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Abstract

This paper proposes a multi-country approach for the analysis of the interaction between uncer-
tainty and economic activity both within and across economies. It considers two global factors,
labeled “real” and “financial”, and identified assuming different patterns of cross-country correla-
tions of country-specific innovations to output growth and stock market volatility. It is assumed
that only the real factor is required to model cross-country correlations of growth innovations,
but both factors (real and financial) are needed to model cross-country correlations of volatility
innovations. The paper shows that these assumptions are in accordance with stylized facts of the
underlying data and the estimated innovations. The identified factors are then used within a high-
dimensional factor-augmented VAR to quantify the impact and the relative importance of common
and country-specific shocks. It is found that most of the unconditional correlation between volatil-
ity and growth can be accounted for by the two common factors. While unconditionally volatility
behaves countercyclically for all but one of the 32 countries in our sample, once we condition on
the factors the growth-volatility correlation becomes essentially negligible in all countries with the
exception of five emerging market economies. The paper also shows that the share of volatility
variance explained by the real factor and by country-specific growth shocks is relatively small.
Similarly, shocks to the financial factor explain only a small fraction of the country-specific growth
variance. Finally, country-specific shocks are important for domestic volatility and growth, but
have limited spillover effects to other countries.
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1 Introduction

During the global financial crisis, the world economy experienced a sharp and synchronized contraction

in economic activity and an exceptional increase in volatility. Indeed, after the VIX Index (a commonly

used measure of market volatility) spiked during the second half of 2008, world growth collapsed (Figure

1). Since then, in part as a response to this dramatic event, there has been a renewed and strong

interest in the relationship between uncertainty (defined and measured in various ways) and economic

activity over the business cycle.1

Figure 1 Quarterly World GDP Growth and VIX Index
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Note. World GDP growth is a PPP-GDP weighted average of the quarter on quarter GDP growth
(in percent) of 32 advanced and developing economies. See Appendix C for data sources.

It is now well established that empirical measures of uncertainty behave countercyclically in the

United States and in most other countries around the world.2 But interpreting this correlation in

economic or structural terms is challenging because the direction of causation can run in both ways.

From a theoretical standpoint, uncertainty can cause economy activity to slow and contract through

a variety of mechanisms, both on the household side via precautionary savings (Kimball (1990)) and

on the firm side via physical frictions (see for instance Bernanke (1983), Dixit and Pindyck (1994) and,

more recently, Bloom (2009)) or financial frictions (Christiano et al. (2014), Gilchrist et al. (2013),

1The ensuing literature is now voluminous. Here we focus on the studies more directly related to our paper. See
Bloom (2014) for a recent survey.

2See, for instance, Baker and Bloom (2013), Carriere-Swallow and Cespedes (2013), Nakamura et al. (2017).

2



Arellano et al. (2012)).3

But it is also possible that uncertainty responds to fluctuations in economic activity. Indeed, the

theoretical literature highlights numerous mechanisms through which spikes in uncertainty may be the

reflection of adverse economic conditions rather than driving them. Examples based on information

and financial frictions include Van Nieuwerburgh and Veldkamp (2006), Fostel and Geanakoplos (2012),

Ilut et al. (2017), and Tian (2015). Yet, other models stress interaction effects between uncertainty

and financial frictions via an increase in the risk premium (e.g., Christiano et al., 2014, Gilchrist et al.,

2013, Arellano et al., 2012).

In this paper, we propose a multi-country approach to identification and modeling of the interaction

between uncertainty and economic activity, without restricting the direction of economic causation. We

measure uncertainty and activity with realized equity market volatility and GDP growth, respectively.

We assume that uncertainty and activity are driven by two common factors, a “real” and “financial”

factor, as well as country-specific volatility and growth shocks. We identify and estimate the two

common factors by assuming that innovations to volatility and growth have different patterns of

correlations across countries. Specifically we assume that only the real factor is required to model

cross-country correlations of output growth innovations, but both factors (real and financial) are

needed to model cross country correlations of volatility innovations. It is shown that these assumptions

are in accordance with stylized facts of the underlying data and the estimated innovations. We then

estimate the impact of shocks to these factors on country-specific volatility and growth as well as their

importance relative to each other, and to country-specific shocks.

We start by assuming that all growth and volatility series share at least one common factor. This

assumption is consistent with a standard, multi-country capital asset pricing model (CAPM) in which

world technology drives the price and the variance of all country equity claims. To identify this

factor, we further assume that volatility innovations are more correlated across countries than growth

innovations. Technically, we assume strong cross-country dependence of volatility innovations, and

weak dependence of growth innovations (in the sense of Chudik et al., 2011). This is equivalent to

assuming that volatility innovations share at least one further strong common factor as compared

3Pricing frictions and the zero lower bound can amplify the impact of the shock and produce data-congruent comove-
ments between investment and consumption (Fernandez-Villaverde et al. (2011), Basu and Bundick (2017), Born and
Pfeifer (2014)).
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Figure 2 Cross-country Correlation of Volatility and GDP Growth
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Note. Average cross-country pairwise correlation of volatility (light bars) and GDP growth (dark
bars). The dotted lines correspond to the average pairwise correlations across countries, at 0.58 and
0.27 for volatility and GDP growth, respectively. See section 4 for data sources and measurement of
volatility.

to growth innovations. As the paper shows, under this key assumption, the common factor can be

approximated by world growth, up to an affine transformation. Thus, we label it a ”real” factor.

The key point here is that the identification assumptions apply to a large enough set of countries, as

opposed to a single country considered in isolation. It allows a two-way causality between growth and

volatility innovations at the individual country levels, and only requires the factors to enter the global

economy in a triangular manner. The approach is simple and transparent, and can be applied in other

contexts.

Our main identification assumption is in accordance with patterns of cross-country correlation

that we document in the raw data, as well as formal testing on the cross-country dependence of the

estimated country-specific volatility and growth innovations that we report in the paper. For instance,

Figure 2 exhibits the average cross-country pairwise correlation of volatility and growth. The average

pairwise correlation for the volatility series is more than twice the average for the growth series,

at 0.58 and 0.27, respectively. As we shall see in the paper, we find comparable differences by using

principal component analysis, and even more striking differences when we look at volatility and growth

innovations.4

This evidence suggests that volatility series share additional common factors not shared by the

4Notice here that these patterns are consistent with those documented by Tesar (1995), ?, and Lewis and Liu (2015)
for equity return and consumption growth correlations.
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growth series. Under the additional and testable assumption that the volatility series share only

one additional strong common factor, the loading matrix becomes triangular, with country-specific

volatilities load contemporaneously on both factors growth rates, and growth rates loading only on

the first factor.

The interpretation of this second factor is more problematic. It is well known that the international

CAPM has a number of counterfactual predictions, and additional factors are needed to address these

shortcomings. For instance, one could consider adding preference shocks, or altering the information

assumptions, in the basic framework to improve its empirical performance. As we discuss in the

paper, the second common factor in our model could be interpreted as the common jump component

in an international disaster or long-run risk model.5 Alternatively, one could also think about the

United States as “small and granular” in global production and consumption (because relatively close

to trade in goods and services), but “large and dominant” in global finance (in the sense that all

volatility series must load onto it as discussed by Chudik and Pesaran (2013) (because of its very deep

and open capital markets). For this reason we shall label it “financial” factor. Nonetheless, the paper

is ultimately agnostic on the deeper economic interpretation of this second factor that we identify from

the data. The approach taken in the paper is to start from the properties of the data without taking

a stance on the specific model that might be generating them.

For each country, we focus on real GDP growth and realized equity market volatility. To measure

economic uncertainty, we build on the contributions of Andersen et al. (2001, 2003) and Barndorff-

Nielsen and Shephard (2002, 2004), and we compute realized equity price volatility for a given quarter

by using daily stock returns on 32 advanced and emerging economies representing more than 90 percent

of the world economy. In the paper, we consider and discuss several other measures of volatility and

argue that they are either not suitable for the purpose of our analysis or not readily available for a

large collection of countries like the one we use in our analysis. We measure economic activity with

quarterly GDP growth.

The multi-country nature of our framework allows us to investigate a number of different empirical

issues. First, and most importantly, we find that most of the negative correlation between volatility

5Lewis and Liu (2017), show that a disaster risk model with both country-specific and common disaster risk can
generate patterns of equity return and consumption growth correlations across countries consistent with the one we
assume for growth and volatility.

5



and growth observed in the data can be accounted for by the real and financial factors. While

unconditionally volatility behaves countercyclically for all but one of the 32 countries in our sample,

when we condition on the two factors, the correlation between volatility and growth innovations

becomes essentially negligible in all countries with the exception of five emerging market economies.

Second, the papers shows that, on average, country-specific volatility variance is explained largely

by the financial factor (60%), and the own country-specific volatility shock (30%), and is only marginally

affected by the real factor, or own country-specific growth shock. Thus one could argue that the en-

dogenous component of volatility is small, or, equivalently, that volatility is largely exogenous.

In contrast, country-specific growth variance is mainly explained by own growth shocks (60%), and

the real factor (25%). Even though it has contractionary effects on country-specific growths, shocks to

the financial factor explain only a small fraction (12%) of the country-specific growth variance. This

suggests that shocks to the financial factor can be potentially harmful for growth, although they tend

to occur rather rarely. Finally, shocks to country-specific volatility explain a negligible share of growth

variance.

The paper is related to two different strands of the literature. The first strands acknowledges that

volatility may be endogenous and could be driven by business or financial cycles–see, for instance,

Ludvigson et al. (2015), Clark et al. (2016), Giglio et al. (2016). A key difference relative to these

contributions, is that the common real factor, which is the main source of endogeneity in our factor

model, is common to both macroeconomic and financial variables (GDP growth and equity price

volatility), as opposed being common only to the macroeconomic variables. Also, our identification

strategy is simple and consistent with observable cross-country correlation properties of the data.

A second strand of the literature assumes that uncertainty is exogenous and considers the interna-

tional dimension of the relation between uncertainty and activity, with findings consistent with those

obtained for the United States. For instance, Carriere-Swallow and Cespedes (2013) estimate a battery

of separate small open economy VARs for 20 advanced and 20 emerging market economies in which the

VIX index is assumed to be determined exogenously. Using an unbalanced panel of 60 countries, Baker

and Bloom (2013) provide evidence of the counter-cyclicality of different proxies for uncertainty, such

as stock market volatility, sovereign bond yields volatility, exchange rate volatility and GDP forecast

disagreement. Finally, Hirata et al. (2012) estimate a factor-augmented VAR (FAVAR), with factors
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computed based on data for 18 advanced economies, and use a recursive identification scheme in which

the volatility variable is ordered first in the VAR.

While these papers share with ours an international focus, the distinctive feature of our analysis

is to consider a multi-country framework in which countries interact with each other, as opposed to a

set of countries considered in isolation. The FAVAR model used by Hirata et al. (2012) does allow for

interconnected countries through the factors, but it continues to relay on recursive structures at the

country-specific level to identify volatility shocks. In contrast, our identification strategy allows us to

quantify the extent to which country-specific volatility is exogenous as opposed to assuming it from

the outset of the analysis.6

The rest of the paper is organized as follows. Section 2 discusses the model that we propose and the

identification of the two factors. Section 3 extends the analysis to a fully dynamic and heterogeneous

set up. Section 4 discusses the use of realized volatility as a proxy for uncertainty and explains how we

compute it. Section 5 reports key stylized facts of the data, including evidence on the cross-country

correlation structure. Section 6 reports the main empirical results. Section 7 concludes. Proof of our

theoretical derivations and details on the data sources are in the Appendix. Selected country-specific

results are reported in an online Supplement.

