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Abstract
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C. Hurlin, A. Levchenko, S. Ng, A. Onatski, C. Pérignon, G. Urga, M. Watson, B. Werker for their useful comments as
well as participants at the 2013 (EC)2 Conference on “The Econometric Analysis of Mixed Frequency Data” in Nicosia,
the 2014 “8th ECB Workshop on Forecasting Techniques” in Frankfurt am Main, the 2014 ESEM in Toulouse, the 2015
“8th Financial Risk International Forum on Scenarios, Stress and Forecast in Finance” in Paris, the 2015 “2nd Workshop
on High-Dimensional Time Series in Macroeconomics and Finance” in Vienna, the “Swiss Finance Institute Research
Days 2015” in Gerzensee, the 2015 “EABCN/Norges Bank Conference: Econometric methods for business cycle analysis,
forecasting and policy simulations” in Oslo, the 2015 “21st International Panel Data Conference” in Budapest, the 2015
“NBER-NSF Time Series Conference” in Vienna, the 2015 “Econometrics of high-dimensional risk networks” conference
at University of Chicago, the 2016 “International Association for Applied Econometrics Annual Conference” at University
of Milan-Bicocca, and seminar participants at the University of Alberta, the University of Amsterdam, the University of
Cambridge, the University of Pennsylvania, and the Swiss National Bank. The first author would also like to thank the
European Community Horizon 2020 ERC-POC 2014 grant 640924.
†University of Cyprus and CEPR (elena.andreou@ucy.ac.cy).
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1 Introduction

In the public arena it is often claimed that manufacturing has been in decline in the US and most

jobs have migrated overseas to lower wage countries. First, we would like to nuance this observation

somewhat. It is true, as Figure 1 below clearly shows, that the share of the Industrial Production (IP)

sector has been in decline since the late 70’s, which is the beginning of our sample period. However,

does size matter? The fact that the size shrank does not necessarily exclude the possibility that the IP

sector still is a key factor, or even the dominant factor, of total US output. We study the validity of this

question using novel econometric methods designed to deal with some of the challenging data issues

one encounters when trying to address the problem. When studying the role of the IP sector we face

Figure 1: Sectoral decomposition of US nominal GDP.
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The figure displays the evolution from 1977 to 2011 of the sectoral decomposition of US nominal GDP. We aggregate the
shares of different sectors available from the website of the US Bureau of Economic Analysis, according to their North
American Industry Classification System (NAICS) codes, in 5 different macro sectors: Industrial Production (yellow),
Services (red), Government (green), Construction (white), Others (grey).

a conundrum. On the one hand, we have fairly extensive data on industrial production which consists

of 117 sectors that make up aggregate IP, each sector roughly corresponding to a four-digit industry

classification using NAICS. These data are published monthly, and therefore cover a rich time series
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and cross-section. In our analysis, the data are sampled at quarterly frequency, for reasons explained

later in the paper, and consists of over 16,000 time series data points counting all quarters from 1977

until 2011 (end of our data set) for each of the 42 sectors. On the other hand, contrary to IP, we do

not have monthly or quarterly data about the cross-section of US output across non-IP sectors, but

we do so on an annual basis. Indeed, the US Bureau of Economic Analysis provides Gross Domestic

Product (GDP) and Gross Output by industry - not only IP sectors - annually. In our empirical analysis

we use data on 42 non-IP sectors. If we were to study all sectors annually, we would be left with

roughly 4000 data points for IP - a substantial loss of information.

Economists have proposed different models to explain how various sectors in the economy interact.

Some rely on aggregate shocks which affect all sectors at once. Foerster, Sarte, and Watson (2011),

who use an approximate factor model estimated with quarterly data, find that nearly all of IP variability

is associated with a small number of common factors - even a single common factor suffices according

to their findings. To what extend does the single common factor which drives the cross-sectional

variation of IP sectors also affect the rest of the economy, in particular in light of the fact that the

services sector grew in relative size? To put it differently, can we maintain a common factor view if

we expand beyond IP sectors? Or should we think about sector-specific shocks affecting aggregate US

output? If so, are these IP sector shocks, or rather services sector ones?

The technical problem we solve and the theoretical contributions we make go far beyond the spe-

cific application studied in the current paper. The technical problem can be described as follows.

Suppose one has two sets of factors, say h1,t, h2,t, estimated from two separate panels, and we want to

know how many factors are common between them. We introduce a test for the number of canonical

correlations between h1,t and h2,t equal to one and do this in a large T and large N panel data context.

What complicates the asymptotics is the fact that we deal with estimated factors, i.e. the first stage

estimation error affecting the canonical correlation analysis. In fact the asymptotics are non-standard

in terms of convergence rates and a non-trivial bias correction.

Testing the hypothesis how many canonical correlations are equal to one is of interest in several

instances far beyond the context of the empirical challenge we address. For example what is the

common space spanned by principal components extracted from stock returns (akin to rotations of

Fama and French factors) and principal components extracted from macroeconomic series (like Stock

and Watson factors)? Surprisingly, there are no formal tests available. If we consider the variance-
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covariance matrix of the stacked factors, i.e. V [(h′1,t, h
′
2,t)
′], then our results also relate to testing the

rank of a symmetric positive semi-definite matrix. Our theoretical results also contribute to a number

of open questions in the literature on testing the rank of such matrices. In Section 4.3 we discuss how

our contributions relate to the various existing literatures.

How does testing for common factor spaces relate to our empirical problem of interest? Using the

terminology of the approximate factor model literature, we have a panel consisting of NH IP sector

growth series sampled across MT time periods, where M = 4 for quarterly data and M = 12 for

monthly data, with T the number of years. Moreover, we also have a panel of NL non-IP sectors

- such as services and construction for example - which is only observed over T periods. Hence,

generically speaking we have a high frequency panel data set of size NH ×MT and a corresponding

low frequency panel data set of size NL × T. The issue we are interested in can be thought of as

follows. We allow for the presence of three types of factors: (1) those which explain variations in

both panels - say gC , and therefore are economy-wide factors, (2) those exclusively pertaining to IP

sector movements - say gH , and finally (3) those exclusively affecting non-IP, denoted by gL. Hence,

we could have (1) common, (2) high frequency and (3) low frequency factors. We use superscripts C,

H and L because the theory we develop is generic and pertains to common (C), high frequency (H)

and low frequency (L) factors.

The purpose of this paper is to propose large scale approximate factor models in the spirit of Bai

and Ng (2002), Stock and Watson (2002a), Bai (2003), Bai and Ng (2006a), and extend their analysis

to mixed frequency data settings. A number of mixed frequency factor models have been proposed in

the literature, although they almost exclusively rely on small cross-sections.1 We approach the problem

from a different angle. We start with a setup which identifies factors common to both high and low

frequency data panels, the aforementioned gC , and factors specific to the high and low frequency data.

Our approach amounts to writing the model as a grouped factor model. The idea to apply grouped

factor analysis to mixed frequency data is novel and has many advantages in terms of identification

and estimation. In the proposed identification strategy, the groups correspond to panels observed at

1See for example, Mariano and Murasawa (2003), Nunes (2005), Aruoba, Diebold, and Scotti (2009) Frale and Mon-
teforte (2010), Marcellino and Schumacher (2010) and Banbura and Rünstler (2011), among others. Stock and Watson
(2002b) in their Appendix A, propose a modification of the EM algorithm of Dempster, Laird, and Rubin (1977) to esti-
mate high frequency factors from potentially large unbalanced panels, with mixed-frequency being a special case. More-
over, Jungbacker, Koopman, and van der Wel (2011) introduce a computationally efficient EM algorithm for the maximum
likelihood estimation of a high-dimensional linear factor model with missing data.
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different sampling frequencies. While there is a literature on how to estimate factors in a grouped

model setting, there does not exist a general unifying asymptotic theory for large panel data.2 As

already noted, we propose estimators for the common and group specific factors, and an inference

procedure for the number of common and group specific factors based on canonical correlation analysis

of the principal components (PCs) estimators on each subgroup. The procedure is therefore general in

scope and also of interest in many applications other than the one considered in the current paper. We

study the large sample properties of our estimators and inference procedure as T , NH , NL →∞.

Our empirical application revisits the analysis of Foerster, Sarte, and Watson (2011) who use factor

analytic methods to decompose industrial production into components arising from aggregate shocks

and idiosyncratic sector-specific shocks. They focus exclusively on the IP sectors of the US economy.

We find that a single common factor explains around 90% of the variability in the aggregate IP output

growth index, and a factor specific to IP has very little additional explanatory power. This implies

that the single common factor can be interpreted as an Industrial Production factor. Moreover, more

than 60% of the variability of GDP output growth in service sectors, such as Transportation and Ware-

housing services, is also explained by the common factor. A single low frequency factor unrelated to

manufacturing, explaining around 14 % of GDP growth fluctuations, drives the comovement of non-IP

sectors such as Construction and Government. Note the great advantage of the mixed frequency set-

ting - compared to the single frequency one - in the context of our IP and GDP sector application. The

mixed frequency panel setting allows us to identify and estimate the high frequency values of factors

common to IP and non-IP sectors. With IP (i.e. high frequency) data only we cannot assess what is

common with the non-IP sectors. With low frequency data only, we cannot estimate the high frequency

common factors from a large cross-section.

We re-examine whether the common factor reflects sectoral shocks that have propagated by way of

input-output linkages between service sectors and manufacturing. A structural factor analysis indicates

that both low and high frequency aggregate shocks continue to be the dominant source of variation in

the US economy. The propagation mechanisms are very different, however, from those identified

by Foerster, Sarte, and Watson (2011). Looking at technology shocks instead of output growth, it

does not appear that a common factor explaining IP fluctuations is a dominant one for the entire

2In Section 2.4 we provide a short review of the literature on group factor models, including recent contributions related
to the topic of the current paper.
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economy. A factor specific to technological innovations in IP sectors is more important for the IP

sector shocks and a low frequency factor which appears to explain variation in information industry as

well as professional and business services innovations plays relatively speaking a more important role.

Hence, when it comes to innovation shocks, IP is no longer the dominant factor.

The rest of the paper is organized as follows. In Section 2 we introduce the formal model and

discuss identification. In Section 3 we study estimation and inference on the number of common fac-

tors. The large sample theory appears in Section 4. Section 5 presents briefly the results of a Monte

Carlo study. Section 6 covers the empirical application. Section 7 concludes the paper. The Technical

Appendix of the paper provides regularity conditions (Section A) and proofs of propositions and the-

orems (Section B). The Online Appendix (henceforth OA), Section C, contains additional theoretical

results on identification and estimation, an extensive description of the dataset used in the empirical

application, additional empirical results, and a procedure for the extraction of technology shocks in

a mixed frequency setting. Finally, the OA, Section D, contains the details about the Monte Carlo

simulation design and results.3

2 Model specification and identification

We consider a setting where both low and high frequency data are available. Let t = 1, 2, . . . , T be the

low frequency time units. Each period (t−1, t] is divided intoM subperiods with high frequency dates

t − 1 + m/M , with m = 1, . . . , M. Moreover, we assume a panel data structure with a cross-section

of size NH of high frequency data and NL of low frequency data. It will be convenient to use a double

time index to differentiate low and high frequency data. Specifically, we let xHim,t, for i = 1, . . . , NH , be

the high frequency data observation i during subperiod m of low frequency period t. Likewise, we let

xLit , with i = 1, . . . , NL, be the observation of the ith low-frequency series at t. These observations are

gathered into the NH-dimensional vectors xHm,t, ∀m, and the NL-dimensional vector xLt , respectively.

We have a latent factor structure in mind to explain the panel data variation for both the low and

high frequency observations. To that end, we assume that there are three types of factors, which we

denote by respectively gCm,t, g
H
m,t and gLm,t. The former represents factors which affect both high and

low frequency data (throughout we use superscript C for common), whereas the other two types of

3The OA, Sections C and D are available at https://sites.google.com/site/mircorubin/.
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factors affect exclusively high (superscript H) and low (marked by L) frequency data. We denote by

kC , kH and kL, the dimensions of these factors. The latent factor model with high frequency data

sampling is:

xHm,t = ΛHCg
C
m,t + ΛHg

H
m,t + eHm,t,

xL∗m,t = ΛLCg
C
m,t + ΛLg

L
m,t + eLm,t,

(2.1)

where m = 1, ...,M and t = 1, ..., T , and ΛHC , ΛH , ΛLC and ΛL are matrices of factor loadings.

The vector xL∗m,t is unobserved for each high frequency subperiod and the measurements, denoted by

xLt , depend on the observation scheme, which can be either flow sampling or stock sampling (or some

general linear scheme). In the remainder of this section we study identification of the model for the

case of flow sampling, corresponding to the empirical application covered later in the paper.4 For this

purpose, we develop a group-factor model representation.

2.1 Group-factor model representation

In the case of flow sampling, the low frequency observations are the sum (or average) of all xL∗m,t across

all m, that is: xLt =
∑M

m=1 x
L∗
m,t. Then, model (2.1) implies:

xHm,t = ΛHCg
C
m,t + ΛHg

H
m,t + eHm,t, m = 1, ...,M,

xLt = ΛLC

∑M
m=1 g

C
m,t + ΛL

∑M
m=1 g

L
m,t +

∑M
m=1 e

L
m,t.

(2.2)

Let us define the aggregated variables and innovations xHt :=
∑M

m=1 x
H
m,t, ē

U
t :=

∑M
m=1 e

U
m,t, U =

H,L, and the aggregated factors:

ḡUt :=
M∑
m=1

gUm,t, U = C,H,L.

4The identification with stock sampling is discussed in the OA, Section C.1. It is worth noting though that any linear
sampling scheme leading to a representation of the model analogous to the group-factor model in equation (2.3) or (2.4) -
as discussed shortly in Section C.1 - is compatible with the identification and estimation strategies of this paper.
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Then we can stack the observations xHt and xLt and write:

 xHt

xLt

 =

 ΛHC ΛH 0

ΛLC 0 ΛL



ḡCt

ḡHt

ḡLt

+

 ēHt

ēLt

 . (2.3)

The last equation corresponds to a group factor model, with common factor ḡCt and group-specific

factors ḡHt , ḡLt .

To further generalize the setup, and draw directly upon the group-factor structure, we will consider

the generic specification. To separate the specific from the generic case, we will change notation

slightly. Namely, we keep the notation introduced so far with high and low frequency data, temporal

aggregation, etc. for the mixed frequency setting further used in the empirical application, and use the

following notation for the generic grouped factor model setting:

 y1,t

y2,t

 =

 Λc
1 Λs

1 0

Λc
2 0 Λs

2



f ct

f s1,t

f s2,t

+

 ε1,t

ε2,t

 , (2.4)

where yj,t = [yj,1t, ..., yj,Njt]
′, Λc

j = [λcj,1, ..., λ
c
j,Nj

]′, Λs
j = [λsj,1, ..., λ

s
j,Nj

]′ and εj,t = [εj,1t, ..., εj,Njt]
′,

with j = 1, 2. The dimensions of the common factor f ct and the group-specific factors f s1,t, f
s
2,t are

kc, ks1 and ks2, respectively. In the case of no common factors, we set kc = 0, while in the case of no

group-specific factors we set ksj = 0, j = 1, 2. The group-specific factors f s1,t and f s2,t are orthogonal to

the common factor f ct . Since the unobservable factors can be standardized, we assume:

E


f ct

f s1,t

f s2,t

 =


0

0

0

 , and V


f ct

f s1,t

f s2,t

 =


Ikc 0 0

0 Iks1 Φ

0 Φ′ Iks2

 , (2.5)

where Ik denotes the identity matrix of order k. We allow for a non-zero covariance Φ between group-

specific factors.5 In the mixed-frequency model (2.1), the latent common and group-specific factors

5In the main body of the text we only highlight some of the key assumptions underpinning our analysis. In the Appendix,
Section A, we provide the detailed list of assumptions.
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are normalized such that ḡUt , U = C,H,L, satisfy the counterpart of (2.5).

2.2 Separation of common and group-specific factors

In standard linear latent factor models, the normalization induced by an identity factor variance-

covariance matrix identifies the factor space up to an orthogonal rotation (and change of signs). Under

a suitable identification condition, the rotational invariance of the group factor model (2.4) - (2.5) al-

lows only for separate rotations among the components of f s1,t, among those of f s2,t, and among those

of f ct . The rotational invariance of model (2.4) - (2.5) therefore maintains the interpretation of common

factor and specific factors. More formally, the following proposition gives a sufficient condition for

the identification of the group factor model.

PROPOSITION 1. Assume that the matrices Λ1 =

[
Λc

1

... Λs
1

]
and Λ2 =

[
Λc

2

... Λs
2

]
are full

column-rank, for N1, N2 large enough. Then, the factor model is identifiable: the data [y′1,t, y
′
2,t]
′ sat-

isfy a group factor model as (2.4) - (2.5) with stacked factor (f c ′t , f
s ′
1,t , f

s ′
2,t)
′ replaced by (f̃ c ′t , f̃

s ′
1,t , f̃

s ′
2,t)
′

defined by the linear transformation
f ct

f s1,t

f s2,t

 =


A11 A12 A13

A21 A22 A23

A31 A32 A33



f̃ ct

f̃ s1,t

f̃ s2,t

 (2.6)

if, and only if, the matrix A = (Ai,j) is a block-diagonal orthogonal matrix.

Proof: See Appendix B.1.

