College Pricing and Income Inequality

Zhifeng Cai
U of Minnesota, Rutgers University, and FRB Minneapolis

Jonathan Heathcote
FRB Minneapolis

NBER Income Distribution, July 20, 2017

The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.
Introduction

• Price of US college tuition has risen fast in recent decades
• At the same time, income inequality has been rising
• Why is tuition rising so fast?
• Are smart low income students being priced out?
• To explore these questions, need a model of the college market
• Key Challenge: College is a club good:
 • Quality (desirability) of a given college depends on attributes (e.g. academic ability) of students who attend
 • Consumers are therefore an input in production
Tuition, Fees, Room & Board (College Board $2015)
Colleges as Clubs

- Club good feature complicates model analysis:
 - two colleges with different student bodies supply different products in different markets

- Lots of college variety \Rightarrow lots of markets in general equilibrium

- \Rightarrow existing literature assumes small number of different college types

- Potential concerns:
 - Counterfactual \Rightarrow applied analysis difficult
 - Equilibrium existence problems (Scotchmer, 1997)
 - Price-taking assumption questionable – game theoretic oligopolistic price setting more natural
Model: Standard Elements

- Households differ by income and student ability
- Colleges differ by quality
- Quality depends on resources & avg. student ability
Model: Novel Element

Continuous distribution of college quality, with free entry (Ellickson, Grodal, Scotchmer, Zame, 1999)

- Entire distribution of college characteristics and prices can be compared to data
- College distribution can change smoothly and flexibly in response to changing drivers of college demand
- No existence problems
- Price taking natural
- No role for lotteries as in Cole and Prescott (1997) or Caucutt (1999)
Outline

• Model description

• A closed-form example

• Calibration and model-data comparison

• Applications: How do the following affect college pricing and college attendance
 1. Income inequality
 2. Subsidies to public universities
 3. Subsidies to all colleges
Model: Households

- Continuum of measure 2 of households, each containing a parent and a college-age child

- Heterogeneous wrt: (i) income y, (ii) student ability a

- Two ability levels, indexed $i \in \{l, h\}$, $a_l < a_h$, measure 1 of each level

- Continuous distribution for income, CDF $F^i(y)$

- Utility from non-durable consumption c and quality q of the college the child attends

$$u(c, q) = \log c + \varphi \log(\kappa + q)$$
Household Problem

• Make education choice $j \in \{0, 1, 2\}$:
 1. $j = 0$: No college
 2. $j = 1$: Public college, grant toward tuition g_1
 3. $j = 2$: Private college, grant toward tuition $g_2 < g_1$

• Take as given tuition functions $t^i_j(q; y)$

• Given idiosyncratic state (y, i), solve

$$\max_{\{j, c, q \in Q^i\}} u(c, q)$$

s.t.
$$c + t^i_j(q; y) = y + g_j$$

• Solution: $s^i(y), c^i(y), q^i(y)$
Model: Colleges

- CRS technology for producing education of a given quality

- Quality (per student) reflects:

 (i) average ability of student body

 (ii) consumption good input (per student) e (faculty etc)

 $$q = (\eta a_h + (1 - \eta) a_l)\theta e^{1-\theta}$$

 where η is share of student body that is high ability

- Fixed consumption cost R&B ϕ per student admitted
Public versus Private Schools

- Assume all colleges profit maximize
 - minimize cost of supplying given value of education

- Observe income y and child’s ability type i, take as given tuition schedules

- Colleges choose private or public status

- Public colleges must keep average tuition below a cap T

- No equilibrium tuition discrimination by income
 - If other colleges charge high income students more, a single profit-maximizing college would skim high income students
 - If other colleges are profit maximizing, a single college charging low income students less would incur negative profits
College Problem

1. Choose quality level
2. Choose public or private model to deliver q
3. Choose input mix and size

Input mix sub-problem for private college supplying mass 1 spots at $q > 0$

$$\max_{\eta,e} \left\{ t_2^h(q) \eta + t_2^l(q) (1 - \eta) - e - \phi \right\}$$

s.t.

$$q = (\eta a_h + (1 - \eta) a_l)^\theta e^{1-\theta}$$

- Public college problem similar s.t. additional constraint

$$t_1^h(q) \eta + t_1^l(q) (1 - \eta) \leq T$$
Profit Maximization Given $t^i_j(q)$

