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Abstract.  We show that measures of neural activity provided by functional magnetic resonance 

imaging (fMRI) can be used to test between theories of investor behavior that are difficult to 

distinguish using behavioral data alone. Subjects traded stocks in an experimental market while 

we measured their brain activity. Behaviorally, we find that, our average subject exhibits a strong 

disposition effect in his trading, even though it is suboptimal. We then use the neural data to test a 

specific theory of the disposition effect, the “realization utility” hypothesis, which argues that the 

effect arises because people derive utility directly from the act of realizing gains and losses. 

Consistent with this hypothesis, we find that activity in an area of the brain known to encode the 

value of decisions correlates with the capital gains of potential trades, that the size of these neural 

signals correlates across subjects with the strength of the behavioral disposition effects, and that  

activity in an area of the brain known to encode experienced utility exhibits a sharp upward spike 

in activity at precisely the moment at which a subject issues a command to sell a stock at a gain.  
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Over the past twenty years, economists have accumulated a large amount of evidence on 

how individual investors manage their financial portfolios over time. Some of this evidence is 

puzzling, in the sense that it is hard to reconcile with the simplest models of rational trading 

(Barberis and Thaler (2003); Campbell (2006)).  Theorists have responded to this challenge by 

constructing new models of investor behavior. Empiricists, in turn, have started testing these 

newly-developed models. 

Most of the empirical work that tests theories of investor behavior uses field data (Barber 

and Odean (2000); Barber and Odean (2001); Choi et al. (2009); Grinblatt and Keloharju (2009)). 

A smaller set of studies uses data from laboratory experiments. The advantage of experimental 

data is that it gives researchers a large degree of control over the trading and information 

environment, which can make it easier to tease theories apart (Plott and Sunder (1988); Camerer 

and Weigelt (1991); Camerer and Weigelt (1993); Weber and Camerer (1998); Bossaerts and 

Plott (2004); Bossaerts et al. (2007)). 

In this paper, we show that another kind of data, namely measures of neural activity 

taken using functional magnetic resonance imaging (fMRI) while subjects trade in an 

experimental stock market, can also be very useful in testing theories of investing behavior. In 

particular, we show that neural data can be used to test theories designed to explain the 

“disposition effect,” the robust empirical fact that individual investors have a greater propensity 

to sell stocks trading at a gain relative to purchase price, rather than stocks trading at a loss2. 

The disposition effect has attracted considerable attention because it has proven 

challenging to explain using simple rational models of trading behavior. This impasse has 

motivated the development of multiple competing alternative theories, both rational and 

behavioral (Shefrin and Statman (1985); Odean (1998); Barberis and Xiong (2009); Kaustia 

(2010)). One such theory, which is the focus of this paper, is the realization utility hypothesis 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 See for example, Shefrin and Statman (1985), Odean (1998), Genesove and Mayer (2001), Grinblatt and 
Keloharju (2001), Feng and Seasholes (2005), Frazzini (2006), Jin and Scherbina (2011). 
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(Shefrin and Statman (1985); Barberis and Xiong (2011)). According to this theory, in addition to 

deriving utility from consumption, investors also derive utility directly from realizing gains and 

losses on the sale of risky assets that they own. For example, if an investor realizes a gain (e.g., 

by buying a stock at $20 and selling it at $40), he receives a positive burst of utility proportional 

to the capital gain. In contrast, if he realizes a loss (e.g., by buying a stock at $20 and selling it at 

$10), he receives a negative burst of utility proportional to the size of the realized loss. The 

presence of realization utility is important because, in combination with a sufficiently high time 

discount rate, it leads investors to exhibit a disposition effect (Barberis and Xiong (2011)). 

Testing among competing theories of phenomena like the disposition effect using field or 

experimental data is difficult because these theories often make similar predictions about 

behavior (Weber and Camerer (1998) is an exception). Furthermore, it is extremely difficult, 

using such data alone, to carry out direct tests of the mechanisms driving behavior (e.g., of 

whether or not people actually receive bursts of utility proportional to realized capital gains). On 

the other hand, a combination of neural measurement and careful experimental design allows for 

direct tests of the extent to which the computations made by the brain at the time of decision-

making are consistent with the mechanisms posited by different models. 

In this paper, we describe the results of an fMRI experiment designed to test the 

hypothesis that subjects experience realization utility while trading in an experimental stock 

market, and that this is associated with trading patterns consistent with the disposition effect. The 

experiment allows us to test several behavioral and neural predictions of the realization utility 

hypothesis.3 

Behaviorally, we find that the average subject in our experiment exhibits a strong and 

significant disposition effect. This stands in sharp contrast to the prediction of a simple rational 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 In this paper, we use the word “behavioral” in two different senses. Most of the time, as in the last 
sentence of this paragraph, we take it to mean “pertaining to behavior”. Occasionally, we take it to mean 
“less than fully rational” or “psychological”. It should be clear from the context which of the two meanings 
is intended. 
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trading model in which subjects maximize the expected value of final earnings. In particular, our 

experimental design induces positive short-term autocorrelation in stock price changes, which 

implies that a risk-neutral rational trader would sell losing stocks more often than winning stocks, 

thereby exhibiting the opposite of the disposition effect. In contrast, the strong disposition effect 

displayed by our subjects is consistent with the existence of realization utility effects.  

When taken literally as a model of the decision-making process, the realization utility 

model also makes several clear predictions about the pattern of neural activity that should be 

observed at different times in the experiment. We describe these predictions in detail in the main 

body of the paper, but summarize them briefly here.  

First, the realization utility model predicts that, at the moment when a subject is making a 

decision as to whether to sell a stock, neural activity in areas of the brain that are known to 

encode the value of potential actions should be proportional to the capital gain that would be 

realized by the trade (i.e. to the difference between the sale price and the purchase price). This 

prediction follows from the fact that, for an individual who experiences realization utility, the 

value of selling a stock depends on the associated capital gain or loss.  Brain regions that have 

been widely shown to correlate with the value of potential actions include the ventromedial 

prefrontal cortex (vmPFC) and the ventral striatum (vSt)4. 

Second, the realization utility model predicts that, across individuals, the strength of the 

disposition effect should be correlated with the strength of the realization utility signal in decision 

value areas such as the vmPFC or the vSt. This follows from the fact that a subject who is 

strongly influenced by realization utility should exhibit both a strong disposition effect and neural 

activity in decision value areas that is highly responsive to the associated capital gain. 

Third, the realization utility hypothesis predicts that neural activity in areas that have 

been associated with the encoding of experienced utility (sometimes called “instantaneous 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 See Hsu et al. (2005), Kable and Glimcher (2007), Knutson et al. (2007), Hare et al. (2008), Kennerley et 
al. (2008), Chib et al. (2009), Hare et al. (2009), Hsu et al. (2009), Kang et al. (2009), Hare et al. (2010), 
Levy et al. (2010), Litt et al. (2010), Kang et al. (2011). 
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hedonics”) should increase at the moment that a subject decides to realize a capital gain. Previous 

research in behavioral neuroscience has shown that activity in regions of the vmPFC and the vSt 

also correlates with the reported level of instantaneous experienced utility5. This prediction is 

particularly interesting because it provides the most direct test of the realization utility hypothesis, 

and thus best illustrates the value of neural data for testing theories of financial decision-making.  

Our fMRI measurements reveal patterns of neural activity that are consistent with the 

three neural predictions. This provides novel and strong support for the mechanisms at work in 

the realization utility model, and to our knowledge, provides the first example of how neural 

evidence can be used to test economic models of financial decision-making. We emphasize that 

the results do not imply that realization utility provides a complete description of the forces 

driving investor behavior, even in the context of our experiment. However, the fact that activity in 

the decision-making circuitry corresponds to some of the computations hypothesized by the 

realization utility model provides novel evidence that realization utility plays a significant role in 

the decisions made by our experimental subjects. It further suggests that mechanisms of this kind 

might also be at work in the real-world transactions of individual investors. 

Using neural data to test an economic model is an unusual exercise in the field of 

economics because a common view in the profession is that models make as-if predictions about 

behavior, and are not to be taken as literal descriptions of how decisions are actually made (Gul 

and Pesendorfer (2008); Bernheim (2009)).  In contrast to this view, we adopt a neuroeconomic 

approach which is based on the idea that knowledge about the computational processes that the 

brain uses to make decisions should be of central interest to economists because, since these 

processes describe the actual determinants of observed behavior, they provide valuable insights 

into the drivers of economic behavior (Camerer et al. (2005); Camerer (2007); Fehr and Rangel 

(2011)).  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 See Blood and Zatorre (2001), De Araujo et al. (2003), Kringelbach et al. (2003), Rolls et al. (2003), 
Small et al. (2003), McClure et al. (2004), Plassmann et al. (2008). 



	   6	  

Our study contributes to the nascent field of neurofinance, which seeks to characterize the 

computations undertaken by the brain to make financial decisions, and to understand how these 

computations map to behavior. Several early contributions are worth highlighting.  Lo and Repin 

(2002) investigated the extent to which professional experience affects the emotional arousal of 

traders in stressful situations, where arousal was measured using skin conductance responses and 

changes in blood pressure.  Kuhnen and Knutson (2005) measured neural responses using fMRI 

during a simple investment task and found that activity in brain regions previously associated 

with emotional processing, such as the nucleus accumbens and the insula, predicted subjects’ 

subsequent willingness to take risks.  Knutson et al. (2008)  took these ideas further by showing 

that exogenous emotional cues (e.g., erotic pictures) could be used to affect investment behavior, 

and that these cues increased activity in the same areas that they identified in their previous study. 

More recently, Bruguier et al. (2010) have shown that neural fMRI measurements of the extent to 

which subjects activate brain areas associated with concrete cognitive skills, such as the ability to 

predict others’ state of mind, might be useful in identifying which subjects would be successful 

traders.  