The full-rank condition in Proposition 1 is a standard condition for separate identification of the per-

vasive factor spaces in the two subgroups.6 Proposition 1 shows that this condition - together with the

normalization restrictions in (2.5) - is also sufficient for identifiability of the common factor f ct , the

group-specific factors f sj,t, and the factor loadings Λc
j , Λs

j , up to separate rotations.

By the same token in the mixed frequency setting of equation (2.3), the aggregated factors ḡCt , ḡHt ,

ḡLt , and the factor loadings ΛHC , ΛLC , ΛH , ΛL, are identified. Once the factor loadings are identified

from (2.3), the values of the common and high frequency factors for subperiods m = 1, ...,M are

6The identification condition in Proposition 1 is implied by Assumption A.2 in the Appendix, Section A, and implies
that the matrix of loadings in the right hand side of equation (2.4) is full-rank.
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identifiable by cross-sectional regression of the high frequency data on loadings ΛHC and ΛH in (2.1).

More precisely, gCm,t and gHm,t are identified by regressing xHim,t on λHC,i and λH,i across i = 1, 2, ..., for

any m = 1, ...,M and any t. Hence, with flow sampling, we can identify the common factor gCm,t and

the high frequency factor gHm,t at all high frequency subperiods. On the other hand, only ḡLt =
M∑
m=1

gLm,t,

i.e. the within-period sum of the low frequency factor, is identifiable by the paired panel data set

consisting of xHt combined with xLt . This is not surprising, since we have no HF observations available

for the LF process.

2.3 Identification of the common and group-specific factor spaces from canon-

ical correlations and directions

We now show that, under the conditions of Proposition 1, the factor space dimensions kc, ks1, ks2 are

identifiable as well, and a constructive identification strategy for these dimensions and the correspond-

ing factor spaces is made possible by canonical correlation analysis. In the interest of generality, let us

again consider the generic setting of equation (2.4) and let kj = kc+ksj , for j = 1, 2, be the dimensions

of the factor spaces for the two groups, and define k = min(k1, k2). We collect the factors of each

group in the kj-dimensional vectors hj,t:

hj,t :=

 f ct

f sj,t

 , j = 1, 2, t = 1, ..., T,

and define their variance and covariance matrices:

Vj` := E(hj,th
′
`,t), j, ` = 1, 2.

Before stating the main identification result, let us first recall a few basic facts from canonical anal-

ysis (see e.g. Anderson (2003) and Magnus and Neudecker (2007)). Let ρ`, ` = 1, ..., k denote the

canonical correlations between h1,t and h2,t. The largest k eigenvalues of matrices

R = V −1
11 V12V

−1
22 V21, and R∗ = V −1

22 V21V
−1

11 V12,
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are the same, and are equal to the squared canonical correlations ρ2
` , ` = 1, ..., k between h1,t and h2,t.

The associated eigenvectors w1,` (resp. w2,`), with ` = 1, ..., k, of matrix R (resp. R∗) standardized

such that w′1,`V11w1,` = 1 (resp. w′2,`V22w2,` = 1) are the canonical directions which allow to construct

the canonical variables from vector h1,t (resp. h2,t). The matrices wj = [wj,1, ..., wj,k], j = 1, 2, are

such that w′jVjjwj = Ik, j = 1, 2. Moreover, when ρ` 6= 0, then

w1,` =
1

ρ`
V −1

11 V12w2,` , w2,` =
1

ρ`
V −1

22 V21w1,` . (2.7)

PROPOSITION 2. The following hold:

i) If kc > 0, the largest kc canonical correlations between h1,t and h2,t are equal to 1, and the remain-

ing k − kc canonical correlations are strictly smaller than 1.

ii) Let Wj be the (kj, k
c) matrix whose columns are the canonical directions for hj,t associated with

the kc canonical correlations equal to 1, with j = 1, 2. Then, we have f ct = W ′
jhj,t (up to a rotation

matrix), for j = 1, 2.

iii) If kc = 0, all canonical correlations between h1,t and h2,t are strictly smaller than 1.

iv) Let W s
1 (resp. W s

2 ) be the (k1, k
s
1) (resp. (k2, k

s
2)) matrix whose columns are the eigenvectors of

matrix R (resp. R∗) associated with the smallest ks1 (resp. ks2) eigenvalues. Then f sj,t = W s′
j hj,t (up to

a rotation matrix) for j = 1, 2.

Proof: See Appendix B.2.

Proposition 2 shows that the number of common factors kc, the common factor space spanned by f ct ,

and the spaces spanned by group specific factors, can be identified from the canonical correlations and

canonical variables of h1,t and h2,t. Therefore, the factor space dimensions kc, ksj , and factors f ct and

f sj,t, j = 1, 2, (up to a rotation) are identifiable from information that can be inferred by disjoint Prin-

cipal Component Analysis (PCA) on the two subgroups. Indeed, disjoint PCA on the two subgroups

allows us to identify the dimensions k1, k2, and vectors h1,t and h2,t up to linear transformations. The

latter indeterminacy does not prevent identifiability of the common and group-specific factors from

Proposition 2. More precisely, from the subpanel j we can identify the vector hj,t up to a non-singular

matrix Uj , say, j = 1, 2. Under the transformation hj,t → Ujhj,t, the matrices R and R∗ are trans-

formed such that R → (U ′1)−1RU ′1 and R∗ → (U ′2)−1R∗U ′2. Therefore, the matrices of canonical

directions W1 and W2 are transformed such as Wj → (U ′j)
−1Wj , j = 1, 2. Therefore, the quantities

10



W ′
jhj,t, j = 1, 2, are invariant under such transformations.

One may wonder why we do not apply canonical correlation analysis directly to the (aggregated)

high and low frequency data - avoiding the first step of computing PCs since the extra step considerably

complicates the asymptotics and actually entails a novel contribution of the paper. What makes the

first step of computing PCs necessary is the fact that canonical correlations applied to the raw data

may not necessarily uncover pervasive factors.7 One may also wonder why we cannot stack all groups

into one panel and apply standard PCA to estimate common factors as in Bekaert, Hodrick, and Zhang

(2009) and Korajczyk and Sadka (2008), for instance. Unfortunately, this is also not a solution either,

as discussed in Boivin and Ng (2006), Goyal, Pérignon, and Villa (2008), Wang (2012) and Breitung

and Eickmeier (2016). In fact, in the case of a model with kc common factors, a finite number of

groups, and a positive number of group-specific factors, the estimate of the common factor obtained

from the first kc principal components of the pooled data is inconsistent due to the correlation in the

residuals terms arising from the group specific factors.

2.4 Related literature

By related literature we mean specifically the literature on group factor models. In Subsection 4.3,

which comes after we present the detailed theoretical results, we will discuss a broader literature

related to our paper.

There exist a number of papers on group factor models, sometimes also named “multilevel factor

models”, or “hierarchical factor models”. Many of these are rooted in the statistics literature and

deal with large T and finite cross-sections, i.e. maxj (Nj) < ∞.8 Recently, Bayesian methods for

state space models have been applied by Moench and Ng (2011) and Moench, Ng, and Potter (2013)

for relatively large scale hierarchical factor models. Moreover, Hallin and Liska (2011) extend the

estimator based on dynamic PCs to their dynamic factor model with block structure, which is similar to

the grouped factor models studied by the above literature.9 The main contribution of Goyal, Pérignon,

7A simple example would be to add an anomalous series to one panel and repeat the series to the other one. The
canonical correlation analysis applied to the raw data will uncover the presence of the anomalous series in both panels,
creating a “spurious” unit canonical correlation.

8See for example, Tucker (1958), Dauxois and Pousse (1975), Browne (1979), Krzanowski (1979), Browne (1980),
Cho (1984), Flury (1984), Flury (1988), Chen and Robinson (1989), Schott (1988), Schott (1991), Dauxois, Romain, and
Viguier (1993), Gregory and Head (1999), Schott (1999), Viguier-Pla (2004), and Kose, Otrok, and Whiteman (2008).

9Hallin and Liska (2011) deploy the information criteria of Hallin and Liska (2007) for inference on factor dimensions.
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and Villa (2008) is the extension of the results of the classical statistical literature on group factor

models to the case of approximate group factor models, even if they do not derive analytically any

asymptotic results.

Our work is most closely related to Chen (2010, 2012), Wang (2012), Ando and Bai (2015)

and Breitung and Eickmeier (2016), who handle the large dimensional T and N case, where N =

minj (Nj). To the best of our knowledge, the existing literature does not give a comprehensive asymp-

totic treatment yet of group factor models in a large dimensional setting. Hence, our contribution is

to provide a general comprehensive analysis that deals with (1) asymptotic distributional theory for

inference on the numbers of common and group-specific factors, and (2) consistency and asymptotic

normality of the estimators for factor spaces and loadings, within a unified framework based on prin-

cipal component and canonical correlation analysis.

More specifically, we use the results of canonical correlation analysis in Proposition 2 for con-

ducting inference on the factor space dimensions by developing an asymptotic theory for estimating

the number of canonical correlations equal to one. This asymptotic theory in nonstandard. Indeed, if

the PCs in the two groups were observed, then the problem of testing for unit canonical correlations

among them would have a degenerate feature, because it involves testing for deterministic relation-

ships between random vectors. The estimation errors of the PCs drive the asymptotic distribution of

the statistic, with a nonstandard convergence rate of N
√
T . Moreover, we also have to deal with a bias

adjustment term, due to a problem akin to errors in the variables. The positive bias adjustment term

re-centers the distribution to yield an asymptotic Gaussian density of the test statistic. The next two

sections provide the details of these derivations.

It is worth explaining in more depth the relationship with the aforementioned existing literature.

Our Proposition 1 corresponds to Proposition 1 in Wang (2012). However, Wang (2012) does not

exploit canonical correlation analysis - as we do in Proposition 2 - for the identification of factor space

dimensions, which are instead deduced from the number of pervasive factors in the subgroups, and in

the overall panel, under a restrictive condition. For given factor space dimensions, Wang (2012), Ando

and Bai (2015) and Breitung and Eickmeier (2016) consider an estimator defined by the minimization

of a Least Square (LS) criterion with respect to factor values and factor loadings. The consistency of

this procedure is formally proven by Ando and Bai (2015).10 To compute the minimizer of the non-

10Ando and Bai (2015) generalize the group-factor model by including both observable and unobservable factors. They
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convex LS criterion, Wang (2012), Ando and Bai (2015) and Breitung and Eickmeier (2016) propose

various iterative procedures. In particular, Wang (2012) exploits the first order conditions and describes

an iterative PC estimator. The large sample properties of the iterated PC estimator are, however, not

provided. In addition, we show in OA, Section C.3, that the iterative procedure is not operational as

the resulting fixed point equations do not have a unique solution. We avoid such issues by proposing

an estimator in closed form (up to the eigenvalue-eigenvector decompositions underlying principal

component and canonical correlation analysis). In a framework with two groups and abstracting from

classification issues, the estimation procedure of Chen (2012) relies on the fact that the number of

common factors corresponds to the number of eigenvalues equal to 2 of the variance-covariance matrix

of the stacked pervasive factors extracted in the two groups, and the common factors are spanned by

the associated eigenvectors. Chen (2012) uses this result to estimate the common factors and derive

the consistency of the estimators - assuming that the number of common factors is known. However,

the asymptotic theory for the distribution of the eigenvalues equal to two is not developed in Chen

(2012) and therefore cannot be used for inference on factor space dimensions.

One final comment is in order. Our analysis characterizes mixed frequency panel data models

as group factor models. This connection, which is key for identification and estimation, actually

eliminates one topic of concern in group factor models - the so called classification issue - we do not

deal with. Namely, in a mixed data sampling setting we know a priori to which group observations

in the panel belong. Some papers in group factor models (see e.g. Chen (2010, 2012), Ando and

Bai (2016), and the references therein) assume instead that the researcher has first to figure out the

allocation of observations across the different groups.

3 Estimation and inference on the number of common factors

In Section 3.1 we provide estimators of the common and group-specific factors, based on canonical

correlations and canonical directions, when the true number of group-specific and common factors

are known. In Section 3.2 we propose a sequential testing procedure for determining the number of

common factors when only the dimensions k1 and k2 are known. The test statistic is based on the

add a shrinkage penalty in the LS criterion and prove asymptotic normality for the estimator of the observable regressors
coefficients.

13



canonical correlations between the estimated factors in each subgroup of observables. In Section 3.3

we explain why the asymptotic results concerning the test statistic and the factors estimators obtained

under the assumption that the number of pervasive factors k1 and k2 in each group is known, remain

unchanged when the number of pervasive factors is consistently estimated. Finally, in Section 3.4 we

use these results to define estimators and test statistics for the mixed frequency factor model. Readers

who are only interested in the empirical application can go directly to Section 6 which starts with a

summary of the novel econometric procedure.

3.1 Estimation of common and group-specific factors when the number of com-

mon and group-specific factors is known

Let us assume that the true number of factors kj > 0 in each subgroup j = 1, 2, is known, and also that

the true number of common factors kc > 0, is known. Proposition 2 suggests the following estimation

procedure for the common factors. Let h1,t and h2,t be estimated (up to a rotation) by extracting the

first kj Principal Components (PCs) from each subpanel j, and denote by ĥj,t these PC estimates of

the factors, j = 1, 2. Let Ĥj = [ĥj,1, ..., ĥj,T ]′ be the (T, kj) matrix of estimated PCs extracted from

panel Yj = [yj,1, ..., yj,T ]′ associated with the largest kj eigenvalues of matrix
1

NjT
YjY

′
j , j = 1, 2. Let

V̂j` denote the empirical covariance matrix of the estimated vectors ĥj,t and ĥ`,t, with j, ` = 1, 2:

V̂j` =
Ĥ ′jĤ`

T
=

1

T

T∑
t=1

ĥj,tĥ
′
`,t, j, ` = 1, 2,

and let matrices R̂ and R̂∗ be defined as:

R̂ := V̂ −1
11 V̂12V̂

−1
22 V̂21, and R̂∗ := V̂ −1

22 V̂21V̂
−1

11 V̂12. (3.1)

Matrices R̂ and R̂∗ have the same non-zero eigenvalues. From Anderson (2003) and Magnus and

Neudecker (2007), we know that the largest kc eigenvalues of R̂ (resp. R̂∗), denoted by ρ̂2
` , ` = 1, ..., kc,

are the first kc squared sample canonical correlation between ĥ1,t and ĥ2,t. We also know that the

associated kc canonical directions, collected in the (k1, k
c) (resp. (k2, k

c)) matrix Ŵ1 (resp. Ŵ2), are

the eigenvectors associated with the largest kc eigenvalues of matrix R̂ (resp. R̂∗), normalized to have
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length 1 w.r.t. matrix V̂11 (resp. V̂22). It also holds:

Ŵ ′
1V̂11Ŵ1 = Ikc , and Ŵ ′

2V̂22Ŵ2 = Ikc . (3.2)

DEFINITION 1. Two estimators of the common factors vector are f̂ ct = Ŵ ′
1ĥ1,t and f̂ c∗t = Ŵ ′

2ĥ2,t.

From equation (3.2) we have:
1

T

T∑
t=1

f̂ ct f̂
c′
t = Ikc , and similarly for f̂ c∗t , i.e. the estimated common

factor values match in sample the normalization condition of identity variance-covariance matrix in

(2.5). Let matrix Ŵ s
1 (resp. Ŵ s

2 ) be the (k1, k
s
1) (resp. (k2, k

s
2)) matrix collecting ks1 (resp. ks2) eigen-

vectors associated with the ks1 (resp. ks2) smallest eigenvalues of matrix R̂ (resp. R̂∗), normalized to

have length 1 w.r.t. matrix V̂11 (resp. V̂22). It also holds:

Ŵ s ′
1 V̂11Ŵ

s
1 = Iks1 , and Ŵ s ′

2 V̂22Ŵ
s
2 = Iks2 .

The estimators of the group-specific factors can be defined analogously to the estimators of the com-

mon factors: f̆ s1,t = Ŵ s ′
1 ĥ1,t and f̆ s2,t = Ŵ s ′

2 ĥ2,t. By construction, f̂ ct and f̆ s1,t (resp. f̂ c∗t and f̆ s2,t) are

orthogonal in sample.

An alternative estimator for the group-specific factors f s1,t (resp. f s2,t) is obtained by computing

the first ks1 (resp. ks2) principal components of the variance-covariance matrix of the residuals of the

regression of y1,t (resp. y2,t) on the estimated common factors.11 Let F̂ c = [f̂ c ′1 , ..., f̂ c ′T ]′ be the (T, kc)

matrix of estimated common factors, and Λ̂c
j = [λ̂cj,1, ..., λ̂

c
j,Nj

]′ the (Nj, k
c) matrix collecting the

loadings estimators:

Λ̂c
j = Y ′j F̂

c(F̂ c ′F̂ c)−1 =
1

T
Y ′j F̂

c, j = 1, 2. (3.3)

Let ξj,i,t = yj,i,t − λ̂c ′j,if̂ ct be the residuals of the regression of yj,t on the estimated common factor f̂ ct ,

and define ξj,t = [ξj,1t, ..., ξj,Njt]
′, for j = 1, 2. Let Ξj = [ξj,1, ..., ξj,T ]′ be the (T,Nj) matrix of the

regression residuals, for j = 1, 2.

DEFINITION 2. An estimator of the specific factor vector is f̂ s1,t (resp. f̂ s2,t), defined as the first ks1

(resp. ks2) Principal Components of subpanel Ξ1 (resp. Ξ2).