1. Fix quality q
2. Compute optimal input mix for unconstrained public college
 \[
 \frac{e_1(q)}{\eta_1(q)a_h + (1 - \eta_1(q)) a_l} = \frac{(1 - \theta) (t^l_1(q) - t^h_1(q))}{\theta \Delta a}
 \]
3. Check whether avg. tuition exceeds T.
 - If not, only public colleges at quality q
 - Else, compare profit from unconstrained private college to constrained public college, where $\eta_1(q)$ s.t.
 \[
 t^h_1(q)\eta_1(q) + t^l_1(q) (1 - \eta_1(q)) = T
 \]
4. Optimal size at each q:
 \[
 \begin{cases}
 0 & \text{if } \pi_j(q) < 0 \\
 [0, \infty] & \text{if } \pi_j(q) = 0 \\
 \infty & \text{if } \pi_j(q) > 0
 \end{cases}
 \]
Equilibrium

\(\chi_j(Q) \): measure of students in \(j \) type colleges with \(q \in Q \subset Q_j \)

Equilibrium is \(\chi_j(q), t^i_j(q), \eta_j(q), e_j(q), s^i(y), c^i(y), q^i(y) \) s.t.

1. Given \(t^i_j(q), s^i(y), q^i(y) \) & \(c^i(y) \) solve household’s problem
2. Given \(t^i_j(q), \eta_j(q) \) & \(e_j(q) \) solve college problem for \(j = 1, 2 \)
3. Zero profits: \(\forall Q, \pi_j(q) \leq 0 \ \forall q \in Q \) and
 \[
 \int_Q \pi_j(q) d\chi_j(q) = 0
 \]
4. Market clearing:
 \[
 \sum_{i=h,l} \int c^i(y) dF^i(y) + \sum_{j=1,2} \int (e_j(q) + \phi - g_j) d\chi_j(q) = \sum_{i=h,l} \int y dF^i(y)
 \]
 \[
 \int 1\{s^h(y)=j, q^h(y)\in Q\} dF^h(y) = \int_Q \eta_j(q) d\chi_j(q) \quad \forall Q, j = 1, 2
 \]
 \[
 \int 1\{s^l(y)=j, q^l(y)\in Q\} dF^l(y) = \int_Q (1 - \eta_j(q)) d\chi_j(q) \quad \forall Q, j = 1, 2
 \]
Properties of Tuition Functions

- At each quality level, \(t^h(q) < t^l(q) \)
 - Otherwise colleges would strictly prefer high ability students

- Tuition is increasing in quality: \(q_1 > q_2 \Rightarrow t^i(q_1) > t^i(q_2) \)
 - Otherwise no students would choose lower quality college

- Public schools dominate at low quality levels, private at high:
 - At low \(q \), if cap \(T \) non-binding, public schools can charge \(g_1 - g_2 \) more tuition
 - At high \(q \), cap binds tightly \(\Rightarrow \) private schools more profitable

- Sorting by income
 - Holding fixed ability, higher income households more willing to pay for higher quality colleges
Parametric Example

- Pure club good model: $\theta = 1 \Rightarrow q = \eta a_h + (1 - \eta)a_l$
 - Households sell and buy ability in college market

- Set $\varphi = 1 \Rightarrow u(c, q) = \log c + \log(\kappa + q)$

- No R&B: $\phi = 0$

- No grants, and no public schools

- Uniform income distribution:

$$y \sim U \left[\mu_y - \frac{\Delta_y}{2}, \mu_y + \frac{\Delta_y}{2} \right]$$

$$F^h(y) = F^l(y)$$

- Let $\mu_a = \frac{a_h + a_l}{2}$, $\Delta_a = a_h - a_l$
Questions

1. What are $\chi(q)$, $t^h(q)$, $t^l(q)$?

2. How do these objects depend on Δy?

3. How does market for college differ from market for fish?
Digression: Modeling College Like Fish

- Households endowed with a_l or a_h units of ability
- Sell and buy ability at centralized market at per unit price p
- Household problem:

$$\max_{c,q} \{\log(c) + \log(\kappa + q)\}$$

s.t.

$$c + pq = y + pa_i$$

- Market clearing:

$$p = \frac{\mu_y}{\mu_a + \kappa}$$

- “Tuition” (net price) function:

$$t^i_F(q) = pq - pa_i = (q - a_i) \frac{\mu_y}{\mu_a + \kappa}$$

1. Net price functions are linear in q, and
2. Price function does not depend on income inequality Δy
The Club Good Model

- College distribution: \(\forall Q \subset (a_l, a_h) \)

\[
\chi(Q) = \frac{2}{\Delta a} \left(\frac{2}{4 + \pi} \right) \int_Q \left[(1 - \eta(q))^2 + \eta(q)^2 \right]^{-2} dq
\]

\[
\chi(a_h) = \chi(a_l) = \frac{2}{4 + \pi} = 0.28
\]

- Tuition functions:

\[
t^i(q) = \mu_y \left(\frac{q - a_i}{\kappa + q} \right) \left[1 - \left(\frac{2}{4 + \pi} \right) \frac{\Delta_y}{\mu_y} \arctan (1 - 2\eta(q)) \right]
\]