2 A Simple Static Factor Model

This section presents a static version of the dynamic model that we use in the empirical analysis and

discuss its identification and interpretation. Omitting any dynamics and deterministic components to

simplify the exposition, we posit the following common factor representation for the contemporaneous

correlation between volatility and growth, for a large number of countries indexed by i:

vit = λift + uit, (1)

∆yit = γift + εit, (2)

6As we show in the paper, our multi-country set up can also be viewed as FAVAR model, with the difference that
we allow for a large number of country-specific variables and estimate the factors as cross-country averages of output
growth and volatility.
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for i = 1, 2, ..., N, and t = 1, 2, ..., T . Here, vit denotes a volatility (uncertainty) measure for country

i, and ∆yit is an economic activity indicator for country i at time t (say, real GDP growth like in

our application, simply called “output” or “growth” for brevity in the paper). The common factor,

ft, is assumed to have mean zero and a finite variance that is normalized to one for simplicity. The

country-specific innovations, uit and εit, are serially uncorrelated with zero means and finite variances,

but can be correlated with each other both within and between countries. Conditional on the common

factor, ft, therefore, the correlation between uit and εit captures any contemporaneous causal relation

between volatility and growth, on which we do not impose any restriction.

This representation is quite general and can be motivated by both theory and empirical evidence.

From a theoretical perspective, one can think of ft as a fundamental factor, such as world technology,

which affects all countries GDP growth rates and country equity price indexes volatilities at the same

time. For example, in a general equilibrium version of the international CAPM with complete asset

markets, ft is world growth and it affects all country growth rates and return volatilities contempora-

neously. While this frictionless general equilibrium benchmark cannot account for typical stylized facts

of country equity returns, it provides a starting point to consider additional shocks and frictions for

empirical modeling purposes.7 From an empirical perspective, as we will show below for our sample of

countries, and as documented in the literature, GDP growth and volatility share a large and negative

contemporaneous correlation at the country level, for all countries we consider.

2.1 Identifying the Fundamental Factor through Cross-Country Correlation

In order to identify the innovations uit and εit, the common factor ft, and the factor loadings λi and γi

of (1)-(2) we need to impose some restrictions. The model (1)-(2) applies to all N countries. Consider

the generic country i, like for instance the United States. If we consider the United States in isolation

from the rest of the world, we cannot identify the parameters of the model above, even if ft is assumed

to be known, unless we exclude it from one of the two equations. To see this note that the covariance

7For a more detailed discussion, see, for instance Obstfeld and Rogoff (1996, Chapter 5).
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matrix of vit and ∆yit is given by:

Θi =

 λ2
i + σ2

u,i λiγi

λiγi γ2
i + σ2

ε,i

 . (3)

This provides three independent restrictions, but the factor model contains four free parameters,

namely, (λi, γi), and (σ2
u,i, σ

2
ε,i). Their identification can be achieved only by imposing at least one

additional exclusion restriction, e.g. either λi = 0 or γi = 0.8

The main idea of this paper is to achieve identification of all model parameters by placing restric-

tions on the degree of cross-country error correlations, namely the contemporaneous correlation of uit

and εit over i = 1, 2, ..., N at a given point in time t. The identification strategy that we propose is

general and can be applied to any panel of time series with the same properties of cross-section corre-

lation that we assume. The model could have more factors provided that we consider more observable

variables across countries. However, what is crucial is to look at the whole set of N cross-sectional

units, as opposed to one unit at a time, taken in isolation. As we will shall see, the identification

strategy also requires that N is sufficiently large and no one country is dominant, in the sense defined

by Chudik and Pesaran (2013), and to be made precise below.

To illustrate the strategy, let’s define global volatility and GDP growth by v̄ω,t and ∆ȳω,t, respec-

tively, as follows:

v̄ω,t =

N∑
i=1

ẘivit, (4)

∆ȳω,t =
N∑
i=1

wi∆yit, (5)

where ẘi and wi denote two sets of aggregation weights. These weights can be the same or differ for

each variable. To achieve identification, we then make the following assumptions on the factor ft, its

loadings (λi and γi), the weights (ẘi and wi), and the country-specific innovations (uit and εit):

Assumption 1 (Loadings) The factor loadings, λi and γi, are distributed independently across i and

8The model (1)-(2) is observationally equivalent to a standard structural vector autoregression model. Thus, it is
subject to the same identification requirement.
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the common factors ft, for all i and t, with non-zero means λ and γ (λ 6= 0 and γ 6= 0), and satisfy

the following conditions:

N−1
N∑
i=1

λ2
i = O(1) and N−1

N∑
i=1

γ2
i = O(1), (6)

λ =

N∑
i=1

ẘiλi 6= 0 and γ =

N∑
i=1

wiγi 6= 0, (7)

for all N, and as N →∞.

Assumption 2 (Weights) Let w = (w1, w2, ..., wN )′ and ẘ = (ẘ1, ẘ2, ..., ẘN )′ be N × 1 vectors of

non-stochastic weights with
∑N

i=1wi = 1 and
∑N

i=1 ẘi = 1. The growth weights, w, are granular, in

the sense that:

||w|| = O(N−1),
wi
||w||

= O(N−
1
2 ), ∀i, (8)

while volatility weights ẘ are left unrestricted, so they may or may not be granular.

Assumption 3 (Cross-country correlations) Let the variance-covariance matrices of the N × 1 error

vectors εt = (ε1t, ε2t, ..., εNt)
′ and ut = (u1t, u2t, ..., uNt)

′ be Σεε = var (εt) and Σuu = var (ut),

respectively, and suppose that:

%max (Σu) = O(N), (9)

%max (Σε) = O(1). (10)

where %max(A) denotes the largest eigenvalue of matrix A.

Assumption 1 is standard in the factor literature (see, for instance, Assumption B in Bai and Ng

(2002)). It ensures that ft is a strong (or pervasive) factor for both volatility and growth so that it can

be estimated consistently using principal components or the cross-section averages of country-specific

observations (see Chudik et al., 2011). Assumption 2 requires that individual countries’ contribution

to world growth is of order 1/N , while it leaves the volatility weights unrestricted.9 This implies that

some country such as the United States could have a relatively large weight in global volatility that

9These weights could be predetermined. They need not be fixed.
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does not necessarily tend to zero as N →∞. These assumptions about the weights are consistent with

the notion that, since the 1990s, world growth has become a progressively more diversified process,

while they leave open the possibility that financial markets have continued to be dominated by the

largest and most developed countries like the United States.

Assumption 3 is crucial for our identification strategy. It states that the volatility innovations are

strongly correlated across countries, while growth innovations are weakly correlated across countries.

Weak cross-country correlation means that, asymptotically, as N becomes large, the average pairwise

correlations across countries of output growth innovations tends to zero, since the largest eigenvalue of

their variance-covariance matrix is bounded in N . On the other hand, strong cross-sectional correlation

means that the largest eigenvalue of Σu grows with the size of the cross-section, N . As we shall see,

this assumption is in accordance with the empirical properties of both the data we use and the residual

that we obtain from the model estimation.10 The identification of ft, up to an affine transformation,

is set out in the following proposition.

Proposition 1 Under Assumptions 1-3, for N sufficiently large, ft can be identified (up to a scalar

constant) by ȳω,t =
∑N

i=1wi∆yit.

Proof. Consider the model defined by (1)-(2) for i = 1, 2, ..., N . Under Assumption 1-3, and using

the definitions in (4)-(5), the following model can be obtained for the global variables:

v̄ω,t = λft + ūω,t, (11)

∆ȳω,t = γft + ε̄ω,t, (12)

where ε̄ω,t = ẘ′εt, and ūω,t = w′ut. Furthermore

var (ε̄ω,t) = w′Σεw ≤
(
w′w

)
%max (Σε) . (13)

Thus, under Assumption 3, we have:

var (ε̄ω,t) = O
(
w′w

)
= O

(
N−1

)
, (14)

10Different patterns of cross country correlations have been documented also for consumption growth and equity
returns. See, for instance, Tesar (1995) and Lewis and Liu (2015).

11



and hence:

ε̄ω,t = Op

(
N−1/2

)
. (15)

Using this in (12), and since γ 6= 0 under Assumption 1, we have:

ft = γ−1∆ȳω,t +Op

(
N−1/2

)
, (16)

which allows us to recover ft form ∆ȳω,t up to the scalar 1/γ. Note that to simplify the exposition we

have assumed ft to have mean zero. In general, where ft might have a non-zero mean, it follows that

ft is an affine function of the global output variable, ∆ȳω,t, up to probability terms of order N−1/2.

A few remarks are in order here. First, if we assume that the volatility innovations are strongly

correlated across countries, ft cannot be recovered from v̄ω,t. In fact, since %max (Σu) = O(N), it

follows that var (ūω,t) = w′Σuw will generally not converge to zero. Under Assumptions 2 and 3,

only the principal components or cross-section averages of output growth can be used to identify ft

(up to a scalar). Therefore, pooling observations on all volatility variables (or all volatility and growth

variables) and then extracting their principal components would not be appropriate for the identifi-

cation of ft. Second, the difference in the way in which the volatility and GDP growth innovations

are correlated across countries also ensures that we do not end up with a perfect relationship between

vt and ∆yt when N become sufficiently large. Third and finally, notice that equation (14) requires

w′w = O
(
N−1

)
, i.e., that the weights in the global output measure are granular.

Finally, it is perhaps worth noting that whilst for mathematical precision we need N → ∞, in

practice N need not be too large for the theory to work reasonably well. The notion of N → ∞, is

best viewed as a counterfactual exercise which considers the extent to which the strength of connections

across units declines with N . In our experience, working with many cross-country panels, N around

30 is often sufficiently large.

2.2 The Financial Factor

In view of condition (9) of Assumption 3, the cross-section of volatility innovations uit must share at

least one additional strong common factor that is not shared by growth innovations. To accommodate

such a possibility we make the following additional assumption:

12



Assumption 4 The volatility innovations, uit, in equation 1 can also be decomposed into a strong

factor (gt) and a weak country-specific component (ηit), namely

uit = θigt + ηit, (17)

where ηit is a country-specific volatility innovation, which is cross-sectionally weakly correlated.

The above assumption is compatible with (9), and provides a specific factor structure for its

characterization. Under this assumption, letting the variance-covariance matrix of the N × 1 vector

ηt = (η1t, η2t, ..., ηNt)
′ be Σηη = var (ηt), we have

%max (Σηη) = O(1), (18)

and:

N−1
N∑
i=1

θ2
i = O(1), (19)

which allows us to identify the second strong factor, shared only by the volatility series, from the data.

Proposition 2 Supposed that uit is given by (17) and Assumption 4 holds. Then:

vit = λift + θigt + ηit, (20)

∆yit = γift + εit, (21)

and

gt = θ−1

(
v̄ω,t −

λ

γ
∆ȳω,t

)
+Op

(
N−1/2

)
. (22)

Proof. To see this, substitute (16) and (17) into (11) and apply to ηit the same reasoning used in

Proposition 1.

It is now evident that the assumed, different pattern of correlation across countries of volatility and

growth innovations implicitly provides a restriction on the factor loadings of the growth equations on

the second strong factor gt, and yields country models that are lower triangular in the factor loading
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matrix.11 In effect, the fact that a factor is shared by many countries is exploited to identify the

unobserved factors and innovations to volatility and output growth. The key distinguishing feature

of our identification scheme lies in the fact that no restrictions are made at the individual country

levels, but on the cross-section correlation of all countries under consideration. Indeed, it is easy to

see from (20) and (21) that for a given i it is not possible to identify the direction of casualty between

vitand ∆yit, despite its triangular factor specification. But if we consider a set of countries with N

sufficiently large, it is possible to identify ft and gtup to affine transformations under the assumption

that εit and ηit are cross-sectionally weakly dependent, even though for each i the innovations ηit and

εit are correlated.