We denote by F̂ s
j = [f̂ s ′j,1, ..., f̂

s ′
j,T ]′ the (T, ksj ) matrix of estimated group-specific factors, corresponding

11This alternative estimation method for the group-specific factors corresponds to the method proposed by Chen (2012).

15



to the PCs extracted from panel Ξj associated with the largest ksj eigenvalues of matrix
1

NjT
ΞjΞ

′
j ,

normalized to have F̂ s′
j F̂

s
j /T = Iksj for j = 1, 2. Then, f̂ ct is orthogonal in sample both to f̂ st,1 and to

f̂ st,2. The orthogonality of both group-specific factor estimates f̂ sj,t, j = 1, 2, with the common factor

estimate explains why we focus of the estimation procedure in Definition 2 compared to f̆ sj,t, j = 1, 2.

Moreover, we define Λ̂s
j = [λ̂sj,1, ..., λ̂

s
j,Nj

]′ as the (Nj, k
s
j ) matrix collecting the loadings estimators:

Λ̂s
j = Y ′j F̂

s
j (F̂ s ′

j F̂ s
j )−1 =

1

T
Ξ′jF̂

s
j , j = 1, 2, (3.4)

where the second equality follows from the in-sample orthogonality of F̂ c and F̂ s
j , and the normaliza-

tion of F̂ s
j for j = 1, 2.

3.2 Inference on the number of common factors based on canonical correla-

tions

We first consider the case where the number of factors k1 and k2 in each subpanel is assumed to be

known, and hence k = min(k1, k2) is also known, and we consider the problem of inferring the dimen-

sion kc of the common factor space. In the next section we relax this assumption. From Proposition

2, dimension kc is the number of unit canonical correlations between h1,t and h2,t. We consider the

following set of hypotheses:

H(0) = {1 > ρ1 ≥ ... ≥ ρk} ,

H(1) = {ρ1 = 1 > ρ2 ≥ ... ≥ ρk}

...

H(kc) = {ρ1 = ... = ρkc = 1 > ρkc+1 ≥ ... ≥ ρk} ,

...

H(k) = {ρ1 = ... = ρk = 1} ,

where ρ1, ..., ρk are the canonical correlations of h1,t and h2,t. Hypothesis H(0) corresponds to the

case of no common factor in the two groups of observables Y1 and Y2. Generically, H(kc) corresponds

to the case of kc common factors and k1 − kc and k2 − kc group-specific factors in each group. The
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largest possible number of common factors is the minimum between k1 and k2, i.e. k, and corresponds

to hypothesis H(k). In order to select the number of common factors, let us consider the following

sequence of tests:

H0 = H(kc) against H1 =
⋃

0≤r<kc
H(r),

for each kc = k, k − 1, ..., 1. We propose the following statistic to test H0 against H1, for any given

kc = k, k − 1, ..., 1:

ξ̂(kc) =
kc∑
`=1

ρ̂`. (3.5)

The statistic ξ̂(kc) corresponds to the sum of the kc largest sample canonical correlations. We reject

the null H0 = H(kc) when ξ̂(kc)− kc is negative and large. The critical value is deduced by the large

sample distribution of the statistic provided in Section 4. The number of common factors is estimated

by performing sequentially the tests starting from kc = k.

3.3 Estimation and inference when k1 and k2 are unknown

The tests defined in Section 3.2 require the knowledge of the true number of pervasive factors kj > 0

in each subgroup, j = 1, 2. When the true number of pervasive factors is not known, but consistent

estimators k̂1 and k̂2, say, are available, the asymptotic distributions and rates of convergence for the

test statistic ξ̂(kc) based on k̂1 and k̂2 are the same as those of the test based on the true number of

factors. Intuitively, this holds because the consistency of estimators k̂j , implies that P (k̂j = kj) → 1

for j = 1, 2, which means that the error due to the estimation of the number of pervasive factors is

asymptotically negligible.12

The estimators based on the penalized information criteria of Bai and Ng (2002) applied on the two

subgroups, are examples of consistent estimators for the numbers of pervasive factors. Therefore, in

the next Section 4, the asymptotic distributions and rates of convergence of the test statistic and factors

estimators are derived assuming that the true numbers of factors kj > 0 in each subgroup, j = 1, 2,

are known.
12This argument is formalized using similar arguments as, for instance, in footnote 5 of Bai (2003).
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3.4 Estimation and inference in the mixed frequency factor model

The estimators and test statistics defined in Sections 3.1 - 3.3 for the group factor model (2.4) allow

to define estimators for the loadings matrices ΛHC , ΛH , ΛLC , ΛL, the aggregated factor values gUt ,

U = C,H,L and the test statistic for the common factor space dimension kC in equation (2.3). We

denote these estimators Λ̂HC , Λ̂H , Λ̂LC , Λ̂L, ĝ
U

t , and the test statistic ξ̂(kC). Then, the estimators of

the common and high frequency factor values are: ĝCm,t

ĝHm,t

 =
(

Λ̂′1Λ̂1

)−1

Λ̂′1x
H
m,t, m = 1, ...,M, t = 1, ..., T, (3.6)

where Λ̂1 = [Λ̂HC
... Λ̂H ].

4 Large sample theory

In this section we derive the large sample distributions of the estimators of factor spaces and factor

loadings, and of the test statistic for the dimension of the common factor space. We also define a

consistent selection procedure for the number of common factors. We consider the joint asymptotics

N1, N2, T → ∞ under Assumptions A.1-A.8 provided in Appendix, Sections A.1 and A.2. From the

asymptotic theory of PCA estimators in large panels, estimates ĥj,t, for j = 1, 2, satisfy asymptotic

expansions as in the next Assumption 1 (see e.g. Bai and Ng (2002), Stock and Watson (2002a), Bai

(2003), Bai and Ng (2006a) for sufficient conditions).

ASSUMPTION 1. As N1, N2, T →∞, we have:

ĥj,t ' Ĥj

(
hj,t +

1√
Nj

uj,t +
1

T
bj,t

)
, j = 1, 2, (4.1)

up to negligible terms, where bj,t is a deterministic bias term, the matrix Ĥj converges to a non-

singular matrix, and:

uj,t :=

 1

Nj

Nj∑
i=1

λj,iλ
′
j,i

−1

1√
Nj

Nj∑
i=1

λj,iεj,i,t.
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Note that the terms uj,t depend also from the cross-sectional dimension Nj , but for notational con-

venience, we omit the index Nj in uj,t. From Assumptions A.2 and A.5 d), the error terms uj,t are

asymptotically Gaussian as Nj →∞:

uj,t
d−→ N(0,Σu,j), (4.2)

where the asymptotic variance is:

Σu,j = Σ−1
Λ,jΩjΣ

−1
Λ,j,

and

ΣΛ,j = lim
Nj→∞

1

Nj

Nj∑
i=1

λj,iλ
′
j,i,

Ωj = lim
Nj→∞

1

Nj

Nj∑
i=1

Nj∑
`=1

λj,iλ
′
j,`Cov(εj,i,t, εj,`,t), j = 1, 2.

Without loss of generality, let N2 ≤ N1. We assume
√
N1/T = o(1) (as stated in Assumption A.6),

which allows to neglect the bias terms bj,t/T in the asymptotic expansion (4.1). We also assume

T/N2 = o(1), which further simplifies the asymptotic distributions derived in the next sections.

The high-level Assumption 1 clarifies the conditions on the asymptotic expansions of factor es-

timators from different groups which are necessary for our asymptotic theory to hold. We remark

that such asymptotic expansions arise not only in the linear factor structures estimable by PCA of this

work, but also in the general class of large scale non-linear latent factor models, as the ones consid-

ered in Gagliardini and Gourieroux (2014). Therefore, Assumption 1 extends the applicability of the

asymptotic theory developed in the next subsections to a very general class of large scale, linear and

non-linear group-factor models for data potentially observed at different frequencies.
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4.1 Asymptotic results for the group factor model

In this section we collect the main results concerning the asymptotic distributions of estimators and

test statistics for the group factor model. Define the matrices:

Ωj,k(h) = lim
Nj , Nk→∞

1√
NjNk

Nj∑
i=1

Nk∑
`=1

λj,iλ
′
k,`Cov(εj,i,t, εk,`,t−h),

Σu,jk(h) = Σ−1
Λ,jΩjk(h)Σ−1

Λ,k,

for j, k = 1, 2, and h = ...,−1, 0, 1, ... Matrix Σu,jk(h) is the asymptotic covariance between uj,t

and uk,t−h. Moreover, we have Ωj ≡ Ωj,j(0) and Σu,j ≡ Σu,jj(0), and similarly we define Σu,12 ≡

Σu,12(0) = Σ′u,21. Let us denote N = min{N1, N2} = N2 the minimal cross-sectional dimension

among the two groups, and µ2
N = N2/N1 ≤ 1. Let µN → µ, with µ ∈ [0, 1]. The boundary value

µ = 0 accounts for the possibility that N1 grows faster than N2.

THEOREM 1. Under Assumptions A.1 - A.6, and the null hypothesis H0 = H(kc) of kc common

factors, we have:

N
√
T

[
ξ̂(kc)− kc +

1

2N
tr
{

Σ̃−1
cc ΣU,N

}]
d−→ N

(
0,

1

4
ΩU

)
,

where

Σ̃cc =
1

T

T∑
t=1

f ct f
c′
t ,

ΩU = 2
∞∑

h=−∞

tr {ΣU(h)ΣU(h)′} ,

ΣU(h) = µ2Σ
(cc)
u,11(h) + Σ

(cc)
u,22(h)− µΣ

(cc)
u,12(h)− µΣ

(cc)
u,21(h),

ΣU,N = µ2
NΣ

(cc)
u,1 + Σ

(cc)
u,2 − µNΣ

(cc)
u,12 − µNΣ

(cc)
u,21,

and the upper index (c, c) denotes the upper-left (kc, kc) block of a matrix.

Proof: See Appendix B.3.

The asymptotic distribution of ξ̂(kc)− kc after appropriate recentering and rescaling is Gaussian. The

convergence rate is N
√
T . The asymptotic expansion of ξ̂(kc) − kc involves a time series average of
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squared estimation errors on group factors.13 Since these estimation errors are of order 1/
√
N , the

expected value of their square will be of order 1/N , originating a recentering term of the second order

analogous to an error-in-variable bias adjustment. Moreover, the averaging over time of the recen-

tered squared estimation errors allows to apply a root-T central limit theorem for weakly dependent

processes, originating a total estimation uncertainty for the test statistic of order 1/(N
√
T ).

PROPOSITION 3. Under Assumptions A.1 - A.6 we have:

√
N1(Ĥcf̂

c
t − f ct )

d−→ N
(

0,Σ
(cc)
u,1

)
, (4.3)√

N2(Ĥ∗c f̂ c ∗t − f ct )
d−→ N

(
0,Σ

(cc)
u,2

)
, (4.4)√

Nj

[
Ĥs,j f̂

s
j,t −

(
f sj,t − (F s ′

j F c)(F c ′F c)−1f ct
)] d−→ N

(
0, (Σ

(ss)
Λ,j )−1Ω

(ss)
j (Σ

(ss)
Λ,j )−1

)
, (4.5)

for any j, t, where Ĥc, Ĥ∗c and Ĥs,j are non-singular matrices, F c = [f c1 , ..., f
c
T ]′, F s

j = [f sj,1, ..., f
s
j,T ]′

and the upper index (ss) in the asymptotic variance of f̂ sj,t denotes the lower-right (ksj , k
s
j ) block of a

matrix.

Proof: See Appendix B.4.

From Proposition 3 a linear transformation of vector f̂ ct (resp. f̂ c∗t ) estimates the common factor f ct

at rate 1/
√
N1 (resp. 1/

√
N2). The variance of the asymptotic Gaussian distribution is the upper-

left (c, c) block of matrix Σu,1 (resp. Σu,2), i.e. the asymptotic variance of the estimation error u1,t

(resp. u2,t) for the PC vector in group 1 (resp. group 2). The estimation error for recovering the

common factors from the group PC’s is of order 1/
√
NT , and therefore asymptotically negligible.

The estimator f̂ sj,t approximates the residual of the sample projection of the group-j specific factor on

the common factor, up to a linear transformation, at rate 1/
√
Nj .

Let us now derive the asymptotic distribution of the factor loadings estimators.14 Define the matri-

13See Appendix B, Section B.3.4, for the asymptotic expansion.
14We assume that f̂ ct is used for the estimation of the factor loadings as in Definition 2. The distribution of the loadings

estimators is analogous when using f̂ c ∗t as common factor estimator.
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ces:

Φc
j,i = lim

T→∞

1

T

T∑
t=1

T∑
r=1

E[f ct f
c′
r ]cov(εj,i,t, εj,i,r),

Φs
j,i = lim

T→∞

1

T

T∑
t=1

T∑
r=1

E[f sj,tf
s′
j,r]cov(εj,i,t, εj,i,r),

Ψj = lim
T→∞

1

T

T∑
t=1

T∑
r=1

E
[
f sj,tf

s′
j,r ⊗ f ct f c′r

]
.

PROPOSITION 4. Under Assumptions A.1 - A.6 we have:

√
T

[(
Ĥ′c
)−1

λ̂cj,i − λcj,i
]

d−→ N
(
0,Φc

j,i + (λs′j,i ⊗ Ikc)Ψj(λ
s
j,i ⊗ Ikc)

)
, (4.6)

√
T

[(
Ĥ′s,j

)−1

λ̂sj,i − λsj,i
]

d−→ N
(
0,Φs

j,i

)
, (4.7)

for any j, i, where Ĥc and Ĥs,j , j = 1, 2, are the same non-singular matrices of Proposition 3.

Proof: See Appendix B.4.

The factor loadings are estimated at rate
√
T . Matrix Φc

j,i is the asymptotic variance for cross-sectional

OLS regression of data in group j on the true values of the common factor. The additional component

in the asymptotic variance of estimator λ̂cj,i is due to the fact that the true values of common and

group-specific factors are not orthogonal in sample.

To get a feasible distributional result for the statistic ξ̂(kc), we need consistent estimators for the

unknown scalar tr
{

Σ̃−1
cc ΣU,N

}
and matrix ΩU in Theorem 1. To simplify the analysis, we assume at

this stage that the errors εj,i,t are uncorrelated across subpanels j, individuals i and dates t (Assumption

A.7).15 Then, we have:

ΣU,N = µ2
NΣ

(cc)
u,1 + Σ

(cc)
u,2 , ΣU(0) = µ2Σ

(cc)
u,1 + Σ

(cc)
u,2 , ΩU = 2tr

{
ΣU(0)2

}
.

In Theorem 2 below, we replace Σ̃cc with its large sample limit Ikc , and ΣU,N and ΣU(0) by consistent

estimators. We show that the estimation error for tr(Σ̃−1
cc ΣU,N) in the bias adjustment is op(1/

√
T ),

and therefore, the asymptotic distribution of the statistic is unchanged.
15If the errors are weakly correlated across series and/or time, consistent estimation of ΣU,N and ΩU requires threshold-

ing of estimated cross-sectional covariances and/or HAC-type estimators.
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THEOREM 2. Let Σ̂U = (N2/N1)Σ̂
(cc)
u,1 + Σ̂

(cc)
u,2 , with

Σ̂u,j =

(
Λ̂′jΛ̂j

Nj

)−1(
1

Nj

Λ̂′jΓ̂jΛ̂j

)(
Λ̂′jΛ̂j

Nj

)−1

, j = 1, 2, (4.8)

where Λ̂j = [Λ̂c
j

... Λ̂s
j ], estimates Λ̂c

j and Λ̂s
j are the loadings estimators defined in equations (3.3) and

(3.4), Γ̂j = diag(γ̂j,ii, i = 1, ..., Nj) with

γ̂j,ii =
1

T

T∑
t=1

ε̂2
j,i,t,

and ε̂j,i,t = yj,i,t − λ̂c ′j,if̂ ct − λ̂s ′j,i f̂ sj,t, for j = 1, 2. Define the test statistic:

ξ̃(kc) := N
√
T

(
1

2
tr{Σ̂2

U}
)−1/2 [

ξ̂(kc)− kc +
1

2N
tr
{

Σ̂U

}]
, (4.9)

and let Assumptions A.1 - A.7 hold. Then:

(i) Under the null hypothesis H0 = H(kc) of kc common factors, we have: ξ̃(kc) d−→ N (0, 1) .

(ii) Under the alternative hypothesis H1 =
⋃

0≤r<kc
H(r), we have: ξ̃(kc)

p−→ −∞.

Proof: See Appendix B.5.

The feasible asymptotic distribution in Theorem 2 (i) is the basis for a one-sided test of the null

hypothesis of kc common factors. If ξ̃(kc) < −1.64, this null hypothesis is rejected at 5% level against

the alternative hypothesis of less than kc common factors. From Theorem 2 (ii), the test is consistent

under the alternative.

One way to implement the model selection procedure to estimate the number of common factors

kc proposed in Section 3.2 consists in testing sequentially the null hypothesis H0 = H(r), against

the alternative H1 =
⋃

0≤`<r

H(`), using the test statistic ξ̃(r) defined as in Theorem 2 for any generic

number r of common factors in the model. More specifically, a “naive” procedure can be defined as

follows. The procedure is initiated with r = k, proceeds backwards and is stopped at the largest integer

k̂cnaive = r such that the null H(r) cannot be rejected, i.e. ξ̃(kc) > zα, where zα is the α-quantile of

the standard Gaussian distribution. Otherwise, set k̂cnaive = 0 if the test rejects the null H(r) for all

r = k, ..., 1. This “naive” procedure is not a consistent estimator of the number of common factors.
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Indeed, there exists asymptotically a non-zero probability α of underestimating kc coming from the

type I error of the test of H(kc0) against
⋃

0≤`<kc0

H(`), when the true number of common factors is

kc0 > 0.

