create	raw	material	for	theory	to	figure	out	how	to	
consolidate	the	additional	predictive	power	into	crystallized	theory	(see	also	
Kleinberg,	Liang,	and	Mullainathan	2015).		
	 	

																																																								
1	Another	example	is	using	multivoxel	pattern	analysis	to	“decode”	brain	activity	for	
	



	 If	behavioral	economics	is	thought	of	as	open-mindedness	about	what	
variables	might	predict	(as	it	is	for	me)	then	an	ML	approach	with	many	variables	is		
a	potentially	useful	approach.	I’ll	illustrate	it	with	some	examples.2		
	
	 Bargaining:		There	is	a	long	history	of	bargaining	experiments	trying	to	
predict	what	bargaining	outcomes	(and	disagreement	rates)	will	result	from	
structural	variables	using	game-theoretic	methods.	In	the	1980s	there	was	a	sharp	
turn,	in	experimental	work,	towards	noncooperative	approaches	in	which	the	
communication	and	structure	of	bargaining	was	carefully	fixed.	This	happened	
because	game	theory,	at	the	time,	delivered	sharp	new	predictions	about	what	
outcomes	might	result	depending	on	the	structural	parameters	(such	as	the	order	of	
bargaining	offers,	discount	rates	over	time,	etc.)		
	 However,	most	natural	bargaining	is	not	governed	by	such	strict	rules.	
Therefore,	it	is	important	to	understand	what	bargaining	outcomes	might	result	
when	bargaining	is	“semi-structured”.	“Semi-structured”	means	there	is	a	deadline	
and	protocol	for	acceptance	but	otherwise	no	restrictions	on	who	can	offer	what	at	
what	time	(and	potentially	including	language).			
	 Unstructured	bargaining	is	ripe	for	machine	learning.	In	the	experiments	of	
Camerer	et	al	(2017),	two	players	bargain	over	how	to	divide	an	amount	of	money	
worth	$1-$6	(in	integer	values).	One	informed	(I)	player	knows	the	amount;	the	
other,	uniformed	(U)	player,	doesn’t	know	the	amount.	They	are	bargaining	over	
how	much	the	uninformed	U	player	will	get.	But	both	players	know	that	I	knows	the	
amount.		
	 They	bargain	over	10	second	by	moving	cursors	on	a	bargaining	number	line	
(Figure	1).	The	data	created	in	each	trial	is	a	time	series	of	cursor	locations	which	
are	a	series	of	step	functions	coming	from	a	low	offer	to	higher	ones	(representing	
increases	in	offers	from	I)	and	from	higher	demands	to	lower	ones	(representing	
decreasing	demands	from	U).			
	

																																																								
2	Fudenberg-Liang	add	later		



	
Figure		1:	(A)	Initial	offer	screen	(for	informed	player	I,	red	bar);	(B)	example	cursor	
locations	after	3	secs	(indicating	amount	offered	by	I,	red,	or	demanded	by	U,	blue).	
(C)	cursor	bars	match	which	indicates	an	offer,	consummated	at	6	seconds.	(D)	
Feedback	screen	for	player	I.	Player	U	also	receives	feedback	about	pie	size	and	
profit	if	a	trade	was	made	(otherwise	zero).		
	
	 Suppose	are	trying	to	predict	whether	there	will	be	an	agreement	or	not	
based	on	everything	that	can	be	observed.	From	a	theoretical	point	of	view,	efficient	
bargaining	based	on	revelation	principle	analysis	predicts	an	exact	rate	of	
disagreement	for	each	of	the	amounts	$1-6,	based	only	on	the	different	amounts	
available.	Remarkably,	this	prediction	is	process-free.		
	 However,	from	an	ML	point	of	view	there	are	lots	of	features	representing	
what	the	players	are	doing	which	could	add	predictive	power	(besides	the	process-
free	prediction	based	on	the	amount	at	stake).	Both	cursor	locations	are	recorded	
every	25	msec.	The	time	series	of	cursor	locations	is	associated	with	a	huge	number	
of	features—how	far	apart	the	cursors	are,	the	time	since	last	concession	[=cursor	
movement],	size	of	last	concession,	interactions	between	concession	amounts	and	
times,	etc.	
	 Ongoing	experiments	also	record	facial	expressions	and	psychophysiology	
(skin	conductance).		The	main	point	to	appreciate	is	that	from	an	ML	point	of	view,	
recording	everything	possible	during	the	bargaining,	and	about	the	players	
(personality,	wealth,	mood)	could	all	potentially	improve	prediction	of	whether	
there	is	disagreement.			
	 Figure	2	shows	an	ROC	curve	indicating	test-set	accuracy	in	predicting	
whether	a	bargaining	trial	ends	in	a	disagreement	(=1)	or	not.	ROC	curves	sketch	
out	combinations	of	true	positive	rates,	P(disagree|predict	disagree)	and	false	
positive	rates	P(agree|predict	disagree).	An	improved	ROC	curve	moves	up	and	to	

Figure 1: Bargaining interface. (a) Initial offer screen: in the first two seconds of bargaining,
players set their initial position, oblivious to the initial position of their partner. The pie
size at the top left corner appears only for the informed type. (b) Players communicate their
offers using mouse click on the interface. (c) When demands match, feedback in the form
of a green vertical stripe appears on the screen. If no changes are made in the following 1.5
seconds, a deal is made. (d) Following the game, both players are notified regarding their
payoffs and the pie size.