A second common factor in volatility and growth can be justified by asset pricing models with

preference shocks. 12 Our identification assumptions on the cross country correlations of the growth

and volatility innovations, however, imply that GDP growth does not load contemporaneously on

the second factor gt. Such a triangular loading structure is consistent, for instance, with the inter-

national disaster risk models of Colacito and Croce (2011) or Lewis and Liu (2017). Lewis and Liu

(2017), in particular, show that a model with time-varying probability of disaster and both world and

country-specific disaster risk generates patters of cross-country consumption growth and equity return

correlations consistent with the data and the assumptions we made on the correlation across countries

of volatility and growth. In this framework, gt can be interpreted as the common “jump” component

of the model. More generally, we could interpret gt as ‘exuberance’, ‘bubbles’, ‘panics’, consistent

with models in which non-fundamental factors are included in the model to improve empirical asset

pricing performance. An alternative way to to interpret gt is to think about the United States as

“granular” in global production and consumption, but “dominant ” in global financial markets (in

the sense that all volatility series must load onto it as discussed by Pesaran and Chudik (2014)). In

this case, gt would simply be the volatility of the dominant market in the world. We remain agnostic

on the interpretation of gt as our main results do not depend on such interpretation. We will return

to the issue of possible dominance of the US in global capital markets when we discuss US specific

results.

11It should be noted here that the triangular structure of factor loadings in our model does not lead to a triangular
(i.e., recursive) structure for the observable variables ∆yit and vit.

12For instance, a preference shock like the one studied by Albuquerque, Eichenbaum, Luo, and Rebelo (2015).
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2.3 Model Estimation When the Factors are not Observed

used to obtain consistent estimates of the unobservable factors, ft and gt, for t = 1, 2, ..., T . But for

ease of interpretation it is standard to work with the orthogonalized version of the factors. In this

regard, our task is simplified due to the triangular way the factors affect the global variables, ∆ȳω,t

and v̄ω,t, and the fact that, for sufficiently large N , the other interaction effects across countries vanish.

Recall that this outcome does not apply if one country is considered at the time (i.e., when N = 1).

Denote the estimated orthogonalized factors by f̃t and g̃t, and write them in terms of ft and gt as:

f̃t = αf∆ȳω,t +Op(N
− 1

2 )

g̃t = α1gv̄ω,t − α2g∆ȳω,t +Op(N
− 1

2 )

and then set αg=(α1g, α2g)
′ , such that T−1

∑T
t=1 f̃tg̃t = 0. This yields:

α̂2g

α̂1g
=

∑T
t=1 ∆ȳω,tv̄ω,t∑T
t=1 ∆ȳ2

ω,t

,

which is the OLS estimate of the coefficient of ∆ȳω,t in the regression of v̄t on ∆ȳω,t.The remain-

ing parameters, αf and α1g are determined by requiring f̃t and g̃t to have unit in-sample standard

deviations:

α̂2
f =

(
1

T−1
∑T

t=1 ∆ȳ2
ω,t

)

and

1 = α̂2
1g

(∑T
t=1 v̄

2
ω,t

T

)
+ α̂2

2g

(∑T
t=1 ∆ȳ2

ω,t

T

)
− 2α̂1gα̂2g

(∑T
t=1 v̄ω,t∆ȳω,t

T

)

Hence

α̂2
1g =

(∑T
t=1 ∆ȳ2ω,t

T

)
(∑T

t=1 ∆ȳ2ω,t

T

)(∑T
t=1 v̄

2
ω,t

T

)
−
(∑T

t=1 v̄ω,t∆ȳω,t

T

)2
.

To ensure that f̃t and g̃t have zero means, we need to use ∆ȳω,t − ∆ȳω and v̄ω,t − v̄ω, where

∆ȳω = T−1
∑T

t=1 ∆ȳω,t and v̄ω = T−1
∑T

t=1 v̄ω,t in the above formula. These mean corrections will

be applied automatically if intercepts are included in the country-specific models (20) and (21). In

effect g̃t is the standardized residual from the OLS regression of v̄ω,t on ∆ȳω,t, and as such measures
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the orthogonalized effect of the second factor (financial) once the effect of the first factor (real or

technological) is filtered out.

In summary, the key feature of our identification strategy is to exploit the differences in degree

of cross-section correlation for the two series of innovations. In the case of ∆yit, this correlation is

assumed to be weak and hence its effects on the global variable ∆ȳω,t vanish if N is reasonably large. In

the case of vit, the cross-country correlation is assumed to be strong and hence v̄ω,t does not vanish even

if the cross section dimension is large. Under these assumptions the matrix of contemporaneous factor

loadings is recursive, and observable and orthonormal factors can be estimated from the data simply by

means of OLS. Importantly, as we shall see below, this identification scheme is in accordance with the

stylized facts that characterize our data as well as existing evidence on the cross country correlations

of consumption growth and equity return data–see, for instance, Tesar (1995), Colacito and Croce

(2011), and Lewis and Liu (2015).

The identification strategy used here is general and can be applied to any panel of time series

with similar cross-section correlation properties. The model could have more factors provided that

we consider more cross sections of variables. What is crucial is to adopt a multi-country approach

covering a large number of countries, as opposed to one unit at a time, taken in isolation.

3 A Multi-country Dynamic Heterogeneous Two-factor Model

Whilst the static model considered so far is helpful for pedagogical purposes, it is likely to be limited in

empirical applications where there are important dynamics, and such dynamics differ across countries,

due to institutional and policy differences across countries. It is particularly important to allow for

dynamic interactions between volatility and growth to allow for lead or lagged effects that might exist.

As we shall see, adding dynamics that differ across countries, while requiring additional regularity

assumptions and derivations, does not alter our main results.

Consider the following first-order dynamics version of the static model given by (20) and (21):

vit = aiv + φi,11vi,t−1 + φi,12∆yi,t−1 + λift + θigt + ηit, (23)

∆yit = aiy + φi,21vi,t−1 + φi,22∆yi,t−1 + γift + εit. (24)
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In matrix notation we have:

zit = ai + Φizi,t−1 + Γift + ξit, for i = 1, 2, ..., N ; t = 1, 2, ..., T, (25)

where zit = (vit,∆yit)
′ and

ai =

 aiv

aiy

 , Φi =

 φi,11 φi,12

φi,21 φi,22

 , Γi =

 λi θi

γi 0

 , ft =

 ft

gt

 , ξit =

 ηit

εit

 . (26)

The matrix Γi of contemporaneous factor loadings is triangular because, here, we have already imposed

Assumptions 3 and 4. To accommodate the dynamic nature of the model, we now consider the following

assumptions:

Assumption 5 (Innovations) The country-specific shocks, ξit, are serially uncorrelated (over t), and

cross-sectionally weakly correlated (over i), with zero means, positive definite covariance matrices, Ωi,

for i = 1, 2, ..., N .

Assumption 6 (Common factors) The 2 × 1 vector of unobserved common factors, ft = (ft, gt)
′, is

covariance stationary with absolute summable autocovariances, and fourth order moments, distributed

independently of the country-specific shocks, ξit′, for all i, t and t′.

Assumption 7 (Factor loadings) The factor loadings λi, θi, and γi (i.e., the non-zero elements of

Γi) are independently distributed across i, and of the common factors, ft, for all i and t, with non-zero

means λ, θ, and γ, and second-order moments. Further

Γ = E (Γi) =

 λ θ

γ 0

 ,

which is invertible (since γθ 6= 0).

Assumption 8 (Coefficients) The constants ai are bounded, Φi and Γi are independently distributed

for all i, the support of % (Φi) lies strictly inside the unit circle, for i = 1, 2, ..., N , and the inverse of the

polynomial Λ (L) =
∑∞

`=0 Λ`L
`, where Λ` = E

(
Φ`
i

)
exists and has exponentially decaying coefficients,

namely ‖Λ`‖ ≤ Kρ`, where K is a fixed constant and 0 < ρ < 1.
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Remark 1 The above assumptions represent straightforward extension of the earlier assumptions

made for the static case. The important additional assumption is to control the effects of aggrega-

tion of dynamics across the units by requiring that Λ` = E
(
Φ`
i

)
exists and has exponentially decaying

coefficients. But it is easily seen that this latter assumption holds of if it is further assumed that

supiE ‖Φi‖ < ρ < 1, where ‖Φi‖ is the spectral norm of Φi defined by %max (Φ′iΦi).

We now have the following result for the unobservable factors:

Proposition 3 .Consider the following factor-augmented bivariate VAR model for country i in the

observable 2× 1 vector zit = (vit,∆yit)
′

zit = ai + Φizi,t−1 + Γift + ξit, (27)

for i = 1, 2, ..., N , where

ai =

 aiv

aiy

 , Φi =

 φi,11 φi,12

φi,21 φi,22

 , Γi =

 λi θi

γi 0

 , ft =

 ft

gt

 , ξit =

 ηit

εit

 .

Suppose that Assumptions 5-8 hold, and {zit, for i = 1, 2, ..., N} have started some time before the

start of the observations at t = 1. Then

ft = bf + γ−1∆ȳω,t +
∞∑
`=1

c′1,`z̄ω,t−` +Op

(
N−1/2

)
, (28)

gt = bg + θ−1

(
v̄ω,t −

λ

γ
∆ȳω,t

)
+
∞∑
`=1

c′2,`z̄ω,t−` +Op

(
N−1/2

)
, (29)

where bf and bg are fixed constants,

v̄ω,t =

N∑
i=1

wivit, ∆ȳω,t =

N∑
i=1

wi∆yit, z̄ω,t = (v̄ω,t,∆ȳω,t) ,

{wi, for i = 1, 2, ..., N} are fixed weights that satisfy the granularity conditions under Assumption 2,

and c′1,` and c′2,` are the first and the second rows of C` = Γ−1B
`
, where Γ = E (Γi), B` is defined by

Λ−1 (L) = B0 + B1L+ B2L
2 + ...., Λ (L) =

∑∞
`=0 Λ`L

`, and Λ` = E
(
Φ`
i

)
, for all i.
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Proof. See Appendix A.1.

We note here that c′1,` and c′2,` are the first and second rows of the 2 × 2 matrix C` as defined

in Appendix A.1. As shown in Pesaran and Chudik (2014) and Chudik and Pesaran (2015), if slope

heterogeneity is not extreme (i.e., if these matrices of coefficients do not differ too much across coun-

tries) and C` decays exponentially in `, the infinite order distributed lag functions in z̄ω,t in the above

propositions can be truncated. In practice, these authors recommend a lag length ` equal to T 1/3,

where T is the time dimension of the panel.

As we noted earlier, ft and gt are identified up to a 2× 2 rotation matrix. To proceed, we impose

again the normalization restriction that γ = θ = 1. Normalization restrictions are innocuous and

do not affect the final estimating equation that identifies the idiosyncratic shocks (which are also of

interest). After truncating the infinite distributed lag functions with p = 1/3, we have

ft = ∆ȳω,t +

p∑
`=1

c′1,`z̄ω,t−` +Op

(
N−1/2

)
, (30)

gt = v̄ω,t − λ∆ȳω,t +

p∑
`=1

c′2,`z̄ω,t−` +Op

(
N−

1
2

)
. (31)

Substituting these approximations in (25) we obtain the cross-section augmented country-specific VAR

models:

vit = aiv + φi,11vi,t−1 + φi,12∆yi,t−1 + θiv̄ω,t + βi∆ȳω,t +

p∑
`=1

ψ′i`z̄ω,t−` + ηit +Op

(
N−

1
2

)
,(32)

∆yit = aiy + φi,21vi,t−1 + φi,22∆yi,t−1 + γi∆ȳω,t + γi

p∑
`=1

c′1,`z̄ω,t−` + εit +Op

(
N−

1
2

)
(33)

where βi = λi − θiλ, and ψi` = (λic1,` + θic2,`). Note that, as before, only ∆ȳω,t is included in the

output growth equation.

The above model can now be estimated consistently by least squares so long as N and T are

sufficiently large. This would yield estimated residuals and the factor loadings θi, βi, and γi. But,

as noted in the static case, coefficients might be difficult to interpret due to the possible non-zero

correlation between ∆ȳω,t and v̄ω,t.
13 A second complication is that the factors depend on lagged

13One could use the orthogonalized components of ∆ȳω,t and v̄ω,t using the Cholesky factor. However, such a procedure
could invalidate the triangular form of Γi applied to the true underlying factors, ft and gt. Also focusing on the
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variables. It is therefore important to consider an orthonormal transformation that yields orthogonal

factors once the effects of past values of z̄ω,t are filtered out.

