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Abstract: We analyze the demand for emissions allowances and the supply of allowances
and abatement opportunities in California’s 2013-2020 cap and trade market for greenhouse
gases (GHG). We estimate a cointegrated vector autoregression for the main drivers of
greenhouse gas emissions using annual data from 1990 to 2011 and use it to forecast BAU
emissions during California’s program and the impact of the state’s other GHG reduction
programs. We then consider additional price-responsive and price-inelastic activities that
will affect the supply/demand balance in the allowance market. We show that there is
significant uncertainty in the business-as-usual (BAU) emissions levels due to uncertainty
in economic growth and other factors. Our analysis also suggests that while many GHG
abatement programs are in place, most of the planned abatement will not be very sensitive
to the price of allowances, creating a steep abatement supply curve. The combination
of BAU uncertainty and inelastic abatement supply implies a high probability that the
price in the California will either be at the price floor, or high enough to trigger a safety
valve mechanism called the Allowance Price Containment Reserve (APCR). We estimate
a low probability that the price would end up in an intermediate range between the price
floor and the APCR. The analysis suggests that cap and trade markets, as they have been
established in California, the EU and elsewhere may be more likely to experience price
volatility and extreme low or high prices than is generally recognized.
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nell, and Wolak are members of the Emissions Market Assessment Committee and the Market Simulation
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I. INTRODUCTION

Among economists there is a general consensus that a carbon pricing mechanism, through

either a tax or a cap-and-trade mechanism, is the preferred choice for a broad-based climate

policy. There is also general agreement that a more stable and predictable price into the

future will more effectively incent firms and consumers to make long-lived investments in

more expensive lower-carbon technologies. A stable and predictable price of carbon will

also stimulate innovation in the development of new low-carbon technologies. The ultimate

success of any climate policy depends on creating incentives for innovation and investment

in new low-carbon technologies.

Existing climate policies have not been very successful in creating a stable and predictable

price of carbon, particularly those that use a cap-and-trade mechanism.2 Prices in existing

cap and trade markets for greenhouse gases (GHGs) have been volatile and, most recently,

have been so low as to create little incentive to invest in GHG reduction. The European

Union Emissions Trading System (EU-ETS), the world’s largest GHG market has experi-

enced both a sharp crash in prices (Ellerman and Buchner, 2008) and a long slow decline

to barely economically significant levels. The Regional Greenhouse Gas Initiative (RGGI)

in the Northeastern U.S. has gone through a similar experience.3 Although they may meet

short-term emissions caps, volatile and low average emissions allowance prices probably do

little to achieve the long-term climate policy goals of significant investments in low-carbon

technologies.

We argue that there are two reasons for this outcome in cap-and-trade markets. The first

is the well-known exogenous volatility of GHG emissions themselves. Such emissions are

closely tied to economic activity and also vary with natural conditions such as temperature

and rainfall. This uncertainty has long been recognized as an issue when forecasting both

damages and mitigation cost,4

2 Even regions that have implemented carbon taxes have had a difficult time maintaining their future carbon
pricing commitments. In 2008, British Columbia implemented a 10 Canadian dollar (CAD) per ton of
CO2 tax that would increase by $CAD 5 per year. However, in 2012 the province decided to freeze the
tax at $CAD 30 per ton. The Australian government implemented a 10 Australian dollar per ton of CO2

tax on July 1, 2012. However, the recently elected Liberal Government ran on a platform of abolishing
this carbon tax.

3 As of this writing, allowances in the EU-ETS were trading at 5 Euros per metric tonne and in RGGI at 3
dollars per tonne.

4 When discussing controversies about mitigation costs, Aldy, et. al. (2009) note that “Future mitigation
costs are highly sensitive to business-as-usual (BAU) emissions, which depend on future population and
Gross Domestic Product (GDP) growth, the energy intensity of GDP, and the fuel mix.”
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The second reason is more subtle, but may be equally important. Market design features

that make the cap-and-trade climate policy politically viable, also steepen the supply curve

of abatement and therefore increase the uncertainty in allowance prices for a given amount

of exogeneous volatility in GHG emissions. Common policies in cap and trade markets –

output-based updating of allowance allocations, refunding of allowance auction revenues to

mitigate output price increases in allowance-consuming sectors of the economy, and flexible

protocols for issuing emissions offsets – all increase the political attractiveness of cap-and-

trade climate policies versus carbon taxes. However, as we demonstrate below, these same

mechanisms steepen the supply curve of mitigation, which can increase allowance price

volatility.

Partly in recognition of the problems created by uncertain allowance prices, economists

have proposed hybrid mechanisms that combine caps with price-collars that can provide

both upper (Jacoby and Ellerman, 2004) and lower (Burtraw et al., 2009) bounds on

allowance prices. Such hybrid mechanisms can greatly reduce allowance price risk while

ensuring a better match between ex-post costs and benefits (Pizer, 2003). While the

EU-ETS has no such bounds, the trading system proposed under the stillborn Waxman-

Markey bill of 2008, as well as the California cap-and-trade market studied here, both

featured price-collars of some fashion. The fact that California’s market currently has the

highest price among mandatory GHG cap-and-trade programs is likely due to its relatively

high floor price level.

While the details of California’s price-collars are described in regulations developed by

the California Air Resources Board (ARB), proposed regulatory changes would alter the

exact manner in which the price ceiling – known as the allowance price containment re-

serve (APCR) mechanism – would be applied and the degree to which it could mitigate

uncertainty over prices.5 A key question relating to this issue is the extent to which either

the auction reserve price or APCR price are likely to be relevant, that is, the probabilities

that market prices may be near the price floor or the APCR soft price ceiling.6

In this paper we develop estimates of the distribution of allowance prices that accounts

5 The regulations are available at: http://www.arb.ca.gov/cc/capandtrade/september 2012 regulation.pdf.
See also the ARB Board resolution dated October 18, 2012 at http://www.arb.ca.gov/cc/capandtrade/fin-
al-resolution-october-2012.pdf and an issue analysis from the Emissions Market Assessment Committee
dated September 20, 2012 at http://www.arb.ca.gov/cc/capandtrade/emissionsmarketassessment/price-
containment.pdf.

6 As described below, the APCR makes a limited number of extra allowances available if the price hits
certain price levels.
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for both uncertainty in greenhouse gas emissions and the steepness of the supply curve

of abatement. Instead of estimating the full probability distribution of allowance prices,

we focus on computing probabilities that allowance prices lie on distinct portions of the

abatement supply curve. We compute the probability of price outcomes on four segments

of the abatement supply curve: (1) at or near the auction price floor (reserve price), (2)

above the auction price floor and below the first step of the APCR (the upward sloping

portion of supply curve of abatement), (3) at or above the first step of the multi-step

(described below) APCR and at or below the last step of the APCR, and (4) above the

last price step of the APCR. We find that both uncertainty in BAU emissions and the

steepness of the supply curve of abatement between the auction price floor and first step

in the APCR are the key drivers of the probabilities of these four price outcomes.

We show that the steep abatement supply curve between the auction price floor and the first

price step of the APCR, implies a bi-modal distribution of prices: most of the probability

mass is at either low or high price outcomes. A primary factor determining where in

that distribution of prices the market will equilibrate is the “business as usual” (BAU)

emission level that would result if there were no GHG reduction policies. BAU emissions

are substantially the result of economic activity driving electricity consumption and vehicle

travel, as well as the emissions intensities of those activities, and emissions from natural

gas combustion in the residential and commercial sectors and industrial processes. In this

paper we develop estimates of these drivers of emissions utilizing forecasting techniques

from time-series econometrics. We apply these techniques to emissions and economic data

from 1990 to 2011 in order to forecast future emissions and the uncertainty of emissions.

Our empirical assessment of the potential demand for allowances and supply of abatement,

as well as the offsets that augment this supply, suggests that the market price is most

likely to be at or near the price floor through 2020.7 In all of the scenarios we examine, we

also find a low probability that the price will be in the intermediate range, substantially

above the auction reserve price floor and still below the APCR prices. Thus, most of

the remaining probability weight is on outcomes in which some or all of the allowances

in the APCR are needed. Moreover, for all abatement supply curve scenarios that we

consider likely, there is a small, but non-trivial probability that – absent further government

7 Throughout this paper we will refer to an “allowance market price.” The trading of allowances and
their derivatives will be arranged through several competing and coexisting platforms, including quarterly
auction of allowances by the State. We assume that prices between these markets will be arbitraged so that
all trading platforms will reflect prices based upon the overall aggregate supply and demand of allowances
and abatement.
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intervention – allowance prices will be above the highest price in the price containment

reserve.

Throughout this analysis, we assume that no market participant is able to exert market

power or manipulate the market for emission allowances. That is, we assume that the

emissions market is completely competitive; no market participant is able to unilaterally,

or collusively, change their supply or demand of allowances in order to profit from altering

the price of allowances. In ongoing work, we are analyzing the potential for market power

and market manipulation given the characteristics of supply and demand in the market.

The remainder of this analysis proceeds as follows. Section II gives an overview of the pos-

sible outcomes in the market for California emissions allowances given the characteristics of

the supply and demand for GHG emissions abatement. Section III describes how we model

the Business As Usual (BAU) drivers of GHG emissions over the 2013-2020 life of the pro-

gram using a Vector Autoregression (VAR) model that imposes the restrictions implied by

the existence of cointegrating relationships among the elements of the VAR. In Section IV

we explain how we incorporate into the simulations the major additional California GHG

reduction programs, known in California as “complementary policies,” though they may

not be complements to the cap-and-trade program in the economic sense. These include

a renewable portfolio standard (RPS) that will increase electricity generation from renew-

able sources, a fuel economy standard that will reduce fuel use per vehicle mile traveled,

a low-carbon fuel standard (LCFS) that will reduce the measured emissions intensity of

the transport fuel used, and additional programs to improve non-transport and transport

energy efficiency. Even though the impacts of these programs should be largely indepen-

dent of allowance prices, the effects of these programs, as with the allowance market, will

be highly dependent on the economic and emissions variables that we model in the VAR.

Section V analyzes the reduction in reported emissions related to other programs and

activities in California, including both consumer response to higher prices for electricity,

transport fuels, and natural gas, and two other important activities, reshuffling and offsets.

Reshuffling, also known as “contract shuffling” or “resource shuffling”, occurs when output

of an energy product is reallocated among buyers in different regions so that the entities

covered by the cap and trade program are buying the lower-carbon version and uncovered

entities are buying the higher-carbon version, but no reduction in total emissions results.8

8 We distinguish between reshuffing and classical leakage, because reshuffling typically involves no change
in the emissions producing activities in and outside of the region or industry covered by the cap-and-trade
program.
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Due to the California cap and trade market, there is likely to be significant “reshuffling”

of electricity purchases among buyers and sellers across state lines. Offsets are emission

reductions from sources not covered by the cap and trade program. Production of such

offsets can then be credited to offset buyers against their allowance obligation. As ex-

plained below, offsets are envisioned to significantly augment the supply of allowances in

the California market, but there is a great deal of uncertainty as to how much offset supply

will ultimately occur.

In section VI, we bring together the analysis of abatement pathways with the previous

estimates of emissions to forecast the possible supply/demand balance in the market and

the probabilities of different price outcomes. We then discuss a number of market design

issues in section VII in light of the probabilities we find. We conclude in section VIII

with a broader discussion of our findings for the use of cap and trade programs to address

climate change.

II. THE CALIFORNIA CAP AND TRADE MARKET

We focus on estimating the potential range and uncertainty of allowance prices over the

entire 8-year span of the market.9 The underlying source of demand for allowances will

be emissions of GHGs from the covered entities, which will be a function of the levels and

intensities of their emissions-producing activities. Banking and borrowing of allowances is

permitted among the years of each compliance period and banking is permitted between

compliance periods. Because of the relatively generous allowance budgets in the earlier

years and a policy change that is likely to be adopted in 2014,10 under nearly all scenarios,

emissions during the first two compliance periods (ending 12/31/14 and 12/31/17) will not

exceed the caps, so the eight years of the market are likely to be economically integrated.

As a result, we examine the total supply and demand balance over the entire eight years of

the program (2013-2020). Because there is a large degree of uncertainty around the level

9 In late 2013, the ARB finalized plans to link California’s cap and trade market with the market in Quebec,
Canada as of January 1, 2014. Our analysis does not include Quebec, though it could easily be extended
to do so if comparable data were available for Quebec. Quebec’s total emissions were roughly 1/7 that of
California. The supply-demand balance of allowance in this province could alter the probabilities presented
in this paper.

10 See the ARB Board resolution dated October 18, 2012 at http://www.arb.ca.gov/cc/capandtrade/final-
resolution-october-2012.pdf and an issue analysis from the Emissions Market Assessment Committee dated
September 20, 2012 at http://www.arb.ca.gov/cc/capandtrade/emissionsmarketassessment/pricecontain-
ment.pdf. Most recently, the ARB Board considered changes to APCR at its October 2013 meeting, but
deferred action at that time.
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of BAU emissions, we pay particular attention to establishing confidence intervals as well

as point estimates.

The number of allowances available in the California GHG cap and trade program derives

from the allowance cap, a portion of which is allocated to the APCR.11 Of the 2,508.6

million metric tonnes (MMT) of allowances in the program over the 8-year period, 121.8

MMT of allowances are assigned to the price containment reserve to be made available in

equal proportions at allowance prices of $40, $45, and $50 in 2012 and 2013. In later years,

these price levels increase by 5% plus the rate of inflation in the prior year.

The supply of abatement is multi-faceted and features several elements that are either

unique, or present in a more extreme form, in California. These elements combine to

create an extremely steep abatement supply curve, which we will demonstrate implies the

potential for a very wide distribution of price outcomes. Abatement of capped emissions

will flow through two mechanisms: a direct effect in which firms or consumers reduce

emissions in response to a level of allowance prices, and an independent effect in which

emissions are reduced due to additional “complementary policies” outside the cap and

trade program.