Building on the results in Pötscher (1983), and on those for rank testing of Cragg and Donald

(1997), and Robin and Smith (2000), a consistent estimator of the number of common factors kc0, for

any integer kc0 ≥ 0, is obtained allowing the asymptotic size α to go to zero as N , T → ∞. The

following Proposition 5 defines a consistent inference procedure for the number of common factors.

PROPOSITION 5. Let αN,T be a sequence of real scalars defined in the interval (0, 1) for any N, T ,

such that (i) αN,T → 0 and (ii) (N
√
T )−1zαN,T

→ 0 for N, T → ∞. Then, under Assumptions A.1 -

A.7 the estimator of the number of common factors defined as:

k̂c = max
{
r : 1 ≤ r ≤ k, ξ̃(r) ≥ zαN,T

}
,

and k̂c = 0, if ξ̃(r) < zαN,T
for all r = 1, ..., k, is consistent, i.e. P (k̂c = kc0) −→ 1 under H(kc0), for

any integer kc0 ∈ [0, k].

Proof: See Appendix B.6.

Condition (i) ensures asymptotically zero probability of type I error when testing H(kc0) against⋃
0≤`<kc0

H(`). Condition (ii) is a lower bound on the convergence rate to zero of the asymptotic size,

and is used to keep asymptotically zero probability of type II error of each step of the procedure. The

conditions in Proposition 5 are satisfied e.g. for

zN,T ≡ zαN,T
= −c(N

√
T )γ, (4.10)

with constants c > 0 and 0 < γ < 1.

4.2 Asymptotic results for the mixed frequency factor model

In this section we give the asymptotic distribution for the estimators of factor values in the mixed

frequency factor model. The asymptotics is for NH , NL, T → ∞, such that NL ≤ NH ,
√
NH/T =
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o(1), T/NL = o(1). Define the matrices:

Ω∗Λ,m = lim
NH→∞

1

NH

NH∑
i=1

NH∑
`=1

λ1,iλ
′
1,`Cov(ei,Hm,t, e

`,H
m,t), m = 1, ...,M,

where λ′1,i is the i-th row of the (NH , k
C + kH) matrix Λ1 = [ ΛHC

... ΛH ].

PROPOSITION 6. Under Assumptions A.1 - A.8 we have:

√
NH(Ĥcĝ

C
m,t − gCm,t)

d−→ N
(
0, [Σ−1

Λ,1Ω∗Λ,mΣ−1
Λ,1](CC)

)
,√

NH

[
Ĥ1,sĝ

H
m,t − (gHm,t − (ḡH′ḡC)(ḡC′ḡC)−1)gCm,t

]
d−→ N

(
0, [Σ−1

Λ,1Ω∗Λ,mΣ−1
Λ,1](HH)

)
,

for anym, t, where Ĥc and Ĥ1,s are the same non-singular matrices of Proposition 3, ḡC = [ḡC1 , ..., ḡ
C
T ]′,

ḡH = [ḡH1 , ..., ḡ
H
T ]′, ΣΛ,1 = lim

NH→∞

1

NH

NH∑
i=1

λ1,iλ
′
1,i, and indices (CC) and (HH) denote the upper-left

(kC , kC) block and the lower-right (kH , kH) block of a matrix, respectively.

Proof: See Appendix B.7.

From Proposition 6, a linear transformation of vector ĝCm,t, resp. ĝHm,t, estimates the common factor

gCm,t, resp. the residual of the sample projection of the high-frequency factor on the common factor. The

estimation rate is
√
NH . There is no asymptotic effect from the error-in-variable problem induced by

using estimated factor loadings in the cross-sectional regression when T/NH = o(1). The asymptotic

distribution of the estimator ˆ̄gLt of the aggregated low-frequency factor is deduced from Proposition 3.

4.3 Theoretical extensions beyond group factor models

The theoretical contributions, in particular Theorems 1 and 2, are of interest beyond (mixed frequency)

group factor models. It is the purpose of this subsection to discuss several cases where our theory

readily applies.

Inference regarding the rank of an unknown, real-valued matrix is an important and well-studied

problem.16 For indefinite matrix estimators there is a well-developed framework, see Donald, Fortuna,

and Pipiras (2007). The case of semi-definite matrix estimators still poses many challenges, however,
16See for instance Gill and Lewbel (1992), Cragg and Donald (1996), Robin and Smith (2000), Kleibergen and Paap

(2006), and the review article by Camba-Mendez and Kapetanios (2009).
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as discussed by Bai and Ng (2007) and more recently in Donald, Fortuna, and Pipiras (2014) who

argue that the tests suggested in the literature are not suitable. In fact, when the rank of a generic

(positive) semi-definite matrix, say M, needs to be estimated using a semi-definite estimator, say M̂,

the asymptotic variance-covariance matrix of this estimator - denoted as W0 - is necessarily singular,

as shown in Proposition 2.1 of Donald, Fortuna, and Pipiras (2007). Therefore standard rank tests

cannot be applied as they assume matrix W0 to be full rank.

Intimately related to testing the rank of a semi-definite matrix is testing the dimension of a common

factor space. This problem appears in many applications. For example what is the common space

between on the one hand the principal components extracted from stock returns (akin to rotations of

Fama and French factors), call them h1,t, and on the other hand h2,t which are the principal components

extracted from macroeconomic series (like Stock and Watson factors)? Surprisingly, there are no

formal tests available.

The connection is as follows. If we consider the variance-covariance matrix of the stacked factors,

i.e. V [(h′1,t, h
′
2,t)
′], then testing for common factors relates to testing the rank of a symmetric semi-

definite matrix and this is where our theory makes a novel contribution. The key ingredient is the link

between the eigenvalues and eigenvectors of the variance-covariance matrix of stacked PCs extracted

from the groups, and the distributional theory developed in Section 4. We provide in the OA, Section

C.2, a throughout discussion on the link between the unit canonical correlations of h1,t, h2,t and the

eigenvalues equal to two, or equivalently the eigenvalues equal to zero, of the variance-covariance

matrix V [(h′1,t, h
′
2,t)
′] of the stacked PCs, when these are normalized such that V (hj,t) = Ikj , for

j = 1, 2.17 Therefore, using our theory developed in Theorems 1 and 2, it is straightforward to derive

the asymptotic distribution for the number of eigenvalues equal to two of the matrix V [(h′1,t, h
′
2,t)
′].

Analogous arguments, could be used to derive the asymptotic properties of the criteria for the selection

of the number of common and group-specific factors in Goyal, Pérignon, and Villa (2008), as well.

Our results in Section 4.1 provide the guidance for the construction of the asymptotic distribution

of the (sum of the) eigenvalues of a semi-definite matrix, and develop a sequential testing procedure

for determining the rank of the matrix itself. This test, for example, would enable us to determine the

17Specifically, in the OA, Section C.2, we provide Corollary 2, which is analogous to Proposition 3.1 in Chen (2012). Our
new proof, alternative to the one of Chen (2012), provides the explicit link between the number of canonical correlations
equal to one, and the number of eigenvalues equal to two of matrix V [(h′1,t, h

′
2,t)
′]. This number is also equal to the number

of zero eigenvalues of that matrix.
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number of latent dynamic factors in large panels of data, without having to estimate them, a problem

tackled by Bai and Ng (2007). In their paper, first a number - say r - of static factors should be

estimated by PCA from a large panel. Different from their methodology, and also different from the

solution proposed by Amengual and Watson (2007), we can directly test the rank - say q ≤ r - of the

residual covariance (or correlation matrix) of a VAR model estimated on the factors themselves.

Other potential applications for our test for the number of canonical correlations equal to one, con-

sist of testing if some estimated factors are spanned by a small number of observed factors (observed

at the same, or different frequencies), a problem also considered by Bai and Ng (2006b). Such a test is

a special case of ours, in which one group of factors (the observable ones) are estimated with infinite

precision. In our notation, this means that for either j= 1, or j = 2, we have that ĥj,t ≈ Ĥjhj,t holds

as an equality with Ĥj = Ikj , and not as an (asymptotic) approximation as in (4.1), and the variance-

covariance matrix of the observational errors is Σu,j = 0. It is important to note that the asymptotic

distributions of Section 3.2 in Bai and Ng (2006b), for the empirical canonical correlations among a

group of factors estimated from a large panel, and a group of exact ones, are valid for all values of the

true canonical correlations different from zero and one. The same holds for the asymptotic distribution

of the estimated canonical correlations among two groups of factors observed without measurement

error, considered in the classical statistical literature - see Anderson (2003) - and used by Bai and Ng

(2006b) to derive their results, showing that the problem of testing for unit canonical correlations is a

degenerate one, in this special, but important case. On the other hand our results allow one to exploit

the observational error of the factors to derive an asymptotically normal distribution for the estimator

of a true canonical correlation equal to one. Therefore, unlike Bai and Ng (2006b), we are able to

test for the number of canonical correlations equal to one. Moreover, Bai and Ng (2006b) note that

the squared canonical correlation between a single series measured without error, and a group of esti-

mated factors must be equal to the R2 of the regression of the observed factor on the estimated ones.

Therefore our test could also be used to derive the asymptotic distribution of R2, when this is equal to

one under the null hypothesis.

In related recent work Pelger (2015) also deals with the question whether a set of statistical factors

coincides with a set of economic candidate factors. Hence, one simply tests whether the factor spaces

are equal. To circumvent the use of canonical correlations he proposes to look at the sum of squared

canonical correlations. If two sets of factors coincide then the sum of squared canonical correlations
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should be equal to the dimension of the factor set. As the sum of squared canonical correlations is

simply the trace of a specific product of (realized) covariance matrices (see p. 26 of Pelger (2015)),

it is straightforward to derive the asymptotic distribution under very general conditions. Based on the

distribution result he develops a new test to determine if a set of estimated statistical factors can be

written as a linear combination of observed economic variables. As in the previous examples, our the-

oretical results can address the problem posed by Pelger (2015) more directly and straightforwardly.

Indeed, from an empirical point of view, our testing methodology can also be used to test for the pres-

ence of common factors among large panels of high-frequency financial variables, and low frequency

observable macro economic variables, or large panels of (same frequency) financial and/or macroeco-

nomic data for different regions or countries, extending the works of Cho (1984), and Kose, Otrok,

and Whiteman (2008), among many others.

5 Monte Carlo simulations

In order to assess the small sample properties of our estimator for the number of common factors we

conduct an extensive Monte Carlo simulation study, which can also evaluate the advantages of our

testing procedure compared to the one proposed in Chen (2012). The Online Appendix, Section D,

includes the detailed description of the simulation design and the tables of results. The Data Generating

Process (DGP) considered in each design corresponds to the high frequency model (2.1) with flow

sampling for the LF variables, and possibly autocorrelated common and specific factors, and possibly

cross-sectionally correlated idiosyncratic innovations. Following our empirical application, we fix

the number of high frequency subperiods M = 4. We consider different numbers of common and

specific factors across the DGPs, given by kC = 0, 1, 2, and kH = kL = 1, 2, 5, 6. The model for

the factors is defined by stacking the latent factor vectors gCm,t, g
H
m,t, and gLm,t into the new vector

gm,t = [gC′m,t, g
H′
m,t, g

L′
m,t]
′, and is characterized by the following dynamic:

gm,t = aFgm−1,t + ηm,t,
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where aF is the common scalar AR(1) coefficient for the kC + kH + kL factors. The innovations ηm,t

are such that:

ηm,t ∼ i.i.N(0,Ση), Ση = (1− a2
F )


IkC 0 0

0 IkH Φsim

0 Φ′sim IkL

 ,

where Φsim = φsimIkH . The scalar φsim generates correlation between pairs of HF and LF factors. We

consider different values of aF and φsim in the simulation designs. The factor loadings are simulated

in a setup such that the distribution of R2′s of the regressions of data on factors in the Monte Carlo

design mimics the one in the empirical applications.18 We ran 2000 Monte Carlo simulations for each

DGP, and consider cross-sectional and time series dimensions NH , NL, T as small as the ones in

our empirical applications, and progressively increase their sizes. In order to estimate the number of

common factors we consider i) our consistent sequential testing procedure defined in Proposition 5,

and ii) the selection procedure based on the penalized information criterion of Theorem 3.7 in Chen

(2012). The critical value for our selection procedure is as in equation (4.10), with γ = 0.1, and

c = 0.95 such that zNT = −1.64 ∼ z0.05 for N1 = N2 = 40, and T = 35, which are analogous

to the cross-sectional and time series dimensions in our empirical application. The properties of the

estimators are evaluated comparing a) the percentage of estimates k̂C that are less than, equal to, and

greater than kC , and b) the average estimated number of common, high-frequency specific, and low-

frequency specific factors. In order to have comparable results for the different estimators, we assume

that the true numbers of pervasive factors kC + kH and kC + kL in the two panels are known, and only

kC needs to be estimated, for both selection procedures.

In the special case of a small number, say 1 or 2, of uncorrelated specific factors, the penalized

information criterion proposed in Chen (2012) yields the correct number of factors in almost all Monte

Carlo simulations for any sample size, confirming the results in Chen (2012). For a small number

of specific factors and small sample size, our selection procedure is less accurate, with frequencies

of detection of the correct number of factors ranging from 80% to 100%, depending on the design.

Yet, the frequency of correct estimation of kC for our selection procedure increases monotonically

with the sample size, approaching 100%. This last result holds for all simulation designs considered,

18See OA, Section D.1.3, for a thorough description of the simulation design setup for the loadings matrices.
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confirming the ability of the asymptotic distribution in approximating the finite sample distribution of

the test statistic for relatively small sample sizes.

Importantly, as the correlation φsim among the specific factors increases, ranging from 0 to 0.7 and

0.9 (and in some designs to 0.95 and 0.99), the frequencies of correct detection of the true number

of factors by the procedure of Chen’s (2012) decreases very quickly toward zero, for all sample sizes,

including very large ones. This deterioration in the performance is much less dramatic for our selection

procedure based on sequential tests, which clearly dominates the one based on the penalized criteria.

As expected, we also observe a monotonic decrease in the precision of all the estimators when the

number of specific factors gets relatively large, say 5 or 6. Also in these cases, the deterioration of

the precision of our sequential procedure is much less dramatic than Chen’s (2012) procedure, for

all sample sizes, suggesting that our sequential testing estimator is clearly preferable in these more

general cases. Interestingly, the sequential testing procedure exhibits also a more rapid improvement

in performance as the sample size increases, compared to the penalized information criteria.

The above results are qualitatively similar i) when different values of the factor autocorrelation

aF are considered, namely 0 and 0.6, ii) for different levels of the cross-sectional correlation of the

idiosyncratic errors of the observables, and iii) for different magnitudes of the pervasiveness of the

factors, both common and specific, as measured by the theoretical R2s of the simulated observables

on the factors themselves. We refer to the OA, Section D for full details.

6 Empirical application

Before turning to the empirical application with results on factor analysis related to US sectoral out-

put growth, it is worth summarizing our methodology for the benefit of the readers who skipped the

previous sections. This is done in a first subsection.

6.1 Practical implementation of the procedure

Let us first assume that kC , kH , kL, i.e. the number of respectively common, high and low frequency

factors in equation (2.1), are known and are all strictly larger than zero. The identification strategy

presented in Section 2 directly implies a simple estimation procedure for the factor values and the

factor loadings, which consists of the following three steps:
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1. PCA performed on the HF and LF panels separately
Define the (T,NH) matrix of temporally aggregated (in our application flow-sampled) HF ob-
servables asXH = [xH1 , ..., x

H
T ]′, and the (T,NL) matrix of LF observables asXL = [xL1 , ..., x

L
T ]′.

The estimated pervasive factors of the HF data, which are collected in (T, kC + kH) matrix
ĥH = [ĥH,1, ..., ĥH,T ]′, are obtained performing PCA on the HF data:(

1

TNH

XHXH′
)
ĥH = ĥH V̂H ,

where V̂H is the diagonal matrix of the eigenvalues of (TNH)−1XHXH′. Analogously, the
estimated pervasive factors of the LF data, which are collected in the (T, kC + kL) matrix ĥL =
[ĥL,1, ..., ĥL,T ]′, are obtained performing PCA on the LF data:(

1

TNL

XLXL′
)
ĥL = ĥLV̂L,

where V̂L is the diagonal matrix of the eigenvalues of (TNL)−1XLXL′.

2. Canonical correlation analysis performed on estimated principal components
Let ŴC

H be the (kC + kH , kC) matrix whose columns are the canonical directions for ĥH,t as-
sociated with the kC largest canonical correlations between ĥH and ĥL. Then, the estimator of
the (in our application flow sampled) common factor is ˆ̄gCt = ŴC ′

H ĥH,t, for t = 1, ..., T , and the
estimated loadings matrices Λ̂HC and Λ̂LC are obtained from the least squares regressions of xHt
and xLt on estimated factor ˆ̄gCt . Collect the residuals of these regressions:

ˆ̄ξHt = xHt − Λ̂HC ˆ̄gCt ,

ˆ̄ξLt = xLt − Λ̂LC ˆ̄gCt ,

in the following (T,NU), with U = H,L, matrices:

Ξ̂U =
[

ˆ̄ξU1 , ...,
ˆ̄ξUT

]′
, U = H,L.