Thus, in order to make a deal, the latest time in which players’ bids could match was
t = 8.5 seconds.

8. If no deal had been made within 10 seconds of bargaining, both players’ payoffs from
that round were $0.

9. After each game, both players were told their payoffs and the actual pie size, for 5
seconds (see Fig. 1d).

4.2 Methods

We conducted eight experimental sessions, five at the Caltech SSEL and three at the UCLA
CASSEL labs. There were a total of N=110 subjects (mean age: 21.3 SD: 2.4; 47 females, see
Appendix B for detailed session information). In the beginning of each session, subjects were
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the	left,	reflecting	more	true	positives	and	fewer	false	positives.	As	is	evident,	
predicting	from	process	data	only	is	about	as	accurate	as	using	just	the	amount	
(“pie”)	sizes	(the	blue	and	green	ROC	curves).	Using	both	types	of	data	improves	
prediction	substantially	(the	red	curve).		 		
	

	
	
Figure	2:	ROC	curves	showing	combinations	of	false	and	true	positive	rates	
predicting	bargaining	disagreements.	Improved	forecasting	is	represented	by	
curves	moving	to	the	upper	left.	The	combination	of	process	(cursor	location	
features)	and	“pie”	(amount)	data	are	a	clear	improvement	over	either	type	of	data	
alone.		
	
	 Machine	learning	is	able	to	find	predictive	value	in	details	of	how	the	
bargaining	occurs	(beyond	the	simple,	and	very	good,	prediction	from	the	amount	
being	bargained	over).	Of	course,	this	discovery	is	the	beginning	of	the	next	step	for	
behavioral	economics.	It	raises	questions:	What	variables	predict?	Do	people	
understand	why	those	variables	are	important?	Can	they	constrain	expression	of	
variables	that	hurt	their	bargaining	power?	Can	mechanisms	be	designed	that	
record	these	variables	and	then	create	efficient	mediation	with	no	disagreement	
into	which	people	will	voluntarily	participate?		
	 	
Risky	choice:	Peysakhovich	and	Naecker	(2017)	use	machine	learning	to	analyze	
decisions	between	simple	financial	risks.	The	set	of	risks	are	randomly	generated	
triples	($y,	$x,	0)	with	associated	probabilities	(p_x,	p_y,	p_0).		Subjects	give	a	
willingness-to-pay	(WTP)	for	each	gamble.		
	 The	feature	set	is	the	five	probability	and	amount	variables	(excluding	the	$0	
payoff),	quadratic	terms	for	all	five,	and	all	two-	and	three-way	interactions	among	
the	linear	and	quadratic	variables.	For	aggregate-level	estimation	this	creates	
5+5+45+120=175	variables.			

process data outperforms the classifier using the pie size alone for every time stamp in the
bargaining process (Fig. 7d). These results show that the process of bargaining itself can
lead to bargaining failures, above and beyond the pie size alone.35

Figure 7: Strike prediction using bargaining process data. (a-c) Receiver Operating Char-
acteristic (ROC) for predicting disagreements, 2 and 7 seconds into the bargaining game.
The dashed lines represent the false and true positive rates of a random classifier. (d) Area
under the curve (AUC) of disagreements clasiffiers using process data, pie size, and the two
combined. Note that the classifier’s input included only trials that were still in progress
(when a deal has not yet been achieved), and excluded trials in which the offers and demand
were equal at the relevant time stamp.

35We formally tested the predictive accuracy of process data above and beyond the pie size by comparing
the mean square error of the model that was trained using both process data and pie to the model that
was trained using only the pie. Paired t-tests of the squared errors from both models (with adjustments
for clustering at the session level) showed that adding process data significantly decreased out-of-sample
prediction error for all times greater than or equal to 2 seconds (at the 5% level), with a marginally significant
decrease in prediction error in the first second (p=0.051).
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	 ML	predictions	are	derived	from	regularized	regression	with	a	linear	penalty	
(LASSO)	or	squared	penalty	(ridge)	for	(absolute)	coefficients.	Participants	were		
N=315	MTurk	subjects	who	each	gave	10	useable	responses.		The	training	set	
consists	of	70%	of	the	observations,	30%	are	held	out	as	a	test	set.		