The supply of relatively price-independent abatement comes from (a) complementary poli-

cies that abate GHGs independent of the price in the market, (b) activities that reduce

measured GHGs due to the process of accounting for electricity imports (“reshuffling”

and “relabeling”12 ), and (c) offsets, which we discuss later (and which might be consid-

ered a form of lessening demand rather than increasing supply, but the analysis would

be unchanged). While incentives for reshuffling and offsets are affected by the price of

allowances, previous analyses suggest that the bulk of this activity would be realized at

prices below or just slightly above the auction reserve price.13

In its revised scoping plan of 2010, ARB’s preferred model projects that 63% of emissions

11 A proposed policy change that the ARB Board will consider would allow reallocation of a large number of
allowances from later compliance periods to earlier periods if the allowance price reaches the highest step
of the price containment reserve.

12 Relabeling describes the practice of reselling out-of-state power that comes from a high-emissions source
such that the buyer can then import the power into California at the administratively determined default
emissions rate. Relabeling might be considered a type of reshuffling. We consider them in combination.

13 The potential levels of reshuffling and relabeling are examined in Bushnell, Chen, and Zaragoza-Watkins
(forthcoming). The offset market is discussed below. Some offset supply may be available at prices
somewhat above the auction reserve price.
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abatement would arise from complementary policies rather than responses to the cap (four

additional sensitivity models project between 30% and 63% of emissions abatement would

arise from complementary policies).14 It is important to recognize that these reductions

are not costless, indeed many may impose costs above the allowance price. Rather, these

reductions, and the accompanying costs, will occur approximately independently of the level

of the allowance price. Therefore, while these policies provide reductions, and contribute

to the goal of keeping emissions under the cap, they do not provide the price-responsive

abatement that can help mitigate volatility in allowance prices.

In this paper, we treat the impact of these complementary policies as influencing the

distribution of the supply of abatement. For example, aggressive vehicle fuel-efficiency

standards should lead to slower growth in the emissions from the transportation sector,

which we represent as a change in the rate at which the emissions intensity of vehicles de-

clines over time. Similarly mandates for renewable energy production decrease the amount

of electricity demand that needs to be served by more carbon intensive sources, thereby

reducing emissions.

As described below, the supply of price-responsive mitigation is limited by the allocation

policies that have been implemented under AB 32. The large amount of allowances allo-

cated using an approach known as output-based updating is expected to limit the impact

of allowance prices on production levels and consumer prices for many industries.15 Most

of the remaining reductions in response to allowance prices would therefore come from

consumer responses to changes in energy prices, namely transportation fuels (gasoline and

diesel), natural gas, and, possibly, electricity consumption. Compared to the aggregate

level of reductions needed and expected under AB 32, we show that the reductions from

14 See http://www.arb.ca.gov/cc/scopingplan/economics-sp/updated-analysis/updated sp analysis.pdf at
page 38 (Table 10).

15 Output-based updating describes allocation of allowances to a company based on the quantity of output
(not emissions) that the firm produces. Output-based updating reduces the firm’s effective marginal cost of
production and, thus, reduces the incidence of the allowance price on firms and consumers, while retaining
the full allowance price incentive for the firm to adopt GHG-reducing methods for producing the same
level of production (see Meredith Fowlie, “Updating the Allocation of Greenhouse Gas Emissions Permits
in a Federal Cap-and-Trade Program,” in Don Fullerton and Catherine Wolfram, ed. The Design and
Implementation of U.S. Climate Policy, University of Chicago Press. 2012). If applied to a large enough
set of industries or fraction of the allowances, the effect can be to inflate allowance prices as higher prices
are necessary to offset the diluted incentive to pass the carbon price through to consumers. See Bushnell,
James and Yihsu Chen. “Regulation, Allocation, and Leakage in Cap and Trade Markets for CO2.”
Resources and Energy Economics. 34(4), 2012.
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Figure 1: Supply of Abatement

these energy price effects are relatively small.16 This is due in part to a feature of the

program that will use the revenues from the sales of allowances to fossil fuel electricity

suppliers to limit the magnitude of potential retail electricity price increases. Similar poli-

cies are under consideration at ARB for retail natural gas sector and transportation sector.

If implemented they would further increase the slope of abatement supply curve.

The combination of large amounts of “zero-price” abatement, and relatively modest price-

responsive abatement creates a hockey stick shaped abatement-supply curve (See Figure

1). Analysis undertaken by ARB indicates that the marginal abatement cost curve rises

sharply after the relatively low-cost abatement options are exhausted. ARB states in its

updated Scoping Plan dated March 2010 that “...GHG emissions in the model show limited

responsiveness to allowances prices...This lack of responsiveness results from the limited

reduction opportunities that have been assumed to be available in the model.”17

16 Offsets and reshuffling/relabeling may also be sensitive to allowance prices, but are considered separately.

17 Available at: http://www.arb.ca.gov/cc/scopingplan/economics-sp/updated-analysis/updated sp analy-
sis.pdf. See also, the ARB analysis contained in Appendix F: Compliance Pathways Analysis available at:
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Figure 2: Hypothetical Distribution of Abatement Demand (BAU minus allowances
outside price containment reserve) versus Abatement Supply

One implication of this is that allowance prices are more likely to be either at or near the

level of the auction reserve price or at levels set by the APCR policy than they are to

be at some intermediate level. When one considers an uncertain range of BAU emissions,

even if strongly centered on the expected level, the probabilities of prices falling at either

the APCR ceiling or auction reserve price floor constitutes a large fraction of the overall

distribution of potential emissions outcomes.

This intuition is illustrated in Figure 2, which superimposes a hypothetical symmetric

distribution of the amount of abatement needed (BAU emissions less the cap) onto the

same horizontal axis as our supply curve. Note from Figure 2 that the range of abatement

quantity that falls between the auction reserve price ($10.50/tonne in this illustration) and

the first-step of the price-containment “ceiling” ($40/tonne in this illustration), which is

the area with no pattern, is relatively small.

The implications of California’s abatement supply curve is therefore that the vast majority

http://www.arb.ca.gov/regact/2010/capandtrade10/capv3appf.pdf.
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Figure 3: Possible Density Functions of Allowance Price

of probability for a given price outcome falls either at the auction reserve price or in the

range in which the price containment policy is likely to be triggered. Rather than the

intuitive bell-shaped distribution of possible prices, it is more appropriate to think of the

probabilities as distributed according to the dashed line of Figure 3, which has the same

mean as the solid line, but this mean is generated by a high probability of a “low” (auction

reserve) price balanced by a somewhat lower probability of a “high” (price containment

reserve) price.

a. Price Evolution and Estimated Equilibrium Price in the Market

The analysis we present here models supply and demand that evolves and is aggregated

over the 8 year span of the market. We calculate the equilibrium as the price at which

the aggregate demand over the 8 years is equal to the aggregate supply. We analyze this

program alone, assuming that the market is not continued after the 8 years or integrated

into some other program. At this point there is not clarity about how the program will

evolve after 2020.

At any point in time, two conditions will drive the market price, an intertemporal arbitrage
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condition and a market equilibrium condition. If the markets for emissions at different

points in time are competitive and well integrated, then intertemporal arbitrage enabled

by banking and borrowing will cause the expected price change over time to be equal to

the nominal interest rate (or cost of capital).18 At the same time, the price level will be

determined by the condition that the resulting expected price path – rising at the nominal

interest rate until the end of 2020 – would in expectation equilibrate the total supply and

demand for allowances.19

Throughout the market’s operation, new information will arrive about the demand for

allowances (e.g., weather, economic activity, energy prices and the energy intensity of

GSP) and the supply of abatement (e.g., supply of offsets, response of consumers to higher

fuel prices, and the cost of new technologies for electricity generation). These types of

information will change expectations about the supply/demand balance in the market

over the length of the program and thus change the current equilibrium market price. The

price at any point in time reflects a weighted average of all the possible future prices that

may occur in order to equilibrate supply and demand.

For instance, while high allowance prices are a possibility if the economy grows rapidly

and abatement efforts are less effective than anticipated, early in the market operation

that would be only one of many possible future outcomes that the market price would

reflect. Over time, however, if economic growth were stronger and abatement weaker than

expected, this would become an increasingly likely scenario and price would rise faster

than had been anticipated. Thus, if lower-probability outcomes were to occur over time,

their impact would become evident gradually in the adjustment of the market price. In

that case, an extremely high market price would probably not occur until the later years

of the program.

18 This is the outcome envisioned when banking was first developed (Kling and Rubin, 1997). See also
Holland and Moore (forthcoming), for a detailed discussion of this issue.

19 Because of lags in information and in adjustment of emissions-producing activities, supply and demand will
not be exactly equal at the end of the compliance obligation period (December 31, 2020). At that point, the
allowance obligation of each entity would be set and there would be no ability to take abatement actions
to change that obligation. The supply of allowances would have elasticity only at the prices of the APCR
where additional supply is released and the level at which a hard price cap is set, if one is enacted. Thus,
the price would either be approximately zero (if there is excess supply) or at one of the steps of the APCR
or a hard price cap (if there is excess demand). Anticipating this post-compliance inelasticity, optimizing
market participants would adjust their positions if they believed the weighted average post-compliance
price outcomes were not equal to the price that is expected to equilibrate supply and demand. Such
arbitrage activity would drive the probability distribution of post-compliance prices to have a (discounted)
mean equal to the equilibrium market price in earlier periods.
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Table 1: Aggregate Emissions from Key California Sectors in 2010 (MMT)

Market participants are likely to employ an analysis similar to ours to decide the allowance

price that they should use when choosing how much GHG to emit and whether an invest-

ment to abate emissions is likely to be cost effective. Analyses like this will also determine

the price at which participants’ are willing to buy and sell in the allowance market.

III. ESTIMATING THE BUSINESS AS USUAL EMISSIONS

Perhaps the largest factor driving the supply/demand balance in the GHG market will

be the level of emissions that would take place under business as usual (BAU). There is,

however, considerable uncertainty about BAU emissions over the period 2013 to 2020. The

scope of the cap-and-trade program is very broad, and will be implemented in two phases.

The first phase, which began January 1, 2013 covers large stationary sources, which are

dominated by power plants, oil refineries, and other large industrial facilities. The second

phase, to begin January 1, 2015, will expand the cap to include emissions associated with

the combustion of transportation fuels and natural gas at non-industrial facilities. Table

1 summarizes the aggregate emissions from the key sectors during 2010.

Historically, there has been considerable variability in the level of economic activity in each

of these sectors, which in turn implies considerable uncertainty in the production of GHG

emissions from these activities. Figure 4 illustrates the annual emissions from each sector

over a 22-year period beginning in 1990. Predicting the level of economic activity from

each of these sectors only one year in advance has the potential for significant forecast

errors. Forecasting the level of economic activity and GHG emissions nine years into the

future involves even greater forecast errors, which implies a greater potential for very low

or high allowance price realizations.
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Figure 4: California Emissions Data 1990-2011

An important category of emissions to highlight is those associated with imported elec-

tricity. Although these emissions are substantial, because they are from sources located

outside of California their measurement is uncertain and subject to potential avoidance

through reshuffling or relabeling of sources. As described below, we apply ARB-derived

emissions levels from imports as BAU and consider scenarios of reshuffling in determining

the net value of GHG emissions from electricity imports.

To derive estimates of the expected future time path of GHG emissions and the uncer-

tainty associated with this forecast, we estimate a seven-dimensional Vector Autoregression

(VAR) model with determinants of the three major components of state-level GHG emis-

sions that are covered under the program and the key statewide economic factors that

impact the level and growth of GHG emissions.20 Due to the short time period for which

the necessary disaggregated GHG emissions data have been collected, the model estima-

20 Vector Autoregressions are the econometric methodology of choice among analysts to construct short to
medium-term (from 1 to 10 time periods into the future) forecasts of macroeconomic variables and for this
reason are ideally suited to our present task. Stock and Watson (2001) discuss the successful use of VARs
for this task in a number of empirical contexts.
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tion is based on annual data from 1990 to 2011. Because data are available for 2012 on real

Gross State Product (GSP), in-state electricity production by source, and the real price

of gasoline in California, we condition on these values in forecasting the expected future

time path of GHG emissions and the computing the uncertainty in the future time path

of GHG emissions.

The short time series puts a premium on parsimony in the model. As a result, we use

a 7-variable model that includes the three drivers of GHG emissions–in-state fossil-fuel

electricity production, vehicle-miles traveled (VMT), and non-electricity natural gas com-

bustion and industrial process GHG emissions–and the two economic factors that influence

those drivers–real gross state product and the real price of gasoline in California. To facili-

tate forecasting the future time path of GHG emissions in the transportation and electric-

ity sectors under different sets of complementary policies for reducing GHG emissions in

these sectors, we also model the behavior of the emissions intensity of the transportation

and electricity sectors in California. Our approach is to estimate a VAR for these seven

variables, simulate them through 2020 and apply a range of emissions intensities to the

economic drivers of transportation and electricity emissions in order to simulate future

GHG emissions under different complementary policies in these two sectors.

Several features of our VAR model are chosen to match the time series relationships be-

tween the seven variables implied by economic theory and existing state policies to limit

GHG emissions. We allow for the fact that all seven variables exhibit net positive or

negative growth over our sample period and model them as stochastic processes that are

second-order stationary in growth rates rather than second-order stationary in levels. The

results of unit root tests reported in the Appendix for each of individual time series are

consistent with this modeling assumption. We also impose restrictions on the parameters

of the VAR model implied by the cointegrating relationships between these seven variables

that are supported by the results of preliminary hypothesis tests. Engle and Yoo (1987)

show that imposing the parameter restrictions implied by cointegrating relationships be-

tween variables in a VAR improves the forecasting accuracy of the estimated model.

a. Model

Let Xt = (X1t,X2t, ...,X7t)
′ denote the vector composed of the seven annual magnitudes

included in the VAR for year t, t = 1990, 1991, ..., 2011. The elements of Xt are:

X1t = CA electricity production net of hydroelectric generation (terawatt-hours (TWh))

X2t = Total vehicle-miles travelled (thousands of miles)
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X3t = Industrial GHG and other natural gas emissions. (millions of metric tones (MMT))

X4t = Real Retail Gasoline price ($2011/gallon)

X5t = Real Gross State Product ($2011)

X6t = Emissions Intensity of In-State Thermal Generation (metric tonnes/MWh)

X7t = Emissions Intensity of Vehicle Miles Travelled (metric tonnes/thousand miles)

All real dollar magnitudes are expressed in 2011 dollars. All GHG emissions are in metric

tonnes of CO2-equivalents. As noted above, we include real GSP in the model is to capture

the empirical regularity observed both over time and across jurisdictions that a higher level

of economic activity leads to greater energy consumption and GHG emissions. The price

of gasoline reflects the fact that movements in transport fuel prices change the energy

intensity of economic activity and the value of VMT.

