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Abstract

We use textual analysis of patent documents to create new indicators of patent

quality. Our metric assigns higher quality to patents that are distinct from the existing

stock of knowledge (are novel) and are related to subsequent patents (have impact).

These estimates of novelty and similarity are constructed using a new methodology

that builds on recent advances in textual analysis. Our measure of patent quality is

predictive of future citations and correlates strongly with measures of market value.

Our quality measure is unique in that it is available for the entirety of patent documents,

spanning approximately two centuries of innovation (1836–2016) and covers innovation

by private and public firms, as well as non-profit organizations and the US government.
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Economists broadly agree that advances in technology play a major role in economic

growth over the long run. Over the last two centuries, real GDP per capita in the United

States has increased substantially more than the growth of inputs to production, such as

the number of hours worked or the amount of capital used; hence much of economic growth

is attributed to improvements in productivity. Similarly, there are large and persistent

differences in productivity across firms or establishments. Understanding the link between

technological progress and these measures of productivity has been at the centre of the

economic agenda that tries to explain these differences. Measuring technological innovation

using patents has been an important step in this direction.1 However, a major obstacle in

inferring technologicial progress from patent statistics is that patents vary greatly in their

technical and economic significance. While measures such as citations a patent garners and

market value of a patent have been used to address this obstacle, capturing these metrics for

patents going back in time has been infeasible (see Kogan, Papanikolaou, Seru, and Stoffman

(2016) for a discussion).2

In this paper, we propose a new measure of patent quality that is based on textual analysis

of the patent documents and is available over almost two centuries. An impactful patent,

according to our measure, is one that is similar to future patents but is different from prior

patents. Our measure thus aims to capture distinct improvements in the current level of

technology that become the new foundation upon which subsequent inventions are built.

We construct similarity between patents using state of the art techniques from textual

analysis. This requires no other input besides the text of the patent document. Our measure

correlates with existing quality indicators, including patent citations and estimates of economic

value. Unlike existing quality indicators, our quality measure is available for the entirety of

patent documents, spanning approximately two centuries of innovation (1836–2016).

A key challenge in analyzing the textual similarity between documents is separating

differences in writing style (language) from differences in content. Patent documents have

the advantage that they largely contain scientific and legal terms, whose use has changed

only slowly. However, given that our analysis spans almost two centuries of data, this is

an important concern. We address this issue by leveraging existing advances in ‘big data’

to create links between each new invention and the set of existing and subsequent patents

1Griliches (1998) writes on statistics that are based on patents: “they are available; they are by definition
related to inventiveness, and they are based on what appears to be an objective and only slowly changing
standard. No wonder that the idea that something interesting might be learned from such data tends to be
rediscovered in each generation.”

2Much of the existing literature measures the ‘quality’ of the underlying patents by citation counts.
However, patent citations are consistently recorded in patent documents only relatively recently (after 1946)
which makes analyzing long-run trends challenging. More recently, Kogan et al. (2016) propose a new measure
of the private, economic value of new innovations that is based on stock market reactions to patent grants
and is only available for publicly traded firms after 1927.
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that take into account that different terms (words or phrases) occur with different frequency.

In particular, we construct measures of similarity that place more weight on ‘important’

terms. A term that is common in one document but appears rarely in others is assigned

more importance. However, this approach—used commonly and termed inverse document

frequency (IDF)—has an important disadvantage in our case, in that it ignores the temporal

ordering of patents.3 To overcome this issue, we introduce a modification to the standard

IDF approach by weighing terms according to the frequency in which they appear in patent

documents up until the patent application is filed. That is, the appropriate weight that terms

receive in our similarity calculation evolves over time as scientific terms become more common

or as natural language evolves.

Analyzing the empirical distribution of these similarity scores reveals a sparse matrix of

connections. Most patent pairs are dissimilar, but a few are strongly connected. Importantly,

these estimated connections are meaningful. Specifically, patent pairs that are linked by a

citation are more similar. Further, patents tend be more similar to other patents in the same

technology class than patents in other classes.

Armed with a methodology in characterizing similarities between distinct patent docu-

ments, we next construct quality indicators at the patent level. Focusing on the subset of

patents for which we have information on forward citations (approximately one-half), we

see that highly cited patents are those that are both novel (they are sufficiently different

than previous patents) and impactful (they are closely related to subsequent patents). We

therefore measure patent quality as the ratio of the patent’s similarity to future patents,

scaled by its similarity to previous patents. For computational reasons, but also to deal with

truncation issues at the start and end of the sample, we restrict the horizons over which these

similarities are calculated to be less than 20 years.

Our text-based indicator of patent quality has sensible properties. The relation with

patent citations is both statistically and economically significant. When we measure patent

quality and citations over the same time period after the patent application is filed, we find

that an increase of our patent quality indicator from the median to the 90-th percentile is

associated with an increase of 60-80% in citations for the median patent in terms of cites. In

addition to be significantly correlated with forward citations, our measure is also correlated

with the Kogan et al. (2016) measure of each patent’s economic value. Our most conservative

specification compares two patents that are granted to the same firm in the same year. We

find that a patent that is in the 90-th distribution in terms of patent quality as per our

3Consider for example Nikola Tesla’s famous 1888 patent (number 381,968) of an AC motor, one of the
first patents to use the bi-gram “alternating current,” a phrase used with great frequency throughout the
20th century. The standard IDF approach would sharply de-emphasize this term in the TFIDF vector
representing Tesla’s patent, and thereby give a misleading portrayal of the patent’s technological innovation.
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measure is approximately 7.5% to 10% more valuable than the median patent, depending on

the horizon over which we measure quality.

An important advantage of our measure is that it allows us to measure the quality of

inventions that are discovered in the 19-th and early 20-th century. In general, citation

information on these patents is quite limited.4 To illustrate the usefulness of our measure for

this earlier period of American invention, we obtain a list of 110 historically important patents.

This list of patents contains most important inventions during this period, such as, anesthesia,

the telephone, the internal combustion engine, the phonograph, and the ‘calculating machine’

(a precursor to the computer). We find that over 40% of these patents are at the top 10% of

the distribution in terms of our quality measure.

In addition, our new measure of patent quality has distinct advantages over citation

counts that extend beyond data availability. Focusing on the subset of patents for which

citation information is available, we find that our quality indicators capture information

about the importance of a patent that is complementary to patent citations. In particular,

we see that our text-based measure of quality is predictive over the number of times the

patent is subsequently cited. That is, we find that, our measure of patent quality based on

the similarity with patents filed within the first T years subsequent to the patent application

can reliably predict the number of times the patent is cited by patents that are filed more

than T years after the patent application. This result holds even when controlling for the

number of times the patent is cited within the first T years.

We illustrate the usefulness of our measure through several applications. First, we

construct an index of major technological innovations that spans the 1840–2010 period. Our

index is a simple count of the number of important patents that are filed in each year, where

important patents are those that lie in the top 5% of the unconditional distribution of patent

quality captured using our measure. Our index correlates strongly with subsequent growth in

aggregate measures of productivity, measured either as labor productivity (over the 1889–1957

period) or total factor productivity (over the 1948–2015) period. In addition, we show that

our index contains information that is distinct from simple patent citation counts.

Second, we revisit the analysis in Hall, Jaffe, and Trajtenberg (2005) that relates stock

of patents and citations garnered by these patents to firms’ stock market valuations. We

find that constructing stocks of intangibles, that is, accumulated patent counts adjusted for

quality using our text-based measure, accounts for a substantial fraction of the cross-sectional

dispersion in Tobin’s Q across firms. As before, the information contained in our measure is

4For instance, consider patent 388,116 issued to William Seward Burroughs on August 1888 for a ‘calculating
machine’, one of the precursors to the modern computer. Burroughs’ patent has just two citations as of
March 2017. Similarly, patent 174,465 issued to Graham Bell for the telephone in February 1876 has the first
recorded citation in 1956 (from patent 2,807,666). Until March 2017, it has received a total of 10 citations.
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complementary to patent citations, and largely comparable in magnitude.

In sum, we propose a new metric of patent quality that is based on textual analysis of

patent documents. The information contained in our measure is complementary to patent

citations, even when citation information is available. Unlike existing indicators, our measure

can be constructed for the entirety of patent documents made available over the 1840–2016

period by USPTO, spanning innovation by private and public firms, as well as non-profit

organizations and the US government.

The paper most closely related to our work is Kogan et al. (2016), who propose a new

measure of the private, economic value of new innovations that is based on stock market

reactions to patent grants. Being an estimate of the economic value of a patent, their measure

has the advantage of being readily comparable across time and industries. However, their

measure is only available for publicly traded firms after 1927, and hence misses both private

firms and research institutions, but also the technological advances associated with the Second

Industrial Revolution of the late 19-th century. Further, the two metrics measure different

aspects of patent quality. By construction, Kogan et al. (2016) measure the private value of

the patent to the firm. By contrast, our indicators measure the scientific novelty and impact

of the patent. These two metrics need not coincide. For instance, a patent may represent

only a minor scientific advance, yet be very effective in restricting competition, and thus

generate large private rents. Measures of scientific value are useful in estimating the social

return to R&D or the productivity of research personnel (see e.g. Bloom, Jones, Reenen, and

Webb, 2017). Nevertheless, our results confirm that the scientific and the (private) economic

value of patents are related.

The advantage of using financial data is that asset prices are forward-looking and hence

provide us with an estimate of the private value to the patent holder that is based on ex-ante

information. This private value need not coincide with the scientific value of the patent

– typically assessed using forward patent citations. For instance, a patent may represent

only a minor scientific advance, yet be very effective in restricting competition, and thus

generate large private rents. These ex-ante private values are useful in studying firm allocation

decisions, estimating the (private) return to R&D spending, and assessing the degree of

creative destruction and reallocation that results following waves of technological progress.

Further, the fact that our measure of ‘quality’ is in terms of dollars implies that our estimates

are comparable across time and across different industries; in contrast, since patenting

propensities could vary, comparing patent counts across industries and time becomes more

challenging.

More broadly, our work is connected to several strands of the literature. First, patent

statistics offer a promising avenue in constructing indices of technological progress. Shea

(1999) constructs direct measures of technology innovation using patents and R&D spending
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and finds a weak relationship between TFP and technology shocks. The results in Shea

(1999) likely illustrate a shortcoming of simple patent counts, since they ignore the wide

heterogeneity in the economic value of patents (Griliches, 1998; Kortum and Lerner, 1998).

Furthermore, fluctuations in the number of patents granted are often the result of changes

in patent regulation, or the quantity of resources available to the US patent office (see e.g.

Griliches, 1990; Hall and Ziedonis, 2001). As a result, a larger number of patents does not

necessarily imply greater technological innovation (for more details, see the discussion in

Griliches, 1998). Alexopoulos (2011) proposes an alternative measure that is based on books

published in the field of technology. Though the measure in Alexopoulos (2011) overcomes

many of the shortcomings of patent counts, it is only available at the aggregate level and for

only the later part of the 20-th century. By contrast, our measure is available at the level of

individual patents and spans the 1840-2016 period.

Second, our work is related to work that links firm patenting activity to stock market

valuations (see, e.g. Pakes, 1985; Austin, 1993; Hall et al., 2005; Nicholas, 2008). In particular,

Pakes (1985) examines the relation between patents and the stock market rate of return in

a sample of 120 firms during the 1968–1975 period. His estimates imply that, on average,

an unexpected arrival of one patent is associated with an increase in the firm’s market

value of $810,000. Hall et al. (2005) finds that the current ‘stock’ of patent citations carries

information for firms’ market valuations that is in addition to past R&D expenditures and

simple patent counts. Our results are similar; measures of intangibles constructed using our

quality indicators contain information on firm values that is in addition to R&D, patent and

citation counts.

1 Measurement

Here, we describe the construction of our patent quality metrics. First, we briefly describe

our data sources in Section 1.1. Appendix A has all the details. Section 1.2 describes our

estimation of similarity between patent documents, along with our modification of the leading

textual analysis methodology. Section 1.3 contains the properties of the estimated pairwise

similarity metric. Last, Section 1.4 contains the bulk of our analysis, which focuses on

constructing a patent-level indicator of quality.

1.1 Data

Here, we briefly summarize the data construction process, including the process through

which we convert the text of patent documents to a format that is amenable to constructing

similarity measures. We relegate all details to Appendix A. Our dataset is built on two
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sources. The first is the USPTO patent search website. This site provides records for all

patents beginning in 1976. We designed a web crawler collect the text content of patents over

this period, which includes patent numbers 3,930,271 through 9,113,586. For patents granted

prior to 1976, we collect the patent text patents from our second main datasource, Google’s

patent search engine. From Google’s pre-1976 patent records, we recover all of the fields

listed above with the exception of inventor/assignee addresses (Google only provides their

names), examiner, and attorney. Some parts of our analysis relies on firm-level aggregation of

patent assignments. We match patents to firms by merging firm names and patent assignee

names. Our procedure broadly follows that of Kogan et al. (2016) with adaptations for our

more extensive sample.

1.2 Measuring similarity between two patent documents

We begin our analysis by constructing measures of pairwise patent similarity. A key step in

obtaining a distance measure between two patents is to devise an appropriate metric that

weighs the importance of different words; we want terms like ‘electricity’ to matter more than

common words like ‘and’ or ‘inventor’. The leading approach in text analysis is to weigh

term counts by “term-frequency-inverse-document-frequency,” or

TFIDFd,w ≡ TFdw × IDFw. (1)

The first component of the weight, the term frequency (TF), is defined as

TFdw ≡
cdw∑
k cdk

, (2)

and describes the relative importance of term w for patent d. It is essentially a count of

how many times term w appears in patent d, adjusted for document length. The second

component is the inverse document frequency of term w, which is defined as

IDFw ≡ log

(
# documents

# documents that include term w

)
. (3)

The IDF part of the weight is a measure of the ‘informativeness’ of term w, and under-weighs

common words that appear in many documents.

The product of these two terms, TFIDF , describes the importance of a given word

or phrase w in a given document d. Words that appear infrequently in a document tend

to have low TFIDF scores (due to low TF ), as do common words that appear in many

documents (due to low IDF ). A high value of TFIDFdw indicates that term i appears

relatively frequently in document d but does not appear in most other documents, thus
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conveying that word w is especially representative of document d’s semantic content.