	 They	also	estimate	predictive	accuracy	of	a	one-variable	expected	utility	
model	(EU,	with	power	utility)	and	a	prospect	theory	(PT)	model	which	adds	one	
additional	parameter	to	allow	nonlinear	probability	weighting	(Tversky	and	
Kahneman,	1992)	(with	separate	weights,	not	cumulative	ones).	For	these	models	
there	are	only	1	or	2	free	parameters	per	person.3		

	 The	aggregate	data	estimation	uses	the	same	set	of	parameters	for	all	
subjects.	In	this	analysis,	the	test	set	accuracy	(mean	squared	error) is	almost	
exactly	the	same	for	PT	and	for	both	LASSO	and	ridge	ML	predictions,	even	though	
PT	uses	only	two	variables	and	the	ML	methods	use	175	variables.	Individual	level	
analysis,	in	which	each	subject	has	their	own	parameters	has	about	half	the	mean	
squared	error	as	the	aggregate	analysis.	PT	and	ridge	ML	are	about	equally	accurate.		

	 The	fact	that	PT	and	ML	are	equally	accurate	is	a	bit	surprising,	because	the	
ML	method	allows	quite	a	lot	of	flexibility	in	the	space	of	possible	predictions.	
Indeed,	the	authors’	motivation	was	to	use	ML	to	show	how	a	model	with	a	huge	
amount	of	flexibility	could	fit,	possibly	to	provide	a	ceiling	in	achievable	accuracy.	If	
the	ML	predictions	were	more	accurate	than	EU	or	PT,	the	gap	would	show	how	
much	improvement	could	be	had	by	more	complicated	combinations	of	outcome	
and	probability	parameters.	But	the	result,	instead,	shows	that	much	busier	models	
are	not	more	accurate	than	the	time-tested	two-parameter	form	of	PT,	for	this	
domain	of	choices.	 

III:		Human	prediction	as	imperfect	machine	learning		
	
Some	pre-history	of	behavioral	economics		
	
	 Behavioral	economics	as	we	know	it,	and	describe	it	nowadays,	began	to	
thrive	when	challenges	to	simple	rationality	principles	(then	called	“anomalies”)	
came	to	have	rugged	empirical	status	and	to	point	to	natural	improvements	in	
theory	(Thaler,	Misbehaving;	Lewis,	Undoing).	It	was	common	in	those	early	days	to	
distinguish	anomalies	about	“preferences”,	such	as	mental	accounting	violations	of	

																																																								

3 Note,	however,	that	the	ML	feature	set	does	not	exactly	nest	the	EU	and	PT	forms.	
For	example,	a	weighted	combination	of	the	linear	outcome	X	and	the	quadratic	

term	X2	does	not exactly equal the power function Xα.  
	



fungibility	and	reference-dependence,	and	anomalies	about	“judgment”	of	
likelihoods	and	quantities.	
	 Somewhat	hidden	from	economists,	at	the	time	and	even	now,	was	the	fact	
that	there	was	active	research	in	many	areas	of	judgment	and	decision	making	
(JDM)	proceeding	in	parallel	and	conducted	almost	entirely	in	psychology	
departments	and	some	business	schools.	JDM	research	was	about	those	judgment	
“anomalies”.	This	research	flourished	because	there	was	a	healthy	respect	for	
simple	mathematical	models	and	careful	testing,	which	enabled	regularities	to	
cumulate	and	gave	reasons	to	dismiss	weak	results.	The	research	community	also	
had	one	foot	in	practical	domains	too	(such	as	judgments	of	natural	risks,	medical	
decision	making,	law,	etc.)	so	that	generalizability	of	lab	results	was	implicitly	
addressed.		
	
	 An	important	ongoing	debate	in	JDM	was	about	the	cognitive	processes	
involved	in	actual	decisions,	and	the	quality	of	those	predictions.	There	were	plenty	
of	careful	lab	experiments	about	such	phenomena,	but	also	an	earlier	literature	on	
what	was	then	called	“clinical	versus	statistical	prediction”.		There	lies	the	earliest	
comparison	between	(primitive	forms	of)	AI	and	(the	judgment	part	of)	behavioral	
economics.		
	
	 Paul	Meehl’s	(1954)	compact	book	started	it	all.	Meehl	was	a	remarkable	
character.	He	was	a	rare	example,	at	the	time,	of	a	working	clinical	psychiatrist	who	
was	also	interested	in	statistics	and	evidence	(as	were	others	at	Minnesota).	Meehl		
had	a	picture	of	Freud	in	his	office,	and	practiced	clinically	for	50	years	in	the	
Veteran’s	Administration.		
	 Meehl’s	mother	had	died	when	he	was	16,	under	circumstances	which	
apparently	made	him	suspicious	of	how	much	doctors	actually	knew	about	how	to	
make	sick	people	well.		
	 His	book	could	be	read	as	pursuit	of	such	a	suspicion	scientifically:		He	
collected	all	the	studies	he	could	find	(22)	which	compared	a	set	of	clinical	
judgments	with	actual	outcomes,	and	with	simple	linear	models	using	observable	
predictors	(some	objective	and	some	subjectively	estimated).	The	domains	of	
judgment	included	____.		
	