Estimating this VAR produces parameters that allow us to construct simulations of the

elements of Xt = (X1t,X2t, ...,X7t) from 2013 to 2020. Note X3t is already in terms

of metric tonnes of GHG. However, in order to get the total GHG emissions covered

under the program, we do two further calculations. First, from X1t, the simulation of

the production of electricity in California net of hydroelectric generation, we subtract the

anticipated amount of renewable and nuclear energy, described in more detail below. The

remaining residual production is assumed to be provided by thermal generation and it

is this residual amount that is multiplied by the thermal intensity, X6t. Emissions from

in-state electricity generation are included in the cap and trade program in all years, 2013

to 2020. Second, we parse X3t – industrial GHG and other natural gas emissions – for 2013

and 2014 into the portion of these emissions that are and are not covered by the program

during those years. Essentially, industrial processes and natural gas combustion by large

industrial sources are covered in the first two years of the program, while off-road diesel

consumption, and residential and small business emissions from natural gas consumption

are not covered until 2015.

We do not include the GHG emissions from electricity imports in the VAR because this

is largely an administratively determined number. All that can actually be measured is

the aggregate GHG emissions outside of California and total electricity produced outside

of California. The specific energy deemed to be “delivered” to California is largely the

choice of the importing firm. Because incentives for this choice will change dramatically

with the start of the cap and trade program, historical data on imports are not predictive

of future trends. We instead take the ARB’s forecast for emissions from electricity imports

and then adjust total electricity emissions for reshuffling, as described later.
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Define Yit = ln(Xit) for i = 1, 2, ..., 7 and Yt = (Y1t, Y2t, ..., Y7t)
′. In terms of this notation

a first-order autoregression or VAR that is stationary in first-differences can be written as

Θ(L) · Yt = µ + εt (3.1)

where L is the lag operator which implies, LkYt = Yt−k, I is a (7x7) identity matrix,

Θ(L) is (7x7) matrix function in the lag operator equal to (I − Θ1L) where Θ1 is a (7x7)

matrix of constants, µ is a (7x1) vector of constants, and εt is a (7x1) white noise sequence

with (7x1) zero mean vector and (7x7) covariance matrix Ω. Recall that white noise series

are uncorrelated over time. In terms of the lag operator notation (1 − L) = ∆, so that

∆Yt = Yt − Yt−1.

Although model (3.1) allows each element of Yt to be non-stationary, reflecting the fact

that each element exhibits net positive or negative growth over the sample period. A

linear time series process that is stationary in first-differences is also called an integrated

process with the order of integration equation equal to 1. For each of the elements of Yt we

performed a Dickey-Fuller (1979) test of the null hypothesis that the time series contained

a unit root and was unable to reject that null hypothesis at α = 0.05 level of significance

for each series.21 These hypothesis testing results are consistent with our decision to model

the vector ∆Yt as 2nd-order stationary process.

It is often the case that stationary linear combinations of non-stationary economic time

series exist because of long-run economic relationships between these variables. This logic

suggests that linear combinations of the elements of Yt are likely to be 2nd-order stationary

in levels. Times series processes that are 2nd-order stationary in first-differences (i.e., ∆Yt

is 2nd-order stationary) and have stationary linear combinations of their elements are said

to be cointegrated.22 For a k-dimensional VAR in first-differences of Yt, the number of

stationary linear combinations of the elements of Yt is called the cointegrating rank of

the VAR. The cointegrating rank is also equal to the rank of the matrix (I − Θ1). The

existence of cointegrating relationships among elements of Yt imposes restrictions on the

elements of Θ1. Suppose that the rank of the matrix (I − Θ1) is equal to r (0 < r < 7).

This implies that the following error correction representation exists for Yt:

∆Yt = µ − γZt−1 + εt (3.2)

21 Dickey and Fuller, 1979. Results of the Dickey-Fuller tests are shown in the Appendix.

22 See Engle and Granger, 1987, for a complete discussion of this concept and its implications.
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where Zt = α′Yt is a (r x 1) vector of 2nd-order stationary random variables (these are the

stationary linear combinations of Yt) and γ is a (7 x r) rank r matrix of parameters and α

is a (7 x r) rank r matrix of co-integrating vectors, and (I − Θ1) = −γα′.

Johansen (1988) devised a test of the cointegrating rank of a VAR that is 2nd-order sta-

tionary in first-differences. Following the multi-step procedure recommended by Johansen

(1995) for determining the rank of a VAR, we find that the null hypothesis that the rank

of (I − Θ1) is equal to 1 can be rejected against the alternative that the rank is greater

than 1 at 0.05 level.23 However, the null hypothesis that the rank of (I −Θ1) is 2 against

the alternative that it is greater than 2 cannot be rejected at a 0.05 level. According to

Johansen’s procedure, this sequence of hypothesis testing results is consistent with the

existence of 2 stationary linear combinations of the elements Yt. We impose these co-

integrating restrictions on the parameters of VAR model (3.2) that we estimate to forecast

future GHG emissions. Imposing the restrictions implied by the two cointegrating rela-

tionships between the elements of Yt reduces the number of free parameters in the (7x7)

matrix (I − Θ1) from 49 to 28 = (7x2) x 2, the total number of elements in γ and α.

We utilize Johansen’s (1988) maximum likelihood estimation procedure to recover consis-

tent, asymptotically normal estimates of µ, Ω, and Θ1 with these co-integrating restrictions

imposed. The coefficient estimates from this model written in the notation of equation

(3.2) are given in the Appendix.

Using these parameter estimates we can then compute an estimate of the joint distribution

of (X ′
2013,X

′
2014, ...,X

′
2020)

′ conditional on the value of X2011 that takes into account both

our uncertainty in the values of µ, Ω, γ, and α because of estimation error and uncer-

tainty due to the fact that (X ′
2013,X

′
2014, ...,X

′
2020)

′ depends on future realizations of εt

for t = 2012, ..., 2020. Because we have 2012 data for instate electricity production net

of hydroelectric generation (X1), the real price of gasoline in California (X4), and real

State GSP (X5), we compute our estimate of the distribution of (X ′
2013,X

′
2014, ...,X

′
2020)

′

conditional on the values of these three elements of Xt for t = 2012 as well as the observed

value of X2011.

We employ a two-stage smoothed bootstrap approach to compute an estimate of this

distribution.24 The first step computes an estimate of the joint distribution of the elements

23 Results of these tests are shown in the Appendix.

24 For a discussion of the smoothed bootstrap, see Efron and Tibshirani, 1993.
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of µ, Ω, γ and α by resampling from the smoothed empirical distribution of the (7x1)

vector of residuals from the estimated Vector Autoregression (VAR) and re-estimating µ,

Ω, γ, and α using Johansen’s (1988) maximum likelihood procedure. We use the following

algorithm. Let µ̂, Ω̂, and Θ̂1 equal the estimates of the elements of the VAR imposing the

cointegration rank restriction that (1 − Θt) = −γα′. Compute

ε̂t = Yt − µ̂ − Θ̂1Yt−1 (3.3)

for t =1991 to 2011. Note that we can only compute values of ε̂t for t =1991 to 2011,

because our sample begins in 1990 and the (t − 1)th observation is required to compute

the value of ε̂t for period t = 1991. Construct the kernel density estimate of the ε̂t as

f̂(t) =
1

Th7

T∑

t=1

K{
1

h
(t − ε̂t)} (3.4)

where T is the number of observations, h is a user-selected smoothing parameter, and K(t)

is a multivariate kernel function that is everywhere positive and integrates to one. We use

the multivariate normal kernel

K(x) =
1

(2π)7/2
exp(−

1

2
x′x) where x ∈ <7

and h = 0.5. We found that our results were insensitive to the value chosen for h, as long

as it was less than 1.

We then draw T = 21 values from (3.4) and use the parameter estimates and these draws

to compute re-sampled values of Yt for t = 1, 2, ..., T = 21. Let (ε̂m
1 , ε̂m

2 , ..., ε̂m
21)

′ denote the

mth draw of the 21 values of ε̂t from f̂(t). We compute the Y m
t , the 21 resampled values

of Yt for t =1991 to 2011, by applying the following equation starting with the value of Yt

in 1990 (Y m
1990 = Y1900 for all m)

Y m
t = µ̂ + Θ̂1Y

m
t−1 + ε̂m

t . (3.5)

We then estimate the values of µ, Ω, and Θ1 by applying Johansen’s (1988) ML procedure

using the Y m
t and imposing the cointegration rank restriction that (1 − Θt) = −γα′.

Call the resulting estimates µ̂m, Ω̂m, and Θ̂m
1 . Repeating this process M = 1000 times

yields the bootstrap distribution of µ̂, Ω̂, and Θ̂1. This step accounts for the uncertainty

in future values of Yt due to the fact that true values of the of µ, Ω, and Θ1 are unknown

and must be estimated.
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To account for the uncertainty in YT+k due to future realizations of εt, for each m and

set of values of µ̂m, Ω̂m, and Θ̂m
1 , we draw nine values from f̂(t) in equation (3.4). Call

these values (ε̂m
T+1, ε̂

m
T+2, ...ε̂

m
T+9)

′. Using these draws and µ̂m, Ω̂m, and Θ̂m
1 compute future

values YT+k for k = 1, 2, ..., 9 given YT using the following equation:

Y m
T+k|T = µ̂m + Θ̂m

1 Y m
T+k−1|T,T−1 + ε̂m

T+k for k = 1, 2, ..., 9 (3.6)

This yields one realization of the future sample path of Yt for t =2012, 2013,..., 2020. The

elements of Yt are then be transformed to Xt by applying the transformation Xit = exp(Yit)

to each element of Yt to yield a realization of the future time path of Xt. The elements of

Xt are then transformed to produce a realization of the future time path of GHG emissions

by each covered sector. This two-step process of computing µ̂m, Ω̂m, and Θ̂m
1 and then

simulating Y m
T+k|T for k = 1, 2, ..., 9 and doing this m = 1 to M = 1000 times produces

1,000 realizations from the simulated distribution of (X ′
2012,X

′
2013, ...,X

′
2020)

′.

The procedure for simulating the value X2012 is slightly different from the procedure for

simulating values for 2013 to 2020 described above because we know the values of X1,

X4, and X5 for 2012. Simulating the value of (X ′
2013,X

′
2014, ...,X

′
2020)

′ conditional on

the values of instate electricity production net of hydroelectric generation (X1), the real

gasoline price in California (X4), and real State GSP (X5) in 2012, requires construct-

ing the smoothed conditional density of (ε̂2t, ε̂3t, ε̂6t, ε̂7t)
′ conditional on (ε̂1t, ε̂4t, ε̂5t)

′ =

(ε̂1,2012, ε̂4,2012, ε̂5,2012)
′, the elements of ε̂t corresponding to instate electricity production

net of hydroelectric generation (X1), the real price of gasoline in California (X4), and real

State GSP (X5) in 2012 that reproduce the observed values of these variables in 2012

given the values of all of the elements Yt in 2011. We draw (ε̂2t, ε̂3t, ε̂6t, ε̂7t)
′, the remaining

elements of ε̂t from this conditional density for 2012 in computing the simulated value of

Yt for 2012. This re-sampling process ensures that the simulated value of instate electric-

ity production net of hydroelectric generation, the real price of gasoline, and real GSP in

California in 2012 are always equal to the observed value for each of these variables. It

also ensures that the simulated value of ε̂t for 2012 is consistent with the smoothed joint

distribution of ε̂t in (3.4) when drawing the remaining elements of this vector.

Although California’s cap and trade program phases in the entities under the cap over

time, our approach forecasts emissions from Phase I entities (narrow scope) and Phase

II entities (broad scope) over the entire post-sample period. Phase I, in effect during

the first compliance period of 2013 and 2014, covers electricity generation and emissions

from large industrial operations. Phase II, in effect for the second and third compliance
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periods, 2015-2017 and 2018-2020, expands the program to include combustion emissions

from transportation fuels and emissions from natural gas and other fuels combusted at

residences and small commercial establishments.

a. Data

To compute the GHG emissions intensities of the instate electricity sector and transporta-

tion sector from 1990 to 2011 that enter the VAR model, we require data on the annual

emissions from instate electricity production and annual emissions from the transportation

sector to enter the numerator of each of these intensities. Annual emissions from the large

industrial processes and the residential and commercial natural gas sector from 1990 to

2011 is the final GHG emissions-related time series required to estimate the VAR.25 To

construct these data, we start with data on annual emissions for each covered sector in

California for 1990 to 2011. The remaining data that enter the VAR come from a variety

of California state and federal sources, discussed below.

Annual emissions levels for each covered sector are taken from the 1990-2004 Greenhouse

Gas Emissions Inventory and the 2000-2011 Greenhouse Gas Emissions Inventory (here-

after, Inventory).26 The longest series of consistently measured emissions data and the

basis for developing the 1990 statewide emissions level and 2020 emissions limit required

by AB 32, the annual Inventory data was prepared by ARB staff and relies primarily on

state, regional or national data sources, rather than individual facility-specific emissions.

The Inventory’s top-down approach to quantifying emissions differs importantly from the

bottom-up method of accounting for facility-specific emissions under the cap and trade

program. In particular, the Inventory likely overstates emissions from industrial activity

relative to those covered in the first compliance period of the cap and trade program.