Then, the estimators of the HF and LF factors, collected in the (T, kU), U = H,L, matrices:

ĜU =
[
ˆ̄gU1 , ..., ˆ̄g

U
T

]′
, U = H,L,

are obtained extracting the first kH and kL PCs from the matrices of residuals:(
1

TNU

Ξ̂U Ξ̂U ′
)
ĜU = ĜU V̂ U

S , U = H,L,

where V̂ U
S , with U = H,L, are the diagonal matrices of the associated eigenvalues. Next, the

estimated loadings matrices Λ̂H and Λ̂C are obtained from the least squares regression of ξ̂Ht and
ξ̂Lt on respectively the estimated factors ˆ̄gHt and ˆ̄gLt .

3. Reconstruction of the common and high frequency-specific factors
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The estimates of the common and HF factors for each HF subperiod, denoted by ĝCm,t and ĝHm,t,
for any m = 1, ...,M and t = 1, ..., T , are obtained by cross-sectional regression of xm,t on the

estimated loadings [Λ̂HC
... Λ̂H ] obtained from the second step.

Since the factors dimensions are unknown, the aforementioned procedure is implemented with es-
timated factors dimensions k̂C , k̂H , and k̂L. Inference on the number of common, low and high-
frequency specific factors proceeds as follows:

1. Estimate kXH = kC + kH and kXL = kC + kL, i.e. the numbers of pervasive factors in panels
XH and XL, by some consistent estimators, as the ICp1 and ICp2 criteria of Bai and Ng (2002).

2. Let k := min(k̂XH , k̂XL). Test sequentially:

H0 = H(r) : kC = r against H1 : kC < r,

for any given r = k, k − 1, ..., 1. We use the statistic ξ̃(r) defined in equation (4.9), which is
based on ξ̂(r) =

∑r
`=1 ρ̂`, where the ρ̂`, for ` = 1, ..., r, are the r largest canonical correlations

between ĥH,t and ĥL,t. Here, ĥH,t and ĥL,t are the first k̂XH and k̂XL PCs extracted from the
XH and XL panels, respectively, and the canonical correlations are the squared roots of the
eigenvalues of matrix R̂ defined in equation (3.1). We reject H0 = H(r) if ξ̃(r) < zNT , where
critical value zNT is set as in equation (4.10), with γ = 0.1 and constant c = 0.95 as in the Monte
Carlo study. Estimate k̂C is the largest dimension r such that H0 is not rejected, or k̂C = 0 if H0

is rejected for all r.

3. The dimensions of frequency specific factors are obtained by difference: k̂H = k̂XH − k̂C , and
k̂L = k̂XL − k̂C .

6.2 Data description

The data consists of a combination of Industrial Production (IP) and non-IP indices for the differ-

ent sectors. For industrial production we use the same data on 117 IP sectoral growth rates indices

considered by Foerster, Sarte, and Watson (2011), sampled at quarterly frequency from 1977.Q1 to

2011.Q4.19 These indices correspond to the finest level of disaggregation for the sectoral components

of the IP aggregate index which can be matched with the available sectors in the Input-Output and

Capital Use tables used in the structural analysis in Section 6.4. The data for all the remaining non-

IP sectors consist of the annual growth rates of real GDP for the following 42 sectors: 35 services,

Construction, Farms, Forestry-fishing and related activities, General government (federal), Govern-

ment enterprises (federal), General government (state and local) and Government enterprises (state

19The IP data are available also at monthly frequency. Following Foerster, Sarte, and Watson (2011), we focus only on
quarterly IP data, as they share the main feature of the monthly ones, but are less noisy.
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and local). These LF data are also available from 1977 until 2011 and are published by the Bureau

of Economic Analysis (BEA).20 Moreover, as IP is a Gross Output (GO) measure, in the structural

analysis it is convenient also to consider the yearly growth rates of real GO for the non-IP sectors.

These data are available from 1988 until 2011, and are also published by the BEA. Following the

sectoral productivity literature, in the structural analysis we focus exclusively on the private sectors,

and therefore exclude four Government Gross Output indices, reducing the sample size to 38 non-IP

sectors indices. All growth rates refer to seasonally adjusted real output indices, and are expressed in

percentage points.21 Figure 2 displays the series of quarterly growth rates of the aggregate Industrial

Figure 2: Growth rates of the Industrial Production (IP) and Gross Domestic Product (GDP) indices
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The dotted (blue) line corresponds to the quarterly growth rates of the aggregate IP index for sample period 1977.Q1-
2011.Q4, while solid (red) line represents the annual growth rates of GDP for the entire US economy for the sample period
1977-2011.

Production and annual growth rates of Gross Domestic Product over the sample period from 1977 to

2011. The objective of our empirical application is to use our mixed frequency factor model to capture

20GDP data are available at quarterly frequency for the aggregate index, but not for sectoral ones. As in the remaining
part of the paper we study comovements among different sectors, we consider the panel of yearly GDP sectoral data.

21An exhaustive description of the dataset is provided in the OA, Section C.4.
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the major sources of comovement among the sectoral constituents of these two indices, which are the

most reliable measures of US economic activity. 22

6.3 Factors common to all US sectors

We assume that our dataset follows the factor structure for flow sampling as in equation (2.2), with xHm,t

and xLt corresponding to quarterly IP and annual non-IP data, respectively. Let XH be the (T,NH)

panel of the yearly observations of the IP indices growth rates (computed as the sum of the quarterly

growth rates xHm,t, m = 1, ..., 4, for year t), and let XL be the (T,NL) panel of the yearly growth rates

of the non-IP indices as defined in Section 6.1. Let also XHF = [xH1,1, x
H
2,1, ..., x

H
m,t, ..., x

H
4,T ]′ be the

(4T,NH) panel of IP indices quarterly growth rates.

We start by selecting the number of factors in each subpanel, which are of dimensions kXH =

kC + kH for XH and XHF and kXL = kC + kL for XL, respectively. We use the ICp2 information

criteria of Bai and Ng (2002), and report the results in Table 1. Results for the ICp1 information

criteria are reported in the OA, Section C.5. Table 1 corroborates the evidence in Foerster, Sarte,

Table 1: Estimated number of pervasive factors in HF and LF panels

XHF XH XL

IP data: 1977.Q1-2011.Q4. Non-IP data: Gross Domestic Product, 1977-2011

ICp2 1 2 1

IP data: 1988.Q1-2011.Q4. Non-IP data: Gross Output, 1988-2011

ICp2 1 1 2

The number of latent pervasive factors selected by the ICp2 information criteria is reported for different subpanels. Sub-
panelsXHF andXH correspond to IP data sampled at quarterly and yearly frequency, respectively. PanelsXL correspond
to non-IP data. We use kmax = 15 as maximum number of factors when computing ICp2. In the first line the quarterly
IP data are for sample period 1977.Q1-2011.Q4, the annual non-IP data are GDP growth rates for the sample period 1977-
2011, while in the second line the quarterly IP data are for sample period 1988.Q1-2011.Q4, the annual non-IP data are
Gross Output growth rates for the sample period 1988-2011.

and Watson (2011) suggesting that there is either one or perhaps two pervasive factors in the IP data.

22In the OA, Section C.5.1, we replicate the analysis in Section II.B of Foerster, Sarte, and Watson (2011), in order to rule
out the possibilities that a) sectoral weights in GDP and IP aggregate indexes are the major determinants in explaining the
variability of the indexes themselves, and b) that their aggregate variability is driven mainly by sector-specific variability.
As in Foerster, Sarte, and Watson (2011), our analysis confirms that covariance among different sectors is the main source
of variation in the growth rate of the entire US economy, and justifies the use of our mixed frequency factor model to study
the comovement among sectors.
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Likewise, for the non-IP data, we also find evidence in favor of either one or two pervasive factors.

We adopt a conservative approach, and select a specification with two pervasive factors in both panels,

i.e. kXH = kXL = 2.

Let us consider the dataset where the HF data are quarterly IP indices, and the LF data are annual

GDP non-IP indices. In order to select the number of common and frequency-specific factors, we

follow the procedure detailed in Section 6.1. In Table 2 we report the estimated canonical correlations

Table 2: Canonical correlations and test statistics for common factors

ρ̂1 ρ̂2 ξ̃(2) ξ̃(1)

0.84 0.06 -3.56 -1.56

We report the two largest canonical correlations among the PCs computed from each subpanel of IP and non-IP data, and
the values of statistic ξ̃(r), i.e. the feasible standardized value of the test statistic ξ̂(r), for the null hypotheses of r = 2
and r = 1 common factors, respectively. The quarterly IP data are for sample period 1977.Q1-2011.Q4, the annual non-IP
data are GDP growth rates for the sample period 1977-2011.

of the first two PC’s estimated in each subpanel XH and XL, which are used to compute the value of

the test statistic ξ̂(r), for the null hypotheses of r = 2 and r = 1 common factors. We note that the

first canonical correlation is close to one, which is consistent with the presence of one common factor

in each of the two mixed frequency datasets considered. The test rejects the null hypothesis r = 2,

i.e. the presence of two common factors, for significance levels as small as 0.1%, while we cannot

reject the null of one common factor with a 5% significance level. Our selection procedure recalled in

Section 6.1 produces the estimate k̂C = 1. In light of the results in Tables 1 and 2 we select a model

with kC = kH = kL = 1.

Once the factor space dimensions are determined, the factor values are obtained using the esti-

mation procedure of Section 6.1. In Figure 3 we plot the estimated factor paths from the panels of

42 GDP sectors and 117 IP indices on the entire sample going from 1977 to 2011. All factors are

standardized to have zero mean and unit variance, and their sign is chosen so that the majority of the

associated loadings are positive. A visual inspection of the plots in Figure 3 reveals that the common

factor in Panel (a) resembles the IP index of Figure 2, with a large decline corresponding to the Great

Recession following the financial crisis of 2007-2008 and the positive spike associated to the recent

economic recovery. On the other hand, the LF-specific factor features a less dramatic fall during the

Great Recession, and actually features a positive spike in 2008, followed by large negative values in
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Figure 3: Sample paths of the estimated common and specific factors
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(c) LF specific factor

Panel (a) displays the time series plot of the estimated common factor. Panel (b) displays that of the HF-specific factor and
finally Panel (c) that of the LF-specific factor. The factors are estimated from the panels of 42 annual non-IP GDP sectoral
series and 117 quarterly IP indices using a mixed frequency factor model with kC = kH = kL = 1. The sample period is
1977.Q1-2011.Q4.

the following years. This constitutes preliminary evidence suggesting that some non-IP sectors could

feature different responses to the financial crisis of 2007-2008. The economic interpretation of factors

is easier when they are used as explanatory variables in standard regression analysis. We start with

a disaggregated analysis, and look at the relative importance of the common and frequency specific

factors in explaining the variability across all sectoral growth rates. For each sector in the panel, we

regress the index growth rates (i) on the common factor only, (ii) on the specific factor only, for non-IP

and IP series respectively, and (iii) on both common and specific factors. In Table 3 we report the
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Table 3: Adjusted R2 of regressions on common factors from indices growth rates

Panel A
R̄2: Quantiles

Factors 10% 25% 50% 75% 90%

Observables: Gross Domestic Product, 1977-2011

common -2.2 -0.5 11.5 28.9 42.9
common, LF-spec. 0.1 9.2 25.4 34.5 60.3
LF-spec. -2.8 -2.3 5.7 15.7 22.4

Observables: IP, 1977.Q1-2011.Q4

common 0.3 4.8 20.3 36.0 60.0
common, HF-spec. 1.1 6.8 28.7 45.3 63.4
HF-spec. -0.7 -0.1 3.0 11.2 23.5

Panel B
R̄2: Quantiles

Factors 10% 25% 50% 75% 90%

Observables: Gross Output, 1988-2011

common -2.0 6.6 28.2 45.6 64.5
common, LF-spec. 2.8 15.2 45.0 63.7 70.8
LF-spec. -4.5 -3.8 3.2 13.4 40.7

Observables: IP, 1988.Q1-2011.Q4

common 0.1 3.5 10.5 29.8 48.2
common, HF-spec. 0.8 7.9 28.2 43.2 65.4
HF-spec. -0.8 2.0 10.0 21.9 33.9

Panel A. The regressions in the first three lines involve the growth rates of the 42 non-IP sectors as dependent variables,
while those in the last tree lines involve the growth rates of the 117 IP indices as dependent variables. The explanatory
variables are factors estimated from the same indices using a mixed frequency factor model with kC = kH = kL = 1.
The sample period for the estimation of both the factor model and the regressions is 1977-2011. Panel B. The regressions
in the first three lines involve the Gross Output growth rates of the 38 non-IP sectors as dependent variables, while those
in the last tree lines involve the growth of the 117 IP indices as dependent variables. The explanatory variables are factors
estimated from the same indices using a mixed frequency factor model with kC = kH = kL = 1. The sample period for
the estimation of both the factor model and the regressions is 1988-2011.

quantiles of the empirical distribution of the adjusted R2 (denoted R̄2) of these regressions. In each

panel, the first and fourth rows report the quantiles of R̄2 of the regressions involving as explanatory

variable the common factor only for the IP and non-IP series respectively, while the second and fifth

rows report the quantiles of R̄2 when the explanatory variables are the common and frequency-specific

factors. Finally, the quantiles of R̄2 in the third and sixth rows refer to regressions where the explana-

tory variable is the frequency-specific factor only.23

From the first three lines of Panel A we observe that adding the LF specific factor to the common

factor regressions for the non-IP indices yields an increment of the median R̄2 around 14%, going from

11.5% to 25.4%, and the 90% quantile increases by more than 17%. On the other hand, the HF-specific

factor, when added to the common factor, contributes less to the increments in R̄2 for the IP sectors. In

Panel B we note that for both the IP and non-IP Gross Output sectoral indices, the frequency-specific

factor increases the median R̄2 by more than 15%, when added to the common factor. Overall, Table

3 confirms that the common and frequency-specific factors explain a significant part of the variability

23The regressions in the second and third rows are restricted MIDAS regressions. The regressions in fourth, fifth and
sixth rows impose the estimated coefficients of the common and HF-specific factors to be the same for each quarter, as they
are estimated as HF regressions. The empirical distribution of the R̄2 corresponding to the first and second lines of Table
3, Panel A, are represented in the histograms available in OA, Figures C.9 (a) and (b). The empirical distribution of the R̄2

corresponding to the fourth and fifth lines of Table 3, Panel A, are represented in the histograms available in OA, Figures
C.10 (a) and (b).
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of output growth for the majority of the sectors of the US economy. Moreover, the common factor is

pervasive for most of the IP and non-IP sectors alike.

In order to provide the economic interpretation to the estimated factors, we list in Table 4 the top

and bottom ten GDP non-IP sectors in terms of R̄2 when regressed on the common factor only, and

both the common and LF-specific factors. We also report the top and bottom ten GDP non-IP sectors

with the highest and lowest absolute increments in R̄2 when the LF-specific factor is added to the

common one.24 From Panel A we first note that the common factor explains most of the variability

of service sectors with direct economic links to industrial production sectors like Transportation and

Warehousing: for instance, “Truck Transportation”, “Other Transportation & Support Activities”, and

“Warehousing & Storage” have an R̄2 of 63%, 43% and 41%, respectively, when regressed on the

common factor only. This is another clear indication that the common factor could be interpreted as IP

factor, as already noticed on Figure 3. On the other hand, the common factor is completely unrelated

to Agriculture, forestry, fishing & hunting, as well as to most of the Financial and Information services

sectors.

Turning to Panel C of Table 4, we note that the LF-specific factor explains more than 20% of the

variability of output for very heterogeneous services sectors like “Miscellaneous professional, scien-

tific, & technical services, Administrative & support services”, “Legal services”, “Real Estate”, some

important financial services like “Federal Reserve banks, Credit intermediation, & Related activities”,

“Rental & Leasing Services” but also “Government (state & local)”. Interpreting these results, we can

conclude that the LF-specific factor is completely unrelated to service sectors which depend almost

exclusively on IP output, and is a common factor driving the comovement of non-IP sectors such as

some other service sectors, Construction and government sectors.

In Table 4 we highlight further differences in the dynamics of output growth between the two sub-

sectors of the financial services industry which are particularly revealing: “Securities” and “Credit

intermediation”, extensively studied by Greenwood and Scharfstein (2013). We find that the subsec-

tors “Funds, trusts, & other financial vehicles” and “Securities, commodity contracts, & investments”

are unrelated to both the common and LF-specific factors, indicating that their output growth is uncor-

related with the common component of real output growth across the other sectors of the US economy.

24The entire list of non-IP sectors ranked by the three criteria used in Table 4, are available in Tables C.20-C.22 in the
OA, Section C.5.

38



Ta
bl

e
4:

R
eg

re
ss

io
n

of
ye

ar
ly

se
ct

or
al

G
D

P
gr

ow
th

on
th

e
co

m
m

on
an

d
L

F-
sp

ec
ifi

c
fa

ct
or

s:
ad

ju
st

ed
R

2

Pa
ne

lA
.R

eg
re

ss
or

:c
om

m
on

fa
ct

or

Se
ct

or
R̄

2

Te
n

se
ct

or
s

w
ith

la
rg

es
tR̄

2

Tr
uc

k
tr

an
sp

or
ta

tio
n

63
.1

0
A

cc
om

m
od

at
io

n
62

.4
3

C
on

st
ru

ct
io

n
44

.0
5

O
th

er
tr

an
sp

.&
su

pp
or

ta
ct

iv
.