	 Meehl’s	idea	was	that	these	statistical	models	could	be	used	as	a	benchmark	
to	evaluate	clinicians.4	As	Dawes	and	Corrigan	(1974,	p.	97)	wrote	

	 "the	statistical	analysis	was	thought	to	provide	a	floor	to	which	the	judgment	
	 of	the	experienced	clinician	could	be	compared.	The	floor	turned	out	to	be	a	
	 ceiling.”	

	 In	every	case	the	statistical	model	outpredicted	or	tied	the	judgment	
accuracy	of	the	average	clinician.	A	later	meta-analysis	of	117	studies	(Grove	et	al	

																																																								
4	Check	if	this	is	in	Meehl	“what	I	expected	to	be	a	floor	turned	out	to	be	a	ceiling”	



2000)	found	only	six	in	which	clinicians,	on	average,	were	more	accurate	(and	see	
Dawes	et	al	2006	Sci).			
	 It	is	possible	that	in	any	one	domain,	the	distribution	of	clinicians	contains	
some	stars	who	could	predict	much	more	accurately.	However,	later	studies	at	the	
individual	level	showed	that	only	a	minority	of	clinicians	were	more	accurate	than	
statistical	models	(e.g.	Goldberg,	1970).	Kleinberg	et	al	(2017)’s	study	of	machine-
learned	and	judicial	detention	decisions	is	a	modern	example	of	the	same	theme.			
	
	 In	the	next	couple	of	decades	evidence	began	to	mount	about	why	clinical	
judgment	could	be	so	imperfect.	A	common	theme	was	that	clinicians	were	good	at	
measuring	particular	variables,	or	suggesting	which	objective	variables	to	include,	
but	were	not	so	good	at	combining	them	consistently	(e.g.	Sawyer	1966).	In	a	
recollection	Meehl	(1986)	gave	a	succinct	description	of	this	theme	(p	373):		
	
	 Why	should	people	have	been	so	surprised	by	the	empirical	results	in	my	
	 summary	chapter?	Surely	we	all	know	that	the	human	brain	is	poor	at	
	 weighting	and	computing.	When	you	check	out	at	a	supermarket,	you	don’t	
	 eyeball	the	heap	of	purchases	and	say	to	the	clerk,	“Well	it	looks	to	me	as	if	
	 it’s	about	$17.00	worth;	what	do	you	think?”	The	clerk	adds	it	up.	There	are	
	 no	strong	arguments,	from	the	armchair	or	from	empirical	studies	of	
	 cognitive	psychology,	for	believing	that	human	beings	can	assign	optimal	
	 weights	in	equations	subjectively	or	that	they	apply	their	own	weights	
	 consistently,	the	query	from	which	Lew	Goldberg	derived	such	fascinating	
	 and	fundamental	results.		
	
	 Many	of	the	important	contributions	were	included	in	the	Kahneman	et	al		
(1982)	book	(which	in	the	old	days	was	called	the	“blue-green	bible”).		
	
	 In	one	classic	study,	Oskamp	(1965)	had	eight	experienced	clinical	
psychologists,	and	24	graduate	and	undergraduate	students,	read	material	about	an	
actual	person,	in	four	stages.	The	first	stage	was	just	three	sentences	giving	basic	
demographics,	education,	and	occupation.	The	next	three	stages	were	1.5-2	pages	
each	about	childhood,	schooling,	and	the	subject’s	time	in	the	army	and	beyond.		
	 The	subjects	had	to	answer	25	personality	questions	about	the	subject,	each	
with	five	multiple-choice	answers5,	after	each	of	the	four	stages	of	reading.		Chance	
guessing	would	be	20%	accurate.	Note	that	these	questions	had	correct	answers,	
based	on	other	evidence	about	the	case,		
	 Oskamp	learned	two	things:		First,	there	was	no	difference	in	accuracy	
between	the	experienced	clinicians	and	the	students.		
	 Second,	all	the	subjects	were	barely	above	chance;	and	accuracy	did	not	
improve	as	they	read	more	material	in	the	three	stages.	After	just	the	first	
																																																								
5	For	example,	“Kidd’s	present	attitude	toward	his	mother	is	one	of:	(a)	Love	and	
respect	for	her	ideals;	(b)	affectionate	tolerance	for	her	foibles”	;	etc.		
	 	