Our paper contributes to this literature by showing, for the first time, that a combination 

of fMRI neural measurements and careful experimental design can be used to test the validity of 

specific economic theories of financial decision making. Our work also contributes more broadly 

to the rapidly growing field of neuroeconomics, which seeks to characterize the computations 

made by the brain in different types of decisions, ranging from simple choices to choices 

involving risk, self-control and complex social interactions. For recent reviews, see Fehr and 

Camerer (2007), Glimcher et al. (2008), Rangel et al. (2008), Bossaerts (2009), Kable and 

Glimcher (2009), Rangel and Hare (2010), and Fehr and Rangel (2011).  

The paper is organized as follows. Section I presents some background information about 

the disposition effect and realization utility. Section II describes the experimental design and the 

predictions of the realization utility hypothesis. Section III provides a detailed description of how 
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the neural predictions can be tested using fMRI. Section IV describes the results. Section V 

briefly concludes. 

 

I. Background: The Disposition Effect and the Realization Utility Model 

  

 Using an argument based on Kahneman and Tversky’s (1979) prospect theory, Shefrin 

and Statman (1985) predict that individual investors will have a greater propensity to sell stocks 

trading at a gain relative to purchase price, rather than stocks trading at a loss. They label this the 

“disposition effect” and provide some evidence for it using records of investor trading. More 

detailed evidence for the effect can be found in Odean (1998), who analyzes the trading activity, 

from 1987 to 1993, of 10,000 households with accounts at a large discount brokerage firm. The 

phenomenon has now been replicated in several other large databases of trading behavior. 

It will be useful to explain Odean’s (1998) methodology in more detail because we will 

adopt a similar methodology in our own analysis. For any day on which an investor in Odean’s 

(1998) sample sells shares of a stock, each stock in his portfolio on that day is placed into one of 

four categories. A stock is counted as a “realized gain” (“realized loss”) if it is sold on that day at 

a price that is higher (lower) than the average price at which the investor purchased the shares. A 

stock is counted as a “paper gain” (“paper loss”) if its price is higher (lower) than its average 

purchase price, but it is not sold on that day. From the total number of realized gains and paper 

gains across all accounts over the entire sample, Odean (1998) computes the Proportion of Gains 

Realized (PGR): 

PGR = # of realized gains
# of realized gains + # of paper gains

 

In words, PGR computes the number of gains that were realized as a fraction of the total number 

of gains that could have been realized. A similar ratio, PLR, is computed for losses: 
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PLR = # of realized losses
# of realized losses + # of paper losses

 

The disposition effect is the empirical fact that PGR is significantly greater than PLR. Odean 

(1998) reports PGR = 0.148 and PLR =  0.098. 

 While the disposition effect is a robust empirical phenomenon, its causes remain unclear. 

This is due, in large part, to the fact that standard rational models of trading have had trouble 

capturing important features of the data. Consider, for example, an information model in which 

investors sell stocks with paper gains because they have private information that these stocks will 

subsequently do poorly, and hold on to stocks with paper losses because they have private 

information that these stocks will rebound. This hypothesis is inconsistent with Odean’s finding 

that the average return of the prior winners sold by investors is 3.4% higher, over the next year, 

than the average return of the prior losers they hold on to. Another natural model involves taking 

into account the favorable treatment of losses by the tax code. However, this model also fails to 

explain the disposition effect because tax-loss selling predicts a greater propensity to sell stocks 

associated with paper losses. Another model attributes the disposition effect to portfolio 

rebalancing of the kind predicted by a standard framework with power utility preferences and 

i.i.d. returns. However, under this hypothesis, rebalancing is the “smart” thing to do, which 

implies that we should observe a stronger disposition effect for more sophisticated investors. In 

contrast to this prediction, it is less sophisticated investors who exhibit a stronger disposition 

effect (Dhar and Zhu (2006)). 

 Early on, researchers proposed behavioral economics models of the disposition effect, 

which can potentially explain the stylized facts that the rational explanations just described 

cannot explain. One popular model assumes that investors have an irrational belief in mean-

reversion (Odean (1998); Weber and Camerer (1998); Kaustia (2010)). If investors believe that 

stocks that have recently done well will subsequently do poorly, and that stocks that have recently 

done poorly will subsequently do well, their optimal trading strategy would lead to a disposition 
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effect. We label such beliefs “irrational” because they are at odds with Odean’s (1998) finding 

that the winner stocks investors sell subsequently do well, not poorly. While the mean-reversion 

hypothesis is appealing for its simplicity, and is consistent with some evidence from psychology 

on how people form beliefs6, some studies cast doubt on its empirical validity.  Weber and 

Camerer (1998) ask subjects to trade stocks in an experimental stock market, and find that they 

exhibit a disposition effect in their trading. In order to test the mean-reversion hypothesis, they 

add a condition in which subjects’ holdings are exogenously liquidated at full value at random 

times, after which subjects are asked to reinvest the proceeds across stocks in any way they like. 

Note that if subjects are holding on to stocks with paper losses because of a belief in mean-

reversion, we would expect them to re-establish their positions in these stocks, but in fact, they do 

not.7 

Another popular behavioral economics model posits that the disposition effect results 

from prospect theoretic preferences (Kahneman and Tversky (1979)). Prospect theory is a 

prominent theory of decision-making under risk which assumes that individuals make decisions 

by computing the utility of potential gains and losses measured relative to a reference point that is 

often assumed to be the status quo, and that utility is concave over gains and convex over losses. 

At first sight, it appears that prospect theory preferences may be helpful for understanding the 

disposition effect. If an investor is holding a stock that has risen in value, he may think of it as 

trading at a gain. Moreover, if the concavity of the value function over gains induces risk 

aversion, this may lead him to sell the stock. Conversely, if the convexity of the value function 

over losses induces risk-seeking, he may be inclined to hold on to a stock that has dropped in 

value. Contrary to this intuition, Barberis and Xiong (2009) have recently shown that it is 

surprisingly difficult to derive behavior consistent with the disposition effect using this model. In 

fact, they show that an investor who derives prospect theory utility from the annual trading profit 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6	  For a review, see Rabin (2002).	  
7 Odean (1998) and Kaustia (2010) provide additional evidence that is inconsistent with the mean-reversion 
hypothesis.	  
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on each stock that he owns will often exhibit the opposite of the disposition effect. Further 

theoretical arguments against this model have been provided by Kaustia (2010), who has shown 

that it predicts that investors’ propensity to sell a stock depends on the magnitude of the 

embedded paper gain in a way that is inconsistent with the empirical evidence. 

 Another behavioral model of the disposition effect is based on the realization utility 

hypothesis (Shefrin and Statman (1985); Barberis and Xiong (2011)). The central assumption of 

this model is that investors derive direct utility from realizing capital gains and losses on risky 

assets that they own: they experience a positive burst of utility when they sell an asset at a gain 

relative to purchase price, where the amount of utility depends on the size of the realized gain; 

and a negative burst when they sell an asset at a loss relative to purchase price, where the amount 

of disutility again depends on the size of the loss realized. Importantly, this hypothesis states that 

trades have a direct utility impact on investors, not just an indirect one through their effect on 

lifetime wealth and consumption.8	   Barberis and Xiong (2011)	  show that linear realization utility, 

combined with a sufficiently high time discount rate, leads to a disposition effect. The intuition is 

simple. If an investor derives pleasure from realizing capital gains and, moreover, is impatient, he 

will be very keen to sell stocks at a gain. Conversely, if he finds it painful to sell stocks at a 

capital loss and also discounts future utility at a high rate, he will delay selling losing stocks for 

as long as possible.9  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8	  Barberis and Xiong (2011) speculate that realization utility might arise because of the way people think 
about their investing history. Under this view, some investors – in particular, less sophisticated investors -- 
do not think about their investing history in terms of overall portfolio return, but rather as a series of 
investing “episodes,” each of which is characterized by three things: the identity of the asset, the purchase 
price, and the sale price. “I bought GE at $40 and sold it at $70” might be one such episode, for example. 
According to this view, an investor who sells a stock at a gain feels a burst of positive utility right then 
because, through the act of selling, he is creating a positive new investing episode. Similarly, if he sells a 
stock at a loss, he experiences a burst of disutility: by selling, he is creating a negative investing episode.  
	  
9	  Time discounting is not a critical part of the realization utility hypothesis. The disposition effect also 
follows from realization utility combined with an S-shaped value function, as in prospect theory (Barberis 
and Xiong, 2009). Adopting this interpretation of the realization utility hypothesis would not significantly 
affect the analysis that follows.	  
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While the realization utility hypothesis makes predictions about behavior that are 

consistent with the disposition effect, as well as with other empirical patterns 10, it is based on 

assumptions that depart significantly from those of traditional models. In particular, its 

predictions rely on the assumption that utility depends not only on consumption, but also on 

capital gains and losses realized from the sale of specific assets. Given the unusual nature of this 

assumption, it seems especially important to carry out direct tests of the extent to which the 

hypothesized source of utility is actually computed by subjects and affects their decisions. In the 

rest of the paper we show how this can be done using a combination of fMRI measures of neural 

activity and careful experimental design.  

    

II. Experimental Design and Predictions 

 

In this section, we first describe the experimental stock market that we set up to test the 

realization utility model. We then lay out the specific behavioral and neural predictions of the 

theory that we test. 

 

A. Design 

The design of the experimental stock market builds directly on an earlier non-neural 

experiment conducted by Weber and Camerer (1998). 