To this end we stack (30) and (31) by T and obtain

f = ∆ȳω + Z̄ωC1 +Op

(
N−1/2

)
, (34)

g = v̄ω − λ∆ȳω + Z̄ωC2 +Op

(
N−1/2

)
, (35)

where ∆ȳω = (∆ȳω,1,∆ȳω,2, ...,∆ȳω,T )′, v̄ω = (v̄ω,1, v̄ω,2, ..., v̄ω,T )′, and Z̄ω = (τT , z̄ω,−1, z̄ω,−1, ..., z̄ω,−p).

Inclusion of τT in Z̄ω ensures that the filtered factors have mean zeros. We can now establish the

following proposition.

Proposition 4 The orthogonalized filtered factors, f̃ and g̃, can be recovered from the data as residuals

of the the following OLS regressions:

∆ȳω = Z̄ωĈ1 + f̃+Op

(
N−1/2

)
, (36)

v̄ω = λ̂f̃ + Z̄ωĈ2 + g̃+Op

(
N−1/2

)
. (37)

Proof. See Appendix A.2.

Given the orthogonal factors, f̃t and g̃t, and substituting them in (32)-(33), we can compute their

impact and relative importance based on the following regressions:

vit = aiv + φi,11vi,t−1 + φi,12∆yi,t−1 + βi,11f̃t + βi.12g̃t +

p∑
`=1

ψ′v,i`z̄ω,t−` + ηit, (38)

∆yit = aiy + φi,21vi,t−1 + φi,22∆yi,t−1 + βi,21f̃t +

p∑
`=1

ψ′∆y,i`z̄ω,t−` + εit. (39)

Notice here that by construction the OLS estimates of ηit and εit in the above regressions will be

numerically identical to those obtained using the non-orthogonalized factors ∆ȳω and v̄ω. It is also

important to note that, since f̃t and g̃t are based on residuals from regressions of ft and gt on τT

and the lagged values z̄ω,t−1, z̄ω,t−2, ...., z̄ω,t−p, then it also follows that f̃t and g̃t will have zero means

orthogonalized components of ∆ȳω,t and v̄ω,t, ignores the contributions of z̄ω,t−` for ` = 1, 2, ..., p to the estimation of ft
and gt.
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(in-sample) and for a sufficiently large value of p, they are also serially uncorrelated. Therefore, f̃t and

g̃t can be viewed as global innovations (or shocks) to the underlying factors, ft and gt. In Appendix B

we show how to compute impulse responses and variance decompositions to shocks, f̃t and g̃t, as well

as shocks to the country-specific innovations, ηit and εit.

We now turn to the empirical application of the above dynamic model to study the relation between

volatility and growth, conditional on the estimated factors f̃t and g̃t. But before doing that we need

to discuss how we measure volatility in a multi-country setting.

4 Measurement of Volatility and Output Growth

As a proxy for uncertainty, in our application, we use realized measures of equity price volatility.

Realized volatility has been used extensively in the theoretical and empirical finance literature and

implicitly assumes that uncertainty and risk can be characterized in terms of probability distributions.

It therefore abstracts from the Knightian notion of uncertainty, which refers to the idea that some

types of risks cannot as such be characterized. Specifically, we use a measure of quarterly realized

volatility based on the summation of daily squared stock price returns.14 This is a natural application

of daily measures of volatility based on high frequency, within day price changes.

Denote the daily equity price of country i, measured at close of day τ in quarter t as Pit(τ). We

compute the realized volatility for country i in quarter t as:

vit =

√√√√D−1
t

Dt∑
τ=1

(rit(τ)− r̄it)2 (40)

where rit(τ) = ∆ lnPit(τ), and r̄it = D−1
t

∑Dt
τ=1 rit(τ) is the average daily price changes in the quarter

t, and Dt is the number of trading days in quarter t. The scaling factor
√
Dt expresses the realized

volatility at quarterly rates: in this way realized volatility is consistent with quarterly GDP growth.

Note that, for most time periods, Dt = 3 × 22 = 66, which is larger than the number of data points

typically used in the construction of daily realized market volatility in the empirical finance literature.

In the case of intra-day observations, for example, prices are usually sampled at 10-minutes intervals

14See, for example, Andersen et al. (2001, 2003), Barndorff-Nielsen and Shephard (2002, 2004))
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which yield around 48 intra-daily returns in an 8-hour trading day.

We computed realized volatility also in real terms, with Pit(τ) in the above expression replaced

by Pit(τ)/Pit, where Pit is the general price level in country i in quarter t (i.e., the CPI index), but

it yields the same results, and in our application they are not reported. If we consider a panel of

country equities, a different measure of volatility can be computed as the cross-sectional dispersion of

equity prices. Cesa-Bianchi et al. (2014) show that realized volatility and cross-sectional dispersion

are closely related in our data set. So, in our application, we will focus on realized volatilities.

Realized volatility and cross-sectional dispersion encompass most measures of uncertainty and risk

proposed in the literature that would be suitable to implement our identification strategy. Schwert

(1989b), Ramey and Ramey (1995), Bloom (2009), Fernandez-Villaverde et al. (2011) use aggregate

time series volatility (i.e., summary measures of dispersion over time of output growth, stock market

returns, or interest rates); Leahy and Whited (1996), Campbell et al. (2001), Bloom et al. (2007) and

Gilchrist et al. (2013) use dispersion measures of firm-level stock market returns; Bloom et al. (2012)

use cross-sectional dispersion of plant, firm, and industry profits, stocks, or total factor productivity.

In the finance literature, the focus of the volatility measurement has now shifted to implied volatility

measures obtained from option prices, like the US VIX Index (see Figure 1). However, a key input

for the implementation of our identification strategy is the availability of country-specific measures of

uncertainty for a large number of countries for a long period of time, and implied volatility measures

are not yet available for a meaningful number of countries. So, implied volatility is not suitable for

our purposes. Figure 3 plots the U.S. realized volatility measure we constructed with the VIX index

(as plotted in Figure 1) during the period over which they overlap. The chart shows that the two

measures comove very closely with a correlation of about 0.9.

The literature has also used uncertainty measures based on expectation dispersion. While sum-

marizing the range of disagreement among individual forecasters at a point in time, these measures

do not give information about the uncertainty surrounding the individual’s forecast. See, for instance,

Zarnowitz and Lambros (1987), Popescu and Smets (2010), and Bachmann et al. (2013). Finally,

model based measures, such as those Jurado et al. (2015) and Ludvigson et al. (2015) could be in

principle computed for all countries in our sample, but the requirement of obtaining such measures

for many countries over a long period of time, again, would pose tight constraints on their proper
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Figure 3 Quarterly U.S. Equity Realized Volatility and the Vix Index
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Note. RV US Equity is the U.S. realized volatility measure we constructed in equation (40). The VIX
Index is the quarterly average of the daily Chicago Board Options Exchange Market Volatility Index
from Bloomberg. The sample period is 1990:Q1-2011:Q2.

implementation.

Defining and measuring a country’s level of economic activity over the business cycle is, in principle,

also open to debate. Consistent with the theoretical framework presented above, in our application,

we shall use real GDP growth (calculated as the first difference of the log-level).

5 Data and Stylized Facts

This section briefly describes the data set we use in the empirical analysis and then reports some

stylized facts on the unconditional properties of the data. Specifically, we consider the degree of over

time persistence in the growth and volatility series, examine the patterns of cross-country correlations,

which play an important role in the identification strategy, and investigate the correlations of country-

specific volatility and growth.

The sources of the data and their sampling information are reported in Appendix C. To construct

a balanced panel for the largest number of countries for which we have sufficiently long time series, we

first collect daily sock prices for 32 advanced and emerging economies from 1979 to 2011. We then cut

the beginning of the sample in 1993, as daily equity price data are not available earlier for two large
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emerging economies (Brazil and China) and Peru up to that point. Better quality quarterly GDP data

for China also became available from 1993. Our results, however, are robust to starting the sample

period in 1988 and excluding these three countries. Moreover, some steps of the empirical analysis,

like the computation of the factors (f̃t and g̃t), can be implemented with the unbalanced panel from

1979 without any significance consequence for our main results.

5.1 Persistence

A battery of summary statistics on our volatility and real GDP series supports our model specification

in terms of log-difference of real GDP and the level of realized volatility. It is well known that GDP

levels are non stationary. This is also true in our sample. As Table D.1 in the Appendix shows, the

persistence of the log-level of GDP is very high (on average around 1). Moreover, the null of a unit

root is not rejected by a standard ADF test for any of the 32 countries in our sample. In contrast, the

levels of realized volatility, even though highly persistent, tends to be mean reverting. Table D.2 in

the Appendix shows that the first order auto-correlation coefficient for realized volatility is on average

about 0.6. But standard ADF tests reject the null hypothesis that the volatility variables have a

unit root. We also run a battery of tests for fractional integration, for comparison with the finance

literature, and find that volatility series are stationary, and are best modeled in levels.15

5.2 Cross-country Correlations of Volatility and Growth

The differential pattern of cross-country comovement of the growth and volatility innovations is crucial

for our identification strategy. Here we are concerned with the properties of the observed time series

as in Figure 2. In order to gauge to what extent volatility and growth series comove across countries,

we use two techniques: standard principal component analysis and pair-wise cross-country correlation

analysis. The average cross-country or pairwise correlation in a panel of series over i = 1, 2, ..., N

measures the degree of comovement of country i with all other N − 1 countries. The average for all

N countries provides a summary measure of the overall degree of interdependence in the sample of

countries under consideration.

15The stylized facts of volatility, as well as the other results of the paper, are unchanged if instead of the level of
realized volatility we consider its logarithm.
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Table 1 Average Pairwise Cross-country Correlations of Volatility and
Growth Data

Panel A: Realized Volatility (Level)

Pair. Corr. Pair. Corr. Pair. Corr.

Argentina 0.56 India 0.51 Philippines 0.56
Australia 0.64 Indonesia 0.56 Singapore 0.66
Austria 0.54 Italy 0.63 South Africa 0.62
Belgium 0.59 Japan 0.63 Spain 0.65
Brazil 0.41 Korea 0.56 Sweden 0.66
Canada 0.68 Malaysia 0.38 Switzerland 0.65
Chile 0.55 Mexico 0.61 Thailand 0.49
China 0.61 Netherlands 0.63 Turkey 0.40
Finland 0.39 New Zealand 0.58 United Kingdom 0.67
France 0.65 Norway 0.64 United States 0.67
Germany 0.69 Peru 0.44

Panel B: Growth (GDP Log-Difference)

Pair. Corr. Pair. Corr. Pair. Corr.

Argentina 0.14 India -0.03 Philippines 0.26
Australia 0.13 Indonesia 0.12 Singapore 0.30
Austria 0.27 Italy 0.40 South Africa 0.35
Belgium 0.35 Japan 0.33 Spain 0.31
Brazil 0.26 Korea 0.28 Sweden 0.32
Canada 0.33 Malaysia 0.30 Switzerland 0.25
Chile 0.25 Mexico 0.28 Thailand 0.26
China 0.17 Netherlands 0.34 Turkey 0.18
Finland 0.34 New Zealand 0.22 United Kingdom 0.37
France 0.38 Norway 0.19 United States 0.34
Germany 0.38 Peru 0.24

Note. Panel (A) refers to the realized volatility measures as computed in (40). Panel (B) refers to real

GDP grwoth in log-differences. The overall average pairwise correlations across countries are 0.58 and 0.27

for volatility and growth, respectively, like exhibited in Figure 2.