	



paragraph,	their	accuracy	was	26%;	after	reading	all	five	additional	pages	across	the	
three	stages,	accuracy	was	28%	(an	insignificant	difference	from	26%).	However,	
subjective	confidence	in	how	accurate	they	were	rose	almost	linearly	as	they	read	
more,	from	33%	to	53%.6	
	 This	increase	in	confidence,	combined	with	no	increase	in	accuracy,	is	
reminiscent	of	the	difference	between	training	set	and	test	set	accuracy	in	AI.	As	
more	and	more	variables	are	included	in	a	training	set,	the	accuracy	will	always	
increase	unless	fit	is	penalized	in	some	way.	As	a	result	of	overfitting,	however,	test-
set	accuracy	can	decline	with	more	variables.	The	resulting	gap	between	training-	
and	test-set	accuracy	will	grow,	much	as	the	overconfidence	in	Oskamp’s	subjects	
grew	with	more	“variables”	(more	material	on	the	single	subject).	
	 	
	 Some	other	important	findings	emerged.	One	drawback	of	the	statistical	
prediction	approach,	for	practice,	was	that	it	requires	large	samples	of	high-quality	
outcome	data	(labeled	data,	for	supervised	learning,	in	AI	language).	These	were	
rarely	available	at	the	time.		
	 Dawes	(1979)	proposed	to	give	up	on	estimating	variable	weights	through	a	
criterion-optimizing	“proper”	procedure	like	OLS7,	using	“improper”	weights	
instead.	An	example	is	equal-weighting	of	standardized	variables,	which	is	often	a	
very	good	approximation	to	OLS	weighting.		
	 An	interesting	example	of	improper	weights	is	what	Dawes	called	
“bootstrapping”	(a	distinct	usage	from	the	concept	in	statistics	of	bootstrap	
resampling).	The	idea	was	to	regress	clinical	judgments	on	predictors,	and	use	those	
estimated	weights	to	make	prediction.	This	is	equivalent,	of	course,	to	using	the	
predicted	part	of	the	clinical-judgment	regression	and	discarding	(or	regularizing	to	
zero,	if	you	will)	the	residual.	If	the	residual	is	mostly	noise	then	correlation	
accuracies	can	be	improved	by	this	procedure,	and	they	typically	are	(e.g.	Camerer,	
1981).	Successful	examples	included	___.		
	
	 Later	studies	indicated	a	slightly	more	optimistic	picture	for	the	clinicians.	If	
bootstrap-regression	residuals	are	pure	noise,	they	will	also	lower	the	test-retest	
reliability	of	clinical	judgment	(i.e.,	the	correlation	between	two	judgments	on	the	
same	cases	made	by	the	same	person).	However,	analysis	of	the	few	studies	which	
report	both	test-retest	reliability	and	bootstrapping	regressions	indicate	that	only	
about	40%	of	the	residual	variance	is	unreliable	noise	(Camerer	1981a).	Thus,	
residuals	do	contain	reliable	subjective	information	(though	it	may	be	uncorrelated	
with	outcomes).	Blattberg	and	Hoch	(1990)	later	found	that	for	actual	managerial	
forecasts	of	product	sales	and	coupon	redemption	rate,	residuals	are	correlated	
about	.30	with	outcomes.	As	a	result,	averaging	statistical	model	forecasts	and	
																																																								
6	Other	results	comparing	more-	and	less-experienced	clinicians,	however,	have	also	
confirmed	the	first	finding	(experience	does	not	improve	accuracy	much),	but	found	
that	experience	tends	to	reduce	overconfidence	(Goldberg	1959).	
	
7	Presciently,	Dawes	also	mentions	using	ridge	regression	as	a	proper	procedure	to	
maximize	out-of-sample	fit.			



managerial	judgments	improved	prediction	substantially	over	statistical	models	
alone.		

Sparsity	is	good	for	you	but	tastes	bad		

	 Another	feature	of	the	early	statistical-vs-clinical	literature	was	an	emphasis	
on	how	small	numbers	of	variables	might	fit	surprisingly	well.		 	

	 A	striking	example	in	Dawes	(1979)	is	a	two	variable	model	predicting	
marital	happiness:	The	rate	of	lovemaking	minus	the	rate	of	fighting.	He	reports	
correlations	of	.40	and	.81	in	two	studies	(Edwards	and	Edwards,	1977;	Thornton	
1977).8	

	 For	example,	Dawes	(1971)	did	a	famous	study	about	admitting	students	to	
the	University	of	Oregon	PhD	program	in	psychology	from	1964-67.	He	compared	a	
three-variable	model	based	on	GRE,	undergraduate	GPA,	and	quality	of	the	
applicant’s	undergraduate	school	to	an	admissions	committee’s	quantitative	
recommendation.	The	outcome	variable	was	faculty	ratings	1969.		(The	variables	
were	standardized,	then	weighted	equally.)	This	simple	model	correlated	with	later	
success	in	the	program	more	highly	(.48,	cross-validated)	than	an	admissions	
committee’s	quantitative	recommendation	(.19).9		The	bootstrapping	model	
correlated	.25.		
	