43
.3

1
A

dm
in

is
tr

at
iv

e
&

su
pp

or
ts

er
vi

ce
s

42
.6

9
O

th
er

se
rv

ic
es

,e
xc

ep
tg

ov
er

nm
en

t
42

.5
3

W
ar

eh
ou

si
ng

&
st

or
ag

e
40

.9
5

A
ir

tr
an

sp
or

ta
tio

n
31

.5
8

R
et

ai
lt

ra
de

30
.7

0
A

m
us

em
.,

ga
m

bl
in

g,
&

re
cr

.i
nd

.
29

.1
7

Te
n

se
ct

or
s

w
ith

sm
al

le
st
R̄

2

Fu
nd

s,
tr

us
ts

,&
ot

he
rfi

na
n.

ve
hi

cl
es

-1
.2

3
M

ot
io

n
pi

ct
ur

e
&

so
un

d
re

co
rd

.i
nd

.
-1

.6
8

Pi
pe

lin
e

tr
an

sp
or

ta
tio

n
-1

.7
4

In
fo

rm
at

io
n

&
da

ta
pr

oc
es

si
ng

se
rv

ic
es

-1
.8

4
Tr

an
si

t&
gr

ou
nd

pa
ss

en
ge

rt
ra

ns
p.

-2
.0

5
G

en
er

al
go

ve
rn

m
en

t(
st

at
e

&
lo

ca
l)

-2
.1

2
Fo

re
st

ry
,fi

sh
in

g
&

re
la

te
d

ac
tiv

iti
es

-2
.3

3
W

at
er

tr
an

sp
or

ta
tio

n
-2

.9
4

Se
cu

ri
tie

s,
co

m
m

od
ity

co
nt

ra
ct

s,
&

in
ve

st
m

.
-2

.9
9

In
su

ra
nc

e
ca

rr
ie

rs
&

re
la

te
d

ac
tiv

iti
es

-3
.0

3

Pa
ne

lB
.R

eg
re

ss
or

s:
co

m
m

on
an

d
L

F
sp

ec
.f

ac
to

rs

Se
ct

or
R̄

2

Te
n

se
ct

or
s

w
ith

la
rg

es
tR̄

2

M
is

c.
pr

of
.,

sc
ie

nt
.,

&
te

ch
.s

er
v.

66
.6

7
A

dm
in

is
tr

at
iv

e
&

su
pp

or
ts

er
vi

ce
s

62
.6

3
Tr

uc
k

tr
an

sp
or

ta
tio

n
62

.5
1

A
cc

om
m

od
at

io
n

61
.4

8
C

on
st

ru
ct

io
n

59
.7

5
W

ar
eh

ou
si

ng
&

st
or

ag
e

52
.5

3
G

ov
er

nm
en

te
nt

er
pr

is
es

(s
ta

te
&

lo
ca

l)
45

.7
8

O
th

er
se

rv
ic

es
,e

xc
ep

tg
ov

er
nm

en
t

41
.7

5
O

th
er

tr
an

sp
or

ta
tio

n
&

su
pp

or
ta

ct
iv

iti
es

41
.7

1
G

ov
er

nm
en

te
nt

er
pr

is
es

(f
ed

er
al

)
37

.7
8

Te
n

se
ct

or
s

w
ith

sm
al

le
st
R̄

2

A
m

bu
la

to
ry

he
al

th
ca

re
se

rv
ic

es
7.

76
M

an
ag

em
en

to
fc

om
pa

ni
es

&
en

te
rp

ri
se

s
7.

52
Fu

nd
s,

tr
us

ts
,&

ot
he

rfi
n.

ve
hi

cl
es

6.
15

In
fo

rm
at

io
n

&
da

ta
pr

oc
es

si
ng

se
rv

ic
es

1.
96

E
du

ca
tio

na
ls

er
vi

ce
s

1.
35

In
su

ra
nc

e
ca

rr
ie

rs
&

re
la

te
d

ac
tiv

iti
es

0.
36

W
at

er
tr

an
sp

or
ta

tio
n

-0
.6

4
Fa

rm
s

-1
.8

7
Fo

re
st

ry
,fi

sh
in

g,
&

re
la

te
d

ac
tiv

iti
es

-5
.3

1
Se

cu
ri

tie
s,

co
m

m
od

ity
co

nt
ra

ct
s,

&
in

ve
st

m
.

-5
.9

9

Pa
ne

lC
.I

nc
re

m
en

ti
n

ad
ju

st
ed
R

2

Se
ct

or
∆
R̄

2

Te
n

se
ct

or
s

w
ith

la
rg

es
tc

ha
ng

e
in
R̄

2

M
is

c.
pr

of
.,

sc
ie

nt
.,

&
te

ch
.s

er
v.

49
.6

9
G

ov
er

nm
en

te
nt

er
pr

is
es

(s
ta

te
&

lo
ca

l)
34

.6
9

R
en

ta
l&

le
as

in
g

se
rv

.&
le

ss
or

s
of

in
t.

as
se

ts
29

.5
2

G
en

er
al

go
ve

rn
m

en
t(

st
at

e
&

lo
ca

l)
24

.9
0

L
eg

al
se

rv
ic

es
24

.3
2

M
ot

io
n

pi
ct

ur
e

&
so

un
d

re
co

rd
in

g
in

d.
22

.7
7

Fe
d.

R
es

er
ve

ba
nk

s,
cr

ed
it

in
te

rm
.,

&
re

l.
ac

tiv
.

20
.3

1
A

dm
in

is
tr

at
iv

e
&

su
pp

or
ts

er
vi

ce
s

19
.9

5
So

ci
al

as
si

st
an

ce
19

.9
1

R
ea

le
st

at
e

18
.1

4

Te
n

se
ct

or
s

w
ith

sm
al

le
st

ch
an

ge
in
R̄

2

A
cc

om
m

od
at

io
n

-0
.9

6
R

ai
lt

ra
ns

po
rt

at
io

n
-1

.1
6

O
th

er
tr

an
sp

or
ta

tio
n

&
su

pp
or

ta
ct

iv
iti

es
-1

.5
9

A
ir

tr
an

sp
or

ta
tio

n
-1

.7
7

R
et

ai
lt

ra
de

-2
.1

5
A

m
us

em
en

ts
,g

am
bl

in
g,

&
re

cr
ea

tio
n

in
d.

-2
.1

5
E

du
ca

tio
na

ls
er

vi
ce

s
-2

.6
2

Fa
rm

s
-2

.8
0

Fo
re

st
ry

,fi
sh

in
g,

&
re

la
te

d
ac

tiv
iti

es
-2

.9
8

Se
cu

ri
tie

s,
co

m
m

od
ity

co
nt

ra
ct

s,
&

in
ve

st
m

.
-3

.0
0

In
th

e
ta

bl
e

w
e

re
po

rt
th

e
ad

ju
st

ed
R

2
,d

en
ot

ed
R̄

2
,f

or
re

st
ri

ct
ed

M
ID

A
S

re
gr

es
si

on
s

of
th

e
gr

ow
th

ra
te

s
of

42
G

D
P

no
n-

IP
se

ct
or

al
in

di
ce

s
on

th
e

es
tim

at
ed

fa
ct

or
s.

T
he

fa
ct

or
s

ar
e

es
tim

at
ed

fr
om

th
e

pa
ne

lo
f

42
G

D
P

se
ct

or
s

an
d

11
7

IP
in

di
ce

s
us

in
g

a
m

ix
ed

fr
eq

ue
nc

y
fa

ct
or

m
od

el
w

ith
k
C

=
k
H

=
k
L

=
1

.
T

he
sa

m
pl

e
pe

ri
od

fo
r

th
e

es
tim

at
io

n
of

bo
th

fa
ct

or
m

od
el

an
d

re
gr

es
si

on
s

is
19

77
-2

01
1.

R
eg

re
ss

io
ns

in
Pa

ne
lA

in
vo

lv
e

a
L

F
ex

pl
ai

ne
d

va
ri

ab
le

an
d

th
e

es
tim

at
ed

co
m

m
on

fa
ct

or
.R

eg
re

ss
io

ns
in

Pa
ne

lB
in

vo
lv

e
a

L
F

ex
pl

ai
ne

d
va

ri
ab

le
an

d
bo

th
th

e
co

m
m

on
an

d
L

F-
sp

ec
ifi

c
es

tim
at

ed
fa

ct
or

s.
T

he
re

gr
es

si
on

s
in

bo
th

ca
se

s
ar

e
re

st
ri

ct
ed

M
ID

A
S

re
gr

es
si

on
s.

In
Pa

ne
lC

w
e

re
po

rt
th

e
di

ff
er

en
ce

in
R̄

2
(d

en
ot

ed
as

∆
R̄

2
)b

et
w

ee
n

th
e

re
gr

es
si

on
s

in
Pa

ne
lB

an
d

re
gr

es
si

on
s

in
Pa

ne
lA

.

39



In contrast, the “Credit intermediation” industry comoves with the other IP and non-IP sectors (see

also Tables C.20 and C.21 in the OA).

Up to this point, we have looked at the explanatory power of the factors for sectoral output indices.

For both the non-IP GDP and Gross Output, these indices correspond to the finest level of disaggre-

gation of output growth by sector. In Table 5 we report the results of regressions with aggregated

indices instead. In particular, we regress the output of each aggregate index either on the estimated

common factor or the common and frequency specific factors, and focus on the adjusted R2s of these

regressions. It is important to note that we also include the GDP Manufacturing aggregate index which

is not used in the estimation of the factors. This will help us with the interpretation of our estimated

common and frequency-specific factors. Panel A of Table 5 shows that the common factor explains

around 90% of the variability in the aggregate IP index, confirming that the common factor can be

interpreted as an Industrial Production factor. This is further corroborated in Panel B where we find

an R̄2 around 82% for the regression of the GDP Manufacturing Index on the common factor only. As

most of the sectors included in the Industrial Production index are Manufacturing sectors, this result

is not surprising, but is still worth noting because, as noted earlier, the GDP data on Manufacturing

have not been used in the factor estimation, in order not to double-count these sectors in our mixed

frequency sectoral panel.25 As expected from the results in Table 4, more than 60% of the variability of

GDP of Transportation and Warehousing services index is explained by the common factor only, and

the LF-specific factor has no explanatory power. On the other hand, the HF-specific factor seems not

to be important in explaining the aggregate IP index, as the R̄2 increases only by 1% when it is added

as a regressor to the common factor.26 This suggests that the HF-specific factor is pervasive only for

a subgroup of IP sectors which have relatively low weights in the index, meaning that their aggregate

output is a negligible part of the output of the entire IP sector and, consequently, also the entire US

economy.27

Looking at the aggregate GDP index, we first note that even if the weight of Industrial Production

sectors in the aggregate nominal GDP index has always been below 30%, as evident from Figure 1,

25A detailed discussion of the difference in the sectoral components of the IP index and the GDP Manufacturing index
is provided in OA, Section C.4.

26See also Table C.23 in OA, Section C.5, for the R̄2 of the regression of all GDP indices on the HF factor only, and all
the 3 factors together.

27These results corroborate the findings of Foerster, Sarte, and Watson (2011), who claim that the main results of their
paper are qualitatively the same when considering either one or two common factors extracted from the same 117 IP indices
of our study.
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Table 5: Adj. R2 of aggregate IP and selected GDP indices growth rates on estimated factors

Panel A Quarterly observations, 1977.Q1-2011.Q4

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(H) R̄2(C +H)

Industrial Production 89.06 5.02 90.26 1.20

Panel B Yearly observations, 1977-2011

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(L) R̄2(C + L)

GDP 60.54 8.59 74.21 13.67
GDP - Manufacturing 81.88 -3.03 81.53 -0.35
GDP - Agriculture, forestry, fishing, and hunting 1.43 -2.52 -1.26 -2.69
GDP - Construction 44.05 11.22 59.75 15.70
GDP - Wholesale trade 20.35 7.90 30.83 10.48
GDP - Retail trade 30.70 -2.86 28.56 -2.15
GDP - Transportation and warehousing 62.14 -2.95 60.97 -1.17
GDP - Information 12.14 22.28 37.57 25.43
GDP - Finance, insurance, real estate, rental, and leasing -1.42 21.22 21.11 22.53
GDP - Professional and business serv. 30.02 30.21 65.61 35.59
GDP - Educational serv., health care, and social assist. -1.38 18.38 18.18 19.56
GDP - Arts, entert., recreat., accomm., and food serv. 53.51 -2.23 53.70 0.18
GDP - Government -2.12 22.37 20.47 22.59

In the table we report the adjusted R2, denoted R̄2, of the regression of growth rates of the aggregate IP index and selected
aggregated sectoral GDP non-IP output indices on the common factor (column R̄2(C)), the specific HF and LF factors
(columns R̄2(H) and R̄2(L)) only, and the common and frequency-specific factors together (column (3)). The last column
displays the difference between the values in the third and first columns. The factors are estimated from the panel of 42
GDP non-IP sectors and 117 IP indices using a mixed frequency factor model with kC = kH = kL = 1. The sample
period for the estimation of both factor model and regressions is 1977-2011.

still 60% of its total variability can be explained exclusively by the common factor which - as shown

in Panel A - is primarily an IP factor. This implies that there must be substantial comovement between

IP and some important service sectors. Moreover, it appears from the first line in Panel B that a

relevant part of the variability of the aggregate GDP index not due to the common factor is explained

by the LF-specific factor (the R̄2 increases by about 14% to 74%).28 This indicates that significant

comovements are present among the most important sectors of the US economy which are not related

to manufacturing. Indeed, Panel B in Table 5 indicates that some services sectors such as Professional

& Business Services and Information and Construction load significantly both on the common and

28See the results in Table C.23 in the OA.
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the LF-specific factor, while some other sectors like Finance and Government load exclusively on the

LF-specific factor.29

Our sample covers what is known as the Great Moderation, which refers to a reduction in the

volatility of business cycle fluctuations starting in the mid-1980s. We performed therefore an analysis

on subsamples. Results are provided in the OA, Section C.5.4, and here we discuss briefly the main

findings. There is a deterioration of the overall fit of approximate factor models during the Great

Moderation sample starting in 1984 and ending in 2007 – a finding also reported by Foerster, Sarte,

and Watson (2011) – and the common factor plays a lesser role during that period. Interestingly, when

the financial crisis is added to the Great Moderation (sample 1984-2011), we find patterns closer to

the full sample results presented above. The other findings, i.e. the exposure of the various subindices,

appear to be similar in subsamples and in the full sample.

6.4 Structural model and productivity shocks

The macroeconomics literature, with the works of Long and Plosser (1983), Horvath (1998) and Car-

valho (2010), among many others, has recognized that input-output linkages in both intermediate ma-

terials and capital goods lead to propagation of sector-specific shocks in a way that generates comove-

ments across sectors. An important contribution of the work of Foerster, Sarte, and Watson (2011)

is to describe the conditions under which an approximate linear factor structure for sectoral output

growth arises from standard neoclassical multisector models including those linkages. In particular,

these authors develop a generalized version of the multisector growth model of Horvath (1998), which

allows them to filter out the effects of these linkages, and reconstruct the time series of productivity

shocks using sector data on output growth when input-output tables for intermediate materials and

capital goods are available. We can characterize this as statistical versus structural factor analysis.

The main objective of this section is to verify the presence of a common factor in the innovations

of productivity for all the sectors (not just IP) of the US economy by means of our mixed frequency

factor model. If a common factor is present also in the productivity shocks, then the factor structure

uncovered by the reduced form analysis of output growth in Section 6.3 is not only due to interlinkages

in materials and capital use among different sectors.

29The results change when we look at the Finance sector disaggregated in “Fed. Reserve banks, credit interm., & rel. ac-
tiv.”, “Securities, commodity contracts, & investm.”, “Insurance carriers & related activities”, as evident in Table 4.
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We rely on the same multi-industry real business cycle model described in Section IV of Foerster,

Sarte, and Watson (2011) to extract productivity shocks from the time series of the growth rates of

the same 117 IP indices considered in the previous section, and the growth rates of 38 non-IP private

sectors Gross Output, therefore excluding the 4 Government indices considered previously.30 One

challenge due to the mixed frequency nature of our output growth dataset consists in the extraction of

mixed frequency technological shocks. In the OA, Section C.6 we explain how to adapt the algorithm

proposed by Foerster, Sarte, and Watson (2011) to estimate technological shocks for our mixed fre-

quency output series. Specifically, the multi-sector business cycle model that we use to filter out the

technological shocks correspond to the “Benchmark” model considered by Foerster, Sarte, and Watson

(2011) in their Section IV, while the data on input-output and capital use matrices necessary to estimate

the model are built from the BEA’s 1997 “use table” and “capital flow table”, respectively.31 Using the

extracted productivity shocks for the IP and non-IP sectors, denoted ζ̂Hm,t and ζ̂Lt , respectively, we esti-

mate a mixed frequency factor model with these productivity shock series. The sample period for the

estimation of both the factor model and the regressions is 1989-2011, because the productivity shocks

can not be computed for the first year of the sample (see Foerster, Sarte, and Watson (2011), especially

equation (B38) on page 10 of their Appendix B). For a direct comparison between the statistical factor

model covered in the previous subsection and the structural factor analysis, we need to first re-estimate

our model with one common, one HF-specific and one LF-specific factors on the panels of growth

rates of annual Gross Output non-IP indices (as opposed to the GDP growth indices in Table 5) and

the same 117 quarterly sectoral IP indices. The results of the corresponding in-sample regressions are

reported in Table 6.