That is, the Inventory methodology may attribute some emissions to the industrial sector,

such as natural gas combustion from small industrial or commercial sources that are not

covered until the second compliance period. We investigate the impact of this difference

by comparing the Inventory data to annual data collected under the Mandatory Reporting

Regulation (MRR), the methodology used to calculate an entity’s compliance obligation

under cap and trade.27

25 Emissions from the off-road consumption of diesel also comprises a small component of the “other” category.

26 California’s GHG emissions inventory is available at: http://www.arb.ca.gov/cc/inventory/inventory.htm.

27 Information on the ARB mandatory reporting regulation is available at: http://www.arb.ca.gov/cc/report-
ing/ghg-rep/ghg-rep.htm.
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Table 2: Summary Statistics of Data for Vector Autoregression

Comparing the 2008-2011 MRR and Inventory industrial emissions data series shows an-

nual differences of 8.98 to 13.24 MMT, with Inventory industrial emissions fifteen percent

higher than MRR industrial emissions, on average. We address this difference by forecast-

ing industrial capped source emissions in the first compliance period using the Inventory

industrial emissions data series adjusted downward by fifteen percent. We use the unad-

justed Inventory data as our measure of industrial capped source emissions covered in the

second and third compliance periods. This approach does not appear to impact either

our expected time path or the degree uncertainty in the future time path. Because our

maintained assumption is that the first compliance period difference is due to differences in

accounting, as opposed to classical measurement error, using the Inventory emissions esti-

mates for the second and third compliance periods should not bias our emissions estimates

upward.

California GSP is collected from the Bureau of Economic Analysis (BEA).28 Gasoline

prices are collected from the Energy Information Administration (EIA).29 In-state electric

generation is also collected from the EIA.30

28 Gross Domestic Product by State is available at: http://www.bea.gov/regional/index.htm#data.

29 Retail fuel price by State is available at: http://www.eia.gov/dnav/pet/pet pri gnd dcus sca w.htm.

30 In-state California electric generation and consumption are available from the CEC at http://energyalma-
nac.ca.gov/electricity/index.html.

22



0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

R
ea

l G
S

P
 (

$ 
T

ril
lio

n)

1990 2000 2010 2020
Year

CA Gross State Product

Actual and Forecast Values

Figure 5: Forecast Results – Gross State Product

Our primary measure of Vehicles Miles Traveled (VMT) is compiled from a series of state-

level transportation surveys administered by the National Highway Transportation Safety

Administration’s (NHTSA) Office of Highway Information (OHI). These data capture on-

road VMT and were independently constructed and reported by the states, rather than

centrally calculated by OHI.

While these data measure on-road VMT, the cap and trade program caps emissions from

all diesel and gasoline combusted as transportation fuel in California, regardless of whether

the fuel is combusted on-road or off-road. To address this potential source of bias we devi-

ate from ARB’s emissions categorization of “transportation” by excluding GHG emissions

from off-road vehicle activities, in favor of categorizing them into “Natural Gas and Other.”

Therefore, beginning with total transportation sector combustion emissions, we partition

emissions into on-road and off-road activities using the more granular activity-based emis-

sions values reported in the combined 1990-2004 and 2000-2011 Emissions Inventories. The

emissions levels reported in Table 1 reflect this partition of on-road and off-road emissions.

Finally, to adjust the emissions from natural gas, off-road diesel, and industrial processes

for partial coverage under the cap of these emissions in 2013-14, we multiply the value

of Xm
3,T+k for each simulation by 0.53 · 0.85(= 0.4675) for the values in 2013 and 2014.
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This adjustment reflects that over the last 20 years, the industrial sector has consistently

accounted for approximately 53% of emissions from non-electricity-generation natural gas

combustion and other industrial processes (X3) (min: 51.5% and max: 56.5%), and the

Inventory accounting difference (discussed above), which leads us to attribute 85% of

industrial emissions to sources covered under the first compliance period.

Summary statistics for all data of the VAR are in table 2.

b. Results

The parameter estimates from estimating the 7-variable VAR are shown in the Appendix.

The parameter estimates are reported in the error-correction model notation of the VAR

as:

∆Yt = µ + ΛYt−1 + εt (3.7)

where Λ is (7x7) matrix that satisfies the restriction Λ = −γα′. Repeating the two-step

procedure described above, yields 1000 simulations of the elements of Xt. Table 3 lists the

means and standard deviations of simulated value of each element of Xt for each year from

2013 to 2020, as well as the coinciding annual and cumulative emissions resulting from

those values. Figure 5 shows actual data (up to 2012) and forecast from VAR for GSP,

with 95% confidence intervals for the forecast. The vertical dots show the distribution of

simulation outcomes. The next section describes the details of our procedure for simulating

future values of annual emissions covered by the program for each year from 2013 to 2020.

IV. ACCOUNTING FOR COMPLEMENTARY POLICIES IN FORECASTS

While the Air Resources Board (ARB) has identified many categories of complementary

policies and stated the reductions in GHG emissions that are expected to result from each

policy, it is unclear how the baseline from which such estimates are claimed relates to the

simulations we obtain from the VAR. Thus, rather than incorporating potential reductions

from an uncertain baseline, we proceed by applying emissions intensities of electricity

generation and VMT that reflect the likely outcomes of the complementary policies. That

is, the effects of complementary policies are incorporated into our simulations of GHG

emissions from 2013 to 2020 through changes in the ratios we use to translate forecasts

of X1t and X2t, instate electricity production minus hydroelectric energy production and

vehicle miles traveled respectively, into GHG emissions.
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Table 3: Summary Statistics of Simulated VAR Variables and Emissions

In the case of electricity, the main complementary policies are energy efficiency (EE) invest-

ments and the Renewables Portfolio Standard (RPS). Consistent with the regulatory prac-

tice of translating sector-wide intensity based policy into fixed quantity targets, we treat

both of these measures as impacting the quantity of non-zero carbon-emissions-producing

power generation, rather than the intensity of overall generation.

In the case of the RPS, two important recent changes imply that historical trends of zero-

carbon-emissions generation are not satisfactorily predictive of future supply. These two

changes are the imposition of the 33% RPS and the recent unexpected retirement of the

San Onofre Nuclear Generation Station (SONGS) in Southern California. To get from

a simulation of X1t for 2013-2020 to a simulation of GHG emissions from in-state non-

hydro electricity generation, we first subtract off estimates of future renewable and nuclear

power generation from each simulation of X1t. These values are taken from external data

sources rather than generated within the VAR. What remains is a simulation of instate

fossil fuel electricity generation. We then multiply this number by the simulated value of

the emissions intensity of in-state fossil-fuel generation from our two-step procedure.

For the RPS, we apply a California Public Utilities Commission (CPUC) forecast of

new renewable generation (MWh) taken from the 2012 Long-term Procurement Plan-
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Table 4: Assumed Zero-Carbon Electricity Output and Vehicle Emissions Intesities

ning process.31 These estimates of renewable power generation incorporate the impact of

the 33% target for the RPS by 2020. We then add this annual quantity of new renewable

energy to the average level of renewable generation (taken from EIA) over the last 20 years

of about 24 TWh.32

For in-state generation of nuclear power, we assume that the Diablo Canyon Nuclear Power

Plant will continue to operate during 2013-2020 and that it will produce an average of 17.53

TWh per year, which is its average production for the 10-year period 2003-2012. These

values are summarized in the second and third columns of Table 4. The remaining in-state

generation is assumed to be from fossil fuel generation sources.

We then multiply this simulated value of instate fossil-fuel electricity production by X6t,

the emissions intensity factor produced by the simulation of future values from the VAR,

to translate the simulation of instate electricity production into GHG emissions. More

formally, we calculate electricity emissions from instate electricity production to be

ElecGHGm,T+k = (TWHNhydrom,T+k − RPS TWHT+k − Nuke TWHT+k) · EIm,T+k

where TWHNhydro is the realization of X1,T+k for simulation draw m of the instate pro-

duction of electricity net of hydro production. The variables RPS TWH and Nuke TWH

31 Specifically, we utilize the annual forecast of additional renewable energy from the RPS Calculator devel-
oped by E3 for the LTPP process found at http://www.cpuc.ca.gov/PUC/energy/Procurement/LTPP/-
2012+LTPP+Tools+and+Spreadsheets.htm. This forecast shows increased renewable energy to provide
an additional 32 TWh of renewable energy per year by 2020.

32 Note that the EIA value of 24 TWh of renewable energy is lower than the official current level of RPS
compliant energy. The difference is due to certain existing hydro resources that qualify under current
rules. The EIA lists this energy as “hydroelectric” rather than renewable.
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are the values of renewable and nuclear annual TWH described in Table 4 and EIm,T+k

is X6,T+k, the realization of emissions intensity for thermal generation in California for

simulation draw m.

Reflecting California’s longstanding commitment to energy efficiency, there is a strong pre-

existing trend of efficiency improvements already present in the time-series data we used

to forecast the BAU emissions. Total emissions per unit of GSP declined at an average

rate of about 1.83% per year from 1990 to 2011. We are therefore concerned that further

reductions from our forecast to account for energy efficiency improvements would double

count the reductions that are already part of the forecast. Indeed, as table 3 indicates,

emissions per unit of GDP decline under our BAU forecast by about 1.74% per year from

2013 to 2020. We therefore make no further adjustments in addition to energy efficiency

effects already integrated into our forecasts.

To incorporate the impact of complimentary policies targeting the transportation sector,

we interact the forecast of VMT from the VAR with three possible values of emissions

intensity per mile. The first value, essentially a business-as-usual intensity, takes X7,T+k,

the VMT intensity forecast by the VAR without any further adjustment. The second

and third emissions intensities we use are based upon expectations of the impacts of AB

32 transportation policies derived from EMFAC 2011, the ARB tool for forecasting fleet

composition and activity in the transportation sector. Our derivations are summarized

here but described in more detail in the Appendix.

Using EMFAC, we derive anticipated emissions intensities (essentially fleet average miles

per gallon) under two assumptions about transport policy. The first scenario assumes that

all LCFS and miles per gallon (MPG) standards are met. This reduces emissions-per-

mile both through improved MPG and through a higher percentage of biofuels, which are

treated as zero under the cap, in the transportation fuel mix. The second scenario assumes

that the mileage standards for new vehicles are met, but that the penetration of biofuels

remains at 10%.33 Thus, under this scenario the emissions per mile are reduced solely due

to the increased fuel-efficiency of vehicles.

The EMFAC 2011 model provides, for each of our transportation policy scenarios, a point

estimate of fleet average emissions intensity. Columns 4-6 of table 4 summarize these two

33 The carbon content of that 10% of biofuels may in fact be lower due to the LCFS, but from an emissions
cap perspective that does not matter, since all biofuels are treated equally as zero emissions under the
cap, and the current level of biofuels is already around 10%.
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Figure 6: Targeted Transportation Policies Shift Emissions Distribution

values, along with the mean transport intensity value forecast by the VAR, for each year.

However, even though the standards may be fully complied with, considerable uncertainty

remains as to the emissions intensity of the full transportation emissions. Among other

factors, a substantial minority of transport emissions come from commercial trucking and

other heavy-duty vehicles that will not be subject to the same kind of binding fuel economy

standards as the passenger vehicle fleet.

In order to reflect the underlying random aspects of vehicle emissions, even with success-

fully implemented complementary policies, we model the effect of these policies as a shift

in the distribution of emissions intensity from a BAU level to a level achieved, on average,

by the policies. This is accomplished by shifting each VMT intensity realization, X7,T+k,

by an amount equal to the difference between the BAU mean intensity level and the EM-

FAC forecast of the policy-induced point estimate. This adjusted emissions intensity is

then multiplied by the coinciding VMT realization for the same VAR simulation draw to

calculate total transport sector emissions for year t. More formally, transport emissions
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can be expressed as

TransportCO2m,T+k = V MTm,T+k · (TIm,T+k − (Ej(TI) − TIpolicy))

where V MTm,T+k and TIm,T+k are the vehicle miles travelled and transport emissions

intensity from simulation draw m of the VAR during year t, respectively, and TIpolicy is

the transport emissions intensity derived by EMFAC 2011 for the given policy assumption.

This effect is illustrated in Figure 6, which shows the distribution of transportation sector

emissions for 2020 under the BAU intensity forecast (dark), as well as the shifted distri-

bution (light) that incorporates the “low” vehicle intensity values from table 4. The three

vertical lines are, from left to right, the total allowance budget, along with the abatement

available at a price at the top of the APCR under low, medium and high scenarios, which

we discuss in the next section.34

Both of these adjustments–shifting MWh of in-state electricity generation and adjusting

the intensity of VMT emissions–yield estimates of the emissions that will result from the

three sectors covered in the California economy. These reductions will be independent of

the price of allowances. Three other adjustments are necessary, however, before comparing

this demand for allowances with the supply that is available under the cap and trade

program: the impact of imported electricity, emissions offsets, and changes in the price of

allowances. We incorporate these effects in the next section.

Figure 7 shows actual data (up to 2011) and forecast from VAR for Broad Scope Emissions,

with 95% confidence intervals for the forecast. The vertical dots show the distribution of

simulation outcomes. Figure 8 shows the forecast cumulative covered emissions – narrow

scope for 2013-2014, broad scope for later years – along with pointwise 95% confidence

intervals for the value for each year from 2013 to 2020.

V. ADDITIONAL SOURCES OF EMISSIONS ABATEMENT

While the VAR estimation and simulations described in the previous section account for the

trend in emissions and changes in transport emissions intensities, the price of allowances

and other government policies will also affect total emissions. In this section we analyze

these other sources of emissions abatement and compliance opportunities.

34 The lines are all for cases with more stringent fuel economy standards.
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Figure 7: Forecast Results – Broad Scope Emissions

A cap and trade system is based on the presumption that as the allowance price rises, the

implied increased production costs will change consumer and producer behavior. In order

to assess the impact of the change in the emissions price on quantity demanded in the

allowance market, we first analyze such price-elastic demand for allowances in four areas

on the consumer side: demand for gasoline, diesel, electricity, and natural gas. For each

of these areas, we calculate the emissions reduction that would occur with the price at the

auction reserve price floor, at the price to access the first (lowest) tier of the allowance

price containment reserve (APCR), and at the price to access the third (highest) tier of

the APCR.35 We also consider responses of industrial emissions to allowance prices.

It is important to recognize that the actual allowance price path will evolve over time

as more information suggests whether the market is likely to have insufficient or excess

allowances over the life of the eight-year program, as discussed in section II. Prices at

these very low or high levels may not be observed until much later in the program, when

participants are fairly certain of whether the market will be short or long allowances.