For our purposes, this existing approach is problematic, since the temporal ordering of

patents matters. In particular, we are interested in the representative text content of a patent

d given the history of innovation leading up to the development of patent d. Consider for

example Nikola Tesla’s famous 1888 patent (number 381,968) of an AC motor, among the

first patents to use the bi-gram “alternating.current,” a phrase used with great frequency

throughout the 20th century. Standard IDF would sharply de-emphasize this term in the

TFIDF vector representing Tesla’s patent, and thereby give a misleading portrayal of the

patent’s technological innovation.

To overcome this issue, we devise and analyze a modified version of the traditional

TFIDF measure. In particular, in place of (3), we instead construct a retrospective, or

‘point-in-time’ version of inverse document frequency. This “backward-IDF” of term w as

of date t, (denoted by BIDFwt), measures log frequency of documents containing w in any

patent granted prior to date t. More specifically, backward-IDF is defined as:

BIDFwt = log

(
# documents before t

1 + # documents before t that include term w

)
. (4)

This retrospective document frequency measure evolves as a term becomes more or less widely

used over time, giving a temporally appropriate weighting to a patent’s usage of each term

that reflects the history of invention up to but not beyond the new patent’s arrival.

We measure the overlap in textual content between a pair of patents i and j as the

cosine similarity in their TFIDF vector representations. Continuing with the Tesla example

discussed above, consider measuring the similarity between Tesla’s AC motor patent, and

patent 4,998,526 assigned in 1990 to General Motors Corporation for an “Alternating current

ignition system.” An important question emerges: What is the most sensible IDF to use

when calculating TFIDF similarity of these two patents. One possibility is to use BIDF

for the year 1888 in the TFIDF of Tesla’s patent, and BIDF as of 1990 for GM’s patent.

However, over the 102 years between these two patents, “alternating current” appears in tens

of thousands of other patents. Thus, the use of “alternating current” by GM would be greatly

down-weighted with a 1990 BIDF adjustment, and thus the co-occurrence of “alternating

current” in these two patents would have a small contribution to the pair’s similarity.

One of the central goals of this paper is to quantify the impact of patents on future

technological innovations. To best reflect quantify this impact, we instead calculate pairwise

similarity by applying to both patent counts the BIDF corresponding to the earlier of the

two patents. Thus, to calculate the similarity between the patent pair in this Tesla/GM

example, the term frequencies of both are normalized by the 1888 backward-IDF .

In sum, we construct the similarity between the patent pair (i, j) as follows. First, for
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both patents we construct our modified-version of the TFIDF for each term w in patent i as

TFIDFw,i,t = TFw,i ×BIDFw,t, t ≡ min(yri, yrj) (5)

and likewise for patent j. These are arranged in a W -vector TFIDFi,t where W is the size

of the set union for terms in pair (i, j). Next, each TFIDF , each vector is normalized to

have unit length,

Vi,t =
TFIDFi,t
||TFIDFi,t||

. (6)

Finally, we calculate the cosine similarity between the two normalized vectors:

ρi,j = Vi,t · Vj,t. (7)

Our similarity measure is closely related to Pearson correlation, with the difference that

TFIDF ’s are not centered before the dot product is applied. Thus, because TFIDF is

non-negative, ρi,j lies in the interval [0,1]. Patents that use the exact same set of words in

the same proportion will have similarity of one, while patents with no overlapping terms have

similarity of zero.

Pairwise similarities constitute a matrix of approximate dimension 9 million × 9 million, or

roughly 30 terabytes of data. To reduce the computational burden when studying similarities,

we set the similarities below 0.5% to zero. This affects 93.4% of patent pairs. Patents with

such low text similarity are, for all intents and purposes, completely unrelated, yet would

introduce a large computational burden in the types of analyses we pursue. Replacing these

approximate zeros with similarity scores of exactly zero achieve large computational gains by

allowing us to can work with sparse matrix representations that require substantially less

memory.

1.3 Descriptive statistics of the pairwise similarity measure

Next, we describe some of the features of our pairwise similarity measure ρi,j. Panel A of

Figure 1 plots the distribution of our similarity score across patent pairs. For computational

reasons, we only consider pairs that are at most 20 years apart. We see that the distribution

of our similarity scores is substantially skewed to the right: the median similarity score across

patent pairs is 7.8%, whereas the average similarity score is 10.2%. The right tail is substantial:

the 90-th and 95-th percentile of similarity scores are 17.6% and 22.9%, respectively. These

results indicate that the similarity score is able to capture a strong connection among certain

patent pairs. For comparison, only 0.007% of patent pairs are linked by citations.

A natural next step is to examine how our similarity score compares to existing measures
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of similarity. To this end, we examine whether patent pairs that are classified as being similar

given our text-based measure ρi,j are more likely to belong in a citation pair. To do so, we

compute the likelihood of patent j citing patent i conditional on their text-based similarity,

E [1i,j|ρi,j] , where 1i,j is a dummy variable that takes the value one if patent j cites patent i,

where patent i is filed before patent j.

Panel B of Figure 1 plots the results. We see that the likelihood that patent j cites the

earlier patent i is monotonically increasing in the similarity ρi,j between the two patents. These

results constitute a useful external validity check for our procedure, since our computation of

similarity scores does not include any information on patent citations.

We next examine how the pairwise similarity score varies depending on whether patents

i and j belong in the same technology class, defined as both patents sharing a technology

classification code at the 3-digit CPC level. Since technologies may diffuse at different rates

within versus between technology classes, we also condition on the distance in years between

the year that patent j is filed relative to patent i. For comparison, we perform the same

exercise for patent citations.

Figure 2 presents the results. Examining Panel A, we see that the mean similarity score

is approximately 15–20% higher if the patent pair i and j share a technology classification,

versus if they do not. Further, we see that the mean similarity scores are mildly declining

with the difference in the filing years between patents i and j. While part of this decline

may simply reflect the evolution of language, it is also conceivable that it captures the fact

that the rate of technology diffusion slows down with time. When comparing to fiward

patent citations, Panel B reveals that patents that share a technology class are also more

likely to cite each other—approximately by a factor of ten—relative to patent pairs that

do not share a technology classification. Interestingly, we also see that the likelihood that

patent j cites patent i is non-monotonic with respect to the time gap between them, peaking

approximately at year 5. Contrasting this pattern with that obtained for our similarity

measure, one interpretation is that the text-based measure of similarity is better able to

capture links between patents that are filed closely together relative to citations—possibly

because patent examiners may not be aware of recently filed patents. Of course, it is also

possible that the evolution of language confounds this effect. We return to this issue in

Section @@ below.

1.4 Constructing patent-level measures of quality

The next part of our analysis consists of combining these pair-wise similarity scores into a

patent level measure of ‘scientific’ quality. In doing so, it might be important to distinguish

the degree to which a patent is different than its predecessors (its ‘novelty’) from the degree
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to which later patents build on this invention (its ‘impact’).

1.4.1 Methodology

Our goal in this section is to construct a measure of the scientific impact and novelty of a

patent. Conceptually, a scientifically impactful patent is one that opens the the way for more

innovation. We would therefore expect these impactful patents to be closely related to future

patents.

Our first measure of quality—impact—is then defined as the total forward similarity, that

is,

FS0,τ
j =

∑
i∈F

ρj,i, (8)

where ρi,j is the pairwise measure of similarity between patents i and j defined above in

equation 7, while Fj,τ denote the set of all “forward” patents, that is, patents filed in the τ

calendar years following patent j’s application year. The forward similarity measure in (8)

is an estimate of the strength of association between the patent and future technological

innovation over the next τ years.

Similarly, we can define the notion of a novel patent would be an invention that is a

discrete advance relative to the state of the art—and would therefore be dissimilar to the

existing patent stock. This notion can be captured by a measure of backward similarity,

BS0,τ
j =

∑
i∈B

ρj,i, (9)

where now Bj,τ denote the set of “backward” patents granted in the τ calendar years prior

to j’s application year. We will consider τ = 5 as our baseline case, though our results are

similar if we use shorter windows. Here, backward similarity is a measure of the novelty of

the patent relative to the existing patent stock.

Table 1 reports the distribution of the forward similarity measures across different horizons

τ . By symmetry, the distribution of the novelty score is similar up to truncation lags. For

comparison, we also report the distribution of forward citations across the same horizons,

and the KPSS measure of patent value, which is based on the dollar stock market reaction

around the days that the patent is issued to the firm. Examining the Table, we note that our

text-based impact measure is highly skewed, with the mean typically being 1.5 to 2 times

the value of the median. This pattern is consistent with the well-known fact that forward

patent citations are also highly skewed, and the previously documented skewness in the KPSS

patent value measure. These facts are consistent with the presence of a small number of

highly valuable patents. In the sections that follow, we examine the correlations between
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these measures of patent quality.

1.4.2 Impact, novelty and forward citations

The existing literature on innovation mostly relies on patent citations as a measure of the

‘quality’ of the underlying patent. As a first pass, we first examine how our patent impact

measure relates to forward patent citations. In particular, we estimate

log
(
1 + CITES0,τ

j

)
= a+ b log

(
FS0,τ

j

)
+ c log

(
BSj0,5

)
+ Zj + εj, (10)

where we measure patent impact and citations over the next τ years after the patent is filed.

To reduce space, we only focus on estimating backward similarity over the last 5 years, but

our results are robust to alternative horizons. Here, Zj is a vector of controls that includes

dummies controlling for technology class (defined at the 3-digit CPC level), grant year, firm

and the interaction of firm and year effects. Including firm fixed effects dramatically reduces

the number of observations since we have firm identifiers only for firms that are matched to

CRSP/Compustat. That is, in our most conservative specification we compare patents in

the same technology class that are granted to the same firm in the same year. Since patent

citations are only consistently documented after 1945, we restrict the sample to the 1946–2016

period. Last, we cluster the standard errors by the patent grant year.

Table 2 presents the results. The table reveals two broad patterns, that are consistent

across horizons τ and choice of controls Z. First, the forward similarity measure is positively

and significantly related to the number of times the patent gets cited over the same period.

That is, patents that are likely to be related to subsequent patents in terms of text similarity,

are also more likely to receive more citations. Second, patents that are more novel, in the

sense that are more dissimilar to earlier patents, are also more likely to be cited more in the

future. Interestingly, the estimated coefficients b and c are of similar magnitude—but opposite

sign. Hence, it appears that the ratio between the forward and the backward similarity

may be a useful summary statistic of the scientific value of a patent, at least as measured

by patent citations. Next, we explore this idea further to construct a summary measure of

patent quality.

1.4.3 A summary measure of quality

Here, we build a summary measure of patent quality that incorporates both the patent’s

impact (forward similarity) and novelty (backward similarity). Specifically, motivated by the

fact that the estimated coefficients b and c are of similar magnitudes, but opposite signs, we

infer that a variable that likely summarizes the information content in both FS and BS is
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the (log) difference between them. Hence, we construct a measure of the scientific importance

of a patent, as the ratio of the patent’s future impact FS to its novelty BS,

RSIM0,τ
j =

FS0,τ
j

BS0,5
j

. (11)

We refer to the measure in (11) as “relative forward similarity” and interpret it as an overall

measure of patent quality. We choose a horizon τ = 5 for the denominator, but we obtain

similar results using shorter horizons of one year.

In particular, our summary measure (11) attaches higher scientific value to patents that

are more novel relative to their predecessors but are related to subsequent research. Forward

similarity measures the strength of association between the patent and future technological

innovation, and normalizing by backward similarity emphasizes the novelty of the patent.

A patent may have high forward similarity because it is a “follower” in a technology area

with many other followers, in which case it is likely to also have a high backward similarity

as well. On the other hand, its high forward similarity may indicate a new and impactful

breakthrough, in which case it is likely to have low backward similarity, and thus an especially

high relative forward similarity. Further, another reason why a patent might have high

forward similarity is that it uses general language that is not distinct to any particular

technology but is stylistically common. In this case, normalizing by backward similarity

counteracts the effect of general language on measured impact.

To obtain a sense of the time-series properties of our quality measure, the top panel of

Figure 4 plots the cross-sectional distribution over time. Examining the figure, we see that

the average patent quality is relatively high in the 1840–1870 period, coinciding with the

beginning of the Second Industrial Revolution, and also in the 1980–2000 period, which

coincides with the Information Age. Further, even though the mean is not particularly high,

the top percentiles of patent quality are also relatively high in the 1920–30s and 1950–70s,

periods that have been identified as technologically progressive (Field, 2003). In Section 2 we

revisit this issue, constructing long-run indices of technological change.

The bottom panel of the same Figure 4 plots the cross-sectional distribution of patent

citations over time. We see that, because citations suffer a truncation issue, not only in the

end but also in the beginning of the sample —the pattern looks rather different. Hence,

without some type of adjustment, one cannot easily compare the number of citations a patent

receives across different cohorts. For instance, we see that the median patent prior to 1910

has zero citations. Nevertheless, the patents at the very top of the distribution receive a

considerable number of citations, even if they were issued in the 19-th century. Hence, even

with this truncation bias, citations are still informative about the quality of the patent (Moser
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and Nicholas, 2004; Nicholas, 2008).

1.4.4 Relation with patent citations

To illustrate how (11) performs as a metric of patent quality, we next re-estimate a similar

specification as (10)

log
(
1 + CITES0,τ

j

)
= a+ b logRSIM0,τ

j + Zj + εj. (12)

As we see in Table 3, the measure constructed in (11) largely summarizes the information

contained in both text-based measures that is related to citations. Further, the magnitude

of these correlations is substantial. Focusing on our most conservative specification, that

compares two patents filed in the same year, are in the same class, and are issued to the

same firm in the same year, we find that increasing the quality measure from the median to

the 90-th percentile results in an increase in the dependent variable of 0.11 to 0.45 log points.

Focusing on a 5 (10) year horizon, these numbers imply an increase of 0.80 (1.7) additional

citations relative to the median of 2 (3) citations. For comparison, the 90-50th range of

patent citations over the next 5 (10) years following the patent application date is 5 (11).