	 Despite	Dawes’s	evidence,	I	have	never	been	able	to	convince	any	graduate	
admissions	committee	at	two	institutions	(Penn	and	Caltech)	to	actually	compute	
statistical	ratings,	even	as	a	way	to	filter	out	“certain	rejection”	applications.		
	 Why	not?		
	
	 I	think	the	answer	is	that	the	human	mind	rebels	against	regularization	and	
the	resulting	sparsity.	We	are	born	to	overfit.	Every	AI	researcher	knows	that	
including	fewer	variables	(e.g.,	by	giving	many	of	them	zero	weights	in	LASSO,	or	
limiting	tree	depth	in	random	forests)	is	a	useful	all-purpose	prophylactic	for	
overfitting	a	training	set.		

																																																								
8	More	recent	analyses	using	transcribed	verbal	interactions	generate	correlations	
for	divorce	and	marital	satisfaction	around	.6-.7.	The	core	variables	are	called	the	
“four	horsemen”	of	criticism, defensiveness, contempt, and “stonewalling" (listener 
withdrawal).  

	
9	Readers	might	guess	that	the	quality	of	econometrics	for	inference	in	some	of	
these	earlier	papers	is	limited.	For	example,	Dawes	(1971)	only	used	the	111	
students	who	had	been	admitted	to	the	program	and	stayed	enrolled,	so	there	is	
likely	scale	compression,	etc.	Some	of	the	faculty	members	rating	those	students	
were	probably	also	initial	raters	which	could	generate	consistency	biases	etc.				



	 But	people	do	not	like	to	explicitly	throw	away	information.	This	is	
particularly	true	if	the	information	is	already	in	front	of	us—in	the	form	of	a	PhD	
admissions	application,	for	example.	It	takes	some	combination	of	willpower,	
arrogance,	or	what	have	you,	to	simply	ignore	letters	of	recommendation,	for	
example.		
	 The	poster	child	for	using	worthless	information	is	personal	short	face-to-
face	interviews	(___cites).	There	is	a	mountain	of	evidence	that	such	interviews	do	
not	predict	anything	about	later	work	performance,	if	interviews	are	untrained	and	
do	not	use	a	structured	interview	format.	A	likely	example	is	interviewing	faculty	
candidates	with	new	PhDs,	in	hotel	suites	at	the	ASSA	meetings.	Suppose	the	goal	of	
such	interviews	is	to	predict	which	new	PhDs	will	do	enough	terrific	research,	good	
teaching,	and	other	kinds	of	service	and	public	value	to	get	tenure	several	years	
later.		
	 But	the	brain	of	an	interviewer	probably	has	more	basic	things	on	its	mind.		
Is	this	person	well-dressed?	Would	they	protect	me	if	there	is	danger?	Friend	or	foe?	
Does	their	accent	and	word	choice	sound	like	mine?		
	 People	who	do	these	interviews	(including	me)	say	explicitly	that	we	are	
trying	to	probe	the	candidate’s	depth	of	understanding	about	their	topic,	how	
promising	new	planned	research	is,	etc.	But	we	really	are	evaluating	is	“Do	they	
belong	in	my	tribe?”		
	 While	I	do	think	such	interviews	are	a	waste	of	time10,	it	is	conceivable	that	
they	generate	some	information	that	is	valid.	The	problem	is	that	interviewers	may	
weight	the	wrong	information	(as	well	as	overweighting	features	that	should	be	
regularized	to	zero).	Indeed,	nowadays	the	best	method	to	capture	such	information	
is	probably	to	videotape	the	interview,	combine	it	with	other	tasks	resembling	work	
performance	(e.g.,	have	them	review	a	difficult	paper),	and	machine	learn	the	heck	
out	of	that	larger	corpus	of	information.		 	
	
	 Another	simple	example	of	where	ignoring	information	is	counterintuitive	is	
captured	by	the	two	modes	of	forecasting	which	Kahneman	and	Lovallo	(19_)	wrote	
about.	They	called	them	“inside”	and	“outside”	view.	The	two	views	were	in	the	
context	of	forecasting	the	outcome	of	a	project	(such	as	writing	a	book,	or	a	business	
investment).	The	inside	view		
	
	 “focused	only	on	a	particular	case,		by	considering	the	plan	and	its	obstacles	
to	completion,	by	constructing	scenarios	of	future	progress”	(p	25).		
	
	 The	outside	view		
	
	 “focusses	on	the	statistics	of	a	class	of	cases	chosen	to	be	similar	in	relevant	
	 respects	to	the	current	one”	(p	25)	
	

																																																								
10	There	are	many	caveats	of	course	to	this	strong	claim.	For	example,	often	the	
school	is	pitching	to	attract	a	highly	desirable	candidate,	not	the	other	way	around.	