For the moment we focus exclusively on the shaded areas of Table 6, as the non-shaded areas

pertain to the productivity shocks which will be covered later. We expect some difference with the

results displayed in Table 5 for at least two reasons. First, the dataset in which the non-IP data are

Gross Output indices, refers to shorter time period going from 1988, instead of 1977, to the end of

2011, as Gross Output indices are not available before 1988. Second, as the panel in Table 6 does not

include the four governmental sectors, we expect that the common and frequency-specific factors may

have different dynamics when compared to those extracted from the panel with GDP non-IP sectors.

30The exclusion of the public sector from the analysis is a standard choice in the sectoral productivity literature.
31The last year for which sectoral capital use tables have been constructed by the BEA is 1997.
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Table 6: Adj. R2 of aggregate IP and selected Gross Output indices growth rates on estimated factors
from raw data (shaded) and estimated factors from productivity innovations (not shaded)

Panel A Quarterly observations, 1988.Q1-2011.Q4

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(H) R̄2(C +H)

Industrial Production 63.71 38.32 89.48 25.78
31.21 50.15 77.25 46.05

Panel B Yearly observations, 1988-2011

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(L) R̄2(C + L)

GO (all sectors) 68.54 12.20 89.66 21.12
42.17 13.97 57.60 15.43

GO - Manufacturing 86.08 -3.05 88.94 2.86
62.29 -0.20 64.42 2.13

GO - Agriculture, forestry, fishing, and hunting -3.21 3.35 -0.25 2.96
0.96 -4.23 -3.35 -4.31

GO - Wholesale trade 80.82 -3.85 79.97 -0.85
74.73 -3.08 74.74 0.01

GO - Construction 25.30 34.16 67.15 41.84
6.64 20.55 27.78 21.14

GO - Retail trade 64.72 -4.50 63.15 -1.57
47.02 -4.35 45.04 -1.98

GO - Transportation and warehousing 83.82 -4.51 83.22 -0.60
70.42 -2.69 70.58 0.15

GO - Information 33.70 38.59 81.54 47.84
17.78 42.45 61.76 43.98

GO - Finance, insurance, real estate, rental, and leasing 3.37 50.30 59.29 55.92
-4.09 17.55 13.96 18.05

GO - Professional and business services 45.13 21.97 75.48 30.36
25.17 44.89 71.81 46.64

GO - Educational serv., health care, and social assist. -4.19 -1.58 -6.17 -1.98
-4.73 -4.48 -9.66 -4.93

GO - Arts, entert., recreat., accomm., and food serv. 71.06 -3.74 71.90 0.84
55.64 -2.29 55.49 -0.16

In the table we display the adjustedR2, denoted R̄2, of the regressions of growth rates of the aggregate IP index and selected
aggregated sectoral Gross Output non-IP output indices on the common factor (column R̄2(C)), the specific HF and LF
factors (columns R̄2(H) and R̄2(L)) only, and the common and frequency-specific factor together (column (3)). The last
column displays the difference between the values in the third and first columns. The factors are estimated from the panel
of 38 Gross Output non-IP sectors and 117 IP indices using a mixed frequency factor model with kC = kH = kL = 1. The
sample period for the estimation of both factor model and regressions is 1988-2011 for the regressions in the shaded areas,
while it is 1989-2011 for the regressions in the non-shaded areas. The regression results in the shaded areas are obtained
using as regressors the factors extracted from raw data, while the regression results in the non-shaded areas are obtained
using as regressors the factors extracted from productivity innovations.
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Compared to the previous Section 6.3, we obtain qualitatively similar results, as shown in Table

6. There appear to be only two notable differences with the results reported in Table 5. We see an

increased importance of the HF-specific factor in explaining the variability of the IP aggregate index

(see Panel A in Table 6), at the expense of a lower explanatory power for the common factor. Moreover,

there is also an increased importance of both the common and LF-specific factors in explaining the total

variability of total aggregate output (measured as total Gross Output, in the first line of Panel B in Table

6). Still the common factor explains roughly 65 % of the variation in the panel of IP data.

Table 7: Adjusted R2 of regressions on common factors from productivity innovations

Panel A
Adjusted R2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: Gross Output productivity innovations, 1989-2011

common -3.3 -0.3 11.0 33.6 46.1
common, LF-spec. -2.6 4.8 26.3 45.0 60.7
LF-spec. -4.2 -3.6 -0.1 17.7 33.1

Observables: IP productivity innovations, 1989.Q1-2011.Q4

common -1.0 -0.4 1.5 12.1 22.4
common, HF-spec. -0.6 3.1 13.1 28.4 40.1
HF-spec. -0.7 0.6 6.2 18.7 28.2

Panel B
Adjusted R2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: Gross Output, 1988-2011

common -2.4 3.7 21.2 31.5 55.8
common, LF-spec. -0.9 7.8 28.2 56.9 68.0
LF-spec. -4.6 -3.3 1.3 20.6 43.8

Observables: IP, 1988.Q1-2011.Q4

common -0.8 0.2 4.5 17.7 34.7
common, HF-spec. 1.2 5.9 25.7 40.8 63.8
HF-spec. -0.3 2.2 14.7 29.2 37.8

Panel A: The regressions in the first three lines involve the productivity innovations of the 38 non-IP sectors as dependent
variables, while the regressions in the last tree lines involve the productivity innovations of the 117 IP indices as dependent
variables. Productivity innovations are computed using the panel of Gross Output growth rates for the LF observables
adapting the procedure of Foerster, Sarte, and Watson (2011). The explanatory variables are factors estimated from a
mixed frequency factor model with kC = kH = kL = 1, applied on the panels of productivity innovations. The sample
period for the estimation of both the factor model and the regressions is 1989.Q1-2011.Q4. Panel B: The regressions in the
first three lines involve the Gross Output growth rates of the 38 non-IP sectors as dependent variables, while the regressions
in the last tree lines involve the growth of the 117 IP indices as dependent variables. The explanatory variables are the same
factors used in the regressions of Panel A extracted from productivity innovations. The sample period for the estimation of
both the factor model and the regressions is 1989.Q1-2011.Q4.

What do we learn from the structural analysis with common and frequency-specific factors of

productivity shocks? First, it is quite interesting to find that again there is one common factor in

productivity shocks. Indeed, the selection of the number of common factors is performed as in the

previous section, and our testing methodology suggests the presence of one common factor. Therefore

we estimate a model for the productivity innovations with kC = kH = kL = 1.32 As in the previous

section, we start with a disaggregated analysis and look at the relative importance of the new common

and frequency specific factors in explaining the variability of the constituents of the panel of produc-
32The values of the penalized selection criteria of Bai and Ng (2002) performed on different subpanels and the test for

the number of common factors are available in Tables C.24 and C.25 in the OA, Section C.5.
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tivity innovations, and the panels of all output growth rates used for the extraction of the productivity

innovations themselves. For each sector, we regress both the productivity innovations and the index

growth rates on the common factor only, on the specific factor only, and on both common and specific

factors. In Table 7 we report the quantiles of the empirical distribution of R̄2 of these regressions.33

Panel A of Table 7 confirms that both the common and the frequency-specific factors are pervasive

for the panels of productivity innovations. From the first two rows we note that the common factor

alone explains at least 11% of the variability of half of the non-IP series considered, and this fraction

increases to more than 26% when the LF-specific factor is an additional regressor to the common

one. On the other hand, from the last three rows of Panel B we note that for the IP sectors the high

frequency specific factor seems to explain the majority of the variability of the productivity indices,

while the explanatory power of the common factor seems to have some relevance only for 50% of the

IP sectors. Panel B reports the R̄2 of the regressions of the GO indices growth rates on the factors

estimated on the panels of productivity shocks themselves. Therefore, they give an indication of the

fraction of variability of the indices explained by the common components of the output growth which

is not due to input-output linkages between sectors, as captured by the structural “Benchmark” of

Foerster, Sarte, and Watson (2011). Panel B of Table 7 can be compared with Panel B of Table 3.

As expected, as part of the comovement among different sectors is due to input-output and capital

use linkages, all the R̄2 in Panel B of Table 7 are strictly lower than those in Table 3, if we exclude

the negative ones and those very close to zero. For instance, the median R̄2 of regressions including

the common factor only for the non-IP sectors decreases from 28% to 21%, and the median R̄2 of

regressions including the common and LF-specific factors decreases from 45% to 28%. A similar

pattern is observed for the higher quantiles, and for the IP indices. However, overall Panel B in Table

7 gives a first indication of the presence of commonality in the comovement on the majority of the

sectors of the US economy even when the output growth rates are purged of the input-output linkages

in both intermediate materials and capital goods.

We conclude the analysis by repeating the same exercise as for the shaded areas of Table 6, and

regress the Industrial Production and aggregate (mostly non-IP) Gross Output indices growth on the

factors extracted from productivity innovations and look at the adjusted R2s. The results are provided

33The regressions in the second and third rows are restricted MIDAS regressions. The regressions in fourth, fifth and
sixth rows impose the estimated coefficients of the common and HF-specific factors to be the same at each quarter, as they
are estimated as HF regressions.
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in the non-shaded rows of Table 6. From Panel A we observe that the common factor extracted from

productivity innovations explains around 31% of the variability of the aggregate IP index, i.e. around

half of the variability explained by the common factor extracted directly from the output series. More-

over, when the high frequency-specific productivity factor is added as explanatory variable, the R̄2

increases to 77%, which is also significantly smaller than the 89% R̄2 obtained using as regressors the

factors extracted from the output series.34 Hence, the case of a common pervasive factor in innovation

shocks across the entire economy mainly related to IP sector technology shocks is less compelling.

From Panel B of Table 6 we observe that 42% of the variability of the aggregate Gross Output of

the US economy can be explained by the common factor of productivity shocks, and when the factor

specific to non-IP sector is added, the R̄2 grows to 57%.

From this analysis we learn something interesting which Foerster, Sarte, and Watson (2011) were

not able to address since they exclusively examined IP sectors. Overall, there is a difference in the

explanatory power of factors in structural versus non-structural factor models - as they found. How-

ever, it seems that looking at technology shocks instead of output, it does not appear that a common

factor explaining IP fluctuations is a dominant factor for the entire economy. A factor specific to tech-

nological innovations in IP sectors is more important for the IP sector shocks and a low frequency

factor which appears to explain variation in information industry as well as professional and business

services innovations plays, relatively speaking, a more important role.

7 Conclusions

Panels with data sampled at different frequencies are the rule rather than the exception in economic

applications. We develop a novel approximate factor modeling approach which allows us to estimate

factors which are common across all data regardless of their sample frequency, versus factors which are

specific to subpanels stratified by sampling frequency. To develop the generic theoretical framework,

we cast our analysis into a group factor structure and develop a unified asymptotic theory for the

identification of common and group- or frequency-specific factors, for the determination of the number

of common and specific factor values, for the estimation of loadings and the factor values via principal

component analysis and canonical correlation analysis in a setting with large dimensional data sets,

34This result is in line with the findings of Foerster, Sarte, and Watson (2011) in their Section IV C.
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using asymptotic expansions both in the cross-sections and the time series.

There are a plethora of applications to which our theoretical analysis applies. We selected a spe-

cific example based on the work of Foerster, Sarte, and Watson (2011) who analyzed the dynamics

of comovements across 117 industrial production sectors using both statistical and structural factor

models. We revisit their analysis and incorporate the rest - and most dominant part - of the US econ-

omy, namely the non-IP sectors whose growth rate we only observe annually. We find evidence for a

common factor for the entire US economy, but this common factor appears not to be an IP factor after

accounting for input-output linkages.

Despite the generality of our analysis, we can think of many possible extensions, such as models

with loadings which change across subperiods, i.e. periodic loadings, or loadings which vary stochas-

tically or feature structural breaks. Moreover, we could consider the problem of specification and

estimation of a joint dynamic model for the common and frequency-specific factors extracted with

our methodology (see Ghysels (2016) and the references therein for structural Vector Autoregressive

(VAR) models with mixed frequency sampling). Further, in the interest of conciseness we have fo-

cused our analysis on models with two sampling frequencies, leading to group factor models with two

groups. Results could be extended to cover the cases with more than two groups / more than two

sampling frequencies. For conducting inference on the factor spaces and their dimensions, the key

ingredients are the link with the eigenvalues and eigenvectors of the variance-covariance matrix of

stacked PCs extracted from the groups, and the distributional theory developed in Section 4. All these

extensions are left for future research.
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Technical Appendices

A Assumptions

A.1 Group factor model
Let ‖A‖ =

√
tr(A′A) denote the Frobenius norm of matrix A. Let kF = kc + ks1 + ks2, and define the kF -dimensional

vector of factors: Ft = [ f c ′t , fs ′1,t, fs ′2,t ]′, and the (T, kF ) matrix F = [ F ′1, ..., F
′
T ]′. We make the following

assumptions:

Assumption A.1. The unobservable factor process is such that F ′F/T = ΣF + Op(1/
√
T ) as T → ∞, where ΣF is a

positive definite (kF × kF ) matrix defined as:

ΣF =

 Ikc 0 0
0 Iks1 Φ
0 Φ′ Iks2

 .
Assumption A.2. The loadings matrices Λj = [ Λcj

... Λsj ] = [ λj,1, . . . , λj,Nj ]′, for j = 1, 2, are full column-rank, for
N1, N2 large enough, and such that:

Λ′jΛj

Nj
= ΣΛ,j +O

(
1√
Nj

)
, j = 1, 2,

as Nj →∞, where ΣΛ,j := lim
Nj→∞

(
Λ′jΛj

Nj

)
is a p.d. (kj , kj) matrix, for j = 1, 2.

Assumption A.3. The error terms (ε1,it ε2,it)
′ are weakly dependent across i and t, and such that E[εj,i,t] = 0.

Assumption A.4. There exists a constant Cε such that E[ε4
j,i,t] ≤ Cε for all j, i and t.

Assumption A.5. a) The variables Ft and εj,is are independent, for all i, j, t and s.
b) The processes {εj,i,t} are stationary, for all j, i.
c) The process {Ft} is stationary and weakly dependent over time.
d) For each j and t, as Nj →∞, it holds:

1√
Nj

Nj∑
i=1

λj,iεj,i,t
d→ N(0,Ωj),

where Ωj = lim
Nj→∞

1

Nj

Nj∑
i=1

Nj∑
`=1

λj,iλ
′
j,`E[εj,i,tεj,`t].

Assumption A.6. The asymptotic analysis is for N1, N2, T →∞ such that N2 ≤ N1, T/N2 = o(1),
√
N1/T = o(1).

Assumption A.7. The error terms εj,i,t are uncorrelated across j, i and t, and εj,i,t ∼ (0, γj,ii).

Assumption A.1 requires that the empirical second-order moment matrix of the zero-mean factor process converges at rate
1/
√
T to the population variance-covariance matrix ΣF . Such converge rate applies, for instance, if the factor process

satisfies the conditions for a Central Limit Theorem (CLT) for stationary and weakly dependent data. Positive definiteness
of matrix ΣF is necessary for our model to have exactly kc + ks1 + ks2 pervasive factors. The zero restrictions on the matrix
ΣF , corresponding to the orthogonality of the common and group-specific factors, as well as the identity diagonal blocks,
are identification conditions.
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Assumption A.2 states that the empirical cross-sectional second-order moment matrix of the loadings converges to
its population value at rate 1/

√
Nj , for each group j = 1, 2. Positive definiteness of matrix ΣΛ,j , for j = 1, 2, is also

necessary for the existence of exactly kc+ks1+ks2 pervasive factors. Note that we consider non-random loadings to simplify
the assumptions and proofs. If the loadings were random, such a rate of (stochastic) convergence could be obtained with a
DGP for the loadings which satisfies the conditions of the CLT for weakly dependent data. Assumptions A.1 and A.2 are
similar to conditions used in the large scale factor model literature (see Assumptions A and B in Bai and Ng (2002), Bai
(2003), and Bai and Ng (2006a), among others).

Assumption A.3 constraints the amount of admissible time series and cross-sectional dependence of the error terms
across different individuals, in the spirit of the assumption - introduced by Chamberlain and Rothschild (1983) - of weak
cross-sectional dependence characterizing “approximate factor models”. No distributional assumption is made on the
idiosyncratic terms, instead their fourth moments are uniformly bounded in Assumption A.4. Assumptions A.5 a) and b)
are standard in factor analysis, but they could be substituted, at the expense of more elaborated proofs, by weak dependence
assumptions for factors and idiosyncratic errors analogous to Assumptions D, F.2 and F.4 in Bai (2003). Assumption A.5
c) rules out explosive behavior of the factors. Assumption A.5 d) states that a CLT holds for the error terms scaled by the
factor loadings in each group, and is satisfied e.g. by a number of mixing processes. It corresponds to Assumption F.3 in
Bai (2003).

Assumption A.6 establishes that in our asymptotic theory both the time-series and the cross-sectional dimensions of
each group tend simultaneously to infinity, with constraints on their relative growth rate. The cross-sectional dimensions
for both groups grow faster than the time-series dimension, but slower than time-series dimension squared. The latter
condition eliminates some bias terms in asymptotic expansions. Assumption A.7 simplifies the derivation of the feasible
asymptotic distribution of the statistic used to test the dimension of the common factor space. This condition is stronger
than Assumptions A.3 and A.5 b). Moreover, under Assumption A.7, the matrix Ωj in Assumption A.5 d) simplifies to
Ωj = lim

Nj→∞
(1/Nj)

∑Nj

i=1 λj,iλ
′
j,iγj,ii . We note that, Assumption A.7 simplifies substantially the proof of Theorem 2, but

is not needed in the proofs of Theorem 1 and Propositions 3 - 4. Together with Assumption A.5, Assumption A.7 implies
a “strict factor model” for each group.