The results in Table 3 are based on citations measured over the same window as our

quality indicator. Consequently, they are based only on patents granted after 1945, which is

when the patent office started recording patent citations. However, patent citations may still

be informative about the relative importance of older patents, as long as they are measured

over the entire sample (Moser and Nicholas, 2004; Nicholas, 2008). Indeed, we saw in Figure 4

that even among the patents that were granted in the 19-th century, there are some (relatively)

highly cited patents.

Table 4 therefore estimates a modified version of equation (12), in which patent citations

are measured over the entire sample. Since only within-cohort comparisons are possible as

a result, all specifications include year fixed effects. We see that even during this period,

our quality indicator is still significantly correlated with patent citations. More importantly,

the magnitudes are comparable to the post-1945 sample. Focusing on our most conservative

specification, that compares two patents filed in the same year, are in the same class, and

are issued to the same firm in the same year, we find that increasing the quality measure

from the median to the 90-th percentile results in an increase in the dependent variable of

approximately 0.06 to 0.15 log points. Focusing on a 5 (10) year horizon, these numbers

imply an increase of 0.32 additional citations relative to the median value of 1 citation during

this period.

In sum, we see that our text-based measures are strongly significantly related to the most

commonly-used indicator of patent quality, forward citations. Importantly, our proposed
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quality measures have several distinct advantages in measuring the scientific value of the

patent relative to patent citations. The first advantage is that, unlike citations, our quality

measures do not suffer from truncation bias, except at the very ends of the sample. As a

result, our quality indicators are useful not only in comparing patents of the same cohort,

but also across cohorts; in Section 2 we will exploit this advantage to construct indices of

technological change that span two centuries.

Second, our quality measure likely has an advantage over patent citations even in the

post-1945 sample. In particular, citations are a discrete event, whereas our similarity measures

are continuous. The discreteness of patent citations may make it a rather noisy measure

of patent quality, especially when citations are measured over short horizons. For example,

Table 2 shows that the median patent in the post-1945 sample receives no citations in the

first year following its filing date, 1 citation 0-5 years out, and 2 citations 6-10 years out.

Further, an advantage of our text-based measure is that it does not rely on the discretion

of the inventor or the patent examiner in choosing which prior patents to cite, or whether

they are aware of the existence of closely related patents. Figure 3 illustrates this pattern

more clearly. In panel A, we plot the mean increase in the total forward similarity ∆FS0,t

across horizons of t = 1 . . . 20 years. We see that the amount by which the total forward

similarity FS0,t increases is strongly declining across horizons — that is, FS0,t is concave in t.

This pattern is reminiscent of a similar pattern documented in Figure 2 for patent pairs, but

this is aggregated at the patent level. By contrast, the increase in forward citations ∆C0,t is

non-monotonic, again peaking at about 5 years.

One interpretation of the patterns in Figure 3 is that our text-based quality measure

captures information about the quality of a patent earlier than patent citations. To explore

this idea further, we estimate predictive regressions of the form,

log
(

1 + CITESτ,τ+Tj

)
= a+ b logRSIM0,τ

j + c log
(
1 + CITES0,τ

j

)
+ Zj + εj. (13)

That is, we examine whether our predictive measure computed over a fixed horizon t ∈ [0, τ ]

is predictive of future citations to the same patent after τ , while controlling for the number

of citations the patent receives in t ∈ [0, τ ]. As before, we include a variety of fixed effects,

including year and technology class dummies.

Our main coefficient of interest is b, which captures the predictive relation between our

impact measure and future citations. We present the results in Table 5. We see that our

impact measure predicts future citations, even controlling for the number of contemporaneous

citations. The relation is both statistically as well as economically significant. Focusing on

the middle row of the table, and our most conservative specification that includes application,

grant, and class fixed effects, we see that an increase in the patent quality (measured over
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5 years) from the median to the 90-th percentile is associated with an increase of 0.13 log

points of the dependant variable, which predicts an increase in forward citations over the

next 5 years (6 to 10 years out) of 0.28 relative to the median of 1 citation. Hence, these

magnitudes are not only statistically significant but also economically meaningful.

We conclude that our text-based measure of patent quality contains economically mean-

ingful information relative to forward citations, even when both measures are computed over

the same horizon. Our conjecture is that this result is driven by the increased granularity of

our impact measure relative to citation counts, which are discrete events.

2 Innovation over the long run

The results in the previous sections illustrate that our quality indicator is highly correlated

with patent citations. An important advantage our quality indicator has over forward citations

however, is that it is not subject to truncation lags — except at the very end of the sample.

By contrast, since patent citations are recorded in patent documents only since 1945, they

are subject to truncation lags that cover most of the 1840–2010 sample. In this section,

we exploit this advantage of our quality indicators to create time-series indicators of the

degree of technological progress during this period. Specifically, we focus on the number

of ‘breakthrough’ patents—that is, patents that score highly in terms of the unconditional

distribution of quality given our measures. To minimize the truncation at the end of the

sample, we focus our analysis on the measure RSIM0,10
j , which only uses information over

the next 10 years of a patent grant.

We begin by first discussing the composition of these breakthrough patents in Section 2.1

and focus on several prominent examples. Section 2.2 describes a validation exercise using a

list of historically important patents. Section 2.3 describes the construction of our index of

technological progress and documents the correlation with measured productivity.

2.1 Composition of important patents

Figure 6 presents the composition of patents across technology classes in the 1840 to 2010

period by decade. Examining Panel A of the figure, we see that the composition of patents

across technology classes is relatively stable across decades. However, each of these classes

were responsible for important inventions at different points in time.

Panel B of Figure 6 illustrates this point more clearly. Here, for each decade, we plot the

class composition of the top 1% of patents in terms of our quality measure. We see that the

technology classes in which important inventions originated has varied quite a bit over the

last 170 years. In the 1840–70 period, we see that some the most important inventions took
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place in engineering and construction, consumer goods, and manufacturing. An example of

an invention in construction that score high in terms of our quality measure is the ‘Bollman

Bridge’ (patent number 8,624), named after its creator Wendell Bolman, which was the first

successful all-metal bridge design to be adopted and consistently used on a railroad. In terms

of manufacturing processes, many of the important advances occur in textiles. Specifically,

examples of the important patents include various versions of sewing and knitting machines

(patent numbers 7,931; 7,296; 7,509; and 60,310). Interestingly, many of the important

patents in consumer goods are also related to new items clothing.

Starting around 1870, many more patents that score high in terms of our measure are

related to electricity. Many of the most important patents given our measure are related to

the production of electric light (203,844; 210,380; 215,733; 210,213; 200,545; 218,167). Most

importantly, the same period saw the invention of a revolutionary method of communication:

the telephone. It is comforting that most of the patents associated with the telephone score

in the top 1% of the unconditional distribution of our quality measure.5

Another industry that accounted for a significant share of the most important patents

during the 1860-1910 period is transportation. Many of the patents that fall in the top 1%

in terms of our measure include improvements in railroads (e.g., patents 207,538; 218,693;

422,976; and 619,320), and in particular, their electrification (patents 178,216; 344,962;

403,969; 465,407). Most importantly, the turn of the century saw the invention of the airplane.

In addition to the Wright’s brothers original patent (821,393), several other airplane patents

also score highly in terms of our quality indicator (1,107,231; 1,279,127; 1,307,133; 1,307,134).

Our measure also identifies other patents related to air transportation based on air balloons

that are similar to the Zeppelin (i.e., 678,114 and 864,672). Last, innovations in construction

methods continue to play a role in the 1870-1910 period. Among the patents that score in

the top 1% in terms of our quality indicator are those that are related to the use of concrete

(618,956; 647,904; 764,302; 654,683; 747,652; and 672,176) as a material in the construction

of buildings, roads and pavements.

In the first half of the 20th century, another area that is responsible for important patents

is chemistry; many of those patents are related to the invention of plastic compounds. Our

quality indicators identify the patent for bakelite (942,699), the world’s first fully synthetic

plastic as particularly important—it ranks in the top 10% of all patents in terms of our quality

indicators. This innovation opened the floodgates to a torrent of now-familiar synthetic

plastics, including the invention in the 1930’s of plasticized polyvinyl chloride by Waldo Semon

5Specifically, the following patents associated with the telephone rank in the top 5% in terms of our baseline
quality measure among the patents granted in the same decade: 161,739; 174,465; 178,399; 186,787; 201,488;
213,090; 220,791; 228,507; 230,168; 238,833; 474,230; 203,016; 222,390. Source: https://en.wikipedia.

org/wiki/Invention_of_the_telephone#Patents

17

https://en.wikipedia.org/wiki/Invention_of_the_telephone##Patents
https://en.wikipedia.org/wiki/Invention_of_the_telephone##Patents


(patents 1,929,453 and 2,188,396) and nylon by Wallace H Carothers (patent 2,071,250),

all of which are important patents according to our measure. Other important patents in

chemistry continue through the 1950’s. Patents that score in the top few percentiles according

to our measure, include Nystatin (2,797,183); improvements in the production of penicillin

(2,442,141 and 2,443,989); Enovid, the first oral contraceptive (2,691,028); and Tetracyline,

one of the most prescribed broad spectrum antibiotics (2,699,054).

Subsequent to the 1950’s, a large fraction of the important patents identified by our

measure are in the area of Instruments and Electronics, and are related to the arrival of the

Information Age. One of the most important patents according to our measure is the invention

of the first practical integrated circuit made of silicon by Robert Noyce in 1961 (patent

2,981,877). During the 1970s, firms such as IBM, Xerox, Honeywell, AT&T, and Sperry

Rand are responsible for some of the major innovations in computing. Indeed, Xerox has

been responsible for a substantial fraction of these innovations; some of the patents identified

as important by our measure include patent 4,558,413 for a software version management

system; patent 4,899,136 for improvements in user interface; patent 4,437,122 for bitmap

(raster) graphics; and patents 3,838,260 and 3,938,097 for improvements in the interface

between computer memory and the processor. In the 1980s and 1990s, several important

patents that pertain to computer networks also fall in the top 1% of all patents. 6

Improvements in genetics also comprise a significant fraction of the patents in the 1980–

2000 period. A few early examples of important patents in this area, that fall in the top 1%

of the unconditional distribution according to our quality indicator are: patent 4,237,224 for

recombinant DNA methods, that is, the process of forming DNA molecules by laboratory

methods of genetic recombination (such as molecular cloning) to bring together genetic

material from multiple sources; patents 4,683,202 and 4,683,195 for the polymerase chain

reaction (PCR) method, a technique for making copies of DNA segments quickly, with high

fidelity, easily, and at relatively low cost; patent 4,736,866 for transgenic (genetically modified)

animals; and patent 4,889,818 for heat-stable DNA-replication enzymes.

2.2 A validation exercise

As we discuss above, a key advantage of our measure is that it can be used to compare the

quality of patents across different cohorts, even in the earlier part of the sample. This period

is particularly relevant for innovation. It includes not only the Second Industrial Revolution

(1870–1910), but also the 1920–1940 period, which according to Field (2003) contained major

technological breakthroughs, this advantage provides us an unique opportunity to expand

6See, for instance, patents 4,800,488; 4,823,338; 4,827,411; 4,887,204; 5,249,290; 5,341,477; 5,544,322; and
5,586,260.
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the period over which novelty of innovation can be explored.

A potential challenge in using the text of these earlier patent documents is that the print

quality—and hence the accuracy of our similarity measure—may be lower than in the modern

period. One way to provide some external validity for our measure of patent quality is to

examine how historically important patents are scored according to our quality indicator. In

the absence of other independent measures of patent quality, we use the list of 110 patents

complied by the patent historian Jim Bieberich, available through USPAT.COM.7 This is a

subjective list, that however includes most breakthrough inventions of the 19-th and 20-th

century: the Sewing Machine, Anesthesia, Machine Guns, the Telephone, the Automobile,

and the Radio are just a few examples. The full list is shown in Tables A.5–A.6 in the

Appendix.

For each one these breakthrough inventions we compute our patent quality measure 11

over horizons of 1, 5, 10 and 20 years. We then examine how our quality indicator for each

patent compares to the distribution of quality indicators for all patents filed in the same year.

Table 6 summarizes these results. We find that these important patents are substantially

more likely to have higher text-based quality scores. Specifically, when we measure our patent

quality over at least 10 years following the patent application day, approximately 40% of

these patents are in the top 10% of the distribution of quality, while approximately 30% are

in the top 5% of all patents in terms of the unconditional distribution of patent quality.

Next, we repeat the same exercise using forward citations, measured over the entire sample

— since citations are only recorded since 1945. This comparison is naturally skewed in favor of

forward citations, not only because they use much more information than the first 10 years

of the patent filing date, but also because the number of citations was likely to be a criterion

for compiling this list. Despite these drawbacks, we see that our quality indicators do about

as well — and often better — than citations in identifying these patents as being important.

In sum, these results confirm that our text-based measure of patent quality captures

meaningful information about the importance of a patent, even during the earlier parts of

the sample in which the quality of the digitized patent documents was worse than the later

parts. Specifically, we see that historically important patents consistently score in the top

percentiles of our quality distribution. In the next section, we exploit this result to build

time-series of technological progress that span the 1840–2016 period.

2.3 A time series index of technological progress

Constructing a time-series index of technological progress presents a challenge for several

reasons. A first approach, taken by Shea (1999) is to construct and index based on patent

7The list is available here: http://www.uspat.com/historical/index.shtml
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counts. Such an index implicitly assumes that all patents are equally valuable. However,

Kortum and Lerner (1998) show that there is wide heterogeneity in the economic value of

patents. Furthermore, fluctuations in the number of patents granted are often the result of

changes in patent regulation, or the quantity of resources available to the US patent office

(see e.g. Griliches, 1990; Hall and Ziedonis, 2001). As a result, a larger number of patents

does not necessarily imply greater technological innovation. Kogan et al. (2016) take a step

towards this end by constructing a time-series index that is based on the estimated market

values of patents that are granted. However, a short-coming of their index is that it is based

on a measure that is confined to the universe of publicly traded firms. Consequently, it omits

not only innovations by private firms, non-profit institutions and the government, but also

innovation prior to 1927 since reliable information on stock prices is available only after this

year.