The average pairwise correlation also relates to the strength and pervasiveness of the factors, as

measured by the factor loadings. For example, consider the factor model

∆yit = γift + εit,

where var(ft) = 1 and var(εit) = σ2
i . Then the population average pairwise correlation of ∆yit and

∆yjt, denoted by ρ̄N , is given by

ρ̄N =

(∑
i=1

∑
j=1 ρij −N

)
2N2

, (41)

25



where

ρij =


γiγj√

γ2i +σ2
i

√
γ2j+σ2

j

if i 6= j

1 if i = j

.

Using the above expression for ρij in (41), we have

ρ̄N =
1

2

 1

N

N∑
i=1

γ̃i√
1 + γ̃2

j

2

− 1

2N
,

where γ̃i = γi/σi. Hence

ρ̄N = O

(∑N
i=1 γ̃i
N

)
, (42)

where N−1
∑N

i=1 γ̃i measures the degree of pervasiveness of the factor.

The attraction of pairwise correlation lies in the fact that it applies to multi-factor processes and,

unlike the factor analysis, does not require the factors to be strong. ρ̄N tends to be a strictly positive

number if ∆yit contains at least one strong factor, otherwise it tends to zero as N → ∞. Therefore,

non-zero estimates of ρ̄N are suggestive of strong cross-sectional dependence. Formal tests of cross-

sectional dependence based on estimates of ρ̄N is discussed in Pesaran (2015). For completeness, and

to show that our analysis is robust, we also use standard principal component analysis.

The average pairwise correlations are reported in Table 2 for all countries in our sample. The

overall average is 0.58, like in Figure 2. In contrast, the overall average for the growth series is only

0.27. As we can see from Table 2, the pairwise correlations of volatility and growth have a similar

values for different countries, but there is a clear difference between the two variables.

The principal component analysis yields similar results. The first principal component in our

panel of realized volatility series explains 65 percent of the total variation in the level of vit. Whilst

the first principal component of the growth series accounts for only around 18 percent of the total

variation. Like in the case of the pairwise correlation analysis, these results are is accordance with the

identification assumptions made even though they are not direct evidence on their validity because

the assumptions made are relate to the innovations and not the realizations.
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5.3 Country Correlations between Volatility and Growth

The countercyclical behavior of the U.S. stock market volatility is a well known stylized fact.16 Does

this stylized fact hold in our sample of countries? Figure 4 plots the country-specific contemporaneous

correlations between volatility and growth for all countries in our panel together with their 90-percent

error band. It shows that, for most countries, there is a strong negative and statistically significant

association between volatility and GDP growth. On average, this correlation is about −0.35, ranging

from a maximum slightly above −0.6 for the United States to a minimum of close to zero for Peru. As

the confidence intervals illustrates most of these associations are also statistically significant except

for New Zealand, Australia, Finland, India and Peru.

Figure 4 Country Correlation between Volatility and Growth Data
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Note. The correlations are computed over the period 1992:Q1–2011:Q2. The dots represent the country-
specific contemporaneous correlations, and the lines represent 95% confidence intervals.

6 Results

The above preliminary analysis supports the evidence of a negative association between output growth

and volatilities in a significant majority of the countries, and suggests a stronger degree of cross-country

correlation for volatility as compared to cross-country correlations of GDP growth rates. These findings

16See, for example, Schwert (1989a) and Schwert (1989b). On the volatility of firm-level stock returns see Campbell
et al. (2001), Bloom et al. (2007) and Gilchrist et al. (2013); on the volatility of plant, firm, industry and aggregate
output and productivity see Bloom et al. (2012) and Bachmann and Bayer (2013); on the behavior of expectations’
disagreement see Popescu and Smets (2010) and Bachmann et al. (2013).
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are compatible with the two-factor model advanced in the paper, which we now use to address the

more difficult question of how to interpret the observed negative association between output growth

and volatility.

We begin by first estimating the factors, f̃t and g̃t, using (36) and (37). Armed with an estimate

of f̃t and g̃t, we then run OLS on the model (38)-(39) to recover, for each country, the country-specific

volatility (ηit) and growth innovations (εit). Next, with these innovations, we compute conditional

country and cross-country correlations. Finally we will compute impulse responses and variance de-

compositions to the factors (f̃t and g̃t) and the country-specific shocks (ηit and εit).

6.1 Estimated Factors

The factors f̃t and g̃t are recovered from the OLS estimation of (36) and (37). Figure 5 plots them

when estimated using the unbalanced panel from 1979 (thin lines with asterisks), and when we use

the balanced panel from 1993 (thick solid lines), so as to better illustrate their characteristics and

time profile. A one-standard deviation band for the factors estimated on the 1993 sample are also

reported.17 The factors are standardized and have zero mean and unit in sample variances. By

construction, they also are serially uncorrelated and orthogonal to each other.

The figure shows that the largest swing in the real factor, f̃t, was during time of the Lehman’s

collapse in 2008 and in correspondence to the second oil shock in 1979. Also note that after a sharp

drop, f̃t rebounds in 2009 and displays a very unusual protracted period of decline associated with

normal fluctuations in the financial factor. The largest movements in the financial factor, g̃t, accords

with the 1987 stock market crash and the 2008 Lehman’s collapse. Our financial factor comoves

positively, but not highly, with US measures of financial volatility, risk and investor sentiment. In

general, it is more volatile and less persistent than these US measures. The correlation with the US

Baa-Treasury credit spread and excess bond premium of Gilchrist and Zakrajsek (2012) is 0.2 and

0.35, respectively.18 The correlation with the index of financial volatility of Ludvigson et al. (2015) is

about 0.4. The correlation with the US VIX index, however, is 0.5.

17As countries are progressively added over time, the two estimates get closer and closer.
18The Baa-Treasury credit spread is computed as the spread between yields on long-term Baa-rated industrial bonds

and comparable maturity Treasury securities.
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Figure 5 Estimated Real (f̃) and Financial (g̃) Factors
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Note. The factors (f̃ and g̃) are computed using (36) and 37) with one lag of zit, using the full
unbalanced sample (thin lines with asterisks) and the shorter balanced sample (think solid lines).
Both factors are orthonormalized. The dotted lines represent one-standard deviations bands around
the mean.

6.2 Cross-country Correlations of Country-specific Innovations

Although restrictions behind identification cannot be formally tested, our multi-country approach to

the problem permits us to investigate the extent to which the implications of the identified model are in

line with the identification scheme that we have adopted.19 To this end we explore the cross-country

correlation of the residuals from the dynamic regressions (38) and (39), with and without explicit

conditioning on the financial factor g̃t. As we do not impose our identification restrictions directly on

the cross-country correlation structure of these innovations, their empirical properties are informative

as to whether our identification assumptions might be inconsistent with the results obtained.

19Note that without our identification restrictions f̃t and g̃t cannot be estimated. As as result, whilst we can directly
estimate pairwise correlations of cross-country output growth and volatility series, we can not examine cross-country
pairwise correlations of their innovations without the imposition of our identification conditions.
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Figure 6 plots the average pairwise correlation of the volatility innovations (ûit) and the growth

innovations (ε̂it), when we condition only on f̃t in (38)-(39), rather than on both f̃t and g̃t. The

statistics reported are the same as in Figure 2. The blue (darker) bars are the pairwise correlations of

the growth innovations. The yellow (lighter) bars are for the volatility innovations. The figure shows

that, if we condition only on f̃ in (38)-(39), the volatility innovations display a pairwise correlation

comparable to that of the raw data reported in Figure 2, of more than 0.5 on average. In contrast,

the pairwise correlations of the growth innovations are negligible, with an overall average of 0.03.20

Figure 7 reports the same statistics for the volatility innovations (η̂it) when we condition on both

f̃ and g̃ in model (38)-(39).21 The Figure shows that the cross-country correlations of the volatility

innovations now becomes negligible, as in the case of the growth innovations, with the same overall

average of 0.03. For instance, in the case of the United States, the pairwise correlation of volatility

innovations exceeds 0.6 conditional on ft alone. But it drops to 0.03 if we condition on both factors.

By comparison the US pairwise correlation of the growth innovations is −0.01.

Figure 6 Cross-country Correlation of Volatility and Growth Innova-
tions Conditional only on f̃
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Note. Average cross-country pairwise correlation of volatility (yellow, lighter bars) and GDP growth
(blue, darker bars) innovations conditional on f̃ only. The volatility measures are computed as in
(40). The dotted lines are the overall averages, at 0.53 and 0.03 for volatility and growth, respectively.
Country values are also reported in the online appendix in Table D.3.

Thus, Figures 6 and 7 illustrate that after conditioning on ft alone–which is common to both

growth and volatility series–not much commonality is left in the growth innovations, but the volatility

innovations continue to share a strong common component. It is therefore interesting to test whether

20Notable exceptions are those of China and India.
21Notice that the growth innovations are identical and are plotted again only for comparison.
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Figure 7 Cross-country Correlation of Volatility and GDP Growth In-
novations Conditional on f̃ and g̃
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Note. Average cross-country pairwise correlation of volatility (light bars) and GDP growth (dark
bars) innovations conditional on f̃ and g̃. The volatility measures are computed as in (40). The dotted
lines corresponds to the average pairwise correlations across countries, at 0.03 and 0.03 for volatility
and GDP growth, respectively. Country values are also reported in the online appendix in Table D.4.

the two set of innovations satisfy a formal definition of weak and strong dependence as we have assumed

for identification purposes.

To test statistically for weak and strong cross-section dependence we estimate the cross-sectional

dependence statistic of Pesaran (2015) and the exponent of cross sectional dependence (α) as proposed

by in Bailey et al. (2016). The CD statistic is normally distributed with zero mean and unit variance

under the null of zero pairwise correlations. So, the critical value is around 2. When the null is

rejected, Bailey et al. (2016) suggest estimating the strength of the cross-correlations dependence

with an exponent denoted, α, with values in the range (1/2, 1], with unity giving the maximum

degree of cross sectional dependence, the lowest level being around 1/2 and any number below 1, but

significantly different from 1, suggesting weak dependence.22 So in what follows we present estimates

of α for different series, together with their confidence intervals.

The results are summarized in Table 2 and are in accordance with the identification assumptions

made. The table reports also test statistics for realized growth and volatility series the raw data for

comparison. The CD statistic for the growth series (∆yit) is 29.64 while the α exponent estimated

at 1.00, with 99% confidence. The CD statistic for realized volatility data (vit) is 53.95 with an

22When estimating α one also need to take account of the sampling uncertainty which depends on the relative magnitude
of N and T , and the null of weak cross dependence depends on the relative rates of N and T.
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Table 2 Testing for Cross-Sectional Dependence and the
Exponent of Cross-sectional Dependence

CD α̂0.05 α̂ α̂0.95

vit 53.95 0.94 1.00 1.06
∆yit 29.64 0.82 1.00 1.17

uit 49.76 0.92 0.99 1.06
εit 5.40 0.73 0.79 0.85

ηit 1.09 0.50 0.59 0.68
εit 5.40 0.73 0.79 0.85

Note. CD is the cross-sectional dependence statistic of Pesaran (2015). α is

the exponent of cross-sectional dependence as in Bailey et al. (2016), together

with its 90-percent confidence interval [α0.05,α0.95].

estimated α also at 1.00 with 99% confidence. Conditioning only on f̃t, the CD statistic for the

growth innovations (εit) drops to 5.40, close to its critical value under zero pairwise correlations, with

an α value of 0.79, which is is statistically different from 1. In sharp contrast, the CD statistic for the

volatility innovations (uit) remains close to that of the data at at 49.76 with an α parameter clearly

not distinguishable from one. However, when we condition on both f̃t and g̃t, the CD statistic for

the volatility innovations (ηit) falls to 1.09 with an estimated α of 0.59 and confidence interval of

[0.50, 0.68], while the CD statistic and α are the same for the growth innovations (εit).