Furthermore, there may be considerable uncertainty about future prices throughout the

35 Each of these price levels escalates over time in real terms, so we calculate the price-sensitive abatement
for each year separately.
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Figure 8: Forecast Results: Cumulative Covered Emissions

program. Thus, to the extent that response to high allowance prices involves irreversible

investments, there may be significant option value in waiting to make those investments

until more of the uncertainty is resolved. For these reasons, while we use the APCR

price levels to calculate potential responses to high prices in every year, we consider low

to medium elasticities in recognition that APCR-level prices are very unlikely until later

years and delayed responses of market participants – due to uncertainty and option value

– may reduce responses to those prices.

a. Demand for Fuels

The potential impact of the allowance price on consumption of transportation fuels –

gasoline and diesel – is a function of short-run effects, such as driving less and switching

among vehicles a family or company owns, and longer-run effects, such as buying more

fuel-efficient vehicles and living in areas that require less use of vehicles. If, however, fuel-

economy standards have pushed up the average fuel-economy of vehicles above the level
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consumers would otherwise voluntarily choose (given fuel prices), then raising fuel prices

will have a smaller effect, because the fuel-economy regulation has already moved some

customers into the vehicle fuel economy they would have chosen in response to higher

gas prices. For this reason, in jurisdictions with effective fuel-economy standards, such

as California, the price-elasticity of demand for transportation fuels is likely to be lower.

Short-run price elasticity estimates are generally -0.1 or smaller.36 Long-run elasticities

are generally between -0.3 and -0.5.37 Furthermore, the fuel-economy standards would

reduce the absolute magnitude of emissions reductions in another way: by lowering the

base level of emissions per mile even before the price of allowances has an effect. Recall

that we incorporate the direct impact of fuel-economy standards on emissions holding

constant vehicle miles traveled when we account for transport emissions intensities in the

VAR simulation.38

We recognize that improved fuel-economy standards will phase in gradually during the cap

and trade compliance periods. To balance these factors, we assume that the base level of

vehicle emissions is unchanged from 2012 levels in calculating the price response, and we

assume that the price elasticity of demand will range from -0.1 to -0.2.39 Our fuel price

elasticity value is linked to our assumption about the effectiveness of the fuel-economy

regulations. If these regulations move consumers into the higher-MPG vehicles they would

have bought in response to higher fuel prices, then that emissions savings occurs regardless

of the price of allowances. If fuel prices then rise, we wouldn’t expect as great a quantity

response, as consumers have already purchased cars that are optimized for higher fuel

prices.

At the highest price in the price containment reserve in each year (which, in 2012 dollars, is

$50 in 2013 going up to $70.36 in 2020),40 the result with a -0.1 elasticity is a reduction of

10.6 MMT over the life of the program from reduced use of gasoline and diesel. Assum-

36 See Hughes, Knittel and Sperling, 2008.

37 See Dahl, 2012

38 The VAR also accounts for estimates of uncertainty in the change in gasoline prices absent GHG costs.

39 We also assume that the cost of tailpipe CO2 emissions is passed through 100% to the retail price.

40 These allowance prices translate to an increase of about $0.45 to $0.63 per gallon at the pump in 2012
dollars.
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ing an elasticity of -0.2 about doubles the reduction to 21.1 MMT.41 We also consider

the potentially more-elastic response if vehicle fuel economy standards are not separately

increased; assuming an elasticity of -0.4 yields a reduction of 44.1 MMT.42 (Note the

fuels will be under the cap only in 2015-2020, so we calculate reductions for only these six

years.) We combine this last case with the business-as-usual transport emissions intensity

described in the previous section, essentially assuming this higher price elasticity if higher

fuel-economy standards have not been effectively implemented.

If policy is changed to give free allowances to refiners with output-based updating, to

incent them not to pass along allowance prices in the price of gasoline, then this source of

abatement elasticity will be reduced or eliminated as we discuss in section VII.

b. Demand for Electricity

The impact of a rising allowance price on emissions from electricity consumption depends

primarily on the pass-through of allowance costs to retail prices of electricity. As noted

earlier, regulated investor-owned utilities (IOUs) receive free allocations of allowances that

they must then sell in the allowance auctions, resulting in revenues to the utilities. Those

revenues must then be distributed to customers. They can be used to reduce the retail rate

increases that would otherwise occur due to higher wholesale electricity purchase prices

caused by generators’ allowance obligations. Publicly-owned utilities are not obligated to

sell their allowances, but are effectively in the same position of deciding how much of the

value of the free allowances will be used to offset rate increases that would result when

wholesale prices rise.

Based on a resolution from the CPUC in December 2012,43 a best guess seems to be that

the revenues from utility sales of allowances will be used first to assure that cap and trade

causes no price increase to residential consumers. In addition, the revenues will be allocated

to dampen price increases for small commercial customers and likely greatly reduce them

for energy intensive trade exposed large industrial and commercial customers. Remaining

revenues will be distributed to residential customers through a semi-annual lump-sum

per-customer credit. It appears that most electricity sold to commercial and industrial

41 Each of these estimates assumes that the LCFS has already raised the biofuel share of retail gasoline to
15%.

42 This calculation also assumes that biofuels remain at 10% of retail gasoline.

43 http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M040/K841/40841421.PDF. The full decision is
at http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M039/K594/39594673.PDF.
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customers will see the full pass-through of energy price increases due to allowance costs.44

The CPUC estimates that 85% of revenues will go to residential customers, who make up

about 34% of demand.45 Conversely, 15% of revenues will go to non-residential customers,

that is, customers who comprise 66% of demand. If the total allocation of allowances

is about equal to 100% of a utility’s associated indirect (i.e., through power providers)

obligation, and the utility is allowed to cover its cost of compliance, this means that the

66% of demand that is not residential will bear associated costs equal to 85% of the total

cost of allowances that cover the utility’s obligation.

With a statewide average GHG intensity of 0.350 metric tonnes per MWh (based on

the 2011, most recent, GHG inventory), this means that the price of electricity per

MWh would increase for non-residential customers by an average of (0.85/0.66) · 0.350 ·

allowance price. At an allowance price of $50/tonne, this raises average non-residential

rates by $22.54/MWh and at $70.36/tonne by $31.55/MWh.46 We apply these increases

to the state average retail rates for commercial and industrial customers, based on EIA

data, to get a percentage price response. Commercial and industrial electricity demand

elasticity estimates are few and not at all consistent. The only study we found in the

last 20 years is Kamerschen and Porter (2004), which estimates a long-run industrial price

elasticity of demand of -0.35 when controlling for heating and cooling degree-days. We use

this figure, though we recognize that it could be too large because the long-run assumption

imparts an upward bias to the impact if price is actually increasing over time and we cal-

44 It is worth noting that it is far from straightforward once the program begins for a regulator to know what
the counterfactual price of electricity would have been if allowances had sold for a different price or for a
price of zero. The price of allowances has a complex impact of wholesale electricity expenditures depending
on the emissions intensity of the marginal supplier versus the average supplier and the competitiveness
of the wholesale electricity market. Thus, it is not clear how the CPUC would make good on a promise
not to pass through the cost of allowances without a detailed study of the impact that cost of equilibrium
wholesale electricity prices.

45 The 34% figure is based on 2012 EIA data for all of California.

46 The 0.350 MT/MWh figure is arrived at by taking total 2011 GHG electricity emissions measured for
in-state (38.2 MMT) and assumed for imports (53.5 MMT) and dividing by total consumption (261.9
MMWh). Two assumptions are implicit in this calculation. First, we calculate the impact by spreading
the cost of the allowances over all non-residential customers, rather than calculating a slightly higher
increase for a slightly smaller set of customers by excluding trade exposed large customers and reducing
the obligation of small customers. This is unlikely to make a noticeable difference. Second, we assume
that the wholesale price obligation is increased by the cost of the allowances, when it could be more or less
depending on the GHG intensity of the marginal versus the average producer and the share of contracts
with prices set prior to or independent of the impact of GHG costs on market price.
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culate the elasticity based on same-year average price.47 On the other hand, some earlier

studies–reviewed in Taylor 1975–find much larger long-run elasticities, in some cases above

1 in absolute value.

The -0.35 elasticity is then applied to the share of IOU-served demand subject to this price

change, which we take to be 66%, to calculate the resulting reduction in demand. Because

the resulting impact on electricity consumption would be a reduction at the margin, we

multiply the demand reduction by an assumed marginal GHG intensity–which we take

to be 0.428 tonne/MWh–to calculate the reduction in emissions at different prices. The

result is a reduction of 7.7 MMT when the price is at the auction reserve throughout the

program, 27.3 MMT when price is at the lowest step of the containment reserve, and

33.4 MMT when price is at the highest step of the containment reserve.48

Electricity prices, however, are likely to rise for all customers over the years of the program

for reasons independent of the price of allowances–increased renewables generation, rising

capital costs, and replacement of aging infrastructure, among others–and these increases

will reduce consumption.

Taking an average statewide retail electricity price of $149/MWh in 2012,49 we assume

that this price will increase by 2.15% (real) per year due to exogenous (to cap and trade)

factors.50 Again assuming a long-run demand elasticity of -0.35 and a marginal CO2e

intensity of 0.428 tonne/MWh, yields a reduction of 24.1 MMT (if allowance price is at

the highest price in the price containment reserve) over the life of the program.51

Thus, at the highest level of the price containment reserve we estimate total abatement

47 In particular, because the price at any time should reflect all expectations of future changes, the increase
in price over time, if it were to occur, would be due to a series of unpredicted upward shocks. Thus, one
would not expect market participants to behave as if they had foreseen these shocks.

48 For an elasticity of -0.2, the reductions are, respectively, 4.6, 15.8, and 19.3 MMT, while for an elasticity
of -0.5 the reductions are, respectively, 10.9, 38.6, and 47.2 MMT. We use these elasticities as a high and
low case. The baseline price on which all price increases are calculated is the average price over the life
of the program assuming a 2.15% annual real increase in electricity prices during this period, as discussed
next.

49 http://www.eia.gov/electricity/monthly/epm table grapher.cfm?t=epmt 5 6 a

50 This increase is based on a projected real increase from 144/MWhin2012to211/MWh in 2030, an average
increase of 2.15% per year.

51 Ito (forthcoming) estimates a medium-long run price elasticity for residential electricity demand of -0.2.
The reduction from the exogenous price increase drops to 13.9 MMT at an elasticity of -0.2.
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from electricity demand reduction of 57.5 MMT over the life of the program. Both the

price elasticity we assume and the marginal CO2e intensity figures may be on the high

side. Using an elasticity of -0.2 reduces the impact of electricity demand reduction to 33.2

MMT at the highest price of the containment reserve. The marginal GHG intensity of

0.428 is based on a combine-cycle gas turbine generator. If some of the reduction comes

out of renewable, hydro or nuclear generation the marginal intensity will be lower. The

impact scales linearly with the assumed marginal GHG intensity.

c. Demand for Natural Gas

It appears very likely that the ARB will vote in 201452 to give natural gas suppliers (who

are virtually all investor-owned regulated utilities in California) free allowances equal to

the obligation associated with their 2011 supply, but then declining at the cap decline

factor. If this were done, then nearly all of the suppliers’ obligations could be covered

with the free allowances (or the revenue from selling them in the allowance auction). From

discussions with industry participants and CPUC staff, it appears the most likely outcome

is there would be almost no impact of emissions pricing on retail natural gas price, and

therefore almost no price-responsive emissions reduction by consumers in this sector. That

outcome is not certain, however, so we also explore the impact of emissions prices being

passed through to consumers. “Consumers” in this case include all emissions sources not

covered in the industrial categories. (Large industrial customers, which are in the program

beginning with the first compliance period, are discussed in subsection e.)

If the cost of natural gas emissions were fully passed through to these consumers, then

an allowance price at the auction reserve would raise natural gas prices by an average

of $0.71/MMBTU (in 2012 dollars) over the 2015-2020 period. At the lowest price in

of the APCR, the allowance cost would raise the price of natural gas by an average of

$2.71/MMBTU and at the highest price of the APCR, the effect would be to raise the

natural gas price by an average of $3.40/MMBTU. We assume an average retail price of

$8.49/MMBTU across all nonindustrial types of natural gas customers53 before allowance

costs, and 100% pass-through of the allowance cost to retail. It’s difficult to know the

52 See http://www.arb.ca.gov/regact/2013/capandtrade13/capandtrade13isor.pdf. At the October 2013
ARB Board meeting, a decision on these proposals was postponed.

53 According to the EIA (http://www.eia.gov/dnav/ng/ng pri sum dcu SCA a.htm) in 2012 residential av-
eraged $9.22/MMBTU, commercial about $7.13/MMBTU for the about half of commercial customers in
their data. These are likely the smaller customers because larger customers probably have proprietary
contracts, which the price data don’t cover. The $8.49/MMBTU price is the quantity-weighted average
based on EIA estimated quantities.
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elasticity of retail demand for natural gas. We take a low-end estimate of -0.2 and a high-

end estimate of -0.4 over the 6-year time frame of natural gas in the program.54 We assume

a baseline emissions rate of 49.7 MMT/year for each of the six years that non-industrial

customers are in the program. Based on these assumptions, at the highest price in the

price containment reserve, the low-elasticity estimated abatement is 19.4 MMT and the

high-elasticity scenario is 37.5 MMT. If policy is indeed changed to give free allowances

to utilities with the effect of reducing or eliminating the associated retail price increase,

then this source of abatement elasticity will be approximately zero.

d. Abatement from Out-of-State Electricity Dispatch Changes

To the extent that some high-emitting out-of-state coal plants are not reshuffled or declared

at the default rate, there is possible elasticity from higher allowance prices incenting re-

duced generation from such plants. We considered this, but the most recent ARB policy

suggests that short-term energy trades would fall under a safe harbor and would not be

considered reshuffling. If that is the case, then an operator would be better off carrying out

such trades than actually reducing output from the plant. This suggests that allowance

price increases might incent some changes in reported emissions. In any case, we consider

that as part of the reshuffling and relabeling analysis.

e. Industrial Emissions

For the industries covered under output-based updating, there may still be some emissions

reductions as the allowance price rises. This could happen in two ways. First, once

a baseline ratio of allowances to output is established, these firms have an incentive to

make process improvements that reduce GHG emissions for a given quantity of output.