Subjects are given the opportunity to trade three stocks – stock A, stock B, and stock C – 

in an experimental market. The experiment consists of two identical sessions separated by a one-

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10	   Barberis and Xiong (2011) show that realization utility can shed light on many empirical phenomena, 
not just on the disposition effect. Some of the other applications they discuss are the poor trading 
performance of individual investors, the greater volume of trading in bull markets than in bear markets, the 
individual investor preference for volatile stocks, and the low average return of volatile stocks. 
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minute break. Each session lasts approximately 16 minutes and consists of 108 trials. We use t to 

index the trials within a session.11 

 At the beginning of each session, each subject is given $350 in experimental currency 

and is required to buy one share of each stock. The initial share price for each stock is $100; after 

the initial purchase, each subject is therefore left with $50. Every trial t > 9 consists of two parts: 

a price update and a trading decision, each of which corresponds to a separate screen that the 

subject sees (Figure 1). In the price update part, one of the three stocks is chosen at random and 

the subject is shown a price change for this stock. Note that stock prices only evolve during the 

price update screens; as a result, subjects see the entire price path for each stock. In the trading 

part, one of the three stocks is again chosen at random and the subject is asked whether he wants 

to trade the stock. Note that no new information is revealed during this part.  

We split each trial into two parts so as to temporally separate different computations 

associated with decision-making. At the price update screen, subjects are provided with 

information about a change in the price of one of the three stocks, but do not have to compute the 

value of buying or selling the stock, both because they are not allowed to make decisions at this 

stage, and also because they do not know which of the three assets will be selected for trading in 

the next screen. At the trading screen the opposite situation holds: subjects need to compute the 

value of buying or selling a stock, but do not need to update their beliefs about the price process 

since no new information about prices is provided.  

Trials 1 through 9 consist only of a price update stage; i.e., subjects are not given the 

opportunity to buy or sell during these trials. We designed the experiment in this way so that 

subjects can accumulate some information about the three stocks before having to make any 

trading decisions. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11	  We split our experiment into two sessions in order to avoid running the fMRI machine for too long 
without a break, as this could lead to potential medical risks for the subjects.	  	  
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 Each subject is allowed to hold a maximum of one share and a minimum of zero shares 

of each stock at any point in time. In particular, short-selling is not allowed. The trading decision 

is therefore reduced to deciding whether to sell a stock (conditional on holding it), or deciding 

whether to buy it (conditional on not holding it). The price at which a subject can buy or sell a 

stock is given by the current market price of the stock. 

 The price path of each stock is governed by a two-state Markov chain with a good state 

and a bad state. The Markov chain for each stock is independent of the Markov chains for the 

other two stocks. Suppose that, in trial t, there is a price update for stock i. If stock i is in the good 

state at that time, its price increases with probability 0.55 and decreases with probability 0.45. 

Conversely, if it is in the bad state at that time, its price increases with probability 0.45 and 

decreases with probability 0.55. The magnitude of the price change is drawn uniformly from {$5, 

$10, $15}, independently of the direction of the price change. 

 The state of each stock changes over time in the following way. Before trial 1, we 

randomly assign a state to each stock. If the price update in trial t >1 is not about stock i, then the 

state of stock i in trial t remains the same as its state in the previous trial, t-1. If the price update in 

trial t >1 is about stock i, then the state of stock i in this trial remains the same as in trial t-1 with 

probability 0.8, but switches with probability 0.2. In mathematical terms, if is 

the state of stock i in trial t, then  if the time t price update is not about stock i, whereas 

if the time t price update is about stock i, the state switches as follows: 

 

The states of the stocks are never revealed to the subjects: they have to infer them from the 

observed price paths. To ease comparison of trading performance across subjects, the same set of 

realized prices is used for all subjects. 

si,t ! {good, bad}

si,t = si,t!1

! si,t+1=good! si,t+1=bad!
si,t=good! "#$! "#%!
si,t=bad! "#%! "#$!
!
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A key aspect of our design is that, conditional on the information available to subjects, 

each of the stocks exhibits positive short-term autocorrelation in its price changes. If a stock 

performed well on the last price update, it was probably in a good state for that price update. 

Since it is highly likely (probability 0.8) to remain in the same state for its next price update, its 

next price change is likely to also be positive. 

 At the end of each session, we liquidate subjects’ holdings of the three stocks and record 

the cash value of their position. We give subjects a financial incentive to maximize the final value 

of their portfolio at the end of each session. Specifically, if the total value of a subject’s cash and 

risky asset holdings at the end of session 1 is $X, in experimental currency, and the total value of 

his cash and risky asset holdings at the end of session 2 is $Y, again in experimental currency, 

then his take-home pay in actual dollars is 15 + (X+Y)/24.12 Subjects’ earnings ranged from 

$43.05 to $57.33 with a mean of $52.57 and a standard deviation of $3.35. 

 In order to avoid liquidity constraints, we allow subjects to carry a negative cash balance 

in order to purchase a stock if they do not have sufficient cash to do so at the time of a decision. If 

a subject ends the experiment with a negative cash balance, this amount is subtracted from the 

terminal value of his portfolio. The large cash endowment, together with the constraint that 

subjects can hold at most one unit of each stock at any moment, was sufficient to guarantee that 

no one ended the experiment with a negative portfolio value, or was unable to buy a stock 

because of a shortage of cash during the experiment. 

N=28 Caltech subjects participated in the experiment (22 male, age range 18 – 60).13 All 

subjects were right-handed and had no history of psychiatric illness, and none were taking 

medications that interfere with fMRI. The exact instructions given to subjects at the beginning of 

the experiment are included in the Appendix. The instructions carefully describe the stochastic 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12 In other words, we average X and Y to get (X+Y)/2, convert the experimental currency to actual dollars 
using a 12:1 exchange rate, and add a $15 show-up fee. 
13 One additional subject participated in the experiment but was excluded from further analyses because his 
head motion during the scanning exceeded a pre-specified threshold, thereby interfering with the reliability 
of the neural measurements.	  
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structure of the price process, as well as all other details of the experiment. Before entering the 

scanner, the subjects underwent a practice session of 25 trials to ensure familiarity with the 

market software. 

Finally, note that, in our experiment, there is a straightforward way to measure the extent 

to which a subject exhibits a disposition effect in his trading. We simply adapt Odean’s (1998) 

methodology, described in Section I, in the following way. Every time a subject faces a decision 

about selling a stock, we classify his eventual action as a paper gain (loss) if the stock’s current 

price is above (below) the purchase price and he chooses not to sell; and as a realized gain (loss) 

if the stock’s current price is above (below) the purchase price and he chooses to sell. We then 

count up the number of paper gains, paper losses, realized gains, and realized losses over all 

selling decisions faced by the subject and compute the PGR and PLR measures described earlier. 

We assign the subject a disposition effect measure of PGR-PLR. When this measure is positive 

(negative), the subject exhibits (the opposite of) a disposition effect. 

 

B. Optimal trading strategy 

 We now characterize the optimal trading strategy for a risk-neutral Bayesian investor 

who is maximizing the expected value of his take-home earnings – from now on, we refer to such 

an investor as an “expected value” investor.  The optimal strategy of such an investor is to sell (or 

not buy) a stock when he believes that it is more likely to be in the bad state than in the good 

state; and to buy (or hold) the stock when he believes that it is more likely to be in the good state.  

Formally, let  be the price of stock i in trial t, after any price update about the stock, and let 

 be the probability that a Bayesian investor, after seeing the 

price update in trial t, would assign to stock i being in the good state in trial t. Also, let zt take the 

value 1 if the price update in trial t indicates a price increase for the stock in question; and -1 if 

pi,t

qi,t = Pr(si,t = good | pi,t, pi,t!1,..., pi,1)
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the price update indicates a price decrease. Then  if the price update in trial t was not 

about stock i; but if the price update in trial t was about stock i, then: 

(1) 

 

 

 

The optimal strategy for an expected value investor is to sell (if holding) or not buy (if not 

holding) stock i in trial t when ; and to hold or buy it otherwise. 

 Note that a trader who follows the optimal strategy described above will exhibit the 

opposite of the disposition effect. If a stock performed well on the last price update, it was 

probably in a good state for that price update. Since it is very likely to remain in the same state 

for its next price update, its next price change is likely to also be positive. The optimal strategy 

therefore involves selling winner stocks relatively rarely, and losing stocks more often, thereby 

generating the reverse of the disposition effect. 

 Of course, it is difficult for subjects to do the exact calculation in equation (1) in real time 

during the experiment. However, it is relatively straightforward for subjects to approximate the 

optimal strategy: they need simply keep track of each stock’s most recent price changes, and then 

hold on to stocks that have recently performed well while selling stocks that have recently 

performed poorly. The fact that a stock’s purchase price is reported on the trading screen makes it 

particularly easy to follow an approximate strategy of this kind: subjects can simply use the 

difference between the current market price and the purchase price as a proxy for the stock’s 

recent performance.14 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
14 Our rational benchmark assumes risk-neutrality because the monetary risk in our experiment is small. We 
have also considered the case of risk aversion, however, and have concluded that its predictions do not 
differ significantly from those of risk neutrality. In some frameworks, risk aversion can generate a 
disposition effect through rebalancing motives. This is not the case in our experiment, however, because 
the volatility of stock price changes is independent of the level of the stock price. Furthermore, any 

qi,t = qi,t!1

qi,t < 0.5

qi,t (qi,t!1, zt ) =
Pr(zt | si,t = good)*Pr(si,t = good | qi,t!1)

qi,t!1 Pr(zt | si,t!1 = good)+ (1! qi,t!1)Pr(zt | si,t!1 = bad)

=
(0.5+ 0.05zt )*[0.8*qi,t!1 + 0.2*(1! qi,t!1)]

qi,t!1[0.8*(0.5+ 0.05zt )+ 0.2*(0.5! 0.05zt )]+ (1! qi,t!1)[0.2*(0.5+ 0.05zt )+ 0.8*(0.5! 0.05zt )]
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C. Behavioral and neural predictions of the realization utility model 

 We now lay out the behavioral and neural predictions of the realization utility model, and 

contrast them with the predictions made by the expected value agent model. 

 Consider the behavioral predictions first. Since the experimental stock prices exhibit 

short-term momentum, an expected value investor will exhibit the opposite of the disposition 

effect: for the actual price process that our subjects see, the value of the PGR-PLR measure of the 

disposition effect under the optimal trading strategy for an expected value investor is -0.76. In 

other words, such an investor will have a much greater propensity to realize losses than to realize 

gains. By contrast, a trader who experiences bursts of realization utility and who discounts future 

utility at a high rate will sell winner stocks more often than the expected value trader and loser 

stocks less often. After all, he is keen to realize capital gains as soon as possible and to postpone 

realizing capital losses as long as possible. This leads to our first prediction. 