Here, we build upon the results of the previous section to construct a long time series of

technological improvements that spans the entire length of the USPTO data. We do so by

counting the number of ‘breakthrough’ inventions, that is, patents that have quality scores in

the top 1% of the (unconditional) distribution. In particular, our index is constructed as

ξτt = log

(
1 +

∑
j∈Pt

1RSIMτ
j ≥RSIMτ

0.99

)
, (14)

where Pt is the set of patents that are filed in year t and qτ0.99 is the 99-th percentile of the

patent quality index constructed in (11), in which the numerator (forward similarity, or

impact) is measured over years 0 to τ following the patent application date.

We plot the resulting time series for τ = 10 in Panel A of Figure 7. Both indices

display considerable fluctuations at relatively low frequencies, indicating four major periods

of technological innovation: the 1850–1880 period, the 1920’s, the 1950–1970’s, and the 1980–

2000’s. These periods line up with the major waves of technological innovation in the U.S.

The first peak in our indices corresponds to the beginning of the Second Industrial Revolution,

which saw numerous technological advances, such as the telephone and electric lighting.

Second, both indices suggest high values of technological innovation in the 1920s, consistent

with the evidence compiled in Field (2003) regarding the advances in manufacturing during

this period. Third, our measure suggests higher innovative activity from the mid–1950’s to

the early 1970s – a period commonly recognized as a period of high innovation in the U.S (see,

e.g. Laitner and Stolyarov, 2003). Finally, developments in computing and telecommunication

have brought about the latest wave of technological progress in the 1980s to the beginning of

the 2000s, which coincides with the high values of both of our measures. Contrasting Panel

A with Panel B, which plots the total number of successful patent applications per capita,
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reveals that our indices display different behavior than the total number of patents.

As a further validity check of our indices, we examine their correlations with measures of

productivity during the period. The most commonly source of productivity measures for the

later 19-th century to the mid 20-th century is Kendrick (1961). We use his series on labor

productivity in manufacturing, measured as output per effective labor input (Kendrick, 1961,

see pages 465–466 in). For the later period, we use the series on total factor productivity

constructed by Basu, Fernald, and Kimball (2006) which starts in 1948. Panel C of Figure 7

plots the times series of these two productivity estimates.

We relate our technology indices to measures of (log) productivity xt using the following

specification,

xt+k − xt = ak + bk ξ
τ
t + ρk xt + ck logNtεt+k. (15)

Here, x denotes log productivity, ξτ our technology index defined in (14), and Nt denotes the

number of new patent applications filed in year t normalized by population. As Jorda (2005)

demonstrates, these local projections confer significant advantages relative to traditional

VARs, including being relatively more robust to misspecifications. We adjust the standard

errors in (15) for overlapping observations using the Hodrick (1992) procedure. To conserve

space, we focus on results for τ = 10, but results using other horizons are qualitatively similar.

The top row of Figure A.7 presents the baseline results that do not control for the number

of patents applications (i.e. imposing ck = 0). We see that our innovation indices are

positively related to future TFP improvements, and the relation is statistically significant

at horizons than 10 years. In terms of magnitudes, a one-standard deviation increase in

our index is associated with approximately a 5% increase in productivity over 15 years.

We see that the point estimates are similar across the two samples, though they are more

precisely estimated in the 1948-2016 period. Part of this difference could be attributed to

differences in the quality of the data (both productivity as well as our text-based measure).

However, this difference could also be driven by the fact that the two series are not directly

comparable. Measures of labor productivity confound changes in the productivity of capital

and labor with capital deepening (changes in capital-labor ratios). According to Field (2003),

a substantial component of economic growth during the second half of the 19-th century

could be attributed to capital deepening, which might for the somewhat weaker correlation

between our technology index and labor productivity during this period. By contrast, Field

(2003) argues that changes in capital-labor ratios played only a minor role in productivity

growth during the second half of the 20-th century. Indeed, we obtain similar results if we

replace TFP with measures of labor productivity (output per hours) in the post-1948 period.

We next examine whether these results are driven mostly by fluctuations in the total

number of patent applications. That is, we re-estimate (15), but now include controls for the
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(log) number of patent applications per capita Nt filed in year t. As we see in the bottom

row of Figure A.7, the point estimates are largely similar, indicating that the associated

movements in TFP are related to the important inventions, rather than just an increase in

overall patenting activity.

We performed several additional robustness checks to our analysis. Specifically, we (a)

experimented with an alternative threshold of 90% in (14); (b) we considered alternative

measures of productivity in both periods, specifically, output per worker hours. None of these

made a material difference in these results, and are therefore related to the Online Appendix.

3 Market value and quality

In this section, we discuss the relation between our quality indicators and market valuations.

In examining these relations, one has to keep in mind that market values measure, by

construction, the present value of pecuniary benefits to the holder of the patent. By contrast,

our quality measure is most likely correlated with the scientific importance of the patent. In

general, the relation between the two can be ambiguous. For instance, a patent may represent

only a minor scientific advance, yet be very effective in restricting competition, and thus

generate large private rents. The relation between the private and the scientific value of

innovation – as measured by patent citations – has been the subject of considerable debate.8

In what follows, we revisit some of the evidence using our new indicator of patent quality.

We do so at two levels of granularity. In section 3.1 we do so at the patent level. The

advantage is that we can do so at a higher level of granularity than Hall et al. (2005). The

disadvantage is that the estimated market value of each patent is based on stock market

reactions around a very narrow window around the issuance date, and hence may omit the

part of the market value that was incorporated into the stock price prior to the patent grant.

In section 3.2 we perform a similar exercise at the firm level, following Hall et al. (2005).

The advantage of this approach is that it is identified using differences in the firms’ patent

portfolio and market valuations, hence it does not suffer from the ‘missing value’ problem of

KPSS. The disadvantage is that the analysis relies on comparing otherwise similar firms, and

hence may be contaminated by unobservables.

8For instance, Hall et al. (2005) and Nicholas (2008) document that firms owning highly cited patents have
higher stock market valuations. Harhoff, Narin, Scherer, and Vopel (1999) and Moser, Ohmstedt, and Rhode
(2011) provide estimates of a positive relation using smaller samples that contain estimates of economic
value. By contrast, Abrams, Akcigit, and Popadak (2013) use a proprietary dataset that includes estimates of
patent values based on licensing fees and show that the relation between private values and patent citations
is non-monotonic.
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3.1 Patent-level evidence

We next discuss the relation between our text-based measure of the quality of a patent and

the market value of a patent using the measure of KPSS. The latter is based on the stock

market reaction to a patent grant, and can therefore be interpreted as a measure of the

private value of the patent—that is, the present value of cashflows to the patent assignee

that can be attributed to the patent.

We relate patent impact to market values using the following specification,

log Vj = a+ b logRSIM0,τ
j + Zj + εj. (16)

As before, we saturate our specifications with controls, including year fixed effects, technology-

class dummies, firm, and firm-year fixed effects. When estimating (16), if multiple patents are

issued to the same firm in the same day, we collapse these observations into one by averaging

across patents. We do so because the KPSS measure cannot differentiate between two patents

that are issued to the same firm on the same day—it effectively assigns an equal fraction of

the total dollar reaction to multiple patents in a given day to each patent.

We present the results in Table 7. The estimated coefficient b reveals a strong, statistically

significant relation between the KPSS measure of market value and our text-based measure

of impact. Focusing on the most conservative specification—column (5)—which compares

patents in the same class, that are issued to the same firm in the same year, we see that

increasing the quality measure from the median to the 90-th percentile results in a 7.5% to

10% increase in the estimated log patent value, where quality is measured across horizons of

1 to 10 years subsequent to the patent application date.

In Table 8, we repeat the same exercise with the number of forward citations included

as controls. We again see that our text-based measure of impact is significantly related to

patent market values, even when citations are included. This pattern reinforces our earlier

conclusion that our text-based measure of impact captures information on the importance

of a patent that is complementary to citation counts. In most specifications, both impact

as well as citations are significantly related to estimates of patent value. The exception is

column (5) which includes firm–year dummies. In this case, citations enter with a negative

sign, suggesting that they perhaps help ‘clean up’ some of the measurement error in our

quality measure. Consistent with this idea, the estimated magnitudes are somewhat larger:

increasing the quality measure from the median to the 90-th percentile now results in a 8.5%

to 12% increase in the estimated log patent value.

In sum, these results confirm our earlier findings that our patent quality measure captures

information that is complementary to forward citations.
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3.2 Firm-level evidence

Next, we examine the extent to which our innovation measure can account for differences in

firm valuations. Prior work has validated measures of R&D productivity, captured by patent

based metrics, by assessing if they are consistently related to firm value. In particular, Hall

et al. (2005) assess the relationship between a firm’s Tobin’s Q and its “knowledge stock”

that is constructed based on investment in R&D, number of patents and number of citations.

We modify the specification of Hall et al – a log linearized firm-level market value function –

by including another explanatory variable that captures the “knowledge stock” based on our

measure of similarity.

More specifically, following Hall et al. (2005), the knowledge stock for investment in R&D,

number of patents granted and number of citations received by patents granted in a given

year is constructed based on a declining balance formula as:

SXf,t = (1− δ)SXf,t−1 +Xf,t (17)

where, Xf,t is the flow of new R&D, patent applications of successful patents by firm f in year

t and citations received by patents of firm f in year t and SXf,t refers to the accumulated

(stock) measure. We follow Hall et al. (2005) and use a depreciation rate of δ = 15%.

The new measure in the market value specification relates to our similarity measure. We

first construct a measure of patent quality for firm f in year t as:

RSIMf,t =

Pf,t∑
k=1

RSIM0,τ
k (18)

where, Pf,t is the total number of patents applied for firm f in year t; . RSIM0,τ
k is the quality

of patent k that is granted to the firm f for a patent application in year t—constructed in

equation (11) for different horizons τ ranging from 1 to 10 years.

Next, we construct similarity knowledge stocks by accumulating the firm measure of

patent quality (18) similarly to (17). We apply the same depreciation rate δ = 15% as in

equation (17). As a robustness check, we also experiment with rates of 5%, 10%, 20% and

25% and we obtain similar results to those reported in this section.

We estimate the firm’s market value as a function of various explanatory variables as:

logQf,t = log

(
1 + γ1

SRDf,t

Af,t
+ γ2

SPATf,t
SRDf,t

+ γ3
SCITESf,t
SPATf,t

+ γ4
SRSIMf,t

SPATf,t

)
(19)

+qt +D (SRDf,t = 0) + εf,t (20)

where SRDf,t, SPATf,t, SCITESf,t, and SRSIMf,t are the stocks of R&D expenditure,
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number of patents, patent citations, and the patent quality measures constructed as in (17).

As in Hall et al. (2005), qt is the fixed effect for year t and accounts for any time specific

effect that moves around the value of all the firms in a given year. Other variables in

the specification are defined in the Appendix. We estimate the market value regressions,

computing the similarity and citations stocks over horizons τ of 1, 5, 10, and 20 years after

the application date. For our baseline results, we restrict the sample to patenting firms, that

is, firms that have filed at least one patent. We cluster standard errors by firm.

Our main coefficient of interest is γ4 which estimates the relation between our accumulated

patent quality measure and Tobin’s Q. Table 9 presents the results. We see a a strong,

statistically significant relation between Tobin’s Q and similarity stock after conditioning on

other measures of knowledge stock. In particular, this pattern is obtained after we account

for knowledge stock of citations. The economic magnitudes are large as well. When estimated

over the 0-1 year horizon, the variation in a firm’s Tobin’s Q that is explained by variation in

its similarity stock is almost twice as large as the variation explained by its citation stock.9 At

longer horizons, reported in other columns, the effect of similarity stock remains important,

though it declines in terms of its importance relative to citation stock.

We repeat the same exercise basing our sample only on the Manufacturing firms (SIC

2000-3999) and report the results in Table A.8. As before, within manufacturing firms, the

relation between Tobin’s Q and similarity stock are also consistently strong and significant.

Similar to our baseline results, the variation in a firm’s Tobin Q that is explained by variation

in its similarity stock is comparable to that explained by its citation stock, with larger effects

at shorter horizons.

Overall, the results of this section suggest that the variation in knowledge stock at the

firm level that is constructed based on our measure of similarity, significantly relates to its

Tobin Q. Importantly, we find this relation after accounting for other measures of knowledge

stock, including its R&D stock, patent stock and citation stock. These patterns demonstrate

that similarity stock carries important information about a firm’s market value and should

be a part of standard controls that researchers use when assessing various factors that are

related to firm value.

4 Conclusion

We use textual analysis of patent documents to create new indicators of patent quality.

Our metric assigns higher quality to patents that are distinct from the existing stock of

knowledge (are novel) and are related to subsequent patents (have impact). These estimates

9= 0.210/0.112, see Table 9 column (1) “normalized coefficients” based on 1 standard deviation changes
in variables.
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of novelty and similarity are constructed using a new methodology that builds on recent

advances in textual analysis. Our measure of patent quality is predictive of future citations

and correlates strongly with measures of market value. Our quality measure is unique in that

it is available for the entirety of patent documents, spanning approximately two centuries

of innovation (1836–2016) and covers innovation by private and public firms, as well as

non-profit organizations and the US government.

A Data Construction Appendix

Here, we describing the data construction, including the process through which we convert the

text of patent documents to a format that is amenable to constructing similarity measures.

A.1 Text Data Collection

The Patent Act of 1836 established the official US Patent Office and is the grant year of

patent number one.10 We construct a dataset of textual content of US patent granted during

the 180 year period from 1836-2015. Our dataset is built on two sources.

The first is the USPTO patent search website. This site provides records for all patents

beginning in 1976. We designed a web crawler collect the text content of patents over this

period, which includes patent numbers 3,930,271 through 9,113,586. The records in this

sample are easy to process because they are provided in HTML format with standardized

fields. We capture the following fields from each record:

1. Patent number (WKU)

2. Application date

3. Granted date

4. Inventors

5. Inventor addresses

6. Assignees

7. Assignee addresses

8. Family ID

9. Application number

10. US patent class

11. CPC patent class

12. Intl. patent class

13. Backward citations

14. Examiner

15. Attorney

16. Abstract

17. Claims

18. Description

The only available information that we do not collect are image files for a patent’s “figure

drawing” exhibits.