It is unclear how much of such improvement is likely to occur. At this point we have

no information on this. Our current estimates assume this is zero. ARB’s analysis of

compliance pathways suggests that at a price of up to $18/tonne (25% of the highest price

of the APCR in 2020), the opportunity for industrial process reduction is at most 1-2 MMT

per year.55 Second, because the output-based updating is not 100%, additional emissions

that result from marginal output increases do impose some marginal cost on the firms.

54 Though some estimates of the price elasticity of gas and electricity demand are higher than those we use
here, such estimates generally include substitution from gas to electricity and vice versa, which would have
a much smaller net impact on emissions.

55 See figures F-3 through F-9 of Appendix F, “Compliance Pathways Analysis,” available at http://www.-
arb.ca.gov/regact/2010/capandtrade10/capv3appf.pdf.
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That impact is likely to be small, however, because the effective updating factors average

between 75% and 90% over the program, which implies that the firm faces an effective

allowance price of 10% to 25% of the market price for emissions that are associated with

changes in output. At this point, we have not incorporated estimates of this impact, but

it seems likely to be quite small.

f. Imported Electricity, Reshuffling, and Relabeling

The ARB has attempted to include all emissions from out-of-state generation of electricity

delivered to and consumed in California under the cap and trade program’s GHG ac-

counting framework. ARB projects annual BAU emissions from imported electricity of

53.53 MMT, during the period 2013-2020.56 However, due to the nature of the Western

electricity market, it is generally impossible to identify the spescific generation resource

supplying imported electricity. Electricity importers therefore have an incentive to engage

in a variety of practices that lower the reported GHG content of their imports, a class of

behaviors broadly labeled reshuffling. While reshuffling would not yield aggregate emis-

sions reductions in the Western Interconnection, it could be a major source of measured

emissions reductions under the cap and trade program.

Under one extreme, importers could reshuffle all imports to GHG free resources, resulting in

no demand for allowances to cover imported electricity. ARB has tried to limit reshuffling

by focusing on imports from coal plants partially owned by California utilities. Given the

current information, we project emissions associated with imports from these plants to

to account for 109 MMT during the eight-year period. We treat this as a lower bound

on emissions from imports, assuming that all other imported energy is sourced from zero

carbon generation.

In 2010 there were about 85 net TWh of electricity imported into California. If we assume

imported electricity remains at this level during the 8 years, this implies 680 TWh over

the 8 years of the cap.57 Taking the 109 MMT, associated with roughly 109 TWh of

electricity imports as a baseline, we consider two other possibilities for the remaining 571

TWh. The first is that all the remaining energy is imported at an emissions rate of 0.428

tons/MWh. This is the “default” emissions rate applied to any imports that do not claim a

56 This comes from the ARB’s 2012-2020 California GHG Emissions Forecast. http://www.arb.ca.gov/cc/in-
ventory/data/tables/2020 ghg emissions forecast 2010-10-28.pdf

57 California Energy Commission. http://energyalmanac.ca.gov/electricity/electricity generation.html. The
net total includes roughly 90 TWh of imports and 5 TWh of exports.
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specific source for the power. Another scenario assumes roughly half the remaining energy

is imported at zero emissions, while the other half is imported at 0.428 tonnes/MWh. The

result is an average emissions rate of 0.214 tonnes/MWH for this remaining 571 TWh of

energy.

Under the three scenarios for the residual (non utility-owned coal) energy, we have cumu-

lative emissions of either 109.5, 232, or 354 MMT of GHG associated with power imports

over the 8 years of the cap. Given that the 2013 cap was based upon emissions of 53.53

MMT from imports, we treat 53.53 · 8 = 428.24 as the BAU level from imports. The low,

medium, and high “reductions” in carbon from power imports would therefore be 74, 197,

or 319 MMT.

g. Offsets

The cap and trade program permits a covered entity to meet its compliance obligation with

offset credits for up to eight percent of its annual and triennial compliance obligations. This

means that over the 8-year program up to 218 MMT of allowance obligations could be met

with offsets.

Thus far, ARB has approved four categories of compliance offset projects that can be used

to generate offsets: U.S. Forest and Urban Forest Project Resources Projects; Livestock

Projects; Ozone Depleting Substances Projects; and Urban Forest Projects. Each individ-

ual offset program is subject to a rigorous verification, approval, and monitoring process.

The ARB has approved two offset project registries – American Carbon Registry58 and the

Climate Action Reserve59 – to facilitate the listing, reporting, and verification of specific

offset projects. The Climate Action Reserve reports there are approximately 11.5 million

existing offsets that were generated under a voluntary early action offset program overseen

by the Climate Action Reserve that are eligible for conversion to cap and trade program

compliance offsets.60

Offsets are expected to be a relatively low-cost (though not free) means for a covered entity

to meet a portion of its compliance obligation.61 The number of offsets expected to be

58 See http://americancarbonregistry.org/carbon-accounting/california-compliance-offsets.

59 See http://www.climateactionreserve.org/.

60 Data collected from the “listed projects” tab at http://www.climateactionreserve.org/.

61 http://www.arb.ca.gov/regact/2010/capandtrade10/capv3appf.pdf.
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available in the cap and trade program is subject to a high degree of uncertainty and best

guesses put the estimate substantially below the potential number of offsets that could

be used (i.e., 8% of compliance obligations). One third-party study from September 2012

estimates the number of offsets available under all four protocols between 2013 and 2020

at 66 MMT, only 30% of the 218 MMT of offsets that theoretically could be used to satisfy

compliance obligations.62 ARB, however, is considering adding at least two additional

offset protocols – Rice Cultivation and Coal Mine Methane Capture and Destruction. The

addition of these two protocols is estimated to make an additional 64 MMT of offsets

available (for an estimated total of 130 MMT) between 2013 and 2020.63

For the purposes of our analysis, we consider three scenarios for offsets, one based on the

existing protocols (66 MMT), one that adds in estimates for rice cultivation and coal

mine methane (130 MMT), and one that assumes the full allowed 218 MMT of offsets

are approved and utilized for compliance.64 These offsets enhance the effective supply of

allowances. Most estimates of the price at which offsets would be available put their cost

at below or just above the auction reserve price. For all three scenarios we assume that

the offsets utilized are available below the auction reserve price. In reality, studies suggest

that some may require a price slightly above the auction reserve price, but still likely below

$20/tonne. We group these with the abatement available at or slightly above the auction

reserve price.

h. Aggregating Scenarios for Emissions Abatement

Table 5 summarizes the analyses of emissions abatement. For each abatement source and

scenario, the number shown represents the total abatement that would occur over the life

of the program at an allowance price equal to the highest price of the APCR for each

year.65 For each source, we also highlight what seems to be the most likely abatement

62 http://americancarbonregistry.org/acr-compliance-offset-supply-forecast-for-the-ca-cap-and-trade-
program.

63 http://americancarbonregistry.org/acr-compliance-offset-supply-forecast-for-the-ca-cap-and-trade-
program.

64 The analysis described in this document assumes a single eight-year compliance time horizon. As a result,
the analysis does not address the fact that current rules do not allow a shortfall of offsets in an earlier
compliance periods to be recaptured in later time periods, and thus results in a permanent shortfall in
offsets from the theoretical potential.

65 Table 6 shows figures at an allowance price equal to the auction reserve price, the lowest price of the
APCR, and the highest price of the APCR.
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Table 5: Summary of Emissions Abatement Assumptions

scenario.

From Table 5 we then aggregate the scenarios for emissions. By summing the minimum,

medium, and maximum abatement figures by for each source, we create the minimum,

likely, and maximum estimated abatement. The minimum and maximum aggregates,

however, would require extreme outcomes for each of these sources, which is extremely

unlikely. So, we create low and high scenarios as the average between the medium and

the extreme outcomes. This is obviously somewhat arbitrary, but it allows us to show the

sensitivity of allowance prices to the abatement level that is attained. These scenarios are

shown in Table 6.

It is immediately clear from Table 6 that the greatest uncertainty in abatement supply

to the market is in the use of offsets and the amount of reshuffling that will occur. Un-

fortunately, we currently have no way to narrow this uncertainty, which will be driven by
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Table 6: Summary of Abatement Supply Scenarios

both unknown factors – such as the willingness of utilities out of California to sell cleaner

power and buy coal-generated power – and by endogenous policy decisions – such as the

speed of approval and stringency of new offset protocols and the degree of oversight and

intervention to minimize reshuffling. Instead, we present results for a range of aggregate

abatement figures and discuss scenarios that might result in those levels.

VI. SUPPLY/DEMAND BALANCE UNDER ALTERNATIVE SCENARIOS

In order to compute the probabilities of different price outcomes in California’s GHG mar-

ket, we combine the emissions simulations generated from the VAR models we estimated in

Sections II and III with scenarios for abatement supply, offsets and reshuffling. We consider

four mutually exclusive and exhaustive potential market clearing price ranges: (1) at or

near the auction reserve price, with all abatement supply coming from low-cost abatement

and offset supply, (2) noticeably above the auction reserve price, though without accessing

any of the allowances in the allowance price containment reserve (APCR), with marginal

supply coming from price-elastic sources, (3) above the lowest price at which allowances

would be available from the APCR, but at or below the highest price of the APCR, and

(4) above the highest price of the APCR.

We characterize price range (1) as “at or near” the auction reserve price for two reasons.

First, the mechanism of the auction reserve price implies an uncertain economic price floor.

The auction reserve price was set at $10 per tonne for 2012 and then rising at 5% per year

plus inflation. Setting aside the uncertainty of inflation, if investors’ real cost of capital

differs from 5%, then the effective economic price floor will not be the auction reserve
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price. If, for instance, investors’ real cost of capital were 3% per year for an investment

such as this, then the effective price floor today would be the present discounted value of

the price floor in the last auction in which allowances are sold.66 Thus, in any one year the

effective economic price floor may differ somewhat from the auction reserve price. Second,

we recognize that some offsets may require a price slightly above the auction reserve price.

As of this writing, the ARB is expected to implement new policies to address the possibility

of the price containment reserve being exhausted. We do not address how high the price

might go in case (4), which would be difficult to do even in the absence of this policy

uncertainty, but in any case will be greatly influenced by the ARB’s policy decisions

scheduled to occur in the next year. We simply report the estimated probability of reaching

this case.

Our analysis is in terms of real 2012 dollars, so there is no need to adjust for inflation, but

the price trigger levels for the price containment reserve will, under current policy, increase

at 5% in real terms every year. Thus, while the containment reserve is made available at

prices from $40-$50 in 2013, the range escalates to $56.28-$70.35 in 2020 (in 2013 dollars).

As we show below, the containment reserve prices are only likely to occur if BAU GHGs

grow faster than anticipated over many years, so the most relevant containment reserve

prices are those that will occur in the later years of market operations. Nonetheless, for

the price-responsive abatement, we calculate response (for a given elasticity) as if the price

is at the relevant step of the APCR in each year of the program.

We consider emissions forecasts from the VAR under the three different estimation ap-

proaches described in Section III: first with the VAR-forecasted transportation emissions

intensity and then with two different adjustments that lower the assumed transport emis-

sions intensity to reflect the impact of stricter fuel economy standards and greater biofuels

share of retail fuel. We combine each scenario with the low, medium and high abatement

scenarios that were described at the end of the last section.

We consider the medium availability scenario a good center of the possible outcomes. It

is unlikely that all the low all the high cases for abatement and offset factors would occur,

so we consider low cases and high cases as that for each source takes the average of the

low and medium (for the low scenario) or the high and medium (for the high scenario).

66 For example, if inflation were anticipated to be 2% per year, the nominal auction reserve price in 2020
would be $17.18. If investors anticipated some new sales of allowances in 2020 and their cost of capital
was 3% per year, then the effective economic price floor in 2012 would be $17.18 discounted back to 2012
at 5% per year, or $11.63, rather than $10.
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Figure 9: Allowance Price Probabilities By Scenario

We put these together with the predetermined allowance supply available (not counting

allowances in the price containment reserve) to determine the supply through 2020 at prices

below the lower trigger price for the containment reserve. At prices between the lower and

upper trigger price for the containment reserve, we also added in the available supply

from the containment reserve. We then combine the supply scenarios with the distribution

of demand for greenhouse gas allowances under the three VAR estimation approaches

discussed in Section III to determine the probabilities that the market outcome will fall

in each of the four price ranges discussed above. Figure 9 shows these probabilities using

each of the three demand estimation methods and each of the three supply scenarios.

Focusing on the middle bar of the graph – using the VAR with adjustment to the higher

transport intensity from the EMFAC model and with medium abatement – the bar suggests

that by 2020 there is a 76% probability that the allowance price will be at or near the

auction reserve price, a 7% probability that it will be substantially above the auction

reserve price, but still below the lowest price at which the containment reserve allowances

can be sold, a 12% probability that the price will be within the range of the containment
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reserve, and an 6% probability that the containment reserve will be exhausted.

In contrast, if low, but plausible, abatement outcomes occur, then even with the assumed

moderate improvements in transport emissions intensity of the VAR2 case, we estimate a

15% probability that the APCR will be exhausted and, absent other government interven-

tion, the price would climb to above the levels of the APCR. The probability of triggering

the APCR is 41% in that case. If the state is very successful in reducing transport emissions

intensity, the VAR3 case, then the low abatement scenario still leaves an 11% probability

of exhausting the APCR and a 32% probability of triggering the APCR.

The results make clear the importance of accomplishing high levels of what we have termed

abatement, but the previous section and Table 6 make clear that the greatest variation

in that category will come from offsets and reshuffling. Both of these reduce the need for

abatement by covered entities. Over the range of prices from the auction reserve to the

top of the APCR, price-responsive abatement, while not inconsequential, is likely to play

a smaller role.

The three different VAR scenarios with different transport emission intensity paths also

demonstrate that the effectiveness of the state in lowering transport emissions intensities

will play a major role in determining the ultimate supply/demand balance in the market.

If the state achieves the full range of planned policies in improving transport emissions

intensities (the VAR3 cases in figure 9), then the probability of exhausting the APCR

is below 10% under nearly all scenarios of other abatement methods. But if the state

were to just maintain the existing trend in transport intensities, as estimated in the VAR1

case, then other abatement will need to be successful in order to keep the probability of

exhausting the APCR in a low range.