 

Prediction 1 (Behavioral): For an expected value investor, the value of the PGR-PLR measure is 

given by -0.76. On the other hand, for a subject who experiences bursts of realization utility, the 

value of PGR-PLR is greater than -0.76. 

 

 We now turn to the neural predictions made by the two models. As noted earlier, a 

maintained assumption here is that the theories are not only making predictions about behavior, 

but are also describing the key computations that subjects have to undertake in order to make 

decisions.  

 The first two neural predictions build on a basic finding from the field of decision 

neuroscience. A sizable number of studies have found evidence consistent with the idea that in 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
rebalancing motives would be of second-order importance relative to time variation in the mean stock 
return. 
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simple choice situations the brain makes decisions by assigning values (often called “decision 

values”) to the options under consideration, and then comparing them to make a choice15.  These 

value signals are thought to reflect the relative value of taking the action or option under 

consideration (e.g., sell a stock) versus staying with the status quo (e.g., don’t sell it) (De Martino 

et al. (2006); Hutcherson et al. (2011)). A significant body of work, using various neural 

measurement techniques, has shown that activity in regions of the ventromedial prefrontal cortex 

(vmPFC), and often also the ventral striatum (vSt), correlates with the decision values of options 

across a range of choices. For example, a recent study shows that, when subjects have to make 

purchasing decisions for goods such as monetary lotteries, foods, or DVDs, activity in the vmPFC 

correlates with behavioral measures of their willingness to pay (their “decision value”) taken 

prior to the choice task (Chib et al. (2009)). See Rangel and Hare (2010) for an up-to-date review 

of the evidence. 

 Now consider the decision value signals that would be computed at the time of making a 

selling decision by an individual who makes choices according to the expected value model. In 

the context of our experiment, the decision value of selling a stock is given by the value of selling 

the stock minus the value of holding it. For the expected value investor, the value of selling the 

stock is zero: if he sells it, he will no longer own any shares of it, and so it can no longer generate 

any value for him. In contrast, the value of holding the stock can be approximated by the stock’s 

expected price change on its next price update: 

Et[!pi,t+1 | qi,t,  !pi,t+1 " 0]= 0.6(2qi,t #1).  

        

It follows that the decision value signal at the time of making a selling decision is given by 

0-0.6(2qi,t-1), or 0.6(1-2qi,t); we will refer to this quantity throughout the paper as the net expected 

value of selling, or NEV.  Note that this is only an approximation because the exact value of 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
15	  See, for example, Hsu et al. (2005), Padoa-Schioppa and Assad (2006), Kable and Glimcher (2007), 
Knutson et al. (2007), Tom et al. (2007), Hare et al. (2008), Kennerley et al. (2008), Chib et al. (2009), 
Hare et al. (2009), Hsu et al. (2009), Hare et al. (2010), Levy et al. (2010), Litt et al. (2010), Rangel and 
Hare (2010).	  
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holding a stock is the stock’s expected cumulative price change until the subject decides to sell it. 

However, this approximation has little effect on our later results because the value of holding a 

stock until its next price change is highly correlated with the value of holding the stock until it is 

actually optimal to sell it (the latter quantity can be computed by simulation). 

 Now consider the decision value signal that would be computed at the time of making a 

selling decision by an individual who makes choices according to the realization utility model. In 

particular, consider a simple form of the model in which subjects maximize the sum of expected 

discounted realized capital gains and losses. For such a trader, the value of selling is linearly 

proportional to the capital gain or loss, given by , where c is the purchase price, or cost 

basis. However, the expected impact of holding the stock on realization utility is approximately 

zero, as long as the discount rate is sufficiently high. Thus, for such an investor, the decision 

value of selling should be linearly related to .16   This, together with the fact that decision 

value signals have been found to be reliably encoded in the vmPFC and the vSt, leads to the next 

prediction.  

 

Prediction 2 (Neural): For expected value traders, activity in the regions of the vmPFC and the 

vSt associated with the computation of decision values should be linearly proportional to the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
16	  We say that the value of holding a stock is “approximately” zero for a realization utility investor 
because, in principle, there is some value to holding, namely expected future realization utility flows. 
However, under the realization utility hypothesis, the trader is essentially myopic – he discounts future 
utility flows at a high rate. To a first approximation, then, the value of holding is zero. It may initially seem 
surprising that a subject would discount future utility at a high rate in the context of a 30-minute 
experiment. However, the literature on hyperbolic discounting suggests that discounting can be steep even 
over short intervals, perhaps because people distinguish sharply between rewards available right now, and 
rewards available at all future times. Furthermore, what may be important in our experiment is not so much 
calendar time, as transaction time. A subject who can trade stock B now may view the opportunity to trade 
it in the future as a very distant event -- one that is potentially dozens of screens away – and hence one that 
he discounts heavily. Finally, we note that discounting is not a critical part of our hypothesis. The 
disposition effect also follows from a model that combines realization utility with an S-shaped utility 
function, as in prospect theory. To a first approximation, this model would produce the same decision value 
as the discounting-based model. The reason is that, under an S-shaped utility function, the utility of selling 
a stock at a gain (loss) immediately is significantly higher (lower) than the expected utility of holding on to 
it. 

pi,t ! c

pi,t ! c
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NEV, 0.6(1-2qi,t), at the time of making selling decisions, and thus independent of the cost basis. 

In contrast, for subjects who experience realization utility proportional to realized capital gains 

and losses, activity in these areas of the vmPFC and the vSt should be linearly related to the 

realizable gain or loss, . 

 

The previous arguments predict that traders who place a large weight on realization utility when 

making decisions should exhibit neural activity in the vmPFC and the vSt that is more strongly 

correlated with the realizable capital gains or losses.  At the same time, subjects with a larger 

weight on realization utility when making decisions should exhibit a stronger disposition effect. It 

follows that the degree to which vmPFC and vSt activity correlates with the realizable capital 

gain should be correlated, across subjects, with the strength of the disposition effect in their 

trading.   

 

Prediction 3 (Neural): The degree to which vmPFC and vSt activity correlates with the realizable 

capital gain should be correlated, across subjects, with the strength of the disposition effect in 

their trading.  

 

The final neural prediction is qualitatively different, in that it seeks to test directly if the 

subject experiences a burst of realization utility at the time of selling a stock that is proportional 

to the realized capital gain. As before, we can test this prediction using fMRI by building on 

previous work in neuroscience which has shown that activity in regions of the vSt and the vmPFC 

correlates reliably with reports of subjective pleasure generated by a wide variety of stimuli – 

including music, paintings, attractive faces, food, and wine.17   It follows that, if realizing a 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
17 See, for example, Blood and Zatorre (2001), De Araujo et al. (2003), Kringelbach et al. (2003), Rolls et 
al. (2003), Small et al. (2003), McClure et al. (2004), Plassmann et al. (2008) 

pi,t ! c
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capital gain generates a positive burst of experienced utility for the investor, it should increase 

neural activity in these areas precisely at the moment that the decision is made. 

 

Prediction 4 (Neural): Under the realization utility hypothesis, neural activity in areas known to 

encode instantaneous experienced utility, such as the vSt or the vmPFC, should increase at the 

precise moment that individuals decide to realize a capital gain, and decrease at the moment they 

decide to realize a capital loss.  

 

III. fMRI data collection and analysis  

 

In this section, we provide a primer on how fMRI measures of neural activity are 

collected and analyzed. For more details, see Huettel et al. (2004), Ashby (2011), and Poldrack et 

al. (2011). 

 

A. fMRI data collection and measurement 

We collected measures of neural activity over the entire brain using BOLD-fMRI, which 

stands for blood-oxygenated level dependent functional magnetic resonance imaging. BOLD-

fMRI measures changes in local magnetic fields that result from local inflows of oxygenated 

hemoglobin and outflows of de-oxygenated hemoglobin that occur when neurons fire. fMRI 

provides measures of the BOLD response of relatively small “neighborhoods” of brain tissue 

known as voxels, and is thought to measure the sum of the total amount of neural firing into that 

voxel as well as the amount of neuronal firing within the voxel. 18 

One important complication is that the hemoglobin responses measured by BOLD-fMRI 

are slower than the associated neuronal responses. Specifically, although the bulk of the neuronal 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
18 Note that the neural activity measured by fMRI in a 1-mm3 cube (about the size of a grain of salt) 
represents the joint activity of between 5,000 to 40,000 neurons, depending on the area of the brain. 
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response takes place quickly, subsequent BOLD measurements are affected for up to 24 seconds.  

Figure 2A provides a more detailed illustration of the nature of the BOLD response. In particular, 

it shows the path of the BOLD signal in response to 1 arbitrary unit of neural activity of 

infinitesimal duration at time zero. The function plotted here is called the canonical hemodynamic 

response function (HRF). It is denoted by h(τ), where τ is the amount of elapsed time since the 

neural activity impulse, and has been shown to approximate well the pattern of BOLD responses 

for most subjects, brain areas, and tasks. 

Fortunately, the BOLD response has been shown to combine linearly across multiple 

sources of neural activity (Boynton et al. (1996)).  This property, along with a specific functional 

form of the HRF, allows us to construct a mapping from neural activity to BOLD response so that 

we can control for BOLD responses that are generated by neural activity over the previous 24 

seconds.  In particular, if the level of neural activity at any particular time is given by a(t), then 

the level of BOLD activity at any instant t is well approximated by  

 

   ! ! = ℎ ! ! ! − ! !"!
! , 

 

which is the convolution between the HRF and the neural inputs. The integral can be interpreted 

in a straightforward way:  it is simply a lagged sum of all the BOLD responses triggered by 

previous neural activity. This is illustrated in Fig. 2B, which depicts a hypothetical path of neural 

activity, together with the associated BOLD response. 