10The first patent was granted in the US in 1790, but of the patents granted prior to the 1836 Act, all but
2,845 were destroyed by fire.
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For patents granted prior to 1976, the USPTO also provides bulk downloads of .txt files

for each patent. The quality of this data is inferior to that provided by the web search

interface in three ways. First, the text data is recovered from image files of the original patent

documents using OCR scans. OCR scans often contain errors. These generally arise from

imperfections in the original images that lead to errors in the OCR’s translation from image

to text. Going backward in time from 1976, the quality of OCR scans deteriorates rapidly

due to lower quality typesetting. Second, the bulk download files do not use a standardized

format which makes it difficult to parse out the fields listed above.

Rather than using the USPTO bulk files, we collect text of pre-1976 patents from our

second main datasource, Google’s patent search engine. Like post-1976 patents from USPTO,

Google provides patent records in an easy-to-parse HTML format that we collect with our

web crawler. Furthermore, inspection of Google records versus 1) OCR files from the USPTO

and 2) pdf images of patents that are the source of the OCR scans, reveals that in this earlier

period Google’s patent text is more accurate than the OCR text in USPTO bulk data. From

Google’s pre-1976 patent records, we recover all of the fields listed above with the exception

of inventor/assignee addresses (Google only provides their names), examiner, and attorney.

A.2 Cleaning Post-1976 USPTO Data

Next, we conduct a battery of checks to correct data errors. For the most part, we are able to

capture and parse of patent text from the USPTO web interface without error. When there

are errors, it is almost always the case that the patent record was incompletely captured,

and this occurs for one of two reasons. The first reason is that the network connection was

interrupted during the capture and the second is that the patent record on the UPSTO

website is itself incomplete (in comparison with PDF image files of the original document,

which are also available from USPTO via bulk download).

Our primary data cleaning task was to find and complete any partially captured patent

records. First, we find the list of patent numbers (WKUs) that are entirely missing from

our database, and re-run our capture program until all have been recovered.11 Next, we

identify WKUs with an entirely missing value for the abstract, claims, or description field.

Fortunately, we find this to be very infrequent, occurring in less than one patent in 100,000,

making it easy for us to correct this manually.

Next, a team of research assistants (RA’s) manually checked 3,000 utility patent records,

1,000 design patent records, and 1,000 plant patents records against their PDF image files.

The RA task is to identify any records with missing or erroneous information in the reference,

11Many of the missing records that we find are explicitly labeled as “WITHDRAWN” at the USPTO.
Withdrawn information can be found at https://www.uspto.gov/patents-application-process/

patent-search/withdrawn-patent-numbers.
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abstract, claims, or description fields. To do this, they manually read the original pdf image

for the patent and our digitally captured record. We identify patterns in partial text omission

and update our scraping algorithm to reflect these. We then re-ran the capture program on

all patents and confirmed that omissions from the previous iteration were corrected.

A.3 Cleaning Pre-1976 Google Data

Fortunately, we find no instances of missing WKU’s or incomplete text from Google web

records. Next, we assess the accuracy of Google’s OCR scans by manually re-scanning a

random sample of 1,000 pre-1976 patents using more recent (and thus more accurate) ABBYY

OCR software than was used for most of Google’s image scans. We compare the ABBYY

scan to the pdf image to confirm the scan content is complete, the compare the frequency of

garbled terms in our scan versus that OCR text from Google. The distribution of pairwise

cosine similarities in our ABBYY text and Google’s OCR is reported below.

Cosine Similarity

mean 0.957

std 0.073

P1 0.701

P5 0.863

P10 0.900

P25 0.951

P50 0.977

P75 0.991

P90 0.996

P95 0.998

P99 0.999

N 1000

Only 10% of sampled Google OCR records have a correlation with ABBYY below 90%.

Next, we manually compare both our OCR scans and those from Google against the pdf

image. We find that garble rate for ABBYY OCRed is 0.025 on average, with standard

deviation of 0.029. We find that Google has only slightly more frequent garbling than our

ABBYY scans. Of the term discrepancies in the two sets of scans, around 52% of these

correspond to a garbled ABBYY records and 83% to a garbled Google record. We ultimately

conclude that Google’s OCR error frequency is acceptable for use in our analysis.
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A.4 Conversion from Textual to Numeric Data

We convert the text content of patents into numerical data for statistical analysis. To do

this, we use the NLTK Python Toolkit to parse the “abstract,” “claims,” and “description”

sections of each patent into individual terms. We strip out all non-word text elements, such

as punctuation, numbers, and HTML tags, and convert all capitalized characters to lowercase.

Next, we remove all occurrences of 947 “stop words,” which include prepositions, pronouns,

and other words that carry little semantic content.12

The remaining list of “unstemmed” (that is, without removing suffixes) unigrams amounts

to a dictionary of 35,640,250 unique terms. As discussed in Gentzkow, Kelly, and Taddy

(2017), an important preliminary step to improve signal-to-noise ratios in textual analysis is

to reduce the dictionary by filtering out terms that occur extremely frequently or extremely

infrequently. The most frequently used words show up in so many patents that they are

uninformative for discriminating between patent technologies. On the other hand, words

that show up in only a few patents can only negligibly contribute to understanding broad

technology patterns, while their inclusion increases the computational cost of analysis.13

We apply filters to retain influential terms while keeping the computational burden of our

analysis at a manageable level, and focus on the number of distinct patents and calendar

years in which terms occur. Table A.1 reports the distribution across terms for number of

patents and the number of distinct calendar years in which a term appears. A well known

attribute of text count data is its sparsity—most terms show up very infrequently—and

the table shows that this pattern is evident in patent text as well. We exclude terms that

appear in fewer than twenty out of the more than nine million patents in our sample. These

eliminate 33,954,834 terms, resulting in a final dictionary of 1,685,416 terms.14

12We construct our stop word list as the union of terms in the following commonly used lists:

http://www.ranks.nl/stopwords

https://dev.mysql.com/doc/refman/5.1/en/fulltext-stopwords.html

https://code.google.com/p/stop-words/

http://www.lextek.com/manuals/onix/stopwords1.html

http://www.lextek.com/manuals/onix/stopwords2.html

http://www.webconfs.com/stop-words.php

http://www.text-analytics101.com/2014/10/all-about-stop-words-for-text-mining.html

http://www.nlm.nih.gov/bsd/disted/pubmedtutorial/020_170.html

https://pypi.python.org/pypi/stop-words

https://msdn.microsof,t.com/zh-cn/library/bb164590

http://www.nltk.org/book/ch02.html (NLTK list)

13Filtering out infrequent words also removes garbled terms, misspellings, and other errors, as their
irregularity leads them to occur only sporadically.

14The table also shows that there are some terms that appear in almost all patents. Examples of the most
frequently occurring words (that are not in the stop word lists) are “located,” “process,” and “material.”
Because these show up in most patents they are unlikely to be informative for statistical analysis. These
terms are de-emphasized in our analysis through the TFIDF transformation.
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After this dictionary reduction, the entire corpus of patent text is reduced in a D ×W
numerical matrix of term counts denoted C. Matrix row d corresponds to patent (WKU) d.

Matrix column w corresponds the wth term in the dictionary. Each matrix element cdw the

count of term w in patent d.

A.5 Matching Patents to Firms

Much of our analysis relies on firm-level aggregation of patent assignments. We match patents

to firms by merging firm names and patent assignee names. Our procedure broadly follows

that of Kogan et al. (2016) with adaptations for our more extensive sample.

The first step is extracting assignee names from patent records. For post-1976 data we

use information from the USPTO web search to identify assignee names. Due to the high

data quality in this sample, assignee extraction is straightforward and highly accurate. For

pre-1976, we use assignee information from Google patent search. While it is easy to locate

the assignee name field thanks to the HTML format, Google’s assignee names are occasionally

garbled by the OCR.

Next, we clean the set of extracted assignee names. There are 766,673 distinct assignees in

patents granted since 1836. Most of the assignees are firm names and those that are not firms

are typically the names of inventors. We clean assignee name garbling using fuzzy matching

algorithms. For example, the assignee “international business machines” also appears as

an assignee under the names “innternational business machines,” “international businesss

machines,” and “international business machiness.” Garbled names are not uncommon,

appearing for firms as large as GE, Microsoft, Ford Motor, and 3M.

We primarily rely on Levenshtein edit distance between assignees to identify and correct

erroneous names. There are two major challenges to overcome in name cleaning. The first

choosing a distance threshold for determining whether names are the same. As an example,

the assignees “international business machines” (recorded in 103,544) and “ibm” (recorded in

547 patents) have a large Levenshtein distance. To address cases like this, we manually check

the roughly 3,000 assignee names that have been assigned at least 200 patents, correcting

those that are variations on the same firm name (including the IBM, GE, Microsoft, Ford,

and 3M examples). Next, for each firm on the list of most frequent assignees, we calculate

the Levenshtein distance between this assignee name and the remaining 730,000+ assignee

names, and manually correct erroneous names identified by the list of assignees with short

Levenshtein distances.

The second challenge is handling cases in which a firm subsidiary appears as assignee.

For example, the General Motors subsidiary “gm global technology operations” is assigned

8,394 patents. To address this, we manually match subsidiary names from the list of top
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3,000+ assignees to their parent company by manually searching Bloomberg, Wikipedia, and

firms’ websites.

After these two cleaning steps, and after removing patents with the inventor as assignee, we

arrive at 3,036,859 patents whose assignee is associated with a public firm in CRSP/Compustat,

for a total of 7,467 distinct cleaned assignee firm names. We standardized these names by

removing suffixes such as “com,” “corp,” and “inc,” and merge these with CRSP company

names. Again we manually check the merge for the top 3,000+ assignees, and check that

name changes are appropriately addressed in our CRSP merging step. Finally, we also merge

our patent data with Kogan et al.’s (2016) patent valuation data for patents granted between

1926 and 2012.
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Tables and Figures

Table 1: Distribution of patent similarity scores

Variable mean sd p1 p5 p10 p25 p50 p75 p90 p95 p99

Impact (FS), 0–1 years 0.7 0.8 0.0 0.1 0.1 0.2 0.4 0.9 1.8 2.6 4.0
Impact (FS), 0–5 years 3.5 4.1 0.1 0.3 0.4 0.9 2.0 4.3 8.6 12.5 19.9
Impact (FS), 0–10 years 6.4 7.7 0.1 0.4 0.8 1.7 3.7 7.9 15.5 22.8 38.1
Impact (FS), 0–20 years 10.4 12.2 0.1 0.7 1.3 2.9 6.3 13.1 24.2 35.0 61.3

Quality (FS/BS), 0–1 years 0.2 0.1 0.0 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.4
Quality (FS/BS), 0–5 years 1.1 0.4 0.0 0.4 0.7 0.9 1.1 1.2 1.4 1.6 2.2
Quality (FS/BS), 0–10 years 2.1 1.0 0.0 0.4 0.8 1.7 2.1 2.6 3.2 3.7 5.3
Quality (FS/BS), 0–20 years 4.0 2.8 0.0 0.4 0.8 2.3 3.9 5.2 6.8 8.4 13.5

Citations, 0–1 years 0.3 1.1 0 0 0 0 0 0 1 2 4
Citations, 0–5 years 2.9 6.8 0 0 0 0 1 3 7 11 29
Citations, 0–10 years 5.8 14.4 0 0 0 0 2 6 13 23 62
Citations, 0–20 years 8.8 22.7 0 0 0 1 3 9 20 34 95

KPSS patent value ($1982m) 11.5 37.4 0.0 0.0 0.1 0.8 3.6 10.2 24.4 42.5 130.9

Table shows the distribution of our patent level similarity scores: impact (forward similarity) and novelty

(backward similarity); forward citations; and KPSS patent values (in 1982 million USD). Time period is

1840–2016 for the similarity scores; 1946–2016 for citations; and 1927–2016 for the KPSS patent value measure.

Forward similarity scores are scaled by 1,000.
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Table 2: Patent citations, impact and novelty, contemporaneous correlations

Forward citations, 0-1 yr (1) (2) (3) (4) (5)

Forward similarity, 0-1 yr 0.493∗∗∗ 0.629∗∗∗ 0.479∗∗∗ 0.557∗∗∗ 0.546∗∗∗

(8.15) (13.66) (15.77) (18.03) (17.42)

Backward similarity, 0-5 yr -0.440∗∗∗ -0.597∗∗∗ -0.458∗∗∗ -0.542∗∗∗ -0.532∗∗∗

(-7.40) (-13.71) (-15.90) (-18.47) (-17.75)

Observation 5,156,699 5,156,699 5,121,721 1,775,138 1,758,319
R2 0.057 0.114 0.147 0.187 0.215

Forward citations, 0-5 yr (1) (2) (3) (4) (5)

Forward similarity, 0-5 yr 1.447∗∗∗ 1.438∗∗∗ 1.184∗∗∗ 1.198∗∗∗ 1.185∗∗∗

(18.64) (38.97) (72.41) (65.69) (69.75)

Backward similarity, 0-5 yr -1.276∗∗∗ -1.344∗∗∗ -1.100∗∗∗ -1.133∗∗∗ -1.119∗∗∗

(-16.12) (-36.25) (-66.59) (-58.99) (-63.11)

Observation 4,355,594 4,355,594 4,323,134 1,463,683 1,448,640
R2 0.168 0.235 0.282 0.341 0.367

Forward citations, 0-10 yr (1) (2) (3) (4) (5)

Forward similarity, 0-10 yr 1.530∗∗∗ 1.258∗∗∗ 1.111∗∗∗ 1.097∗∗∗ 1.107∗∗∗

(26.66) (51.40) (97.20) (90.01) (81.92)

Backward similarity, 0-10 yr -1.381∗∗∗ -1.171∗∗∗ -1.017∗∗∗ -1.020∗∗∗ -1.029∗∗∗

(-24.40) (-45.12) (-83.34) (-76.93) (-71.79)

Observation 3,528,612 3,528,612 3,499,566 1,151,385 1,138,754
R2 0.208 0.266 0.311 0.373 0.399

Application Year FE Y Y Y Y
Grant Year FE Y Y Y
Class Y Y Y
Firm FE Y
Grant Year × Firm FE Y

Table reports the results of estimating equation (10) in the main text. The regression relates the log of

(one plus) the number of patent citations to our measures of patent impact (forward similarity) and lack

of novelty (inverse of backward similarity) constructed in equations (8) and (9), respectively. As controls,

we include dummies controlling for technology class (defined at the 3-digit CPC level), grant year, firm and

the interaction of firm and year effects. Since patent citations are only consistently recorded after 1945, we

restrict the sample to the 1946–2016 period. Last, we cluster the standard errors by the patent grant year.