Finally, the results demonstrate that the relationship between these scenarios of transport

emissions intensities and abatement on the one hand and the allowance market outcome on

the other hand is not at all deterministic. There is quite a bit of variation in the business

as usual emissions, as shown in figure 9, resulting from uncertainty in GSP, fuel prices,

and related factors. Without accounting for this BAU uncertainty, it is not possible to

recognize the range of possible outcomes and how other policies change the probabilities

out those outcomes.

VII. IMPLICATIONS FOR CURRENT POLICY PROPOSALS

In this paper, we have attempted to analyze the impact on the cap and trade market of
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California’s greenhouse gas policies as they are currently written. A number of proposals,

however, are under consideration to modify the policies. In this section, we consider the

potential impact of a few of those proposals.

a. Price Containment Reserve

As described above, the allowance price containment reserve was established to help to

mitigate undue volatility in allowance prices. It is accompanied by an associated floor

price that will be enforced in the allowance auctions. As currently configured the reserve

has a finite number of allowances available. The ARB has considered changes that would

permit allowances from later years (of the 2013 to 2020 program) to be shifted to earlier

years if the price rises to a sufficiently high level. This is a useful response to the concern

that the first compliance period (2013-14) could have a shortage of supply. The Board’s

action, however, doesn’t address the more significant threat, examined here, that there

could be a supply/demand mismatch for the entire 8-year program.

Left unchanged, current regulations suggest that if demand for allowances exceeds supply

at the highest price of the APCR, the allowance price would be allowed to rise to any level

that is necessary to ratchet down allowance demand to meet the capped supply. However,

we believe that it is highly unlikely that the political and regulatory process would allow

the market to continue to operate freely at unduly high allowance prices, such as above the

highest tier of the APCR. Such an intervention in the California GHG market is currently

not well defined in the regulation and would almost certainly be more disruptive when

taken under duress.

Recent developments appear to increase the prospects for a practical implementation of

this option. Board Resolution 13-44 of October 25, 2013, directs the Executive Officer to

develop a plan for a post-2020 Cap-and-Trade Program, including cost containment, before

the beginning of its third compliance period to provide market certainty and address a

potential 2030 emissions target. This resolution provides a starting point for a policy that

enforces a credible maximum price for the pre-2020 period by borrowing allowances from

the post-2020 compliance period.

b. Expanding Renewable Portfolio Standard

Our analysis assumed complete attainment of a 33% Renewable Portfolio Standard by 2020.

Proposals are now being widely discussed in California to raise that standard, possibly to

50% by 2030. If all of the incremental renewables increase occurred after 2020, then our
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analysis of the program only through 2020 would be unchanged. This, however, highlights

the importance of any post-2020 policy that would maintain the value of allowances banked

past 2020 or would allow borrowing from post-2020 allowance supply.

To the extent that a change in the RPS accelerates the supply of energy from renewable

sources in the period up to and including 2020, this would have the effect of widening

the flat portion of the supply curve that is at or near the price floor. Even though such

renewables might not be economic with an allowance price at the floor, if they are mandated

by a complementary environmental policy, then this would still have the effect of increasing

the supply of abatement independent of the price of allowances, that is, even at a price

of zero. Thus, to the extent that expanding the RPS policy increases low-price supply of

abatement, it raises the probability of an equilibrium allowance price at or near the floor

and lowers the probability of high allowance prices.

c. Free Allowances for Emissions from Transportation Fuels and Natural Gas

Some reports and policy discussions at ARB stakeholder meetings suggest that state policy

might be altered to distribute free allowances to cover emissions from some or all burning

of transportation fuels or end-use natural gas consumption. The impact of such policies

would depend in large part on how the allowances are distributed and how, if at all, the free

distribution would affect retail prices. We assume that such free distribution of allowances

would not change the total supply of allowances, but instead would be taken from the

supply in allowance auctions.

Virtually all analyses agree that distributing an exogenously-determined fixed quantity of

allowances for free to refiners (and other fuel distributors) in the unregulated fuels sector

would have no effect on the price of fuels. That is, fuel prices would still fully incorporate

the market price of the associated greenhouse gas emissions. This is simply because a

refiner would face the opportunity cost of using an allowance to sell more fuel, and that

opportunity cost is the price at which the allowance could be resold in the allowance

market. Thus, such a policy would not change incentives for abatement and would not

change the supply/demand analysis above. It would transfer significant wealth from the

state budget accounts that receive auction revenues to the refining companies that would

be given the free allowances.

Some proposals suggest that the free allocations to refiners (and other fuel distributors)

should be based on sales using output-based updating. If the allocation were for 100% of

sales, then the free allocations would exactly match sales and the cap and trade system
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would not impact fuel prices at all. The price would not rise to reflect any of the cost of

emissions and the companies distributing fuels would see no impact on their profits. In

addition, there would be no fuel and greenhouse gas savings from a price-elastic response

to incorporating greenhouse gases. So, the abatement from reduced fuel usage discussed

in section V.a would not occur, reducing the price responsiveness of abatement supply and

increasing the probability of a high-price outcome for allowances.

To the extent that the output-based updating is less than 100%, some share of the allowance

price would be incorporated into the price of fuels. If, for instance, the free allocation

covered 80% of the emissions for which a distributor was responsible, then the effective

cost of selling fuel would include the cost of covering 20% of emissions through purchases

of allowances. This cost would be passed along in the retail price, resulting in 80% less

elasticity than would be the case with no output-based updating (as in section V.a).

Free allowances for emissions have a somewhat different impact in natural gas because

the entity responsible for compliance would be an investor-owned or government-owned

public utility. In that case, the degree to which the free allowances impact retail rates

would depend very much on the policy decision of the regulator or government of how to

use the gains from the free allowances. With either fixed-quantity distribution or output-

based updating, the utility would receive valuable allowances, and in either case they could

redistribute that value to customers by lowering retail prices or through some lump-sum

transfer. Experience suggests lump-sum transfers are fairly rare. Using the free allowances

to suppress retail prices would again reduce the price responsiveness of abatement supply

and increase the probability of allowance prices ending up in the high-price range.

While free allowances that result in suppressed prices for fuels and natural gas are obvi-

ously inconsistent with the basic concept of cap and trade, our analysis suggests that the

expected impact on allowances prices might not be large. If an effective price ceiling is im-

posed at the highest tier of the price containment reserve, then our analysis suggests that

the impact of the allowance price responsiveness of abatement is modest to begin with.

While eliminating much of that elasticity from transportation fuels and natural gas con-

sumption with output-based updating – or other free allowance programs that suppress the

passthrough of allowance costs to retail price – is not helpful in incenting abatement, it’s

impact is likely to be limited. This is because as allowance prices increase from the auction

price floor to highest price step in the APCR, our allowance price elasticity assumptions

imply limited emissions reductions.
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d. Auction Frequency and Emissions Information Disclosure

Our conclusion that the abatement supply curve is likely to be flat over a wide range and

then fairly steeply upward sloping has potentially important implications for the impact

that new information might have on the market. If at some point in the program the supply

demand balance is thought to be close to exhausting the supply of cheap (or required

by complementary policies) abatement and offsets, then small changes in beliefs about

abatement demand or supply could cause very large price movements. Some parties have

suggested that more frequent auctions be held and/or that market or sector level emissions

information be released more often. Both of these changes could potentially reduce large

information shocks to the market and thus help to mitigate the price volatility that could

result from a steep abatement supply curve.

Frequent public auctions would result in timely and transparent allowance prices available

to all market participants at no cost. Current policy is for quarterly auctions. Whether

more frequent auctions would reduce volatility is in part a function of how quickly new

information about the supply/demand balance becomes available. One potential concern

about frequent auctions is liquidity. To increase participation, as well as reduce transaction

costs for market participants, it could be helpful to conduct two-sided auctions in which

participants are permitted to submit sell offers as well as purchase bids.

Even with frequent auctions that result in transparent prices, there is concern that some

confidential information may become available only intermittently and could cause volatil-

ity. Measures of industry activity may allow analysts to predict emissions fairly well from

many sectors. One area, however, where this is less certainty is electricity imports. Emis-

sions from electricity imports will depend on the declared source of the power, and could

vary from zero for renewable sources, to the default emissions rate for unspecified sources,

to more than twice the default rate for power from a coal-fired plant. There seems to be

a real potential for the annual ARB GHG emissions inventory reports to have substantial

impact on prices.

This problem is exacerbated by the timing of such reports, generally planned to cover a

calendar and be released in November of the following year. This means, for instance,

that the first ARB report on emissions during the program period will be in November

2014, covering 2013. No more information will be released before December 31, 2014 when

the first compliance period ends. At that point, all demand elasticity and virtually all

supply elasticity for the first compliance period disappears with the exception of elasticity
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from allowances that were to be banked for future compliance periods. More frequent

information releases would seem to have substantial value, particularly if there were done

with a shorter lag from the time period covered.

There are, of course, very real administrative costs of more frequent auctions and more

frequent and timely information releases. These must be weighed against the potential

benefits. The benefits, however, may be substantial, particularly in light of the steep

abatement supply curve once low-cost offsets, complimentary policies, and other exogenous

emissions reductions are exhausted.

VIII. CONCLUSION

Economists have for decades advocated using market mechanisms to reduce pollution ex-

ternalities. California has now embarked on a plan to reduce greenhouse gas emissions

through such a market mechanism, a cap and trade program. The price that comes out

of that market will have important distributional and political impacts. That possible

distribution of the California allowance price will depend on the demand for the emissions

allowances, resulting from firms and individuals who wish to engage in GHG-emitting

activities, and the supply of both emissions allowances and the ability to reduce emissions.

We have shown that there is significant uncertainty in both the demand and supply in

this market. Furthermore, it seems likely that the great majority of available abatement

supply will occur independently of the allowance price or at prices near the price floor. As

a proportion of the market, our analysis indicates that fairly little additional supply will be

forthcoming at prices substantially above the floor, but still below the price that will trigger

“safety valve” releases of additional allowances from the auction price containment reserve

(APCR). Combined with the uncertainty in the demand for allowances, this suggests that

the market price is unlikely to fall in an intermediate range substantially above the auction

reserve price, but still below the level at which allowances from the price containment

reserve would be made available. A significant driver of this outcome is the fact that

several program design features that enhance the political viability of the program also

steepen the supply curve of abatement at prices between the auction floor and first step

of the APCR.

Our analysis also suggests that there is a small, but not insignificant, chance that the

demand for emissions allowances could exceed the available supply after accounting for

abatement activity and the supply of emissions offsets. This possibility supports the view

expressed by ARB in October 2013 that it is prudent to pursue further policies that would
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prevent the price from skyrocketing if demand for emissions allowances turned out to be

much stronger than expected.

It is important to note that the scenarios under which the price for emissions could climb

very high by 2020 may not produce high prices in 2013. High prices towards the end of

the program would result from unexpectedly strong demand and/or low abatement/offset

supply over the years 2013-2020. Our analysis suggests that such outcomes are plausible,

but are not the most likely outcome. The price of allowances in 2013 reflects the full distri-

bution of potential supply/demand outcomes that could occur over the life of the program.

If demand for allowances turned out to be higher than expected over the subsequent years

(owing most likely to stronger than expected economic growth in the state) or the supply

of abatement/offsets were lower than expected (owing to smaller effects of complementary

policies than anticipated, smaller offset supply than anticipated, or other factors) then we

would expect that the market price would gradually increase over these years to reflect the

increased probability that a shortage of allowances could occur by the end of the program.

The potential for there being a range of outcomes in which the supply of abatement/offsets

is very price inelastic (i.e., a steep supply curve) also raises concerns that small changes

in the demand for allowances might have substantial effects on the allowance price. Such

a situation is at least a warning that there might be the potential for non-competitive

activities by some market participants that could artificially inflate or depress the price.

In ongoing work, we are examining these possibilities in more detail.

These estimates for the California market have broad implications for the design of cap

and trade markets to address climate change. The counterfactual emissions levels from

which reductions will occur are often taken as known quantities. There is, in fact, a great

deal of uncertainty in such BAU emissions forecasts and, thus, uncertainty in the demand

for allowances and abatement. At the same time, many of the policies that are being

instituted in areas where cap and trade programs are in place or anticipated will reduce the

price-responsiveness of abatement. Some such policies require certain emissions-reducing

actions be taken regardless of the allowance price, while others buffer stakeholders from

allowance prices in a way that reduces their incentive to respond when those prices rise.

The combination of uncertain allowance demand and price-inelastic allowance/abatement

supply increases the probability of price volatility and of very high or low equilibrium

prices. After one year of operation, California’s outcome has been consistent with this

analysis, as allowance prices have remained very close to the price floor. Price histories in

the EU-ETS and the Northeastern U.S. RGGI markets also lend support to this conclusion.
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APPENDIX

Parameter Estimates and Unit Root/Cointegration Tests for VAR

This appendix describes the results of the unit root tests for each of the individual elements
of the vector Yt, the results of the cointegrating rank tests for the vector autoregressive
model for Yt, and presents the parameter estimates of the error correction vector autogres-
sive model that is used to perform our simulations.

The following variable definitions are used throughout this appendix.

ln twh p hydro = Natural logarithm of instate electricity production net of hydroelectric
generation (terawatt-hours (TWh))]

ln vmt = Natural logarithm of total vehicle-miles travelled (thousands of miles)

ln ngother industrial = Natural logarithm of emissions from non-electricity-generation
natural gas combustion and other industrial processes (millions of metric tons (MMT) of
GHGs)]

ln real gas price = Natural logarithm of Real Retail Gasoline price ($2011/gallon)

ln real gsp = Natural logarithm of Real Gross State Product ($2011)

ln thermal intensity = Natural logarithm of Emissions Intensity of In-State Thermal
Generation (metric tons/MWh)

ln transport intensity = Natural logarithm of Emissions Intensity of Vehicle Miles Trav-
elled (metric tons/thousand miles)

We perform three versions of the unit root test for each element of Yt and report two test
statistics for each hypothesis test. Let Yit equal the ith element of Yt. The first version of
the unit root test, the zero mean version, assumes Yit follows the model,

Yit = αYit−1 + ηit (ZeroMean)

meaning that Yit is assumed to have a zero mean under both the null and alternative
hypothesis. The hypothesis test for this model is H: α = 1 versus K: α < 1. We report
two test statistics for this null hypothesis

ρ̂ = T (α̂ − 1) and τ̂ =
α̂ − 1

SE(α̂)

where α̂ is the ordinary least squares (OLS) estimate of α and SE(α̂) is OLS standard
error estimate for α̂ from a regression without a constant term and T is the number of
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Table A-1: Unit Root Test Statistics

observations in the regression. The column labeled “Pr < ρ̂” is the probability that a
random variable with the asymptotic distribution of the ρ̂ under the null hypothesis is less
than the value of the statistic in the column labeled “ρ̂”. The column labeled “Pr < τ̂”
is the probability that a random variable with the asymptotic distribution of the τ̂ under
the null hypothesis is less than the value of the statistic in the column labeled “τ̂”.