- Competitive equilibrium is **Pareto efficient**

1. Distribution of quality independent of \((\mu_y, \Delta_y, \kappa)\)
2. Price functions **non-linear** in \(q\)
3. Price functions **depend on** \(\Delta_y\)
Sketch of Solution Method

1. Given any college distribution \(\chi(q) \), derive income of households attending college \(q \): \(y_i(q; \chi(.)) \)

2. Given \(y_i(q; \chi(.)) \), household’s FOC gives an ODE that pins down the college tuition function: \(t^i(q; \chi(.)) \)

\[
\frac{dt^i(q; \chi(.))}{dq} \frac{1}{y_i(q; \chi(.)) - t^i(q; \chi(.))} = \frac{1}{\kappa + q}
\]

3. Given \(t^i(q; \chi(.)) \), derive a college profit function:

\[
\pi(q; \chi(.)) = \eta(q)t^h(q; \chi(.)) + (1 - \eta(q))t^l(q; \chi(.))
\]

4. Solve for \(\chi(q) \) from the functional equation

\[
\pi(q; \chi(.)) = 0
\]

- This is a Volterra integral equation of the second kind with degenerate kernels, which has an analytical solution
Tuition
Tuition

Low Ability, \(\kappa = 0.01 \)

- \(\Delta_y = 0.01 \mu_y \)
- \(\Delta_y = 1.98 \mu_y \)
- fish

High Ability, \(\kappa = 0.01 \)

- \(\Delta_y = 0.01 \mu_y \)
- \(\Delta_y = 1.98 \mu_y \)
- fish

College Quality
More Properties of Club Good Equilibrium

1. At any quality level $q \in (0, 1)$ colleges have 2 types of customer:
 - high ability with relatively low income receiving subsidy
 - low ability with higher income paying positive tuition

2. Increasing Δy:
 - raises (lowers) $t^l(q)$ for $q \geq (\leq) \mu_a$
 - lowers (raises) $t^h(q)$ for $q \geq (\leq) \mu_a$
 - raises tuition differential for high q, lowers diff. for low q
Quantitative Example: Calibration

- Income distribution: Pareto Log-Normal:
 \[\ln y \sim EMG(\mu_i, \sigma^2, \alpha) \]

- \(\sigma^2 = 0.4117 \) (SCF, 2007)
- \(\alpha = 1.8 \) (Piketty-Saez, 2014)
- \(\mu^i \) s.t. \(E[y] = 1 \) and

\[
\frac{E[y|_{i=h}]}{E[y|_{i=l}]} = \frac{67,000}{45,000}
\]

- (avg. family income conditional on child’s AFQT score being above / below median, 1997 NLSY).
Preferences and College Technology

Preferences \((\varphi, \kappa)\), Technology: \((\theta, \phi)\)

1. Enrollment: 37.0\% \Rightarrow \kappa = 0.034

2. Tuition + R&B $17,823 to Agg. Cons. \Rightarrow \varphi = 0.0235

3. Room and Board $10,881 \Rightarrow \phi = 0.019

4. Peers vs. goods equally important in quality \Rightarrow \theta = 0.5

(targets for 2015-17; all 4 yr colleges)
5. Federal and state grant aid: $3,204 for public colleges, $2,893 for private colleges \(\Rightarrow g_1 = 0.0057, g_2 = 0.0051 \)

6. Tuition cap \(T \) set to replicate public share of 4 year enrollment, 0.695 \(\Rightarrow T = 0.0250 \)

7. Ability gap \(a_h - a_l \) drives within-school tuition dispersion

- College Board reports avg. price paid net of all subsidies (federal, state and institutional grant aid)
- Assume (i) everyone gets “federal and state grant aid ” (ii) all institutional aid goes to high ability

\[
\frac{\text{ave. net low ability tuition}}{\text{ave. net tuition}} = \frac{\$24,676}{\$17,823}
\]

\(\Rightarrow a_l = 0.275 \quad (a_h = 1) \)
College Quality Distribution

$\chi(q)$
Tuition Schedules

\[t_h(q) \]

\[t_l(q) \]

\[t_h(q)/q \]

\[t_l(q)/q \]
Avg. Ability and Tuition by Quality

Fraction of high ability

- y-axis: Fraction of high ability
- x-axis: q
- Graph shows a steep increase in the fraction of high ability as q increases.