	 The	outside	view	deliberately	throws	away	most	of	the	information	about	a	
specific	case	at	hand	(but	keeps	some	information):	It	reduces	the	relevant	
dimensions	to	only	those	that	are	present	in	the	outside	view	reference	class.	(This	
is,	again,	a	regularization	that	zeros	out	all	the	features	that	are	not	“similar	in	
relevant	respects”.)		
	 In	ML	terms,	the	outside	and	inside	views	are	like	different	kinds	of	cluster	
analyses.	The	outside	view	parses	all	previous	cases	into	K	clusters;	a	current	case	
belongs	to	one	cluster	or	another	(though	there	is,	of	course,	a	degree	of	cluster	
membership	depending	on	the	distance	from	cluster	centroids).	The	inside	view—in	
its	extreme	form—treats	each	case	as	unique.		
	
Hypothesis:	Human	judgment	is	like	overfitted	machine	learning	
	
	 The	core	idea	I	want	to	explore	is	that	some	aspects	of	everyday	human	
judgment	can	be	understood	as	the	type	of	errors	that	would	result	from	badly-done	
machine	learning.11		I’ll	focus	on	two	aspects:	Overconfidence	and	how	it	increases;	
and;	limited	error	correction.		
	 In	both	cases,	we	are	implicitly	talking	about	a	research	program	which	
collects	data	on	human	predictions	and	compare	them	with	machine-learned	
predictions.	Then	deliberately	re-do	the	machine	learning	badly	(e.g.,	failing	to	
correct	for	over-fitting)	and	see	whether	the	impaired	ML	predictions	have	
properties	of	human	ones.		
	
	 Overconfidence:		Overconfidence	comes	in	different	flavors.	In	the	
predictive	context	we	will	define	it	as	having	too	narrow	a	confidence	interval	
around	a	prediction.	(In	regression,	for	example,	this	means	underestimating	the	
standard	error	of	a	conditional	prediction	P(Y|X)	based	on	observables	X.)	
	 It	could	be	that	human	overconfidence	results	from	a	failure	to	winnow	the	
set	of	predictors	(as	in	LASSO	penalties	for	feature	weights).	Overconfidence	of	this	
type	could	correspond	to	what	one	expects	from	overfitting:	High	training	set	
accuracy	corresponds	to	confidence	about	predictions.	A	drop	in	accuracy	from	
training	to	test	means	that	predictions	were	not	as	accurate	as	hoped.		
	
	 Limited	error	correction:	In	some	ML	procedures	training	takes	place	over	
trials.	For	example,	the	earliest	neural	networks	were	trained	by	making	output	
predictions	based	on	a	set	of	node	weights,	then	back-propagating	prediction	errors	
to	adjust	the	weights.	Early	contributions	intended	for	this	process	to	correspond	to	
human	learning—e.g.,	how	children	learn	to	recognize	categories	of	natural	objects	
or	to	learn	properties	of	language	(e.g.	McClelland	and	Rumelhart).		
	 One	can	then	ask	whether	some	aspects	of	adult	human	judgment	
correspond	to	poor	implementation	of	error-correction.	An	invisible	assumption	
that	is,	of	course,	part	of	neural	network	training	is	that	output	errors	are	

																																																								
11	My	intuition	about	this	was	aided	by	Jesse	Shapiro,	who	asked	a	well-crafted	
question	pointing	straight	in	this	direction.		



recognized	(if	learning	is	supervised	by	labeled	data).		But	what	if	humans	do	not	
recognize	error	or	respond	to	it	inappropriately?		
	
	 One	maladaptive	response	to	prediction	error	is	to	add	features.	For	
example,	suppose	a	college	admissions	director	has	a	predictive	model	and	thinks	
students	who	play	musical	instruments	have	good	study	habits	and	will	succeed	in	
the	college.	Now	a	student	comes	along	who	plays	drums	in	the	Dead	Milkmen	punk	
band.	The	student	gets	admitted	(because	playing	music	is	a	good	feature),	but	
struggles	in	college	and	drops	out.			
	 The	admissions	director	could	back-propagate	the	predictive	error	to	adjust	
the	weights	on	the	“plays	music”	feature.	Or	she	could	create	a	new	feature	by	
splitting	“plays	music”	into	“plays	drums”	and	“plays	non-drums”	and	ignore	the	
error.	This	procedure	will	generate	too	many	features	and	will	not	use	error-
correction	effectively.12					
	 (Note	too	that	a	different	admissions	director	might	create	two	different	
subfeatures,	“plays	music	in	a	punk	band”	and	“plays	non-punk	music”.	In	the	
stylized	version	of	this	description,	both	will	become	convinced	that	they	have	
improved	their	mental	model	and	will	retain	high	confidence	about	future	
predictions.	But	their	inter-rater	reliability	will	have	gone	down,	which	puts	a	
mathematical	cap	on	how	good	average	predictive	accuracy	can	be.	More	on	this	
next.)	
	