See main text for additional details on the specification and the construction of these variables.
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Table 3: Patent citations and patent quality

Forward citations, 0-1 yr (1) (2) (3) (4) (5)

Patent quality (logFS/BS), 0-1 yr 0.515∗∗∗ 0.641∗∗∗ 0.471∗∗∗ 0.547∗∗∗ 0.536∗∗∗

(7.33) (13.53) (15.93) (18.58) (17.87)

Observation 5,156,699 5,156,699 5,121,721 1,775,138 1,758,319
R2 0.040 0.110 0.145 0.187 0.215

Forward citations, 0-5 yr (1) (2) (3) (4) (5)

Patent quality (logFS/BS), 0-5 yr 1.560∗∗∗ 1.470∗∗∗ 1.156∗∗∗ 1.160∗∗∗ 1.147∗∗∗

(16.02) (34.05) (62.43) (60.70) (63.06)

Observation 4,355,594 4,355,594 4,323,134 1,463,683 1,448,640
R2 0.134 0.227 0.277 0.339 0.365

Forward citations, 0-10 yr (1) (2) (3) (4) (5)

Patent quality (logFS/BS), 0-10 yr 1.596∗∗∗ 1.274∗∗∗ 1.082∗∗∗ 1.062∗∗∗ 1.069∗∗∗

(22.42) (47.76) (82.40) (87.47) (81.88)

Observation 3,528,612 3,528,612 3,499,566 1,151,385 1,138,754
R2 0.190 0.260 0.307 0.370 0.397

Application Year FE Y Y Y Y
Grant Year FE Y Y Y
Class Y Y Y
Firm FE Y
Grant Year × Firm FE Y

Table reports the results of estimating equation (12) in the main text. The regression relates the log of

(one plus) the number of patent citations to our measures of patent quality, which combines the patent’s

impact and novelty, constructed in equation (11). As controls, we include dummies controlling for technology

class (defined at the 3-digit CPC level), grant year, firm and the interaction of firm and year effects. Since

patent citations are only consistently documented after 1945, we restrict the sample to the 1946–2016 period.

Last, we cluster the standard errors by the patent grant year. See main text for additional details on the

specification and the construction of these variables.
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Table 4: Patent citations and patent quality: older patents

Forward citations, full sample (1) (2) (3) (4)

Patent quality (logFS/BS), 0-1 yr 0.0571∗∗ 0.126∗∗∗ 0.356∗∗∗ 0.358∗∗∗

(3.22) (7.71) (5.65) (5.54)

Observation 2,406,093 2,402,036 124,286 123,318
R2 0.228 0.276 0.206 0.243

Forward citations, full sample (2) (3) (4) (5)

Patent quality (logFS/BS), 0-5 yr 0.132∗∗∗ 0.196∗∗∗ 0.410∗∗∗ 0.433∗∗∗

(6.79) (11.81) (6.67) (5.99)

Observation 2,406,101 2,402,044 124,286 123,318
R2 0.228 0.277 0.207 0.244

Forward citations, full sample (2) (3) (4) (5)

Patent quality (logFS/BS), 0-10 yr 0.165∗∗∗ 0.218∗∗∗ 0.391∗∗∗ 0.421∗∗∗

(8.65) (14.98) (6.39) (5.88)

Observation 2,406,101 2,402,044 124,286 123,318
R2 0.228 0.277 0.208 0.245

Application Year FE Y Y Y Y
Grant Year FE Y Y Y
Class Y Y Y
Firm FE Y
Grant Year × Firm FE Y

Table reports the results of estimating equation (12) in the main text for patents that were issued prior to

1946. The regression relates the log of (one plus) the total number of patent citations over the 1946–2017

period, to our measures of patent quality, which combines the patent’s impact and novelty, constructed in

equation (11). As controls, we include dummies controlling for technology class (defined at the 3-digit CPC

level), grant year, firm and the interaction of firm and year effects. We restrict the sample to the 1840–1945

period. Last, we cluster the standard errors by the patent grant year. See main text for additional details on

the specification and the construction of these variables.
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Table 5: Patent impact predicts citations

Log cites, 2-5 yr (1) (2) (3)

Log patent quality, 0-1yr 1.324∗∗∗ 1.021∗∗∗ 0.813∗∗∗

(13.78) (19.40) (22.16)
Log cites, 0-1 yr 0.804∗∗∗ 0.721∗∗∗ 0.658∗∗∗

(40.21) (34.83) (36.48)

Observation 4355590 4355590 4323130
R2 0.242 0.294 0.331

Log cites, 6-10 yr (1) (2) (3)

Log patent quality, 0-5yr 0.763∗∗∗ 0.457∗∗∗ 0.440∗∗∗

(19.47) (12.74) (17.48)
Log cites, 0-5 yr 0.554∗∗∗ 0.532∗∗∗ 0.510∗∗∗

(27.29) (20.49) (20.50)

Observation 3528612 3528612 3499566
R2 0.381 0.413 0.436

Log cites, 11-20 yr (1) (2) (3)

Log patent quality, 0-10yr 0.259∗∗ 0.210∗∗∗ 0.327∗∗∗

(2.33) (4.71) (12.51)
Log cites, 0-10 yr 0.491∗∗∗ 0.432∗∗∗ 0.410∗∗∗

(27.50) (22.59) (22.88)

Observation 2414970 2414970 2392257
R2 0.247 0.309 0.347

Application Year FE Y Y
Grant Year FE Y Y

Class Y

Table reports the results of estimating equation (13) in the main text. The regression relates the log of (one

plus) the number of patent citations over a horizon [t, s] to our measures of patent quality (11) measured

over a horizon [0, t] and citations measured over the same interval [0, t]. As controls, we include dummies

controlling for technology class (defined at the 3-digit CPC level), application and grant year effects. Since

patent citations are only consistently documented after 1945, we restrict the sample to the 1946–2016 period.

Last, we cluster the standard errors by the patent grant year. See main text for additional details on the

specification and the construction of these variables.
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Table 6: Quality of ‘historically important’ patents

Fraction of patents in the top

50 % 75 % 90 % 95 % 99 %

Quality, 0–1 years forward 0.63 0.49 0.30 0.16 0.04
Quality, 0–5 years forward 0.82 0.64 0.39 0.27 0.06
Quality, 0–10 years forward 0.84 0.69 0.38 0.30 0.12
Quality, 0–20 years forward 0.88 0.74 0.47 0.31 0.15

Citations, full sample 0.79 0.41 0.32 0.27 0.17

Table reports the results of the external validation exercise described in Section 2.2 in the paper. Specifically,

we obtain a list of 110 ‘historically important’ patents issued in the 1840–1962 period, complied by the

patent historian Jim Bieberich, available through USPAT.COM (http://www.uspat.com/historical/index.

shtml). We then report the fraction of these patents that fall in the top x% in terms of quality using our

measure(s) as well as patent citations. The breakpoints are computed using the entire distribution over the

1840–1962 period.
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Table 7: Patent impact and value

KPSS value (1) (2) (3) (4) (5)

Log patent quality, 0-1 years 0.893∗∗∗ 0.451∗∗∗ 0.397∗∗∗ 0.190∗∗∗ 0.0692∗∗∗

(2.98) (2.79) (5.20) (4.59) (4.11)

Observations 585819 585819 480250 478935 461791
R2 0.006 0.054 0.199 0.825 0.958

KPSS value (1) (2) (3) (4) (5)

Log patent quality, 0-5 years 0.926∗∗∗ 0.452∗∗∗ 0.403∗∗∗ 0.171∗∗∗ 0.0901∗∗∗

(4.31) (3.04) (6.32) (5.29) (4.99)

Observations 511331 511331 416581 415329 399983
R2 0.011 0.051 0.200 0.831 0.959

KPSS value (1) (2) (3) (4) (5)

Log patent quality, 0-10 years 0.409∗∗∗ 0.148 0.233∗∗∗ 0.118∗∗∗ 0.0709∗∗∗

(2.82) (1.06) (3.81) (5.46) (9.01)

Observations 431085 431085 349488 348328 335435
R2 0.004 0.040 0.194 0.831 0.959

Grant Year FE Y Y Y
Class Y Y Y
Firm FE Y
Grant Year × Firm FE Y

Table reports the results of estimating equation (16) in the main text. The regression relates the log of the

Kogan et al. (2016) estimate of the market value of the patent to our measures of patent quality, which

combines the patent’s impact and novelty, constructed in equation (11). As controls, we include dummies

controlling for technology class (defined at the 3-digit CPC level), grant year, firm and the interaction of firm

and year effects. Since patent citations are only consistently documented after 1945, we restrict the sample

to the 1946–2016 period. Last, we cluster the standard errors by the patent grant year. See main text for

additional details on the specification and the construction of these variables.
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Table 8: Patent impact and value (cont)

KPSS value (1) (2) (3) (4) (5)

Patent quality, 0-1 years 0.721∗∗ 0.385∗∗ 0.345∗∗∗ 0.189∗∗∗ 0.0784∗∗∗

(2.53) (2.42) (4.51) (4.64) (4.48)

Log Cites, 0-1 years 0.250∗∗∗ 0.106∗∗∗ 0.132∗∗∗ 0.00408 -0.0391∗∗∗

(7.24) (4.70) (12.06) (0.46) (-20.44)

Observations 585819 585819 480250 478935 461791
R2 0.008 0.054 0.200 0.825 0.958

KPSS value (1) (2) (3) (4) (5)

Patent quality, 0-5 years 0.652∗∗∗ 0.358∗∗ 0.326∗∗∗ 0.171∗∗∗ 0.108∗∗∗

(3.66) (2.45) (5.15) (5.31) (6.04)

Log Cites, 0-5 years 0.153∗∗∗ 0.0660∗∗∗ 0.0778∗∗∗ 0.000830 -0.0263∗∗∗

(4.85) (3.42) (7.38) (0.28) (-23.30)

Observations 511331 511331 416581 415329 399983
R2 0.015 0.052 0.201 0.831 0.959

KPSS value (1) (2) (3) (4) (5)

Patent quality, 0-10 years 0.224∗ 0.103 0.187∗∗∗ 0.116∗∗∗ 0.0888∗∗∗

(1.83) (0.71) (3.05) (5.28) (11.03)

Log Cites, 0-10 years 0.105∗∗∗ 0.0348∗∗∗ 0.0447∗∗∗ 0.00168 -0.0214∗∗∗

(3.22) (2.73) (7.43) (0.67) (-17.03)

Observations 431085 431085 349488 348328 335435
R2 0.006 0.040 0.194 0.831 0.959

Grant Year FE Y Y Y
Class Y Y Y
Firm FE Y
Grant Year × Firm FE Y

Table reports the results of estimating a modified version of equation (16) in the main text. The regression

relates the log of the Kogan et al. (2016) estimate of the market value of the patent to our measures of patent

quality, which combines the patent’s impact and novelty, constructed in equation (11) while controlling for

the log of (one plus) the number of forward citations. As additional controls, we include dummies controlling

for technology class (defined at the 3-digit CPC level), grant year, firm and the interaction of firm and year

effects. Since patent citations are only consistently documented after 1945, we restrict the sample to the

1946–2016 period. Last, we cluster the standard errors by the patent grant year. See main text for additional

details on the specification and the construction of these variables.
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Table 9: Market Value as a Function of R&D, Patents and Similarity Stocks (All patenting firms)

logQ (1) (2) (3) (4)

Horizon τ (0,1) (0,5) (0,10) (0,20)

SRDf,t/Af,t 0.830∗∗∗ 0.924∗∗∗ 1.007∗∗∗ 1.234∗∗∗

(14.59) (14.01) (12.28) (8.48)

SPATf,t/SRDf,t 0.001∗∗∗ 0.013∗∗∗ 0.109 0.333∗∗

(17.28) (9.89) (1.20) (2.04)

SCITf,t/SPATf,t 0.103∗∗∗ 0.033∗∗∗ 0.021∗∗∗ 0.017∗∗∗

(6.33) (10.63) (12.60) (9.48)

SRSIMf,t/SPATf,t 4.866∗∗∗ 0.672∗∗∗ 0.258∗∗∗ 0.076∗∗∗

(12.02) (10.94) (11.12) (8.67)

D(SRD = 0) -0.076∗∗∗ -0.052∗∗∗ -0.030∗∗∗ 0.018
(-7.67) (-5.20) (-2.85) (1.45)

Normalized coefficients: SCITf,t/SPATf,t 0.112 0.321 0.465 0.665
Normalized coefficients: SRSIMf,t/SPATf,t 0.210 0.231 0.263 0.231

N 93,739 82,036 68,295 41,241
R2 0.479 0.483 0.472 0.350

t statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table reports estimates of equation (19) in the text. The equation relates the logarithm of a firm’s Tobin’s Q

to the stocks of R&D expenditure (SRDf,t), number of patents (SPATf,t), patent citations (SCITESf,t),

and the patent quality measures (SRSIMf,t) — constructed as in (17) using a depreciation rate of δ = 15%.