 We acquire two types of MRI data during the experiment in a 3.0 Siemens Tesla Trio 

MRI scanner with an eight-channel phased array coil. First, we acquire BOLD-fMRI data while 

the subjects perform the experimental task with a voxel size of 3 mm3.  We acquire data for the 
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entire brain (~ 100,000 voxels) every 2.75 seconds.19 We also acquire high-resolution anatomical 

scans that we use mainly for realigning the brains across subjects and for localizing the brain 

activity identified by our analyses.20 

 

B. fMRI data pre-processing 

 

Before the BOLD data can be analyzed to test our hypotheses, it has to be converted into 

a usable format. This requires the following steps, which are fairly standard – see Huettel et al. 

(2004), Ashby (2011), & Poldrack et al. (2011)  – and were implemented using a specialized but 

commonly used software package called SPM5 (Wellcome Department of Imaging Neuroscience, 

Institute of Neurology, London, UK). 

First, images are corrected for slice acquisition time within each voxel. This is necessary 

because the scanner does not collect data on all brain voxels simultaneously. This simple step, 

which involves a non-linear interpolation, temporally realigns the data across all voxels.  

Second, we correct for head motion to ensure that the time series of BOLD measurements 

recorded at a specific spatial location within the scanner was always associated with the same 

brain location throughout the experiment.21   

 Third, we realign the BOLD responses for each individual into a common 

neuroanatomical frame (the standard Montreal Neurological Institute EPI template). This step, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
19 More precisely, we acquired gradient echo T2*-weighted echoplanar (EPI) images with BOLD contrast. 
To optimize functional sensitivity in the orbitofrontal cortex (OFC), a key region of interest, we acquired 
the images in an oblique orientation of 30° to the anterior commissure–posterior commissure line 
(Deichmann et al. (2003)).  Each volume of images had 45 axial slices.  A total of 692 volumes were 
collected over two sessions. The imaging parameters were as follows: echo time, 30 ms; field of view, 192 
mm; in-plane resolution and slice thickness, 3mm; repetition time, 2.75 s. 
20 More precisely, we acquired high-resolution T1-weighted structural scans (1 x 1 x 1 mm) for each 
subject, which were coregistered with their mean EPI images and averaged across subjects to permit 
anatomical localization of the functional activations at the group level. 
 
21 BOLD measurements were corrected for head motion by aligning them to the first full brain scan  and 
normalizing to the Montreal Neurological Institute’s EPI template.  This entails estimating a six-parameter 
model of the head motion (3 parameters for center movement, and 3 parameters for rotation) for each 
volume, and then removing the motion using these parameters.  For details, see Friston et al. (1996).	  
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called spatial normalization, is necessary because brains come in different shapes and sizes and, 

as a result, a given spatial location maps to different brain regions in different subjects. Spatial 

normalization involves a non-linear re-shaping of the brain to maximize the match with a target 

template.  Although the transformed data are not perfectly aligned across subjects due to 

remaining neuroanatomical heterogeneity, the process suffices for the purposes of this study. 

Furthermore, any imperfections in the re-alignment process introduce noise that reduces our 

ability to detect neural activity of interest. 

 Fourth, we also spatially smooth the BOLD data for each subject by making BOLD 

responses for each voxel a weighted sum of the responses in neighboring voxels, with the weights 

decreasing with distance.22 This step is necessary to make sure that the error structure of the data 

conforms to the normality assumptions about the error structure of the regression models, 

described below, that we use to test our hypotheses. 

 Finally, we remove low-frequency signals that are unlikely to be associated with neuronal 

responses to individual trials.23   

	  
	  
C. fMRI main data analyses 

 

The key goal of our exercise is to identify regions of the brain, given by collections of 

spatially contiguous voxels, called clusters, where the BOLD response reflects neural activity that 

implements the computations of interest (e.g., realization utility computations). This is 

complicated by the fact that, since every voxel contains thousands of neurons, the BOLD 

responses can be driven by multiple signals. Fortunately, the linear properties of the BOLD signal 

allow for the identification of the neural signals of interest using standard linear regression 

methods. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
22 Smoothing was performed using an 8 mm full-width half-maximum Gaussian kernel. 
23 Specifically, we applied a high-pass temporal filter to the BOLD data with a cut-off of 128 seconds.	  
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 The general procedure is straightforward, and will be familiar to most economists. The 

analysis begins by specifying two types of variables that might affect the BOLD response: target 

computations and additional controls. The target computations reflect the signals that we are 

looking for (e.g., a realization utility signal at the time of selling a stock). They are specified by a 

time series si(t) describing each signal of interest. For each of these signals, let Si(t) denote the 

time series that results from convolving the signal si(t) with the HRF, as described above. The 

additional controls, denoted by cj(t), are other variables that might affect the BOLD time series 

(e.g., residual head movement or time trends). These are introduced to further clean up the noise 

inherent in the BOLD signal, but are not explicitly used in any of our tests. The control variables 

are not convolved with the HRF because they reflect parameters that affect the measured BOLD 

responses, and not neural activity that triggers a hemodynamic response.24 

 The linearity of the BOLD signal implies that the level of BOLD activity in any voxel v 

should be given by 

!! ! = constant + !!!!!(!)! + !!!!! ! + !(!)! , 

 

where !(!) denotes AR(1) noise. This model is estimated independently in each of the brain’s 

voxels using standard regression methods.  

 Our hypotheses can then be restated as tests about the coefficients of this regression 

model: signal i is said to be associated with activity in voxel v only if !!! is significantly different 

from zero. 

 Two additional considerations apply to most fMRI studies, including the present one.  

First, we are interested in testing hypotheses about the distribution of the signal coefficients in the 

population, and not about individual coefficients. This requires estimating a random effects 

version of the linear model specified above which, given the size of a typical fMRI dataset, is 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
24 For example, linear trends are often included because the scanner heats up with continuous operation and 
this induces a linear change in the measured BOLD responses. 
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computationally intensive. Fortunately, it has been shown that there is a straightforward shortcut 

that provides a good approximation to the full mixed effects analysis (Penny et al. (2006)).  It 

involves estimating the parameters separately for each individual subject, averaging them across 

subjects, and then performing t-tests. This is the approach we follow here. 

 Second, given that these tests are carried out in each of the ~100,000 voxels in the brain, 

there is a serious concern about false-positives, and multiple comparison corrections are 

necessary. Several approaches have been proposed in the fMRI literature to address this problem, 

many of which rely on the idea that purely random activations are unlikely to come in sizable 

clusters.25 Here, we follow a common approach in the literature, which consists of combining a 

sizable statistical threshold for the test in each voxel, given by p<0.001 uncorrected, together with 

a minimal cluster size of 15 voxels.  These two criteria, taken together, severely reduce the 

likelihood of false positives. 

 The analyses described so far involve searching for neural correlates of signals of interest 

across the entire brain and are therefore known as whole brain analyses. Another popular and 

very useful type of exercise, which we use here, is a “region of interest” (ROI) analysis.   Put 

simply, this analysis differs from a whole-brain analysis because it first restricts the set of voxels 

that is being analyzed. The most common types of ROI analyses involve 1) the measurement of 

signal strength in a pre-specified ROI (in other words, in a pre-specified subset of voxels), 2) 

computing the correlation across subjects between measures of signal strength in a particular ROI 

and behavioral or psychological measures, and 3) characterizing the time course of BOLD 

responses in an ROI for a particular event (e.g, selling a stock.)  

 The measurement of signal strength in pre-specified ROIs is a straightforward extension 

of the whole brain analysis. In this case, a general linear model is estimated only for the voxels in 

the ROI, and then a response estimate for the signal of interest is computed for every subject by 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
25 As noted earlier, a cluster is a set of spatially contiguous voxels. 
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averaging over the estimated coefficients over all of the voxels in the ROI. The distribution of 

average estimates for the group can then be compared across signals of interest using t-tests.  

 The characterization of the time course of BOLD responses in specific ROIs and around 

particular events is a little more complicated, but is needed in order to conduct a test of Prediction 

4. It requires the specification of a version of the GLM described above that uses a series of 

“event-locked” dummy variables. The nature of this model is most easily explained with a 

concrete example. Suppose that we are interested in characterizing the time course of changes in 

BOLD activity that follows the rapid presentation of two types of images to subjects, type A and 

B. We then define a series of dummy variables 

 

! !|!, ! = 1 if  stimulus  x  was  presented  at  ! − !
0 otherwise

 

 

for x=A,B, n=1,…., T. The general model is then specified as 

 

!! ! = constant + !!,!!(!|!, !)!,! + ! ! . 

 

The estimate of the change in the BOLD response n seconds after the presentation of stimulus x is 

then given by !!,!. 

 

IV. Results 

 

A. Behavioral predictions 

 We begin our test of Prediction 1 by computing the strength of the disposition effect for 

each subject using the PGR-PLR measure described at the end of Section IIA. We find that the 

average PGR and PLR across subjects are .412 and .187, respectively. This implies an average 
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PGR-PLR value of 0.225, which is significantly greater than 0 (p<0.001). In other words, not 

only is the average value of PGR-PLR significantly greater than the expected value benchmark of 

-0.76, but it is actually significantly positive. These results reject the hypothesis that our subjects 

are all expected value investors and are consistent with the idea that some of our subjects are 

affected by realization utility. 

 Figure 3 tests the prediction at the individual level. Each bar shows the value of PGR-

PLR for a particular subject. The horizontal dashed line near the bottom of the figure marks the -

0.76 value of PGR-PLR that an expected value investor would exhibit. The figure shows that 

every subject exhibits a disposition effect greater than -0.76. The hypothesis that the average 

disposition effect is not different from -0.76 is rejected with a t-statistic of 16.52. 