6.3 Country Correlations Between Volatility and GDP Growth Innovations

We saw earlier in Figure 4 that the volatility and growth series display a strong (and statistically

significant) negative correlation at the country level. How much of that association is accounted

for by the common factors f̃t and g̃t? To answer this question, we compute the contemporaneous

correlations between the volatility and growth innovations (η̂it and ε̂it) conditional on f̃t and g̃t.

The results are displayed in Figure 8. The figure reports the estimated correlation together with a

95 percent confidence interval for all countries in our sample. The conditional correlation between

volatility and growth innovations falls substantially when conditioned on both f̃ and g̃, and it is much

weaker than the negative correlation in the underlying series. The confidence interval now includes

zero for all but 5 countries that are very volatile emerging market economies. For the United States,

for instance, this correlation essentially vanishes.
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Figure 8 Country Correlation between Volatility and Growth Innova-
tions (Conditional on f̃t and g̃t)
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Note. Volatility innovations (η) are the residuals of equation (38) growth innovations (ε) are the
residuals of equation (39). The dots represent the country-specific contemporaneous correlations, and
the lines represent 95% confidence intervals.

6.4 Impulse Responses

A number of different impulse responses can be considered. Here we focus on the effects of positive

unit shocks (one standard error) to the orthogonalized factors f̃t and g̃t. The derivation of the impulse

response functions associated with these shocks for a given country i is provided in Appendix B. Figure

9 reports a weighted average of the country-specific impulse responses (solid line) using PPP-GDP

weights together with 2-standard deviations error bands (shaded areas). The error band gives the

dispersion of the impulse responses across countries. The country-specific response are reported in

Figure 10.

Panel (A) of Figure 9 plots the average volatility response of to a positive, one-standard-deviation

shock to the common real factor f̃t. The figure shows that a positive shock to the real factor increases

growth and lowers volatility. This reflects an endogenous response of volatility to fundamental im-

provements in the world economy and it is consistent with volatility increasing when growth tanked

during the global financial crisis in 2008. Note that the error bands around the typical response are

very tight, reflecting the relatively homogeneous country responses to unexpected changes in f̃t. We

can see in fact from Figure 10 that for most countries responses have a very similar shape. The average

response is sizable: a one standard error change in f̃t increases volatility by one percent per quarter

on impact.
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Figure 9 Typical Volatility and Growth Impulse Responses to the Common
Factors
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Note. One-Standard Deviation sock to f̃t and g̃t. The solid line is the PPP-GDP weighted average of
the country-specific responses, computed as in Appendix B in Eq. (B.12). The shaded areas are the 2
standard deviations confidence intervals computed as in Appendix B in Eq. (B.13). In percent.

Panel (B) plots the growth response to the same shock. It shows that, on average, growth loads

positively on the fundamental factor f̃t, with persistent effects up to 8-10 quarters. The size of the

impact is smaller, with growth increasing only by about half a percentage point with a one standard

error change in f̃ . This is consistent with existing evidence on the international business cycle, which

stresses an important role for the world factor, along with regional and country specific factors in

driving the business cycle (e.g., Kose et al. (2003)).

Panels (C) and (D) of Figure 9 report the responses of volatility and growth to a positive, one

standard deviation shock to the financial factor g̃t. The responses suggest that a positive shock to g̃t

is “bad news”, as volatility increases and growth slows. With a normal change in the financial factor,

volatility increases three times as much as a change in the real factor. While growth declines only

by about a quarter of percentage point compared to half a percentage point in response to a normal

change in the real factor shock.

Note here that, the delayed response of growth to this shock follows from our identification as-

sumptions through cross-country correlations, but it is not imposed directly on country-specific models
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Figure 10 Country Volatility and Growth Impulse Responses to Common
Shocks
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Note. One-Standard Deviation sock to f̃t and g̃t. Thin lines are individual countries responses. The
solid line is the PPP-GDP Weighted average. Impulse responses computed as in Appendix B.

(unlike, for instance, in a Cholesky decomposition of the variance-covariance matrix with growth or-

dered first in a country VAR system). It is a consequence of the triangular structure of the factor

loading matrix, which in turn derives from the cross-section correlation properties of the shocks. This

is consistent with the idea that a more volatile environment takes some time to affect economic de-

cisions, as it is often assumed in theoretical models of habit persistence in consumption and cost of

adjusting investment. Notice also that the error bands of this impulse response are wider, reflecting

larger cross-country differences in the incidence of the financial factor (see Figure 10).

6.5 Variance Decompositions

While impulse responses illustrate the transmission mechanism of a given shock identified in the

model, variance decompositions speak to the importance of such a shock for the time-variation of the

endogenous variables at different time horizons, relative to other shocks in the model. For all countries

i = 1, 2, ...N , we decompose the total variance of volatility and growth and attribute it to shocks to

the factors f̃t and g̃t as well as all country-specific shocks in the model ε̂it and η̂it. Below we discuss an

35



”average” variance decomposition, weighting country-specific decompositions with PPP-GDP weights.

Country specific results, are provided in the on-line Supplement.23

Figure 11 Average Variance Decomposition
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Note. PPP-GDP weighted average of country variance decompositions. Country variance decomposi-
tions are reported in Figure D.2 and D.1. For both growth and volatility the figure plots the weighted
average of the variance decompositions with respect to all the shocks in the model. ”Other” is an the
sum of variance share of all other country-specific shocks other than the own country specific shock
that is tracked separately. Variance decompositions computed as in Appendix B.

For the purpose of computing these decomposition, the country-specific innovations are assumed to

be orthogonal not only to the factors, but also across countries i = 1, 2, ...N . The factors f̃t and g̃t are

orthogonal to the country specific shocks and to each other by construction. The strong assumption

that the country-specific shocks are also orthogonal to each other and across countries is justified by the

empirical results reported in Figure 7 and 8. That evidence shows that most of the contemporaneous

correlations between volatility and growth innovations, within or between countries, is absorbed by the

common factors f̃t and g̃t. For all but two emerging market countries, the cross-country correlations

of volatility and growth were negligible (7), and even in the case of China and India they were below

0.2. Similarly, the conditional country correlation between volatility and growth was negligible in all

but 5 emerging market countries (including China and 3 other Asian economies) (8).

Thus, in order to compute this variance decomposition, as a first approximation, we assume that

the variance covariance matrix of the country-specific innovations is diagonal for the whole set of

countries N . We then check the robustness of the decomposition by allowing for non-zero correlation

23See Appendix B for the details on the derivations.
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among all country specific innovations in the model. This is done by recomputing the variance error

decompositions using the generalized method of Pesaran and Shin (1998) that allows for non-zero

correlations and then comparing results. When we do this, we find that the results are essentially the

same.

Consider first the variance decomposition of volatility averaged across countries reported on the

left hand panel of Figure 11. The figure shows that volatility is driven largely by shocks to the financial

factor (darkest, purple-shaded area) and country specific volatility shocks (lighter, blue-shaded area).

Combined, these two shocks explain about 90 percent of the total variance of realized volatility over

time, broken down in 60 percent for global shocks, and 30 percent for the country-specific volatility

shock. Shocks to the real common factor (lightest-shaded, yellow area) explain only about 10 percent

of the total variance of volatility. The “other” country-specific shocks, i.e., the country-specific growth

shock as well as the country-specific volatility and growth shocks of all other countries in the sample,

play essentially no role. Notice this does not follow mechanically from the assumptions that country

specific shocks are orthogonal to each other and across countries. The results show that volatility is

largely driven by shocks to the global financial factor and its own country specific shock. In short,

according to our results, the endogenous component of volatility via common or country specific shocks

is relatively small.

Consider now the average variance decomposition for growth reported in the left hand panel of

Figure 11. The figure shows that, on average, growth variance is driven mostly by country-specific

growth shocks and the common real factor, with a share combined share approaching 90 percent in

the long run –lightest (or yellow) and darker (or orange) shaded areas. The country-specific growth

shocks explains more than 60 percent of the total variance in the long-run, while the global real factor

explains slightly less than 30 percent of the total growth variance for the average in our sample, in line

with existing results in the international business cycle literature (see, for instance, Kose et al. (2003)).

Shocks to the common financial factor explain only slightly more than 10 percent of country-specific

growth variance on average. Their importance for growth variance increases quickly over time, but

stabilizes within a year or so. Country specific volatility shocks explain only a very small share of the

total variance, with a weight of about 1-2 percent, while all other country-specific shocks in the model

combined explain a negligible share of variance.
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7 Conclusions

The global financial crisis spurred renewed academic interest in quantifying the effects of uncertainty

on macroeconomic dynamics. In this paper, we study the interrelation between realized equity price

volatility and GDP growth without imposing restrictions on the direction of causation. To do so we

assume volatility and growth are driven by two common factors. By taking a multi-country approach,

as opposed to studying a single economy in isolation, we can identify and estimate these two factors,

as well as country-specific volatility and growth shocks. Identification exploits different patterns of

correlation across countries of volatility and GDP growth. The identification strategy that we propose

can be applied in other contexts. Evidence based on the cross-country correlations of the raw data and

estimated innovations is in strong accordance with the assumptions made to achieve identification.

Empirically, we find that shocks to the real and financial factors account for most of the uncondi-

tional correlation between volatility and growth in all but very few emerging market countries. But

shocks to the real factor explain a small share of volatility variance, even though they do have a nega-

tive and statistically significant impact on growth when they realize, as shocks to the financial factor

do for the variance of growth. Shocks to the financial factor are the most important drivers of the

variance of country volatilities, while the country-specific growth shock accounts for the bulk of coun-

try growth variance. The results also show that, conditional on the real and financial factor, country

specific shocks have negligible spillover effect because they explain no share of country volatility or

growth variance.

These results imply that the endogenous component of country volatility is small and driven largely

by global factors, that uncertainty is most important for the business cycle when the shocks are global

in nature, and that financial and business cycle fluctuations share only a relatively small common

component.
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A Appendix: Mathematical Derivations and Data Sources

A.1 Proof of Proposition 3 (Consistent estimation of unobservable factors in het-

erogeneous factor-augmented VARs)

Proof. Under Assumption 8, and noting that by assumption the processes {zit, i = 1, 2, ..., N} have

been in operation for some time, we have:

zit = µi +

∞∑
`=0

Φ`
iΓift−` + ζit, (A.1)

where:

µi = (I2 −Φi)
−1ai and ζit =

∞∑
`=0

Φ`
iξi,t−`. (A.2)

Pre-multiplying both sides of (A.1) by (wi) and summing over i yields:

z̄ωt = µ̄ω +

∞∑
`=0

A`,N ft−` + ζ̄ωt (A.3)

where:
z̄ωt =

∑N
i=1wizit, µ̄ω =

∑N
i=1wiµi,

A`,N =
∑N

i=1wiΦ
`
iΓi, and ζ̄ωt =

∑N
i=1wiζit.

(A.4)

Under Assumption 5, ζit are cross-sectionally weakly correlated, given that the wi are granular. Then

using results in Pesaran and Chudik (2014), it readily follows that:

ζ̄ωt = Op


√√√√ N∑

i=1

w2
i

 = Op

(
N−

1
2

)
, for each t. (A.5)

Also, under Assumptions 7 and 8,

E
(
Φ`
iΓi

)
= E

(
Φ`
i

)
E (Γi) = Λ`Γ,

and since Φi and Γi are distributed independently across i, then using results in Pesaran and Chudik

(2014) it also follows that

A`,N − E (A`,N ) =

N∑
i=1

wi

[
Φ`
iΓi − E

(
Φ`
iΓi

)]
= Op


√√√√ N∑

i=1

w2
i

 = Op

(
N−

1
2

)
. (A.6)
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Using the above results, namely (A.5) and (A.6) in (A.3) we now have:

z̄ωt = µ̄ω +
∞∑
`=0

Λ`Γft−` +Op

(
N−

1
2

)
= µ̄ω +

( ∞∑
`=0

Λ`L
`

)
Γft +Op

(
N−

1
2

)
= µ̄ω + Λ (L) Γf t +Op

(
N−1/2

)
.