We restrict the sample to patenting firms, that is, firms that have filed at least one patent. We cluster

standard errors by firm.
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Figure 1: Pairwise similarity and citation linkages
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The figure on the left panel (A) plots the empirical CDF of our similarity measure ρi,j across patent citation

pairs. The figure on the right panel plots the conditional probability that patent j cites an earlier patent j as

a function of the text-based similarity score between the two patents, ρi,j , computed in equation (7) in the

main text. For computational reasons, we exclude similarity pairs with ρi,j ≤ 0.5%. Panel B uses data only

post 1945, since citations were not consistently recorded prior to that year.
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Figure 2: Pairwise similarity and citation linkages over time and across tech class
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The left panel plots the mean similarity across patent pairs i and j as a function of the distance in filing

years between the two patents, and whether the two patents belong in the same tech class or not. The right

performs the same exercise for the mean number of citations across pairs. Similarity refers to the text-based

similarity score between the two patents, ρi,j , computed in equation (7) in the main text. For computational

reasons, we exclude similarity pairs with ρi,j ≤ 0.5%. Panel B uses data only post 1945, since citations were

not consistently recorded prior to that year.
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Figure 3: Patent Citations and Forward Similarity Lags
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The left panel plots the mean increase in the total forward similarity as a function of years following the

patent filing date. The right panel performs the same exercise for mean citation counts; for the right panel,

we restrict attention to the 1946-2016 sample, since prior to 1945, citations are not consistently recorded in

patent documents.
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Figure 4: Distribution of patent quality and citations over time

1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

0

1

2

3

lo
g
F
S
1
0
−

lo
g
B
S
5

A. Distribution of patent quality (10-yr forward / 5-yr backward)

1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

0

2

4

6

lo
g
(1

+
ci
te
s)

B. Distribution of forward citations (full sample)

P01 P05 P10 P25 P50 P75 P90 P95 P99

Figure plots the cross-sectional distribution of our patent quality measure (estimated using 10-year forward

similarity, in panel A) and the number of forward citations (using the entire sample, in panel B).
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Figure 5: Patent quality and citations

A. 1946–2010 B. 1840–1945
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Figure presents the regression results of Tables 3 (panel A) and 4 (panel B) as a binned
scatterplot.
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Figure 6: Breakdown by Technology Classes
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0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
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Figure 8: Index of technological progress and future productivity growth

A. Labor Productivity B. Total Factor Productivity
(1889–1957) (1948–2015)
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This set of figures plots the estimated coefficients B(H) from equation (15) in the main text, which correspond

to the response of measured productivity on our technology index. The series on labor productivity in the

1889 to 1957 period is from Kendrick (1961), pages 465–466. The series on total factor productivity during

the 1948 to 2015 period is from Basu et al. (2006), available through the San Francisco FRB. The top row

presents responses to a one-standard deviation shock to our technology index plotted in Panel A of Figure 7,

that is, the log of one plus the number of patents that fall in the top 1% of the unconditional distribution

of patent quality, as measured by FS0,10/BS0,5. The bottom row includes controls for the total number

of patents per capita that are filed in each year. Standard errors are adjusted for overlapping observations

following Hodrick (1992).

49



Additional Tables for Appendix

Table A.1: Distribution of document terms across patents

# Patents # Years
mean 124.03 3.33
std 12465.99 9.29
min 1 1
50% 1 1
75% 2 2
90% 7 6
95% 24 14
98% 69 24
max 8399814 182

Table reports the distribution across terms for number of patents and the number of distinct calendar years

in which a term appears.
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Table A.2: Patent quality predicts citations

Log cites, 2-5 yr (1) (2) (3)

logFS, 0-1yr 1.244∗∗∗ 1.019∗∗∗ 0.848∗∗∗

(14.69) (19.02) (22.46)
logBS, 0-5yr -1.124∗∗∗ -0.949∗∗∗ -0.785∗∗∗

(-12.98) (-17.74) (-20.80)
Log cites, 0-1 yr 0.765∗∗∗ 0.707∗∗∗ 0.652∗∗∗

(45.08) (33.36) (35.66)

Observations 4355590 4355590 4323130
R2 0.259 0.295 0.330

Log cites, 6-10 yr (1) (2) (3)

logFS, 0-5yr 0.757∗∗∗ 0.457∗∗∗ 0.450∗∗∗

(18.99) (12.78) (17.40)
logBS, 0-5yr -0.736∗∗∗ -0.462∗∗∗ -0.431∗∗∗

(-18.61) (-13.44) (-16.95)
Log cites, 0-5 yr 0.550∗∗∗ 0.533∗∗∗ 0.508∗∗∗

(26.01) (20.16) (20.33)

Observations 3528612 3528612 3499566
R2 0.381 0.403 0.427

Log cites, 11-20 yr (1) (2) (3)

logFS, 0-10yr 0.258∗∗ 0.203∗∗∗ 0.325∗∗∗

(2.33) (4.95) (12.70)
logBS, 0-5yr -0.263∗∗ -0.249∗∗∗ -0.328∗∗∗

(-2.31) (-5.50) (-12.42)
Log cites, 0-10 yr 0.491∗∗∗ 0.437∗∗∗ 0.411∗∗∗

(26.65) (22.24) (22.80)

Observations 2414970 2414970 2392257
R2 0.247 0.307 0.344

Grant Year FE Y Y
Class Y

This table is the counterpart to Table 5 in the main text, in which we disaggregate our patent quality measure

into impact (forward similarity) and novelty (the inverse of backward similarity), constructed in equations (8)

and (9), respectively. The regression relates the log of (one plus) the number of patent citations over a horizon

[t, s] to our measures of patent impact and novelty measured over a horizon [0, t] and citations measured

over the same interval [0, t]. As controls, we include dummies controlling for technology class (defined at the

3-digit CPC level), application and grant year effects. Since patent citations are only consistently documented

after 1945, we restrict the sample to the 1946–2016 period. Last, we cluster the standard errors by the patent

grant year. See main text for additional details on the specification and the construction of these variables.
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Table A.3: Patent impact and value

KPSS value (1) (2) (3) (4) (5)

FS, 0-1 years 0.872∗∗∗ 0.451∗∗∗ 0.354∗∗∗ 0.176∗∗∗ 0.0553∗∗∗

(3.03) (2.77) (4.42) (4.19) (3.36)
BS, 0-5 years -0.800∗∗∗ -0.598∗∗∗ -0.417∗∗∗ -0.198∗∗∗ -0.0772∗∗∗

(-2.84) (-4.00) (-5.52) (-4.84) (-4.66)

Observations 585819 585819 480250 478935 461791
R2 0.007 0.057 0.199 0.825 0.958

KPSS value (1) (2) (3) (4) (5)

FS, 0-5 years 0.905∗∗∗ 0.455∗∗∗ 0.381∗∗∗ 0.158∗∗∗ 0.0764∗∗∗

(4.49) (3.01) (5.68) (4.91) (4.32)
BS, 0-5 years -0.856∗∗∗ -0.554∗∗∗ -0.415∗∗∗ -0.178∗∗∗ -0.0980∗∗∗

(-4.75) (-3.91) (-6.54) (-5.53) (-5.51)

Observations 511331 511331 416581 415329 399983
R2 0.011 0.053 0.200 0.831 0.959

KPSS value (1) (2) (3) (4) (5)

FS, 0-10 years 0.403∗∗∗ 0.149 0.218∗∗∗ 0.104∗∗∗ 0.0599∗∗∗

(2.91) (1.06) (3.52) (4.84) (7.77)
BS, 0-5 years -0.377∗∗∗ -0.228∗ -0.247∗∗∗ -0.130∗∗∗ -0.0810∗∗∗

(-3.16) (-1.76) (-3.98) (-5.99) (-9.97)

Observations 431085 431085 349488 348328 335435
R2 0.004 0.041 0.194 0.832 0.959

Grant Year FE Y Y Y
Class Y Y Y
Firm FE Y
Grant Year × Firm FE Y

This Table is the counterpart to Table 7 in the main text, in which we disaggregate our measure of patent

quality into patent impact (forward similarity) and lack of novelty (inverse of backward similarity) constructed

in equations (8) and (9), respectively. Table reports the results of estimating equation (16) in the main text.

The regression relates the log of the Kogan et al. (2016) estimate of the market value of the patent to our

measures of patent quality, which combines the patent’s impact and novelty, constructed in equation (11). As

controls, we include dummies controlling for technology class (defined at the 3-digit CPC level), grant year,

firm and the interaction of firm and year effects. Since patent citations are only consistently documented

after 1945, we restrict the sample to the 1946–2016 period. Last, we cluster the standard errors by the patent

grant year. See main text for additional details on the specification and the construction of these variables.
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Table A.4: Patent impact and value (cont)

KPSS value (1) (2) (3) (4) (5)

FS, 0-1 years 0.721∗∗ 0.368∗∗ 0.297∗∗∗ 0.174∗∗∗ 0.0648∗∗∗

(2.60) (2.28) (3.70) (4.23) (3.78)
BS, 0-5 years -0.669∗∗ -0.522∗∗∗ -0.365∗∗∗ -0.197∗∗∗ -0.0858∗∗∗

(-2.45) (-3.54) (-4.79) (-4.89) (-4.99)
Log Cites, 0-1 years 0.227∗∗∗ 0.136∗∗∗ 0.137∗∗∗ 0.00547 -0.0379∗∗∗

(8.11) (5.52) (12.42) (0.61) (-19.52)

Observations 585819 585819 480250 478935 461791
R2 0.009 0.058 0.200 0.825 0.958

KPSS value (1) (2) (3) (4) (5)

FS, 0-5 years 0.652∗∗∗ 0.342∗∗ 0.295∗∗∗ 0.156∗∗∗ 0.0952∗∗∗

(3.66) (2.27) (4.39) (4.91) (5.41)
BS, 0-5 years -0.642∗∗∗ -0.451∗∗∗ -0.337∗∗∗ -0.177∗∗∗ -0.115∗∗∗

(-3.98) (-3.24) (-5.33) (-5.52) (-6.50)

Log Cites, 0-5 years 0.150∗∗∗ 0.0801∗∗∗ 0.0812∗∗∗ 0.00208 -0.0251∗∗∗

(5.15) (3.90) (7.51) (0.71) (-21.81)

Observations 511331 511331 416581 415329 399983
R2 0.015 0.054 0.201 0.831 0.959

KPSS value (1) (2) (3) (4) (5)

FS, 0-10 years 0.224∗ 0.0933 0.166∗∗ 0.101∗∗∗ 0.0777∗∗∗

(1.82) (0.64) (2.67) (4.61) (9.86)
BS, 0-5 years -0.221∗∗ -0.177 -0.200∗∗∗ -0.128∗∗∗ -0.0971∗∗∗

(-2.03) (-1.32) (-3.22) (-5.76) (-11.81)
Log Cites, 0-10 years 0.104∗∗∗ 0.0430∗∗∗ 0.0472∗∗∗ 0.00328 -0.0203∗∗∗

(3.34) (3.16) (7.42) (1.33) (-15.78)

Observations 431085 431085 349488 348328 335435
R2 0.006 0.040 0.194 0.831 0.959

Grant Year FE Y Y Y
Class Y Y Y
Firm FE Y
Grant Year × Firm FE Y

This Table is the counterpart to Table 8 in the main text, in which we disaggregate our measure of patent

quality into patent impact (forward similarity) and lack of novelty (inverse of backward similarity) constructed

in equations (8) and (9), respectively. Table reports the results of estimating a modified version of equation (16)

in the main text. The regression relates the log of the Kogan et al. (2016) estimate of the market value of the

patent to our measures of patent quality, which combines the patent’s impact and novelty, constructed in

equation (11). We control for the number of citations the patent receives over that period. As additional

controls, we include dummies controlling for technology class (defined at the 3-digit CPC level), grant year,

firm and the interaction of firm and year effects. Since patent citations are only consistently documented

after 1945, we restrict the sample to the 1946–2016 period. Last, we cluster the standard errors by the patent

grant year. See main text for additional details on the specification and the construction of these variables.53



Table A.5: Patent quality: Historically important patents

Patent Year Inventor Patent Name Cites Percentile Rank

Patent quality Citations

(0-1) (0-5) (0-10) (0-20) (full)

1647 1840 Samuel F. B. Morse Morse Code 2 1.8 0.3 5.0 93.1 55.7
3633 1844 Charles Goodyear Vulcanized Rubber 3 94.2 98.0 99.1 99.9 65.1
4750 1846 Elias Howe, Jr. Sewing Machine 1 1.0 98.2 99.9 100.0 41.7
4834 1846 Benjamin F. Palmer Artificial Limb 0 17.1 96.6 99.0 99.9
4848 1846 Charles T. Jackson Anesthesia 0 90.6 94.7 98.6 99.9
4874 1846 Christian F. Schonbein Guncotton 0 96.4 96.7 98.4 99.7
5199 1847 Richard M. Hoe Rotary Printing Press 0 63.7 97.7 99.6 99.6
6281 1849 Walter Hunt Safety Pin 0 99.2 99.7 100.0 100.0
9300 1852 Lorenzo L. Langstroth Beehive 1 82.4 95.9 99.9 100.0 41.7

13661 1855 Isaac M. Singer Shuttle Sewing Machine 1 80.1 98.6 97.6 99.0 41.7
15553 1856 Gail Borden, Jr. Condensed Milk 0 73.9 99.1 99.7 99.8
17628 1857 William Kelly Iron and Steel Manuf. 0 98.6 98.0 99.3 99.4
26196 1859 James J. Mapes Artificial Fertilizer 1 96.2 94.7 99.4 99.2 41.7
31128 1861 Elisha Graves Otis Elevator 1 18.7 95.8 98.5 98.2 41.7
31278 1861 Linus Yale, Jr. Lock 10 2.3 84.4 98.1 98.2 90.7
36836 1862 Richard J. Gatling Machine Gun 2 95.3 97.8 97.8 97.9 55.7
59915 1866 Pierre Lallement Bicycle 0 99.9 99.9 99.5 98.9
78317 1868 Alfred Nobel Dynamite 3 98.6 93.5 75.5 80.8 65.1
79265 1868 C. Latham Sholes Typewriter 1 98.3 97.7 96.8 97.4 41.7
79965 1868 Alvin J. Fellows Spring Tape Measure 2 86.0 83.6 90.0 94.5 55.7
91145 1869 Ives W. McGaffey Vacuum Cleaner 3 78.8 88.5 83.6 90.2 65.1