The figure also shows that there is significant heterogeneity in the strength of the 

disposition effect across subjects: the value of PGR-PLR ranges from -0.41 to 0.83 and has a 

standard deviation of 0.32. This cross-individual variation is consistent with Dhar and Zhu (2006) 

who, using data on actual trading decisions, also find significant variation in the strength of the 

disposition effect across investors. Interestingly, we find that, while each of PGR and PLR varies 

a good deal across subjects, the two variables have a correlation of only 0.03: subjects who are 

slow to sell losing stocks are not necessarily also quick to sell winning stocks26. This 

independence between selling behavior in the gain domain and in the loss domain is also 

consistent with the empirical findings of Dhar and Zhu (2006). 

 Figure 4 provides additional insight into subjects’ selling behavior by showing, for each 

of the four types of decisions that a subject could make – decisions to realize a gain, decisions to 

realize a loss, decisions not to realize a gain, and decisions not to realize a loss -- the fraction of 

the decisions that are optimal, where “optimal” is defined by the expected value benchmark. For 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
26	  The low correlation between PGR and PLR is not inconsistent with realization utility; it simply suggests 
that realization utility is not the only factor driving subjects' trading. For example, if our subjects care to 
varying extents about realization utility but also differ in how much they enjoy trading in general, they may 
exhibit a near-zero correlation between PGR and PLR: the negative correlation between the two variables 
induced by realization utility will be offset by the positive correlation induced by the taste for trading. 
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example, the figure shows that there were a total of 495 occasions in which our subjects realized 

gains, and that most of these decisions were suboptimal. Given that stocks exhibit short-term 

price momentum in the experiment, it is generally better to hold on to a stock that has been 

performing well. This explains why most (77.9%) of subjects’ decisions to hold on to winning 

stocks were optimal, and why most (67.5%) of subjects’ decisions to sell winning stocks were 

suboptimal. Similarly, in the experiment, it is generally better to sell a stock that has been 

performing poorly. This explains why most (79.2%) of subjects’ decisions to sell losing stocks 

were optimal, while most (80.3%) of their decisions to hold these stocks were suboptimal. 

The disposition effect exhibited by our subjects is stronger than that found in empirical 

studies (Odean (1998); Frazzini (2006)). One possible reason for this is that the current price and 

the cost basis of a stock are both prominently displayed on the trading screen.27 If, because of 

realization utility, a subject has a preference for realizing gains and for not realizing losses, the 

fact that we report the purchase price might make it particularly easy for him to cater to this 

preference, and hence to exhibit a disposition effect.28  

In summary, the behavioral results indicate that all of our subjects exhibit a strong 

disposition effect, which is inconsistent with the expected value model, but is consistent with the 

realization utility model.  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
27	  One natural question about our experiment is how much of the realization utility effect that we have 
found depends on the fact that we display the original purchase price on the trading screen in a highly 
salient way. It is important to emphasize that it is unlikely that the presence of a realization utility effect 
depends critically on this aspect of the design.  In follow-up work we have carried out behavioral 
experiments to investigate the impact of the saliency with which the stock purchase price information is 
displayed (Frydman and Rangel (2011)). We find that eliminating the purchase price from the trading 
screen diminishes the size of the disposition effect, but that it is still well above the optimal level that an 
expected value investor would exhibit. This suggests that reporting the purchase price on the trading screen 
is not a critical aspect of our current design.  Moreover, given that most investors in naturally occurring 
financial markets have at least a rough sense of the price at which they purchased a stock, displaying the 
cost basis on the trading screen is likely a better approximation of reality.   
	  
28	  At the same time, because our experimental design induces a negative correlation between the capital 
gain and the NEV of selling (r= - 0.55), the fact that we report the purchase price also makes it easy for an 
expected value subject to trade in a way that is close to his optimal strategy, namely to hold a stock when it 
has a capital gain and to sell it when it has a capital loss. If a subject is an expected value investor, then, we 
do not think that presenting the purchase price on the trading screen should bias him towards exhibiting a 
disposition effect. 	  
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B. Neural Prediction 2 

We now turn to Prediction 2, which states that, for individuals who experience realization 

utility at the time of selling assets, activity in areas of the brain associated with the computation 

of decision values, such as the vmPFC and the vSt, should be correlated with the capital gain 

variable (pt - ct). By contrast, it states that, for expected value subjects, activity in these areas 

should correlate with the NEV variable, but not with the capital gain.  

 We test this hypothesis in two stages. First, we estimate the following general linear 

model (GLM) of BOLD activity for each individual:  

 

!! ! = constant +   !!!!!"# ! !! − !! + !!!!!"# ! !"#! + !!!controls + ε(t). 

 

Here, bv (t) denotes BOLD signal at time t in voxel v. Idec,t is an indicator function that equals one 

at the time when the subject is presented with the opportunity to sell a stock at time t. NEVt 

denotes the net expected value from selling the stock being considered at time t, namely 0.6(1-

2qi,t), and (pt - ct) is the realizable capital gain.  Finally, the controls vector includes regressors 

that control for physical movement inside the scanner, session-specific effects, and any changes 

in neural activity that might be due to information processing during the price update screens, 

which is not an activation of interest for the hypothesis being tested. As described in Section III, 

the regressors involving computations of interest (here, the non-constant regressors NEV and p-c) 

are convolved with the HRF29. Finally, inferences about the extent to which the signals of interest 

are encoded in a given voxel are made by carrying out a one-sided t-test of the individually 

estimated coefficients (i.e., !!!   and !!!) against zero.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
29	  The amount of the price change during the price update screen, which represents our control for 
information processing, is convolved with the HRF because this will generate a BOLD response.  Controls 
for physical movement inside the scanner and session-specific effects are not convolved because they do 
not elicit a BOLD response. 	  
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 Although we can carry out these tests in all of the brain’s voxels, here we limit our search 

to voxels that belong to pre-specified anatomical areas of the vmPFC and the vSt. These areas 

were identified using the AAL digital atlas of the human brain (Tzourio-Mazoyer et al. (2002)). 

Note that these restrictions make our significance threshold of p<.001 uncorrected, together with 

a minimum cluster size of 15 voxels, even less likely to generate false positives than in the 

standard whole brain analyses to which it is typically applied. 

 The results from these tests are consistent with the implications of realization utility 

noted in Prediction 2: we find a cluster of 67 voxels in the vmPFC where !!! > 0.  However, no 

voxels within the vSt exhibit a correlation with the capital gain at our statistical threshold.   The 

location of the vmPFC voxels is depicted in Figure 5. In contrast, there are no clusters that 

significantly relate to the NEV variable at our statistical threshold. In short, the neural data is 

consistent with subjects computing the decision value predicted by realization utility, rather than 

the decision value predicted by the expected value agent model. 

 Because of the high correlation between the NEV variable and the capital gain variable 

(r= -0.55), we run a robustness check to make sure that the above results are not driven by 

spurious collinearity issues. This is done by introducing a single change to the GLM: the capital 

gain variable is orthogonalized (prior to convolution) to the NEV variable, using a standard 

Gram-Schmidt algorithm (Strang (1988)).  Note that this provides an even more stringent test of 

the realization utility hypothesis because any shared variance between the two variables is now 

allocated to the NEV. As before, we find a cluster of 67 voxels in vmPFC that satisfies the 

significance criterion described above.  

We also carry out an ROI analysis designed to test the properties of the vmPFC 

realization utility signals further. The relevant ROI (i.e., the relevant subset of voxels within the 

vmPFC) is defined by estimating the simpler GLM, 

!! ! = constant +   !!!!!"# ! !! − !! + !!!controls + ε(t), 
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and identifying clusters in the vmPFC that are significantly responsive to the capital gain 

regressor. For the rest of the paper we refer to the resulting ROI, which contains 154 voxels, as 

the vmPFCROI. Note that we define this ROI using this additional regression to side-step the 

estimation noise introduced by the high correlation between the capital gain and the NEV 

regressors. 

 We then carry out the ROI analysis by estimating the following GLM for each voxel in 

the newly defined ROI: 

 

!! ! = constant +   !!!!!"#(!)!! + !!!!!"# ! !! + !!!controls + ε(t). 

 

This model is interesting because it allows us to compare the strength of the average beta value in 

the ROI separately for the price and cost basis components of the capital gain. Within vmPFCROI, 

β1=0.025 (p<0.001) and β2=-0.023 (p<0.01) and the absolute values of the two coefficients are not 

significantly different (p=0.79). These results demonstrate that the correlation with capital gains 

that we found above is affected by both the price and cost basis components of the capital gain.  

 Finally, we carry out a similar ROI analysis to test if the strength of the capital gain 

signal in vmPFCROI is of similar magnitude in capital gain and capital loss trials. The associated 

GLM is: 

 

!! ! =

constant +   !!!!!"# !   !!"#.!"#$  (!! − !!) + !!!!!"# !   !!"#.!"##  (!! − !!) + !!!controls + ε(t), 

 

where Icap.gain and Icap.loss are indicator variables for trials involving capital gains and capital losses, 

respectively.  The average values of !!   and  !!  are not significantly different (p=0.69). 
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C. Neural Prediction 3 

 We now test Prediction 3. Specifically, we check whether, as predicted by the realization 

utility hypothesis, subjects whose neural activity in the vmPFC at the time of a sell decision is 

particularly sensitive to the realizable capital gain exhibit a stronger disposition effect. 

 For every subject, we compute the maximum beta value within the vmPFCROI for the 

capital gain and capital loss regressors30. Consistent with Prediction 3, we find that the correlation 

between !! and PGR is 0.78 (p<0.001), indicating that subjects who exhibit stronger vmPFC 

activation in response to a capital gain do have a greater propensity to realize gains.  Figure 6, 

which is a scatterplot of PGR against !! , illustrates this graphically.  

 In contrast, we do not find a significant correlation between β2 and PLR (p=0.18).  One 

potential post-hoc explanation is that there may be different physiological systems involved in 

making decisions that involve capital gains and capital losses.  Consistent with this hypothesis, 

the cross-subject correlation between the vmPFC (maximum) sensitivities to capital gains and 

losses, β1 and β2, is only -0.01.   