Average tuition

- y-axis: Average tuition
- x-axis: q
- Graph shows a continuous increase in average tuition as q increases.
Table 1: First Moments: Model and College Scorecard Data

<table>
<thead>
<tr>
<th></th>
<th>Model</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Public</td>
<td>Private</td>
</tr>
<tr>
<td>Enrollment</td>
<td>0.258</td>
<td>0.112</td>
</tr>
<tr>
<td>Sticker TFRB $</td>
<td>19,168</td>
<td>47,018</td>
</tr>
<tr>
<td>Net TFRB $</td>
<td>12,797</td>
<td>29,373</td>
</tr>
<tr>
<td>Avg. family income $</td>
<td>54,044</td>
<td>111,763</td>
</tr>
<tr>
<td>Avg. ability / SAT</td>
<td>0.76</td>
<td>0.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
</tr>
<tr>
<td>No Coll.</td>
<td>Public</td>
</tr>
<tr>
<td>High ability kids</td>
<td>0.467</td>
</tr>
<tr>
<td>Low ability kids</td>
<td>0.793</td>
</tr>
<tr>
<td></td>
<td>Model</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>var.(log avg. net TFRB)</td>
<td>0.164</td>
</tr>
<tr>
<td>var.(log sticker TFRB)</td>
<td>0.229</td>
</tr>
<tr>
<td>var.(log avg. fam income)</td>
<td>0.331</td>
</tr>
<tr>
<td>var.(log avg. SAT)</td>
<td>0.011</td>
</tr>
<tr>
<td>corr.(log net TFRB, log income)</td>
<td>0.987</td>
</tr>
<tr>
<td>corr.(log net TFRB, log SAT)</td>
<td>0.687</td>
</tr>
<tr>
<td>corr.(log income, log SAT)</td>
<td>0.790</td>
</tr>
</tbody>
</table>
Experiments

1. Move income distribution back in time from 2014 to 1984:
 - $\alpha^{1984} = 2.7$ instead of $\alpha^{2014} = 1.8$
 - Adjust μ to hold average income fixed

2. Eliminate additional $311 grant for public colleges

3. Eliminate all federal and state grants for colleges ($3,204 for public and $2,893 for private)
Reducing Income Inequality

<table>
<thead>
<tr>
<th></th>
<th>Less Inequality</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Public</td>
</tr>
<tr>
<td>Enrollment (%)</td>
<td>44.2</td>
<td>32.1</td>
</tr>
<tr>
<td>Net TFRB $</td>
<td>13,474</td>
<td>11,388</td>
</tr>
<tr>
<td>High abil. part. (%)</td>
<td>63.9</td>
<td>42.9</td>
</tr>
<tr>
<td>Low abil. part. (%)</td>
<td>24.7</td>
<td>21.5</td>
</tr>
</tbody>
</table>
Reducing Income Inequality

\[\chi(q) \]

Benchmark

Less Income Inequality
Eliminating Public Subsidies

<table>
<thead>
<tr>
<th></th>
<th>No Public</th>
<th></th>
<th>Baseline</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>All</td>
<td>Public</td>
<td>Private</td>
</tr>
<tr>
<td>Enrollment (%)</td>
<td>35.9</td>
<td>37.0</td>
<td>25.8</td>
<td>11.2</td>
</tr>
<tr>
<td>Net TFRB $</td>
<td>18,435</td>
<td>17,815</td>
<td>12,797</td>
<td>29,373</td>
</tr>
<tr>
<td>High abil. part. (%)</td>
<td>51.8</td>
<td>53.3</td>
<td>34.7</td>
<td>18.6</td>
</tr>
<tr>
<td>Low abil. part. (%)</td>
<td>20.0</td>
<td>20.7</td>
<td>16.9</td>
<td>3.8</td>
</tr>
</tbody>
</table>
Eliminating Public Subsidies

\(\chi(q) \)

Benchmark
Remove Public Subsidy
Eliminating All Subsidies

<table>
<thead>
<tr>
<th></th>
<th>No Subsidies</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Enrollment (%)</td>
<td>27.5</td>
<td>37.0</td>
</tr>
<tr>
<td>Net TFRB $</td>
<td>23,340</td>
<td>17,815</td>
</tr>
<tr>
<td>High abil. part. (%)</td>
<td>40.4</td>
<td>53.3</td>
</tr>
<tr>
<td>Low abil. part. (%)</td>
<td>14.5</td>
<td>20.7</td>
</tr>
</tbody>
</table>
Eliminating All Subsidies

\[\chi(q) \]

- Benchmark
- Remove All Subsidies
Conclusions

• Widening income inequality driving enrollment down, tuition up

1. rich demand higher quality colleges ⇒ average college quality goes up

2. marginal high ability become poorer and are priced out ⇒ high ability students become scarcer and more expensive ⇒ increased cost of producing quality

• Small subsidies to public colleges support large public sector, effective in supporting high ability enrollment
• Eliminating all subsidies would drastically shrink college enrollment, push up tuition