But under Assumptions 7 and 8, Γ and Λ (L) are both invertible and:

ft = Γ−1Λ−1 (L) (z̄ωt − µ̄ω) +Op

(
N−

1
2

)
,

where:

Γ−1 =

(
0 γ−1

θ−1 − λ
θγ

)
,

Λ−1 (L) = B0 + B1L+ B2L
2 + ....

(note that B0 = Λ0 = I2). Hence,

ft = Γ−1 (z̄ωt − µ̄ω) +
(
C1 + C2L+ C3L

2 + ....
)

(z̄ω,t−1 − µ̄ω) +Op

(
N−

1
2

)
= b+

( ∞∑
`=0

C`L
`

)
z̄ω,t +Op

(
N−

1
2

)
,

where C` = Γ−1B
`
, for ` = 0, 1, 2, ..., and b = − Γ−1Λ−1 (1) µ̄ω. Hence, given the lower triangular

form of Γ−1, we have

ft = γ−1∆ȳω,t +

∞∑
`=1

c′1,`z̄ω,t−` +Op

(
N−

1
2

)
, (A.7)

gt = θ−1v̄ω,t −
(
λ

θγ

)
∆ȳω,t +

∞∑
`=1

c′2,`z̄ω,t−` +Op

(
N−

1
2

)
, (A.8)

where c′1,` and c′2,` are the first and the second rows of C`, respectively, and v̄ω,t, ∆ȳω,t, z̄ω,t are defined

as above.

Consider now C` and note that ‖C`‖ ≤
∥∥Γ−1

∥∥ ‖B
`
‖, where

∥∥Γ−1
∥∥ is bounded for fixed non-zero
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values of γ and θ. Further, B
`

is given by the following recursions

B0 = I2, B1 = −Λ1

B2 = − (Λ1B1 + Λ2B0) ,

...

B` = − (Λ1B`−1 + Λ2B`−1 + ....+ Λ`B0) .

Hence, ‖B1‖ ≤ ‖Λ1‖ ‖B0‖, ‖B2‖ ≤ ‖Λ1‖ ‖B1‖ + ‖Λ2‖ ‖B0‖, and in general ‖B`‖ ≤ ‖Λ1‖ ‖B`−1‖ +

‖Λ2‖ ‖B`−1‖+ ....+ ‖Λ`‖ ‖B0‖, where ‖B0‖ = 1. However,24

‖Λ`‖ =
∥∥∥E(Φ`

i

)∥∥∥ ≤ E
∥∥∥Φ`

i

∥∥∥ ≤ (E ‖Φi‖)` ≤ ρ`.

Hence, ‖B1‖ ≤ ρ, ‖B2‖ ≤ ρ2, and so on, and as required ‖C`‖ ≤
∥∥Γ−1

∥∥ ρ`.
A.2 Derivation of orthogonalized factors

In this section we show how to extract orthogonal factors from the cross section averages, ∆ȳω,t and

v̄ω,t. Consider the pth order truncated approximation of the unobservable factors given by (A.7) and

(A.8), and note that in matrix notations (abstracting from the probability order terms) we have:

f = ∆ȳω + Z̄ωc1, (A.9)

g = v̄ω − λ∆ȳω + Z̄ωc2, (A.10)

where f = (f1, f2, ..., fT )′, g = (g1, g2, ..., gT )′, ∆ȳω,−l = (∆ȳω,1−l,∆ȳω,2−l, ...,∆ȳω,T−l)
′, ∆ȳω =

∆ȳω,0, v̄ω,−l = (v̄ω,1−l, v̄ω,2−l, ..., v̄ω,T−l)
′, v̄ω = v̄ω,0, Z̄ω = (τT , z̄ω,−1, z̄ω,−2, ..., z̄ω,−p), and z̄ω,−l =

(∆ȳω,−lv̄ω,−l).
25 Then the orthogonalized filtered factors, f̃ and g̃, can now be recovered as residuals

from the following OLS regressions:

∆ȳω = Z̄ωĉ1 + f̃ , (A.11)

v̄ω = λ̂f̃ + Z̄ωĉ2 + g̃, (A.12)

where ĉ1 is the OLS estimator of the regression coefficients in the regression of ∆ȳω on Z̄ω, and λ̂ and

ĉ2 OLS estimators of the regression coefficients in the regression of v̄ω on f̃ and Z̄ω.

Proof. Let MZ̄ω
= IT − Z̄ω

(
Z̄′ωZ̄ω

)−1
Z̄′ω, and note that:

MZ̄ω
f = MZ̄ω

∆ȳω

MZ̄ω
g = MZ̄ω

v̄ω − λMZ̄ω
∆ȳω

24Note that for any matrix A, ‖Ap‖ ≤ ‖A‖p, and for any random variable X, ‖E(X)‖ ≤ E ‖X‖.
25The inclusion of τT in Z̄ω ensures that the filtered factors have zero in-sample means.
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since MZ̄ω
Z̄ω = 0. We set the first normalized factor, that we label f̃ , to MZ̄ω

f = MZ̄ω
∆ȳω; and set

the second factor, that we label g̃, as the linear combination of MZ̄ω
f and MZ̄ω

g such that f̃ ′g̃ = 0.

This can be achieved selecting λ so that:

f̃ ′g̃ = ∆ȳ′ωMZ̄ω

(
MZ̄ω

v̄ω − λMZ̄ω
∆ȳω

)
= 0.

The value of λ that solves this equation is given by:

λ̂ =
∆ȳ′ωMZ̄ω

v̄ω

∆ȳ′ωMZ̄ω
∆ȳω

.

Note that λ̂ is the OLS estimator of the coefficient of the regression of MZ̄ω
v̄ω on MZ̄ω

∆ȳω. Hence,

the orthogonalized factors are

f̃ = MZ̄ω
∆ȳω,

g̃ = MZ̄ω
v̄ω − λ̂MZ̄ω

∆ȳω.

In practice, this implies that f̃ can be recovered as residuals from the OLS regression of ∆ȳω on an

intercept and z̄ω,t−`, with ` = 1, 2, ..., p:

∆ȳω = Z̄ωĉ1 + f̃ (A.13)

While g̃ can be recovered as residuals from the OLS regression of v̄ω on f̃ , an intercept, and z̄ω,t−`

with ` = 1, ..., p:

v̄ω = λ̂f̃ + Z̄ωĉ2 + g̃ (A.14)

B Appendix: Computing impulse responses and variance decompo-

sitions

Consider the following factor-augmented country-specific VAR models also augmented with lagged

cross section averages, z̄ω,t−`, for ` = 1, 2, ..., p,

zit = Φizi,t−1 +

p∑
`=1

ψi,`z̄ω,t−` + Γ̃if̃t + ξit, for i = 1, 2, ..., N, (B.1)

where

=

(
γ̃i,11 γ̃i,12

γ̃i,21 0

)
, f̃t =

(
f̃t

g̃t

)
.
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Intercepts are omitted to simplify the exposition. Note also that z̄ω,t =
∑N

i=1wi∆zit = Wzt, where

zt = (z′1t, z
′
2t, ..., z

′
Nt)
′, and W is a 2 × 2N matrix of weights. Stacking the VARs in (B.1) over i we

obtain

zt = Φzt−1 +

p∑
`=1

ψ`Wzt−` + Bf̃ t + ξt, (B.2)

where ξt = (ξ′1t, ξ
′
2t, ..., ξ

′
Nt)
′ and

Φ =


Φ1 0 · · · 0

0 Φ2 · · · 0
...

... · · ·
...

0 0 · · · ΦN

 , ψ` =


ψ1,`

ψ2,`
...

ψN,`

 , Γ =


Γ̃1

Γ̃2

...

Γ̃N

 .

The high-dimensional VAR in (B.2) can now be written as a standard FAVAR(p) model in 2N variables

zt = (Φ +ψ1W) zt−1 +

p∑
`=2

ψ`Wzt−` + Γf̃ t + ξt. (B.3)

For example, when p = 1 we have the FAVAR(1)

zt = (I2N −Ψ1L)−1(Bf̃ t + ξt),

where Ψ1 = Φ +ψ1W.

zt = (I−Ψ1L)−1Bf̃ t + (I−Ψ1L)−1ξt.

Note that by construction f̃t and ξt are orthogonal, and for sufficiently large p, they are serially

uncorrelated. Hence, the impulse response of shocks to elements of f̃t and ξt can be computed using

the following moving average representation

zt =
∞∑
n=0

Anf̃t−n +
∞∑
n=0

Cnξt−n, (B.4)

where An = Ψn
1B, and Cn = Ψn

1 , for n = 0, 1, 2, ....

B.1 Responses to common and country-specific shocks

Let ei be a selection vector such that e′izt picks the ith element of zt. Also let sf = (1, 0)′ and

sg = (0, 1)′, the vectors that select f̃t and g̃t from f̃t; namely,

s′f f̃t ≡ f̃t, s′g f̃t ≡ g̃t. (B.5)

46



Recall now that f̃t and g̃t have zero means, unit variances and are orthogonal to each other. Then the

impulse responses to a positive unit shock to f̃t or g̃t are given by:

IRi,f̃ ,n = e′iAnsf and IRi,g̃,n = e′iAnsg for n = 0, 1, 2, ..., (B.6)

where An is given by the moving average representation, (B.4)

To derive impulse response functions for country-specific shocks, i.e., the jth element of ξt), we

need to make assumptions about the correlation between volatility and growth innovations within

each country and across countries. Since the elements of ξt are weakly correlated across countries, by

construction, they have some, but limited correlation across countries (see Tables 2 and 4). We also

documented that, conditional on the common factors f̃t and g̃t, the country correlation of volatility

and growth innovations are statistically insignificant for all except four countries.

As a first approximation, therefore, we will assume that the variance-covariance matrix of ξt in

(B.3) is diagonal. Under this assumption, the impulse response function of a positive, unit shock to

the jth element of ξt on the the ith element of zt is given by:

IRi,ξj ,n =
√
ω̂jje

′
iCnej , (B.7)

where Cn is given by the moving average representation, (B.4), ω̂jj is the (estimate) of the variance

of the jth country-specific shock and ej is a selection vector such that e′jzt picks the jth element of zt.

The above impulse responses can be compared to the generalized impulse responses of Pesaran

and Shin (1998). The latter are given by:

GIRi,ξj ,n =
e′iCnΩ̂ej√

ω̂jj
, (B.8)

where Ω̂ = (ω̂ij) is the estimate of the covariance of ξt. The generalized impulse responses allow for

non-zero correlations across the idiosyncratic errors. The two sets of impulse responses coincide if the

variance-covariance matrix of is ξt diagonal.

B.2 Variance error decompositions

country specific shocks is diagonal, the relative importance of shocks to country volatility and growth

for all countries (ξjt, for j = 1, 2, ...., 2N) and shocks to the two common factors that f̃t and g̃t, is

easily characterized.

Let V Di,f̃ ,n and V Di,g̃,n be the share of the n-step ahead forecast error variance of the ith variable

in zt that is accounted for by f̃t and g̃t, respectively, and V Di,j the variance share of a generic country
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specific shock, then:

V Di,f̃ ,n =

n∑̀
=0

(e′iA`sf )2

n∑̀
=0

e′iA`A
′
`ei +

n∑̀
=0

e′iC`Ω̂C′`ei

, n = 1, 2, ....,H, (B.9)

V Di,g̃,n =

n∑̀
=0

(e′iA`sg)
2

n∑̀
=0

e′iA`A
′
`ei +

n∑̀
=0

e′iC`Ω̂C′`ei

, n = 1, 2, ....,H, (B.10)

V Di,j,n =

ω̂−1
jj

n∑̀
=0

(
e′iC`Ω̂ej

)2

n∑̀
=0

e′iA`A
′
`ei +

n∑̀
=0

e′iC`Ω̂C′`ei

, j = 1, 2, ...., 2N, n = 1, 2, ....,H; (B.11)

where V Di,f̃ ,n + V Di,g̃,n +
∑2N

j=1 V Di,j,n = 1 if Ω̂ = diag(ω̂11, ω̂22, ..., ω̂2N,2N ). As with impulse re-

sponses, we also compare these error variance decomposition results with the generalized variance

error decompositions that employes the full matrix estimate, Ω̂ = (ω̂ij) .