 

D. Neural Prediction 4 

 We now test Prediction 4, which constitutes the most direct test of the realization utility 

hypothesis, and the one that, in our view, showcases the value of the neural data most clearly. The 

realization utility hypothesis posits that people experience a positive (negative) hedonic impact 

when they sell a stock at a gain (loss). Since earlier research in neuroscience suggests that activity 

in the areas of the vSt and the vmPFC correlate with such measures of experienced utility, or 

hedonics, we can test the hypothesis by looking at changes in the activity in these two areas at the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
30 We use a maximum statistic instead of the average statistic because vmPFCROI is relatively large (154 
voxels) and because of the heterogeneity in anatomical and functional structure of vmPFC across subjects.  
Since we are using this beta value to test for a correlation (instead of testing for a particular value of the 
mean), using the max statistic will not bias our results. 
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moment that a subject decides to sell a stock, and compare it to changes in the activity in these 

areas at the moment that a subject issues a command to hold a stock.   

 More concretely, we test the hypothesis by carrying out the following ROI analysis in 

specific sub-areas of the vSt and vmPFC that have been shown, in previous studies, to correlate 

with experienced utility.  In particular, we define vmPFCEU-ROI as the set of voxels that are within 

5mm of the voxel whose activity exhibited the highest correlation with experienced utility during 

consumption of wine in Plassman et al. (2008).  Similarly, we define vStEU-ROI as the set of voxels 

that are within 6mm of the two voxels (bilateral) that exhibited the highest correlation with 

stimulus salience in Zink et al. (2003).  Note that the EU subscript in vmPFCEU-ROI emphasizes 

that this is a different ROI from the one described above in the analysis of decision values, as it 

involves a different area of the vmPFC, one that has been previously shown to correlate with 

hedonics. 

 The ROI analysis involves estimating the time course of responses in these two ROIs 

during sell trials involving a capital gain, as a function of whether or not the subject chooses to 

sell. Figure 7A depicts the results of the analysis for the vStEU-ROI. The red line indicates changes 

in the vSt BOLD response for trials in which subjects choose to sell; the blue line shows activity 

in trials in which subjects choose not to sell. Note that t=0 corresponds to the time at which 

subjects indicate their decision by pressing a button on a hand-held button box-- it is not the time 

at which the trading screen becomes visible. Interestingly, the figure shows there is no significant 

difference between the two time series until a decision is made. Afterwards, and consistent with 

the realization utility hypothesis, activity in the vSt is significantly larger for the next six seconds. 

The average capital gain for stocks that are held is not significantly different from the average 

capital gain for stocks that are sold ($15.77 vs. $18.35). The effect in Figure 7A is therefore not 

due to the fact that the stocks subjects sell have larger capital gains than the stocks they hold 

(p=0.09). 
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 Contrary to our expectations, we did not find a similar result in the vmPFCEU-ROI  (Figure 

7B).  One possible explanation is that there might be more heterogeneity across subjects in the 

anatomical and functional structure of the vmPFC, than in the organization of the vSt, which 

would perhaps mean that the region identified as vmPFCEU-ROI  does not really reflect the areas 

where experienced utility is computed in our sample. We emphasize, however, that this is pure 

speculation. 

 

 

E. Tests of the mean-reversion theory of the disposition effect 

As discussed in Section I, one prominent alternative behavioral theory of the disposition 

effect is that investors believe that stock prices mean-revert (Odean (1998); Weber and Camerer 

(1998); Kaustia (2010)). In our setting, such a belief would be irrational: stock prices in our 

experiment exhibit short-term positive autocorrelation.  Nonetheless, if our subjects, for some 

reason, think that the stock prices in our experiment are mean-reverting, this could potentially 

explain why they tend to sell stocks that have recently gone up while holding stocks that have 

recently gone down.   

 To investigate whether a belief in mean-reversion could be driving our subjects’ 

behavior, we estimate the following mixed effects logistic model to test whether recent price 

changes can significantly predict subjects’ decisions to sell or hold a stock:  

 

selli,t,s = (! + ai )+"1NEVt,s +"2 (pt,s ! ct,s )+"3"
1pt,s +"4"

2pt,s +#t       (6) 

 

where selli,t,s =1 if subject i sold stock s at time t and 0 if he held it, ai  denotes a subject-level 

fixed effect, and  denotes the mth most recent price change for stock s (these price changes 

may not have occurred in consecutive trials because price updates in the experiment take place at 

!mpt.s
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random times).  We find that the capital gain is a significant predictor of the propensity to sell, (t-

stat=10.04), but that none of the other variables are.  In particular, neither β3 nor β4 is 

significantly different from zero (p=.164 and p=0.160, respectively). In other words, contrary to 

the mean-reversion hypothesis, recent price changes do not significantly predict the decision to 

sell.   

 The neural data can also be used to test some aspects of the mean-reversion hypothesis. 

In particular, we test if neural activity in either the vmPFC or the vSt is correlated with recent 

price changes.  This is done by estimating the following GLM: 

 

!! ! = constant +    !!"# ! [!!! !! − !! + !!!∆!!!,! + !!!∆!!!,!] + !!!controls + ε(t) 

 

Under the mean reversion hypothesis, the decision value of selling should be positively correlated 

with recent price changes because a recent price increase indicates a lower expected future return, 

leading to a higher decision value of selling. Neural activity in the vmPFC and vSt should 

therefore correlate positively with past price changes. Contrary to this hypothesis, we do not find 

any activity in the vmPFC that is significantly associated with these regressors.  

In summary, then, both the behavioral and the neural analyses cast doubt on the mean-

reversion hypothesis.      

 

V. Final Remarks 

 In this paper, we show that neural data obtained through fMRI techniques can be useful 

in testing theories of investor behavior. Specifically, we use neural data gathered from subjects 

trading stocks in an experimental market to test a “realization utility” theory of investor trading. 

While this theory can potentially explain the disposition effect as well as several other financial 

phenomena, it relies on an unusual assumption: that people derive utility directly from realizing 
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gains. We identify the neural predictions of realization utility and find broad support for them in 

our data. Perhaps most striking of all, we find that, at the moment a subject issues a command to 

sell a stock at a gain, there is a sharp rise in activity in the ventral striatum, an area of the brain 

that, based on recent research in cognitive neuroscience, is known to encode feelings of 

subjective pleasure. 

We emphasize that the methods we present in this paper are hardly a substitute for 

traditional empirical methods in finance.  On the contrary, brain imaging techniques are simply  

complementary tools that can be used to test assumptions about investor behavior that are 

difficult to evaluate using field data or experimental data alone. In particular, we see neural data 

as a valuable resource when studying the more psychological dimensions of individual investor 

behavior, precisely because these may derive from variables that are only observable at the neural 

level.  
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Figure	  1.	  	  Sample	  screens	  from	  a	  typical	  trial	  in	  the	  fMRI	  experiment.	  	  Subjects	  saw	  the	  
price	  update	  screen	  for	  two	  seconds,	  followed	  by	  the	  trading	  screen	  for	  which	  they	  had	  up	  
to	  three	  seconds	  to	  enter	  a	  decision	  (a	  blank	  screen	  was	  displayed	  in	  between	  in	  order	  to	  
temporally	  separate	  neural	  activity	  associated	  with	  decision-‐making.)	  The	  screens	  shown	  
below	  are	  for	  a	  trial	  in	  which	  the	  subject	  owns	  a	  unit	  of	  both	  stocks	  A	  and	  B.	  	  The	  screens	  
were	  displayed	  while	  subjects	  were	  inside	  the	  fMRI	  scanner,	  and	  decisions	  were	  entered	  
with	  a	  handheld	  device.	  
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Figure	  2.	  	  BOLD	  measurements	  of	  neural	  activity.	  	  (A)	  Canonical	  hemodynamic	  response	  
function	  that	  approximates	  the	  BOLD	  response	  that	  follows	  one	  arbitrary	  unit	  of	  
instantaneous	  neural	  activity	  at	  time	  0.	  (B)	  Example	  of	  a	  path	  of	  neural	  activity	  together	  
with	  the	  associated	  BOLD	  response.	   	  
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Figure	  3.	  	  Measures	  	  of	  the	  disposition	  effect	  (PGR-‐PLR)	  for	  each	  subject.	  	  Standard	  
error	  bars	  are	  computed	  as	  in	  Odean	  (1998)	  and	  the	  dotted	  line	  indicates	  the	  optimal	  level	  
of	  the	  disposition	  effect,	  namely	  -‐0.76.	  All	  subjects	  exhibit	  a	  disposition	  effect	  greater	  than	  
the	  optimal	  level	  and	  a	  majority	  of	  subjects	  have	  a	  disposition	  effect	  that	  is	  significantly	  
positive.	  	  The	  figure	  indicates	  that	  there	  is	  significant	  heterogeneity	  in	  the	  size	  of	  the	  
disposition	  effect	  across	  subjects	  (SD:	  0.32).	  	  
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Figure	  4.	  	  Total	  number	  of	  sell	  decisions	  by	  decision	  type	  and	  optimality.	  	  Realized	  
gains	  and	  losses	  refer	  to	  decisions	  where	  subjects	  sold	  a	  stock	  trading	  at	  a	  gain	  (loss.)	  	  
Paper	  gains	  (losses)	  refer	  to	  decisions	  where	  subjects	  decided	  to	  hold	  a	  stock	  trading	  at	  a	  
gain	  (loss).	  	  The	  optimality	  measures	  show	  an	  important	  aspect	  of	  our	  design:	  selling	  
winners	  and	  holding	  losers,	  which	  leads	  to	  a	  disposition	  effect,	  are	  typically	  suboptimal	  
decisions.	  	  Decisions	  are	  pooled	  across	  all	  subjects.	  
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Figure	  5.	  	  vmPFC	  activity	  reflects	  realization	  utility.	  Voxels	  that	  are	  shown	  in	  yellow	  all	  
have	  a	  p-‐value	  less	  than	  0.001,	  and	  only	  clusters	  of	  at	  least	  15	  significant	  voxels	  are	  shown.	  	  
Color	  bar	  denotes	  t-‐statistics.	  
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Figure	  6.	  Correlation	  between	  brain	  activity	  and	  measures	  of	  the	  disposition	  effect.	  
Each	  data	  point	  in	  the	  figure	  represents	  a	  single	  subject.	  	  We	  find	  that	  activity	  in	  the	  vmPFC	  
at	  the	  time	  subjects	  are	  offered	  the	  opportunity	  to	  sell	  a	  capital	  gain	  is	  highly	  correlated	  
with	  their	  propensity	  to	  realize	  gains.	  	  We	  do	  not	  find	  a	  similar	  correlation	  between	  vmPFC	  
activity	  and	  the	  propensity	  to	  realize	  losses.	  
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Figure	  7.	  Direct	  tests	  of	  the	  realization	  utility	  hypothesis.	  Average	  activity	  in	  the	  vSt	  
(Panel	  A)	  and	  vmPFC	  (Panel	  B)	  during	  trials	  when	  subjects	  were	  offered	  the	  opportunity	  to	  
sell	  capital	  gains.	  The	  blue	  time	  series	  plots	  the	  average	  activity	  in	  trials	  where	  subjects	  
realized	  capital	  gains,	  while	  the	  red	  time	  series	  plots	  the	  average	  activity	  in	  trials	  where	  
subjects	  decided	  to	  hold	  capital	  gains.	  ***	  denotes	  p<0.001,	  **	  denotes	  p<0.01,	  *	  denotes	  
p<0.05	  (paired	  t-‐test).	  	  	  t=0	  corresponds	  to	  the	  instant	  at	  which	  the	  subject	  enters	  his	  
trading	  decision	  on	  a	  hand-‐held	  device.	  	  	  
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Appendix:	  Experimental	  Instructions	  
	  