The second version of the unit root test is the single mean. In this case the assumed model
is:

Yit = µ + αYit−1 + ηit (SingleMean)

where µ 6= 0. The hypothesis test is still H: α = 1 versus K: α < 1. The two test statistics
for this null hypothesis are

ρ̂ = T (α̂ − 1) and τ̂ =
α̂ − 1

SE(α̂)

where α̂ is the ordinary least squares (OLS) estimate of α and SE(α̂) is OLS standard
error estimate for α̂ from a regression that includes a constant term and T is the number
of observations in the regression. The test statistics and probability values are reported in
the same manner as for the zero mean version of the test statistic.

The third version of the test assumes that the mean of Yit contains a time trend so that
the assumed model is:

Yit = µ + νt + αYit−1 + ηit (Trend)
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Table A-2: Cointegration Rank Test Using Trace

where µ 6= 0 and ν 6= 0. The hypothesis test is still H: α = 1 versus K: α < 1. The two
test statistics for this null hypothesis are again

ρ̂ = T (α̂ − 1) and τ̂ =
α̂ − 1

SE(α̂)

where α̂ is the ordinary least squares (OLS) estimate of α and SE(α̂) is OLS standard
error estimate for α̂ from a regression that includes a constant term and a time trend,
and T is the number of observations in the regression. The test statistics and probability
values are reported in the same manner as for the zero mean version of the test statistic.

For all three versions of the unit root test and two test statistics, there is little evidence
against the null hypothesis in all seven elements of the Yt. In all but a few cases, the
probability value is greater than 0.05, which implies no evidence against the null hypothesis
for a size 0.05 test of the null hypothesis. Although there are a few instances of probability
values less than 0.05, this to be expected even if the null hypothesis is true for all of the
series, because the probability of rejecting the null given it is true for a 0.05 size test is
0.05.

Table A-2 presents the results of our cointegrating matrix rank tests. In terms of the
notation of our error correction model

∆Yt = µ + ΛYt−1 + εt (A − 1)

where Λ is (7x7) matrix that satisfies the restriction Λ = −γα′ and γ and α are (7 x r)
matrices of rank r. Hypothesis test is H: Rank(Λ) = r versus K: Rank(Λ) > r, where r
is less than or equal to 7, the dimension of Yt. Each row of the table presents the results
of Johansen’s (1988) likelihood ratio test of the null hypothesis that Rank(Λ) = r against
the alternative that Rank(Λ) > r, for a given value of r. Johansen (1995) recommends a
multi-step procedure starting from the null hypothesis that Rank(Λ) = r = 0 and then
proceeding with increasing values of r until the null hypothesis is not rejected or all null
hypotheses are rejected in order to determine the rank of Λ. Rejecting the null hypothesis
for all values of r would imply that the elements of Yt are not cointegrated.
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The column labelled “LR(r) ” is Johansen’s (1988) likelihood ratio statistic for the cointe-
grating rank hypothesis test for the value of r on that row of the table. The column labelled
“5% Critical Value” is the upper 5th percentile of the asymptotic distribution of the LR
statistic under the null hypothesis. The column labelled “Eigenvalue” contains the second
largest to smallest eigenvalue of the estimated value of Λ. Let 1 > λ̂1 > λ̂2, ... > λ̂K equal
the eigenvalues of the maximum likelihood estimate of Λ ordered from largest to smallest.
The LR(r) statistic for test H: Rank(Λ) = r versus K: Rank(Λ) > r is equal to

LR(r) = −T
K∑

j=r+1

ln(1 − λ̂j)

Following Johansen’s procedure, we find that the null hypothesis is rejected for r = 0 and
r = 1, but we do not reject the null hypothesis at a 0.05 level for r = 2 or for any value
larger than 2. For this reason, we impose the restriction that rank of Λ is equal to 2 in
estimating and simulating from our error correction vector autoregressive model.

Table A-3 presents the results of estimating our error correction vector autoregressive
model in the notation in equation (A-1). The prefix “∆” is equal to (1−L), which means
that the dependent variable in each equation is the first difference of variable that follows.
The variable Λ i j is the (i,j) element of Λ and µ j is the jth element of µ.

Transportation Emissions

The California data were reportedly constructed by the California Department of Trans-
portation (CalTrans) from a mix of in-road traffic monitors (e.g., from the California Per-
formance Measurement System (PeMS)) and traffic counts conducted by CalTrans. Figure
A-1 displays the series of annual California on-road VMT as reported in these surveys.

While these data measure on-road VMT, the cap and trade program caps emissions from
all diesel and gasoline combusted as transportation fuel in California, regardless of whether
the fuel is combusted on-road or off-road. Therefore, this measure of on-road VMT under-
states the total VMT covered under the cap and (when carried through our calculations)
overstates average emissions factors for on-road VMT. Critically, because certain comple-
mentary policies target vehicle emissions factors, an overstated measure of “business-as-
usual” emissions factors could lead us to conclude that complementary policies should be
expected to achieve a larger impact than might realistically be feasible.

To address this potential source of bias we deviate from ARB’s emissions categorization by
excluding GHG emissions from off-road vehicle activities from the transportation sector,
in favor of categorizing them into “Natural Gas and Other”. Therefore, beginning with
total transportation sector combustion emissions, we partition emissions into on-road and

57



Table A-3: Error Correction Vector Autoregression Parameter Estimates

off-road activities using the more granular activity-based emissions values reported in the
combined 1990-2004 and 2000-2011 Emissions Inventories. Table A-4 reports the results of
this partition, revealing the contribution of off-road emissions to be small and somewhat
weakly correlated with total transportation sector emissions, ranging from a low of 2.57%
in 1993 to a high of 4.52% in 2006, around a mean of 3.55%.
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Figure A-1: Annual California On-road VMT 1990-2011

As described above, our approach to forecasting emissions from the transportation sector
is to decompose GHG emissions into its VMT component and an average emissions factor
per mile of travel. Separating emissions into VMT and an average emissions factor allows
us to more accurately capture the underlying drivers of GHG emissions trends and to
better model the effects of complementary policies that may cause these emissions drivers
to deviate from their preexisting trends. Essentially, our data are derived from the basic
identity relating annual GHG emissions to annual VMT and an annual average emissions
factor per mile:

GHGt = V MTt · ĒIt.

To decompose transportation sector GHG emissions into VMT (miles) and an average
emissions factor per mile (grams/mile), we take our adapted series of transportation sector
GHG emissions (described above) as given, and divide annual GHG emissions by our
measure of VMT, the ratio of which is our implied average emissions factor per mile of
travel. Table A-5 reports our adjusted transportation sector emissions, OHI VMT, and the
calculated average annual emissions factors for on-road activity over the period 1990-2011.
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Table A-4: On-road and Off-road Transportation Emissions 1990-2011

Transportation Complimentary Policies

To incorporate the impact of complimentary policies targeting the transportation sector,
we use EMFAC 2011, the ARB’s tool for forecasting fleet composition and activity in the
transportation sector. The advantage of explicitly modeling on-road vehicle fleet compo-
sition and activity is that we can more precisely simulate the impact of complimentary
policies that are designed to directly target specific segments of the vehicle fleet. More-
over, because vehicles are long-lived durable goods, it is advantageous for a model to be
capable of carrying forward the effects of earlier policies as the composition of the vehicle
fleet evolves through time.

EMFAC 2011 is an engineering-based model that can be used to estimate emissions factors
for on-road vehicles operating and projected to be operating in California for calendar years
1990-2035. EMFAC2011 uses historical data on fleet composition, emissions factors, VMT,
and turnover to forecast future motor vehicle emissions inventories in tons/day for a specific
year, month, or season, and as a function of ambient temperature, relative humidity, vehicle
population, mileage accrual, miles of travel and speeds. Emissions are calculated for forty-
two different vehicle classes composed of passenger cars, various types of trucks and buses,
motorcycles, and motor homes. The model outputs pollutant emissions for hydrocarbons,
carbon monoxide, nitrogen oxides, particulate matter, lead, sulfur oxides, and carbon
dioxide. EMFAC 2011 is used to calculate current and future inventories of motor vehicle
emissions at the state, air district, air basin, or county level. Accordingly, the model can
be used to forecast the effects of air pollution policies and programs at the local or state
level.
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Table A-5: On-road Emissions, Emissions Factors, and VMT 1990-2011

For our purposes, EMFAC 2011 generates adjusted estimates of average VMT and annual
GHG emissions for each on-road vehicle-class by model-year. From the EMFAC2011 out-
puts, we calculate annual average emissions factors for on-road VMT by taking the ratio
of the sum of GHG emissions over the sum of VMT across vehicle-classes and model-years
within each calendar year. A known weakness of the EMFAC 2011 model is that it does
not accurately reflect the effects of the Great Recession on new light-duty vehicle sales,
emissions factors or fleet VMT for the years 2009-present. In terms of new vehicle sales,
EMFAC 2011 figures there to have been approximately 30% more new vehicle sales in
California in 2009 than were actually recorded by the California Board of Equalization.
This difference has declined, approximately linearly, over time as sales of new vehicles have
slowly rebounded, and are on track to return to pre-recession levels in 2015. Addition-
ally, EMFAC 2011 has VMT growing steadily through the recession, while in reality VMT
sharply declined in 2009 and has declined modestly ever since.

To account for these differences we adjust new vehicle sales and total (not per-capita) VMT
for model-years 2009-2014. Beginning with a 30% reduction in sales and VMT for model-
year 2009, we reduce the adjustments to sales and VMT in each subsequent model-year
by five percentage points, so that 2014 is the last model-year impacted by our adjustment.
Importantly, as the impact of the Great Recession on the size of each model-year fleet
can reasonably be expected to persist over time, these adjustments are imposed across all
calendar years 2009-2020. That is, because fewer model-year 2009 vehicles were sold in
2009, there will accordingly be fewer model-year 2009 vehicles in the fleet in future years.
While the decline in VMT was almost certainly not purely driven by the decline in new
vehicles sales, the reduction in VMT resulting from the sales adjustment causes EMFAC
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2011’s measure of VMT to closely mimic the actual path of VMT over the same time
period. In the absence of better information about the distribution of changes to VMT
across model-years, we make this simplifying assumption, noting the goodness of fit.

To account for the impact of complementary policies, we calibrate average emissions fac-
tors and emissions intensities of transportation fuel over the period 2012-2020 using our
adjusted EMFAC 2011 model.

To account for CAFE, a policy that proposes to drive the average emissions intensity of
new light-duty cars and trucks from 26.5 in 2011 to 54.5 in 2020, we calculate average
emissions factors by model-year and vehicle class from the adjusted EMFAC2011 forecasts
and force new light-duty vehicles in model-years 2012-2020 to match the fuel-economy
standards established by CAFE. We then calculate annual average emissions factors for
calendar years 2012-2020, by taking the VMT weighted sum over the set of all model-year
by vehicle-class emissions factors.

To account for the LCFS, a policy that proposes to reduce the average carbon content
of all on-road vehicle transportation fuel sold in California by an additional 10% between
now and 2020, we adjust the emissions intensity of gasoline and diesel according to the
incremental share of zero-GHG fuel that must be sold in order to achieve the LCFS. Here
it is worth noting an important difference between the cap and trade program and EMFAC
2011 methods of accounting for GHG emissions from biofuels. While the cap and trade
program does not assign a compliance obligation to emissions from ethanol, EMFAC 2011
includes combustion emissions from fossil and bio-fuels in the measure of GHG emissions.
Therefore, our adjustment of emissions intensity of gasoline and diesel must take into
account not only the incremental contribution of the LCFS, but also the preexisting levels
of biofuels in California transportation fuel.

We model the full implementation of the LCFS as a linear decline in GHG emissions
intensity of on-road gasoline VMT as beginning at 89% in 2012 and falling to 81% in
2020. For diesel, the share of preexisting biofuels is quite small, so we model the decline in
GHG emissions intensity of on-road diesel VMT as beginning at 98% in 2012 and falling
to 90% in 2020. These declines are taken after the implementation of CAFE, so in practice
they are implemented as reductions in the annual average emissions factors calculated
above. In light of recent court challenges, we also consider an alternative implementation
of LCFS where the regulation is not fully implemented. In this scenario GHG emissions
intensity of on-road gasoline VMT is held steady at 89% through 2020 and no penetration
of biodiesel is modeled. Table A-6 reports annual average emissions factors and implied
average MPG under the combinations of full implementation of CAFE with full and partial
implementations of the LCFS. The combined impact of the full implementation of these
policies and the preexisting trend in VMT emissions intensity takes average emissions
factors from 0.49kg/mi in 2012 down to 0.36kg/mi in 2020.

Unlike our VAR, EMFAC 2011 does not provide errors on the emissions intensity of VMT.
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Table A-6: Adjusted EMFAC 2011 Average Emissions Factors and MPG 2012-2020

We believe that taking the point estimates of VMT intensity from EMFAC 2011 could
eliminate an important source of variance in our VAR. To account for the uncertainty in
VMT intensity we incorporate the EMFAC 2011 point estimates for each of the adjusted
EMFAC 2011 cases into the VAR framework. We treat the impact of complimentary
policies as varying with the realization of VMT coming from our VAR. Here, we calculate
the annual emission reduction of the complimentary policies targeting the transportation
sector as the product of the realized random draw of VMT from our VAR and the difference
between mean VTM emission intensity from the VAR and the relevant EMFAC 2011 annual
point estimate of VMT emission intensity.
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