110971 1871 Andrew Smith Hallidie Cable Car 0 80.3 84.5 88.9 95.9
135245 1873 Louis Pasteur Pasteurization 0 33.9 28.5 64.4 64.3
157124 1874 Joseph F. Glidden Barbed Wire 1 49.0 91.9 97.3 97.4 41.7
174465 1876 Alexander Graham Bell Telephone 4 8.3 99.3 99.8 99.6 71.9
194047 1877 Nicolaus August Otto Internal Combustion Engine 1 13.0 69.0 82.9 87.8 41.7
200521 1878 Thomas Alva Edison Phonograph 10 87.8 96.6 96.1 95.3 90.7
223898 1880 Thomas Alva Edison First Incandescent Light 20 99.8 99.9 99.5 98.7 97.7
224573 1880 Emile Berliner Microphone 0 97.4 95.7 97.8 99.2
237664 1881 Frederic E. Ives Halftone Printing Plate 0 93.5 95.4 95.4 91.9
304272 1884 Ottmar Mergenthaler Linotype 0 96.6 93.6 95.8 94.7
347140 1886 Elihu Thomson Electric Welder 2 5.9 73.6 68.6 69.8 55.7
371496 1887 Dorr E. Felt Adding Machine 2 70.7 90.5 81.0 77.7 55.7
372786 1887 Emile Berliner Phonograph Record 1 90.9 93.2 82.3 96.5 41.7
373064 1887 Carl Gassner, Jr. Dry Cell Battery 3 86.2 81.8 34.1 31.8 65.1
382280 1888 Nikola Tesla A. C. Induction Motor 1 88.7 96.2 89.1 93.7 41.7
388116 1888 William S. Burroughs Calculator 1 10.8 87.5 85.1 80.0 41.7
388850 1888 George Eastman Roll Film Camera 1 98.5 96.1 92.9 95.0 41.7
395782 1889 Herman Hollerith Computer 0 29.7 53.4 63.8 66.2 16.7
400664 1889 Charles M. Hall Aluminum Manufacture 12 5.7 56.6 63.2 79.8 93.2
430212 1890 Hiram Stevens Maxim Smokeless Gunpowder 0 90.8 74.4 64.0 79.6
468226 1892 William Painter Bottle Cap 5 66.3 85.1 82.7 90.4 77.2
492767 1893 Edward G. Acheson Carborundum 11 14.9 10.9 30.0 52.2 92.1
493426 1893 Thomas A. Edison Motion Picture 1 44.7 65.0 86.3 94.4 41.7
504038 1893 Whitcomb L. Judson Zipper 5 24.0 23.2 30.0 62.9 77.2
549160 1895 George B. Selden Automobile 0 33.2 58.6 79.1 86.2
558936 1896 Joseph S. Duncan Addressograph 2 11.9 13.7 39.7 71.6 55.7
586193 1897 Guglielmo Marconi Radio 0 10.2 84.4 90.9 90.4
589168 1897 Thomas A. Edison Motion Picture Camera 0 46.3 42.9 73.9 89.0
608845 1898 Rudolf Diesel Diesel Engine 8 63.5 76.1 86.4 90.4 86.9
621195 1899 Ferdinand Graf Zepplin Dirigible 1 56.3 87.7 81.9 81.2 41.7

The table reports the full list of patents used in the validation exercise in Section 2.2 in the paper. In addition to

the number of forward citations, we report for each patent its rank percentile in terms of our quality measure(s)

and the number of forward patent citations. Source: http://www.uspat.com/historical/index.shtml.
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Table A.6: Patent quality: Historically important patents (continued)

Patent Year Inventor Patent Name Cites Percentile Rank

Patent quality Citations

(0-1) (0-5) (0-10) (0-20) (full)

644077 1900 Felix Hoffmann Aspirin 1 92.8 91.9 81.0 84.2 41.7
661619 1900 Valdemar Poulsen Magnetic Tape Recorder 7 63.0 93.9 92.1 87.8 84.4
708553 1902 John P. Holland Submarine 1 91.4 89.9 84.7 90.5 41.7
745157 1903 Clyde J. Coleman Electric Starter 1 96.4 96.4 95.9 96.1 41.7
766768 1904 Michael J. Owens Glass Bottle Manuf. 0 91.5 89.6 85.5 79.6
808897 1906 Willis H. Carrier Air Conditioning 20 52.6 70.1 76.1 82.2 97.7
821393 1906 Orville Wright Airplane 18 97.9 99.9 100.0 100.0 97.0
841387 1907 Lee De Forest Triode Vacuum Tube 4 41.2 19.9 35.9 61.6 71.9
942809 1909 Leo H. Baekeland Bakelite 1 92.8 95.0 95.1 97.6 41.7
971501 1910 Fritz Haber Ammonia Production 0 98.6 98.9 98.4 98.8

1005186 1911 Henry Ford Automotive Transmission 2 48.9 64.4 69.8 71.3 55.7
1008577 1911 Ernst Alexanderson High Frequency Generator 0 17.9 37.0 60.3 84.1
1030178 1912 Peter Cooper Hewitt Mercury Vapor Lamp 1 88.8 93.7 92.5 94.6 41.7
1082933 1913 William D. Coolidge Tungsten Filament Light Bulb 17 82.8 84.0 82.7 87.3 96.6
1102653 1914 Robert H. Goddard Rocket 55 15.1 57.1 50.9 47.2 99.8
1113149 1914 Edwin H. Armstrong Wireless Receiver 7 85.6 91.8 94.2 96.6 84.4
1115674 1914 Mary P. Jacob Brassiere 1 91.2 74.2 63.7 45.9 41.7
1180159 1916 Irving Langmuir Gas Filled Electric Lamp 3 93.7 87.6 87.1 86.8 65.1
1203495 1916 William D. Coolidge X-Ray Tube 4 83.8 78.3 85.8 94.2 71.9
1279471 1918 Elmer A. Sperry Gyroscopic Compass 8 92.8 96.3 97.4 96.9 86.9
1413121 1922 John Arthur Johnson Adjustable Wrench 0 48.1 13.0 9.0 3.2
1420609 1922 Glenn H. Curtiss Hydroplane 2 87.6 80.7 77.9 68.7 55.7
1573846 1926 Thomas Midgley, Jr. Ethyl Gasoline 2 32.9 38.6 43.6 35.4 55.7
1773080 1930 Clarence Birdseye Frozen Food 18 71.3 83.0 70.3 47.3 97.0
1773980 1930 Philo T. Farnsworth Television 8 90.9 94.9 91.0 88.1 86.9
1848389 1932 Igor Sikorsky Helicopter 5 93.6 55.1 49.7 46.2 77.2
1941066 1933 Edwin H. Armstrong FM Radio 0 75.5 44.7 65.6 73.2
1948384 1934 Ernest O. Lawrence Cyclotron 96 23.1 31.8 46.9 51.1 100.0
2021907 1935 Vladimir K. Zworykin Television 16 33.7 44.9 66.0 65.4 96.1
2059884 1936 Leopold D. Mannes Color Film 11 9.4 23.9 31.9 29.0 92.1
2071250 1937 Wallace H. Carothers Nylon 186 61.7 72.4 87.8 85.0 100.0
2153729 1939 Ernest H. Volwiler Pentothal 2 58.4 88.3 76.5 73.6 55.7
2206634 1940 Enrico Fermi Radioactive Isotopes 97 42.4 88.8 86.9 89.9 100.0
2297691 1942 Chester F. Carlson Xerography 736 66.0 10.1 16.2 44.7 100.0
2329074 1943 Paul Muller DDT - Insecticide 48 9.9 8.6 20.9 53.3 99.8
2404334 1946 Frank Whittle Jet Engine 35 3.9 17.1 22.7 32.8 99.4
2451804 1948 Donald L. Campbell Fluid Catalytic Cracking 9 89.0 74.5 73.9 80.6 89.0
2524035 1950 John Bardeen Transistor 132 51.4 69.5 87.5 95.0 100.0
2543181 1951 Edwin H. Land Instant Photography 116 32.4 52.3 71.5 93.5 100.0
2569347 1951 William Shockley Junction Transistor 140 32.2 52.6 74.0 84.5 100.0
2668661 1954 George R. Stibitz Modern Digital Computer 14 98.8 97.0 98.0 99.4 94.9
2682050 1954 Andrew Alford Radio Navigation System 3 32.3 72.8 78.2 86.0 65.1
2682235 1954 Richard B. Fuller Geodesic Dome 86 30.0 56.5 67.5 77.6 99.9
2691028 1954 Frank B. Colton First Oral Contraceptive 4 87.7 93.4 95.8 96.3 71.9
2699054 1955 Lloyd H. Conover Tetracycline 38 93.4 95.9 96.1 96.0 99.6
2708656 1955 Enrico Fermi Atomic Reactor 196 99.9 98.7 97.9 98.4 100.0
2708722 1955 An Wang Magnetic Core Memory 76 36.1 79.2 90.1 93.1 99.9
2717437 1955 George De Mestral Velcro 258 48.6 51.9 46.9 60.5 100.0
2816721 1957 R. J. Taylor Rocket Engine 25 82.1 80.1 80.9 80.6 98.7
2835548 1958 Robert C. Baumann Satellite 16 82.9 88.3 87.4 79.6 96.1
2866012 1958 Charles P. Ginsburg Video Tape Recorder 30 78.5 85.2 88.9 89.5 99.2
2879439 1959 Charles H. Townes Maser 22 72.4 81.0 82.9 79.5 98.1
2929922 1960 Arthur L. Shawlow Laser 122 79.5 89.4 90.0 89.1 100.0
2956114 1960 Charles P. Ginsburg Wideband Magnetic Tape 11 67.9 77.2 82.6 85.7 92.1
2981877 1961 Robert N. Noyce Semiconductor Device 152 96.1 97.6 97.7 96.8 100.0
3093346 1963 Maxime A. Faget First Manned Space Capsule 19 87.7 94.0 93.5 85.0 97.4
3118022 1964 Gerhard M. Sessler Electret Microphone 39 66.7 79.2 78.8 72.2 99.6
3156523 1964 Glenn T. Seaborg Americium (Element 95) 1 93.0 88.7 91.5 94.7 41.7
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Table A.7: Firm-level data — descriptive statistics

A. All patenting firms

Observations Mean sd p10 p25 p50 p75 p90

Tobin’s Q 94433 2.08 3.04 0.82 1.00 1.33 2.11 3.73
Book Assets (USDb) 94433 4.58 44.80 0.01 0.04 0.15 0.88 4.62
SRD, R&D Stock (USDb) 94433 0.25 1.69 0.00 0.00 0.01 0.05 0.23
SPAT, Patent Stock (1000’s) 94433 0.10 0.59 0.00 0.00 0.01 0.02 0.14
SRSIM / SPAT, 0-1 yr 94433 0.23 0.04 0.19 0.20 0.22 0.24 0.27
SRSIM / SPAT, 0-5 yr 94433 1.23 0.34 0.95 1.02 1.15 1.32 1.57
SRSIM / SPAT, 0-10 yr 94433 2.61 1.02 1.80 2.02 2.38 2.90 3.68
SRSIM / SPAT, 0-20 yr 94433 5.25 3.03 2.37 3.76 4.63 6.09 8.48
SCIT / SPAT, 0-1 yr 94433 0.44 1.09 0.00 0.00 0.20 0.46 1.00
SCIT / SPAT, 0-5 yr 94433 4.72 9.74 0.71 1.34 2.43 4.94 9.65
SCIT / SPAT, 0-10 yr 94433 10.83 22.14 1.59 2.80 5.19 11.00 23.24
SCIT / SPAT, 0-20 yr 94433 18.66 39.12 3.00 4.88 9.00 18.16 39.00

B. Manufacturing (2000-3999)

Observations Mean sd p10 p25 p50 p75 p90

Tobin’s Q 65795 2.04 2.88 0.81 1.00 1.34 2.11 3.68
Book Assets (USDb) 65795 2.18 11.82 0.01 0.03 0.13 0.66 3.09
SRD, R&D Stock (USDb) 65795 0.30 1.84 0.00 0.00 0.01 0.07 0.31
SPAT, Patent Stock (1000’s) 65795 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SRSIM / SPAT, 0-1 yr 65795 0.23 0.04 0.19 0.20 0.22 0.24 0.26
SRSIM / SPAT, 0-5 yr 65795 1.20 0.29 0.94 1.01 1.14 1.30 1.50
SRSIM / SPAT, 0-10 yr 65795 2.51 0.87 1.77 2.00 2.34 2.84 3.48
SRSIM / SPAT, 0-20 yr 65795 5.05 2.66 2.28 3.71 4.55 5.95 8.05
SCIT / SPAT, 0-1 yr 65795 0.37 0.67 0.00 0.03 0.21 0.43 0.87
SCIT / SPAT, 0-5 yr 65795 3.92 5.33 0.78 1.36 2.39 4.51 8.26
SCIT / SPAT, 0-10 yr 65795 9.02 13.54 1.69 2.79 5.04 10.00 19.55
SCIT / SPAT, 0-20 yr 65795 15.77 25.73 3.00 4.83 8.74 16.50 33.02

Table reports descriptive statistics for the firm-level stock variables constructed in equation (17).
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Table A.8: Market Value as a Function of R&D, Patents and Similarity Stocks (Manufacturing only)

logQ (1) (2) (3) (4)

Horizon (0,1) (0,5) (0,10) (0,20)

RDi,t/Ai,t 0.777∗∗∗ 0.878∗∗∗ 0.855∗∗∗ 1.126∗∗∗

(12.77) (11.99) (10.31) (6.64)

PATi,t/RDi,t -0.014 -0.013 -0.063 0.066
(-0.51) (-0.60) (-0.94) (0.42)

CITi,t/PATi,t 0.163∗∗∗ 0.056∗∗∗ 0.027∗∗∗ 0.020∗∗∗

(5.76) (11.02) (11.29) (9.46)

RSIMi,t/PATi,t 5.014∗∗∗ 0.686∗∗∗ 0.247∗∗∗ 0.094∗∗∗

(11.32) (9.79) (9.35) (8.83)

D(R&D = 0) -0.179∗∗∗ -0.139∗∗∗ -0.113∗∗∗ -0.0490∗∗∗

(-13.39) (-10.40) (-8.24) (-3.27)

Normalized coefficients: CITi,t/PATi,t 0.110 0.308 0.370 0.275
Normalized coefficients: RSIMi,t/PATi,t 0.182 0.199 0.219 0.232

N 65,229 57,800 48,943 30,232
R2 0.491 0.496 0.478 0.362

t statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table reports estimates of equation (19) in the text, restricted to the sample of manufacturing firms (SIC

2000-3999) . The equation relates the logarithm of a firm’s Tobin’s Q to the stocks of R&D expenditure

(SRDf,t), number of patents (SPATf,t), patent citations (SCITESf,t), and the patent quality measures

(SRSIMf,t) — constructed as in (17) using a depreciation rate of δ = 15%. We restrict the sample to

patenting firms, that is, firms that have filed at least one patent. We cluster standard errors by firm.
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