Buying	  your	  stock	  
	  
In	  this	  experiment	  you	  will	  be	  given	  350	  experimental	  dollars	  to	  invest	  in	  three	  
different	  stocks.	  	  Your	  job	  is	  to	  choose	  when	  to	  buy	  and	  sell	  each	  stock,	  so	  that	  you	  
earn	  the	  most	  money	  by	  the	  end	  of	  the	  experiment.	  	  Throughout	  the	  experiment,	  
you	  will	  see	  the	  price	  of	  each	  stock	  changing	  (more	  detail	  below),	  and	  you	  will	  use	  
this	  information	  to	  decide	  when	  to	  buy	  and	  sell.	  	  When	  you	  sell	  a	  stock,	  you	  receive	  
an	  amount	  of	  cash	  equal	  to	  the	  price	  of	  the	  stock.	  	  When	  you	  buy	  a	  stock,	  you	  receive	  
one	  unit	  of	  the	  stock,	  but	  you	  must	  give	  up	  an	  amount	  of	  cash	  equal	  to	  the	  current	  
price	  of	  the	  stock.	  
	  
The	  three	  stocks	  you	  can	  buy	  or	  sell	  are	  simply	  called	  Stock	  A,	  Stock	  B,	  and	  Stock	  C.	  	  
To	  begin	  the	  experiment	  you	  MUST	  buy	  all	  three	  stocks,	  where	  each	  stock	  costs	  
$100.	  	  Therefore,	  after	  you	  buy	  the	  three	  stocks,	  you	  will	  own	  one	  unit	  of	  each	  stock	  
and	  have	  a	  total	  of	  $50	  remaining.	  	  For	  the	  remainder	  of	  the	  experiment,	  you	  are	  
only	  allowed	  to	  hold	  a	  maximum	  of	  1	  unit	  of	  each	  stock,	  and	  you	  cannot	  hold	  
negative	  units	  (no	  short	  selling.)	  	  However,	  you	  can	  carry	  a	  negative	  cash	  balance	  by	  
buying	  a	  stock	  for	  more	  money	  than	  you	  have,	  but	  any	  negative	  cash	  balances	  will	  
be	  deducted	  from	  your	  final	  earnings.	  	  	  	  	  	  
	  
	  
Structure	  of	  the	  market	  
	  
In	  the	  experiment,	  you	  will	  see	  two	  types	  of	  screens,	  a	  price	  update	  screen	  and	  an	  
action	  screen.	  	  In	  the	  price	  update	  screen,	  one	  stock	  will	  be	  randomly	  selected	  and	  
you	  will	  be	  told	  if	  the	  selected	  stock	  price	  has	  gone	  up	  or	  down,	  and	  by	  how	  much.	  	  
Note	  that	  you	  will	  only	  see	  an	  update	  for	  one	  stock	  at	  a	  time.	  	  You	  will	  not	  be	  asked	  
to	  do	  anything	  during	  this	  screen,	  you	  will	  simply	  see	  information	  about	  the	  change	  
in	  price.	  
	  
Following	  the	  price	  update	  screen,	  another	  stock	  will	  be	  randomly	  chosen	  (it	  may	  be	  
the	  same	  one	  you	  just	  saw)	  and	  you	  will	  be	  asked	  to	  take	  an	  action.	  	  If	  you	  currently	  
hold	  a	  unit	  of	  the	  stock,	  you	  will	  be	  asked	  if	  you	  would	  like	  to	  sell	  the	  stock	  at	  the	  
current	  price.	  	  If	  you	  do	  not	  currently	  own	  a	  unit	  of	  the	  stock,	  you	  will	  be	  asked	  if	  
you	  would	  like	  to	  buy	  a	  unit	  at	  the	  current	  price.	  	  	  
	  
The	  experiment	  will	  start	  out	  with	  9	  consecutive	  price	  update	  screens,	  and	  then	  you	  
will	  have	  the	  opportunity	  to	  buy	  or	  sell	  after	  each	  subsequent	  price	  update	  screen.	  	  
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How	  the	  stock	  prices	  change	  
	  
Each	  stock	  changes	  price	  according	  to	  the	  exact	  same	  rule.	  	  Each	  stock	  is	  either	  in	  a	  
good	  state	  or	  in	  a	  bad	  state.	  	  In	  the	  good	  state,	  the	  stock	  goes	  up	  with	  55%	  chance,	  
and	  it	  goes	  down	  with	  45%	  chance.	  	  In	  the	  bad	  state,	  the	  stock	  goes	  down	  with	  55%	  
chance	  and	  it	  goes	  up	  with	  45%	  chance.	  	  	  
	  
Once	  it	  is	  determined	  whether	  the	  price	  will	  go	  up	  or	  down,	  the	  size	  of	  the	  change	  is	  
always	  random,	  and	  will	  either	  be	  $5,	  $10,	  or	  $15.	  	  For	  example,	  in	  the	  bad	  state,	  the	  
stock	  will	  go	  down	  with	  55%	  chance,	  and	  the	  amount	  it	  goes	  down	  by	  is	  $5,	  $10,	  or	  
$15	  with	  equal	  chance.	  	  Similarly,	  the	  good	  stock	  will	  go	  up	  with	  55%	  chance,	  and	  
the	  amount	  it	  goes	  up	  by	  will	  either	  be	  $5,	  $10,	  or	  $15.	  	  	  
	  
The	  stocks	  will	  all	  randomly	  start	  in	  either	  the	  good	  state	  or	  bad	  state,	  and	  after	  
each	  price	  update,	  there	  is	  a	  20%	  chance	  the	  stock	  switches	  state.	  	  	  	  	  	  
	  
Stock	  price	  changes	  
	   Good	  state	   Bad	  state	  
+	  	   55%	   45%	  
-‐	  	  	   45%	   55%	  
	  
	  
State	  changes	  
	   Good	  state	  today	   Bad	  state	  today	  
Good	  state	  tomorrow	   80%	   20%	  
Bad	  state	  tomorrow	   20%	   80%	  
	  
	  
	  
Earnings	  and	  payout	  
	  
You	  will	  play	  this	  market	  game	  TWO	  SEPARATE	  TIMES	  in	  the	  scanner.	  	  Each	  game	  
will	  last	  approximately	  15	  minutes,	  and	  each	  game	  is	  independent	  from	  the	  previous	  
one.	  	  This	  means	  when	  you	  start	  the	  second	  game,	  you	  will	  have	  to	  buy	  the	  three	  
stocks	  at	  $100	  again,	  and	  the	  stocks	  will	  start	  randomly	  in	  each	  state	  again.	  	  	  
	  
Your	  earnings	  at	  the	  end	  of	  the	  experiment	  will	  be	  equal	  to	  the	  amount	  of	  cash	  you	  
accrued	  over	  the	  two	  scanning	  sessions	  from	  buying	  and	  selling	  stocks,	  plus	  the	  
current	  price	  of	  any	  stocks	  that	  you	  own.	  	  	  
	  
Earnings=cash	  +	  	  	  price	  A*(Hold	  A)	  	  	  	  +	  	  	  	  Price	  	  B*(Hold	  B)	  	  	  	  +	  	  	  	  Price	  C*(Hold	  C)	  
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Finally,	  your	  earnings	  will	  be	  converted	  using	  an	  exchange	  rate	  of	  12:1.	  	  That	  means	  
we	  divide	  your	  earnings	  by	  12,	  and	  pay	  you	  this	  amount	  plus	  the	  $15	  show	  up	  fee.	  	  	  
	  
Button	  presses	  
	  
During	  the	  Action	  screens,	  you	  will	  either	  be	  given	  the	  option	  to	  “Buy?”	  or	  “Sell?”	  
depending	  on	  whether	  you	  hold	  the	  stock	  or	  not.	  	  The	  LEFT	  (blue)	  button	  indicates	  
“YES”.	  	  And	  the	  RIGHT	  (yellow)	  button	  indicates	  “NO.”	  	  You	  have	  three	  seconds	  to	  
enter	  your	  response,	  otherwise	  the	  computer	  will	  randomly	  select	  a	  response	  for	  
you.	  	  
	  