IV:			AI	technology	as	a	bionic	patch,	or	malware,	for	human	limits	
	
	 We	spend	a	lot	of	time	in	behavioral	economics	thinking	about	how	political	
and	economic	systems	either	exploit	bad	choices	or	help	people	make	good	choices.		
What	behavioral	economics	has	to	offer	to	this	general	discussion	is	to	specify	a	
more	psychologically	accurate	model	of	human	choice	and	human	nature	than	the	
caricature	of	constrained	utility-maximization	(as	useful	as	it	has	been).				
	 AI	enters	by	creating	better	tools	for	both	making	inferences	about	what	a	
person	wants	or	will	do.		Sometimes	these	tools	will	hurt	and	sometimes	they	will	
help.		
	 AI	helps:	A	clear	example	is	recommender	systems.	Good	systems	are	a	kind	
of	behavioral	prosthetic	to	remedy	human	limits	on	attention	and	the	resulting	
incompleteness	of	preferences.		
	 Consider	Netflix	movie	recommendations.	Netflix	uses	a	person’s	viewing	
and	ratings	history,	as	well	as	opinions	of	others	and	movie	properties,	as	inputs	to	
a	variety	of	algorithms	to	suggest	what	content	to	watch.	As	their	data	scientists	
explained	(Gomez-Uribe	and	Hunt,	2015):		

	 a	typical	Netflix	member	loses	interest	after	perhaps	60	to	90	seconds	of	
	 choosing,	having	reviewed	10	to	20	titles	(perhaps	3	in	detail)	on	one	or	two	
																																																								
12	Another	way	to	model	this	is	as	the	refinement	of	a	prediction	tree,	where	
branches	are	added	for	new	feature	when	predictions	are	incorrect.	This	will	
generate	a	bushy	tree,	which	generally	harms	test-set	accuracy.		



	 screens...The	recommender	problem	is	to	make	sure	that	on	those	two	
	 screens	each	member	in	our	diverse	pool	will	find	something	compelling	to	
	 view,	and	will	understand	why	it	might	be	of	interest.		

	 For	example,	their	“Because	You	Watched”	line	uses	a	video-video	similarity	
algorithm	to	suggest	unwatched	videos	similar	to	ones	the	user	watched	and	liked.		

	 There	are	so	many	interesting	implications	of	these	kinds	of	recommender	
systems	for	economics	in	general,	and	for	behavioral	economics	in	particular.			

	 For	example,	note	that	Netflix	wants	its	members	to	“understand	why	it	[a	
recommended	video]	might	be	of	interest”.	This	is,	at	bottom,	a	question	about	
interpretability	of	AI	output,	how	a	member	learns	from	recommender	successes	
and	errors,	and	whether	a	member	“trusts”	Netflix	in	general.	All	these	are	
psychological	processes	which	may	also	depend	heavily	on	design	and	experience	
features	(UD,	UX).		

	 AI	‘hurts’13:	Another	feature	of	AI-driven	personalization	is	price	
discrimination.	If	people	do	know	a	lot	about	what	they	want,	and	have	precise	
willingness-to-pay	(WTP),	then	companies	will	quickly	develop	the	capacity	to	
personalize	prices	too.	This	seems	to	be	a	concept	that	is	emerging	rapidly	and	
desperately	needs	to	be	studied	by	industrial	economists	who	can	figure	out	welfare	
implications.	Behavioral	economics	enters	with	some	evidence	about	how	people	
make	judgments	about	fairness	of	prices	(e.g.,	Kahneman,	Knetsch	and	Thaler,	
198614)	and	how	fairness	judgments	influences	behavior.		
	 My	intuition	is	that	in	general,	people	can	come	to	accept	a	high	degree	of	
variation	in	prices	for	what	is	essentially	the	same	product,	as	long	as	there	is	very	
minor	product	differentiation15	or	firms	can	articulate	why	different	prices	are	fair	
(which	requires	insight	into	how	consumers	think,	and	heterogeneity).		It	is	also	
likely	that	personalized	pricing	will	harm	consumers	who	are	the	most	habitual	or	
who	do	not	shop	cleverly,	but	will	help	savvy	consumers	who	can	hijack	the	
personalization	algorithms	to	look	like	low	WTP	consumers	and	save	money.	See	
Gabaix	and	Laibson	(2006?)	for	a	carefully	worked-out	model	about	hidden	
(“shrouded”)	product	attributes.				
	
V:	Conclusion		
	
TBA	 	

																																																								
13	I	put	the	word	‘hurts’	in	quotes	here	as	a	way	to	conjecture,	through	punctuation,	
that	in	many	industries	the	AI-driven	capacity	to	personalize	pricing	will	harm	
consumer	welfare	overall.		
14	Recent?		
15	mariachi	
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