B.3 Average impulse responses

As a summary measure of the effects of shocks to the common (global) factors we computed the

following average measures. Denote the impulse response of a particular shock on the jth variable in

country i at horizon h by IRijh. Let w = (w1, w2, ..., wN )′ be a vector of fixed weights such that that

ΣN
i=1wi = 1. Then the average impulse response of the shock to variable j at horizon h is computed as

IRω,jh =

N∑
i=1

wiIRijh. (B.12)

and its dispersion is computed by

σIRω ,jh =

[
N∑
i=1

w2
i (IRijh − IRω,jh)2

]1/2

, (B.13)

assuming country-specific impulse responses are uncorrelated. The same formulae can be applied to

compute average forecast error variance decompositions.

C Appendix: Data Sources

For equity prices we use the MSCI Index in local currency. We collected daily observations from

January 1979 to June 2011, but the panel of countries is unbalanced with only 16 economies starting

from the beginning of the sample. A balanced panel was also constructed with 32 countries from
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1993:Q1. The data source for the daily equity price indexes is Bloomberg. The countries included in

the sample are the following: Argentina, Australia, Austria, Belgium, Brazil, Canada, Chile, China,

Finland, France, Germany, India, Indonesia, Italy, Japan, Korea, Malaysia, Mexico, Netherlands,

Norway, New Zealand, Peru, Philippines, Saudi Arabia, South Africa, Singapore, Spain, Sweden,

Switzerland, Thailand, Turkey, United Kingdom, and United States.

The list of Bloomberg tickers is as follows: MSELTAG, MSDLAS, MSDLAT, MSDLBE, MSELTBR,

MSDLCA, MSELTCF, MSELTCH, MSDLFI, MSDLFR, MSDLGR, MSELTIA, MSELTINF, MS-

DLIT, MSDLJN, MSELTKO, MXMY, MSELTMXF , MSDLNE, MSDLNO, MSDLNZ, MSELTPR,

MSELTPHF, MSELTSA, MGCLSA, MSDLSG, MSDLSP, MSDLSW, MSDLSZ, MSELTTHF, MSELTTK,

MSDLUK, MSDLUS.

Real GDP data come from standard sources. The data set is balanced and good quality quarterly

data are also available for all countries from 1993:Q1. For more details see:

https://sites.google.com/site/gvarmodelling/.

D Online Supplement: Country-specific Results

In this online Supplement (not for publication), we report selected country-specific results, including

summary statistics and pairwise correlation of growth and volatility. Table D.1 reports summary

statistics on the log-level of real GDP for each country. Table D.2 reports the same set of statistics

for the realized volatility series. Table D.3 reports the average pairwise correlation conditioning only

on g̃). Table D.3 reports the average pairwise correlation conditioning both on f̃ and g̃.

For completeness, we also report all country impulse responses and forecast error variance decom-

positions for both volatility and growth. Figures 10 reports impulse responses. Figure D.1 and Figure

D.2 reports the country variance decompositions of volatility and growth, respectively.
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Table D.1 Summary Statistics for Real GDP Log-Level

ARG AUS AUT BEL BRA CAN CHL CHN FIN FRA DEU

Obs 74 74 74 74 74 74 74 74 74 74 74
Mean 16.26 7.37 7.74 7.53 17.38 8.07 8.02 14.64 16.51 9.23 9.26
Max 46.42 24.92 31.02 24.35 46.94 33.90 23.80 41.53 77.18 28.01 33.59
Min 7.58 3.35 3.39 2.86 6.56 3.36 4.21 6.63 6.60 4.02 3.72
St. Dev. 6.95 3.31 5.16 4.27 8.76 4.69 3.45 6.70 10.35 4.22 4.29
Auto Corr. 0.41 0.58 0.77 0.70 0.57 0.68 0.41 0.58 0.47 0.60 0.51
ADF -3.70 -2.24 -1.85 -2.54 -2.94 -2.65 -2.99 -2.72 -2.42 -2.46 -2.59
ADF(p) 0.01 0.00 0.00 0.00 0.05 0.10 0.05 0.10 0.00 0.00 0.00

IND IDN ITA JPN KOR MYS MEX NLD NZL NOR PER

Obs 74 74 74 74 74 74 74 74 74 74 74
Mean 12.06 13.90 9.90 10.03 13.26 9.04 11.50 8.77 8.20 10.08 13.44
Max 29.35 40.85 27.96 34.26 34.03 47.10 29.32 29.81 23.68 39.33 44.95
Min 5.41 4.11 3.61 4.26 5.93 2.64 5.11 3.60 3.76 4.74 6.14
St. Dev. 5.07 7.15 4.37 4.08 6.29 6.87 4.56 4.87 3.46 5.23 6.14
Auto Corr. 0.53 0.66 0.56 0.36 0.69 0.53 0.51 0.64 0.52 0.63 0.57
ADF -2.90 -2.59 -2.36 -3.00 -1.90 -2.73 -2.61 -2.58 -2.55 -2.53 -2.22
ADF(p) 0.10 0.00 0.00 0.05 0.00 0.10 0.00 0.00 0.00 0.00 0.00

PHL SGP ZAF ESP SWE CHE THA TUR GBR USA

Obs 74 74 74 74 74 74 74 74 74 74
Mean 10.95 9.12 11.35 9.58 10.78 7.75 13.52 19.87 8.26 8.31
Max 25.33 26.13 41.05 29.40 29.95 24.53 30.10 41.86 29.15 33.67
Min 4.36 3.74 3.82 4.05 5.23 3.35 6.64 7.43 3.76 3.34
St. Dev. 4.20 4.71 5.67 4.57 4.85 3.80 5.72 7.74 4.28 4.68
Auto Corr. 0.42 0.62 0.47 0.56 0.65 0.55 0.59 0.57 0.61 0.68
ADF -2.64 -2.44 -2.97 -2.11 -2.37 -2.83 -2.15 -1.70 -2.51 -2.47
ADF(p) 0.10 0.00 0.05 0.00 0.00 0.10 0.00 0.00 0.00 0.00

Note. Summary statistics of the log-level of real GDP.
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Table D.2 Summary Statistics for the Country Realized Volatility Level

ARG AUS AUT BEL BRA CAN CHL CHN FIN FRA DEU

Obs 74 74 74 74 74 74 74 74 74 74 74
Mean 4.67 4.65 4.62 4.61 4.67 4.61 4.68 4.86 4.61 4.60 4.60
Max 5.12 4.93 4.79 4.76 5.00 4.81 5.07 5.89 4.84 4.74 4.73
Min 4.42 4.30 4.40 4.40 4.39 4.32 4.23 3.99 4.29 4.43 4.47
St. Dev. 0.19 0.19 0.12 0.11 0.17 0.16 0.23 0.57 0.16 0.10 0.07
Auto Corr. 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
ADF 0.64 -2.97 -1.26 -1.42 0.57 -1.96 -1.03 2.76 -1.63 -1.55 -0.90
ADF(p) 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

IND IDN ITA JPN KOR MYS MEX NLD NZL NOR PER

Obs 74 74 74 74 74 74 74 74 74 74 74
Mean 4.74 4.74 4.60 4.63 4.67 4.66 4.60 4.59 4.92 4.54 4.72
Max 5.39 5.17 4.69 4.72 5.04 5.08 4.81 4.75 5.11 4.70 5.22
Min 4.16 4.37 4.46 4.55 4.19 4.15 4.31 4.36 4.63 4.23 4.24
St. Dev. 0.36 0.21 0.07 0.05 0.24 0.25 0.15 0.12 0.14 0.13 0.25
Auto Corr. 1.00 1.00 0.99 0.98 1.00 1.00 0.99 1.00 1.00 1.00 1.00
ADF 1.84 0.39 -2.12 -1.41 -1.14 -0.93 -0.52 -1.78 -1.76 -3.09 1.05
ADF(p) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00

PHL SGP ZAF ESP SWE CHE THA TUR GBR USA

Obs 74 74 74 74 74 74 74 74 74 74
Mean 4.70 4.65 4.68 4.62 4.62 4.62 4.73 4.66 4.62 4.61
Max 5.11 5.18 4.98 4.83 4.84 4.79 5.05 5.07 4.80 4.77
Min 4.33 4.06 4.39 4.37 4.36 4.48 4.37 4.27 4.37 4.33
St. Dev. 0.23 0.30 0.18 0.15 0.14 0.10 0.19 0.22 0.13 0.14
Auto Corr. 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00
ADF 0.52 -0.16 -0.11 -1.63 -0.86 -0.03 -0.67 -0.72 -1.97 -1.80
ADF(p) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note. Summary statistics of the level of volatility.
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Table D.3 Average Pairwise Correlations of Volatility and Growth Innova-
tions (Conditional on f̃ only)

Panel A: Volatility Innovations

Pair. Corr. Pair. Corr. Pair. Corr.

Argentina 0.57 India 0.43 Philippines 0.50
Australia 0.64 Indonesia 0.47 Singapore 0.57
Austria 0.59 Italy 0.56 South Africa 0.64
Belgium 0.53 Japan 0.52 Spain 0.61
Brazil 0.40 Korea 0.51 Sweden 0.62
Canada 0.64 Malaysia 0.33 Switzerland 0.59
Chile 0.54 Mexico 0.59 Thailand 0.40
China 0.50 Netherlands 0.60 Turkey 0.40
Finland 0.24 New Zealand 0.52 United Kingdom 0.63
France 0.63 Norway 0.66 United States 0.63
Germany 0.58 Peru 0.53

Panel B: Growth Innovations

Pair. Corr. Pair. Corr. Pair. Corr.

Argentina 0.00 India -0.10 Philippines 0.01
Australia 0.00 Indonesia 0.00 Singapore 0.05
Austria 0.04 Italy 0.09 South Africa 0.07
Belgium 0.08 Japan -0.04 Spain 0.05
Brazil 0.06 Korea 0.09 Sweden 0.10
Canada 0.04 Malaysia 0.04 Switzerland 0.00
Chile 0.03 Mexico 0.05 Thailand 0.10
China -0.19 Netherlands 0.07 Turkey 0.02
Finland 0.02 New Zealand 0.08 United Kingdom 0.03
France 0.09 Norway 0.05 United States -0.01
Germany 0.06 Peru 0.05

Note. Volatility innovations (u) are the OLS residuals of equation (38) without explicit conditioning on

g̃. Growth innovations (ε) are the OLS residuals of equation (39) as specified above. The average pairwise

correlation across countries is 0.54 and 0.03 for the volatility innovations and the growth innovations

respectively. The statistics are the same as in Figure 6.
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Table D.4 Average Pairwise Correlations of Volatility Innovations (Condi-
tional both on f̃ and g̃)

Pair. Corr. Pair. Corr. Pair. Corr.

Argentina 0.05 India -0.11 Philippines -0.01
Australia 0.06 Indonesia -0.03 Singapore 0.01
Austria 0.08 Italy 0.09 South Africa 0.07
Belgium 0.07 Japan 0.01 Spain 0.08
Brazil 0.02 Korea 0.03 Sweden 0.09
Canada 0.02 Malaysia -0.04 Switzerland 0.10
Chile 0.02 Mexico 0.03 Thailand -0.06
China -0.21 Netherlands 0.09 Turkey 0.05
Finland -0.03 New Zealand 0.06 United Kingdom 0.09
France 0.12 Norway 0.11 United States 0.03
Germany 0.05 Peru 0.04

Note. Volatility innovations (η) are the residuals of equation (38). The average pairwise correlation across

countries is 0.03. The statistics for the volatility innovations are the same as in Figure 7.
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