A.2 Mixed frequency factor model

Let λ′1,i be the i-th row of the (NH , k
C + kH) matrix Λ1 = [ ΛHC

... ΛH ]. We make the following assumption:

Assumption A.8. The variables λ1,i and ei,Hm,t are such that:

1√
NH

NH∑
i=1

λ1,ie
i,H
m,t

d→ N(0,Ω∗Λ,m),

as NH →∞, where

Ω∗Λ,m = lim
NH→∞

1

NH

NH∑
i=1

NH∑
`=1

λ1,iλ
′
1,`Cov(ei,Hm,t, e

`,H
m,t), m = 1, ...,M.

Assumption A.8 is analogous to Assumption A.5 d) expressed for the high frequency DGP of the idiosyncratic innnovation
terms ei,Hm,t.
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B Proofs of Propositions

B.1 Proof of Proposition 1
By replacing equation (2.6) into model (2.4), we get

[
y1,t

y2,t

]
=

[
Λc1A11 + Λs1A21 Λc1A12 + Λs1A22 Λc1A13 + Λs1A23

Λc2A11 + Λs2A31 Λc2A12 + Λs2A32 Λc2A13 + Λs2A33

] f̃ ct
f̃s1,t
f̃s2,t

+

[
ε1,t

ε2,t

]
.

This factor model satisfies the restrictions in the loading matrix appearing in equation (2.4) if, and only if, Λc1A13 +
Λs1A23 = 0, and Λc2A12 + Λs2A32 = 0, which can be written as linear homogeneous systems of equations for the elements
of matrices [A′13 A

′
23]′ and [A′12 A

′
32]′:[

Λc1
... Λs1

] [
A13

A23

]
= 0, and

[
Λc2

... Λs2

] [
A12

A32

]
= 0.

Since
[
Λc1

... Λs1

]
and

[
Λc2

... Λs2

]
are full column rank, it follows that A13 = 0, A23 = 0, A12 = 0, and A32 = 0. Therefore,

the transformation of the factors that is compatible with the restrictions on the loading matrix in equation (2.4) is: f ct
fs1,t
fs2,t

 =

 A11 0 0
A21 A22 0
A31 0 A33

 f̃ ct
f̃s1,t
f̃s2,t

 .
We can invert this transformation and write:

f̃ ct = A−1
11 f

c
t , f̃s1,t = A−1

22 f
s
1,t −A−1

22 A21A
−1
11 f

c
t , f̃s2,t = A−1

33 f
s
2,t −A−1

33 A31A
−1
11 f

c
t .

The transformed factors satisfy the normalization restrictions in (2.5) if, and only if,

Cov(f̃s1,t, f̃
c
t ) = −A−1

22 A21A
−1
11 (A−1

11 )′ = 0, (B.1)

Cov(f̃s2,t, f̃
c
t ) = −A−1

33 A31A
−1
11 (A−1

11 )′ = 0, (B.2)

V (f̃ ct ) = A−1
11 (A−1

11 )′ = Ikc , (B.3)
V (f̃s1,t) = A−1

22 (A−1
22 )′ +A−1

22 A21A
−1
11 (A−1

11 )′A′21(A−1
22 )′ = Iks1 , (B.4)

V (f̃s2,t) = A−1
33 (A−1

33 )′ +A−1
33 A31A

−1
11 (A−1

11 )′A′31(A−1
33 )′ = Iks2 . (B.5)

Since the matrices A11, A22 and A33 are nonsingular, equations (B.1) and (B.2) imply A21 = 0, and A31 = 0. Then, from
equations (B.3) - (B.5), we get that matrices A11, A22 and A33 are orthogonal.

Q.E.D.

B.2 Proof of Proposition 2
From equation (2.5) we have

R =

(
Ikc 0
0 ΦΦ′

)
, R∗ =

(
Ikc 0
0 Φ′Φ

)
.

Matrix R is block diagonal, and the upper-left block Ikc has eigenvalue 1 with multiplicity kc. The associated eigenspace
is {(ξ′, 0′)′, ξ ∈ Rkc}. The lower-right block ΦΦ′ is a positive semi-definite matrix, and its largest eigenvalue is ρ̃2, where
ρ̃2 = sup

{
ξ′1ΦΦ′ξ1 : ξ1 ∈ Rks1 , ‖ξ1‖ = 1

}
< 1 is the first squared canonical correlation of vectors fs1,t and fs2,t. There-

fore, we deduce that the largest eigenvalue of matrix R is equal to 1, with multiplicity kc, and the associated eigenspace,

57



denoted by Ec, is spanned by vectors (ξ′, 0′)′, with ξ ∈ Rkc . Let S1 be an orthogonal (kc, kc) matrix, then the columns of
the (k1, k

c) matrix

W1 =

(
S1

0ks1×kc

)
are an orthonormal basis of the eigenspace Ec. We have:

W ′1h1,t = S′1f
c
t . (B.6)

Analogous arguments allow to show that the largest eigenvalue of matrix R∗ is equal to 1, with multiplicity kc and that the
associated eigenspace, denoted by E∗c , is spanned by vectors (ξ∗ ′, 0′)′, with ξ∗ ∈ Rkc . We have E∗c = Ec. Let S2 be an
orthogonal (kc, kc) matrix. Then, the columns of the (k2, k

c) matrix

W2 =

(
S2

0ks2×kc

)
are an orthonormal basis of the eigenspace E∗c . We have:

W ′2h2,t = S′2f
c
t , (B.7)

which yields parts i) and ii).
When there is no common factor, the matrix R becomes R = ΦΦ′, and matrix R∗ becomes R∗ = Φ′Φ. By the above

arguments, the largest eigenvalue of matrix R, which is equal to the largest eigenvalue of matrix R∗, is not larger than ρ̃2,
where ρ̃2 < 1 is the first squared canonical correlation between the two group-specific factors. This yields part iii).

Finally, we prove part iv). We showed that the lower-right block ΦΦ′ of matrix R is a positive semi-definite matrix
and all its ks1 = k1 − kc eigenvalues are strictly smaller than one. These are also eigenvalues of matrix R. Let us denote
the space spanned by the associated ks1 eigenvectors of matrix R by Es,1. This space is spanned by vectors (0′, ξ̃′)′ with
ξ̃ ∈ Rks1 . We note that, by construction, the vectors (0′, ξ̃′)′ are linearly independent of the vectors (ξ′, 0′)′ spanning the
eigenspace Ec. Let Q1 be an orthogonal (ks1, k

s
1) matrix, then the columns of matrix

W s
1 =

(
0kc×ks1
Q1

)
are an orthonormal basis of the eigenspace Es,1. We have: W s′

1 h1,t = Q′1f
s
1,t.

Analogously, we have that the lower-right block Φ′Φ of matrixR∗ is a positive semi-definite matrix and all its ks2 = k2−kc
eigenvalues are strictly smaller than one. These are also eigenvalues of matrix R∗. Let us denote the space spanned by the
associated ks2 eigenvectors of matrix R∗ by Es,2. This space is spanned by vectors (0′, ξ̃∗′)′ with ξ̃∗ ∈ Rks2 . We note that,
by construction, the vectors (0′, ξ̃∗′)′ are linearly independent of the vectors (ξ∗′, 0′)′ spanning the eigenspace E∗c . Let Q2

be an orthogonal (ks2, k
s
2) matrix, then the columns of matrix

W s
2 =

(
0kc×ks2
Q2

)
are an orthonormal basis of the eigenspace Es,2. We have W s′

2 h2,t = Q′2f
s
2,t. Q.E.D.

B.3 Proof of Theorem 1
The Proof of Theorem 1 is structured as follows. We start by deriving an asymptotic expansion of matrix R̂ (Subsection
B.3.1). This result is used to obtain the asymptotic expansions of the eigenvalues and eigenvectors of matrix R̂ by per-
turbation methods (Subsections B.3.2 and B.3.3), of the canonical correlations, and of the test statistic ξ̂(kc) (Subsection
B.3.4). Finally, the asymptotic distribution of the test statistic follows by applying a suitable CLT (Subsection B.3.5).
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B.3.1 Asymptotic expansion of R̂

The canonical correlations and the canonical directions are invariant to one-to-one transformations of the vectors ĥ1,t and
ĥ2,t (see, among others, Anderson (2003)). Therefore, without loss of generality, for the asymptotic analysis of the test
statistic ξ̂(kc), we can set Ĥj = Ikj , j = 1, 2, in approximation (4.1). Moreover, under Assumption A.6 the bias term is
negligible, and we get:

ĥj,t ' hj,t +
1√
Nj

uj,t, j = 1, 2. (B.8)

By using approximation (B.8), and N2 = N , N1 = N/µ2
N , we have:

V̂12 =
1

T

T∑
t=1

ĥ1,tĥ
′
2,t '

1

T

T∑
t=1

(
h1,t +

1√
N
µNu1,t

)(
h2,t +

1√
N
u2,t

)′
= Ṽ12 + X̂12,

where:

Ṽ12 =
1

T

T∑
t=1

h1,th
′
2,t , X̂12 =

1

T
√
N

T∑
t=1

(h1,tu
′
2,t + µNu1,th

′
2,t) +

µN
TN

T∑
t=1

u1,tu
′
2,t. (B.9)

Similarly:

V̂jj =
1

T

T∑
t=1

ĥj,tĥ
′
j,t '

1

T

T∑
t=1

(
hj,t +

1√
Nj

uj,t

)(
hj,t +

1√
Nj

uj,t

)′
= Ṽjj

(
Id+ Ṽ −1

jj X̂jj

)
, j = 1, 2,

where:

Ṽjj =
1

T

T∑
t=1

hj,th
′
j,t, j = 1, 2,

X̂11 =
µN

T
√
N

T∑
t=1

(h1,tu
′
1,t + u1,th

′
1,t) +

µ2
N

TN

T∑
t=1

u1,tu
′
1,t, (B.10)

X̂22 =
1

T
√
N

T∑
t=1

(h2,tu
′
2,t + u2,th

′
2,t) +

1

TN

T∑
t=1

u2,tu
′
2,t. (B.11)

Therefore, from (3.1) we get:

R̂ '
(
Id+ Ṽ −1

11 X̂11

)−1

Ṽ −1
11

(
Ṽ12 + X̂12

)(
Id+ Ṽ −1

22 X̂22

)−1

Ṽ −1
22

(
Ṽ21 + X̂21

)
.

Using
1√
T

T∑
t=1

hj,tu
′
k,t = Op(1) we have X̂j,k = Op

(
1√
NT

)
. Let us expand matrix R̂ at first order in the X̂j,k. By using

(Id+X)−1 ' Id−X for X ' 0, we have:

R̂ '
(
Id− Ṽ −1

11 X̂11

)
Ṽ −1

11

(
Ṽ12 + X̂12

)(
Id− Ṽ −1

22 X̂22

)
Ṽ −1

22

(
Ṽ21 + X̂21

)
' Ṽ −1

11 Ṽ12Ṽ
−1
22 Ṽ21

−Ṽ −1
11 X̂11Ṽ

−1
11 Ṽ12Ṽ

−1
22 Ṽ21 + Ṽ −1

11 X̂12Ṽ
−1
22 Ṽ21 − Ṽ −1

11 Ṽ12Ṽ
−1
22 X̂22Ṽ

−1
22 Ṽ21 + Ṽ −1

11 Ṽ12Ṽ
−1
22 X̂21.

Defining the following quantities:

Ã = Ṽ −1
11 Ṽ12, B̃ = Ṽ −1

22 Ṽ21, R̃ = Ṽ −1
11 Ṽ12Ṽ

−1
22 Ṽ21 = ÃB̃,

Ψ̂∗ = −X̂11R̃+ X̂12B̃ − B̃′X̂22B̃ + B̃′X̂21, (B.12)
Ψ̂ = Ṽ −1

11 Ψ̂∗, (B.13)

59



we get the asymptotic expansion of matrix R̂:

R̂ = R̃+ Ψ̂ +Op

(
1

NT

)
. (B.14)

B.3.2 Matrix R̃ and its eigenvalues and eigenvectors
Let us now compute matrix R̃ and its eigenvalues, that are ρ̃2

1, ..., ρ̃
2
k1

, i.e. the squared sample canonical correlations of
vectors h1,t and h2,t, under the null hypothesis of kc > 0 common factors among the 2 groups of observables. Since
the vectors h1,t and h2,t have a common component of dimension kc, we know that ρ̃1 = ... = ρ̃kc = 1 a.s.. Using the
notation:

Σ̃cc =
1

T

T∑
t=1

f ct f
c′
t , Σ̃cj =

1

T

T∑
t=1

f ct f
s′
j,t , Σ̃jc = Σ̃′cj , j = 1, 2,

Σ̃jj =
1

T

T∑
t=1

fsj,tf
s′
j,t , j = 1, 2, Σ̃12 =

1

T

T∑
t=1

fs1,tf
s′
2,t ,

we can write matrices Ṽjj , with j = 1, 2, and Ṽ12 as:

Ṽjj =

(
Σ̃cc Σ̃c,j
Σ̃j,c Σ̃jj

)
, j = 1, 2, Ṽ12 =

(
Σ̃cc Σ̃c,2
Σ̃1,c Σ̃12

)
= Ṽ ′21.

By matrix algebra we get:

Ṽ −1
11 =

[
Σ̃−1
∗,1 −Σ̃−1

∗,1Σ̃c1Σ̃−1
11

−Σ̃−1
11 Σ̃1cΣ̃

−1
∗,1 Σ̃−1

11 + Σ̃−1
11 Σ̃1cΣ̃

−1
∗,1Σ̃c1Σ̃−1

11

]
, (B.15)

where Σ̃∗,1 = Σ̃cc − Σ̃c1Σ̃−1
11 Σ̃1c. From Assumption A.1, we have:

Σ̃c1 = Op(1/
√
T ), Σ̃cc = Ikc +Op(1/

√
T ),

Σ̃jj = Iksj +Op(1/
√
T ), j = 1, 2, Σ̃12 = Φ +Op(1/

√
T ),

which imply:

Σ̃∗,1 = Σ̃cc +Op(1/T ), (B.16)

Σ̃−1
∗,1 = Σ̃−1

cc +Op(1/T ), (B.17)

−Σ̃−1
∗,1Σ̃c1Σ̃−1

11 = −Σ̃−1
cc Σ̃c1Σ̃−1

11 +Op(1/T ) = − Σ̃c1 +Op(1/T ), (B.18)

Σ̃−1
11 Σ̃1cΣ̃

−1
∗,1Σ̃c1Σ̃−1

11 = Op(1/T ). (B.19)

Substituting results (B.16) - (B.19) into equation (B.15) we get:

Ṽ −1
11 =

[
Σ̃−1
cc −Σ̃c1
−Σ̃1c Σ̃−1

11

]
+Op(1/T ). (B.20)

Equation (B.15) allows to compute Ã :

Ã = Ṽ −1
11 Ṽ12 =

[
Σ̃−1
∗,1 −Σ̃−1

∗,1Σ̃c1Σ̃−1
11

−Σ̃−1
11 Σ̃1cΣ̃

−1
∗,1 Σ̃−1

11 + Σ̃−1
11 Σ̃1cΣ̃

−1
∗,1Σ̃c1Σ̃−1

11

] [
Σ̃cc Σ̃c2
Σ̃1c Σ̃12

]
=

[
Ikc Ãcs
0 Ãss

]
,(B.21)
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where:

Ãcs = Σ̃−1
∗1 Σ̃c2 − Σ̃−1

∗1 Σ̃c1Σ̃−1
11 Σ̃12 = Op

(
1√
T

)
,

Ãss = −Σ̃−1
11 Σ̃1cΣ̃

−1
∗1 Σ̃c2 + Σ̃−1

11 Σ̃12 + Σ̃−1
11 Σ̃1cΣ̃

−1
∗1 Σ̃c1Σ̃−1

11 Σ̃12

= Σ̃−1
11 Σ̃12 +Op

(
1

T

)
= Φ +Op

(
1√
T

)
.

Let us compute:

Ṽ −1
22 =

[
Σ̃−1
∗2 −Σ̃−1

∗2 Σ̃c2Σ̃−1
22

−Σ̃−1
22 Σ̃2cΣ̃

−1
∗2 Σ̃−1

22 + Σ̃−1
22 Σ̃2cΣ̃

−1
∗2 Σ̃c2Σ̃−1

22

]
, (B.22)

where Σ̃∗2 = Σ̃cc − Σ̃c2Σ̃−1
22 Σ̃2c. Equation (B.22) allows to compute B̃ :

B̃ = Ṽ −1
22 Ṽ21 =

[
Σ̃−1
∗2 −Σ̃−1

∗2 Σ̃c2Σ̃−1
22

−Σ̃−1
22 Σ̃2cΣ̃

−1
∗2 Σ̃−1

22 + Σ̃−1
22 Σ̃2cΣ̃

−1
∗2 Σ̃c2Σ̃−1

22

] [
Σ̃cc Σ̃c1
Σ̃2c Σ̃21

]
=

[
Ikc B̃cs
0 B̃ss

]
,(B.23)

where:

B̃cs = Σ̃−1
∗2 Σ̃c1 − Σ̃−1

∗2 Σ̃c2Σ̃−1
22 Σ̃21 = Op

(
1√
T

)
,

B̃ss = −Σ̃−1
22 Σ̃2cΣ̃

−1
∗2 Σ̃c1 + Σ̃−1

22 Σ̃21 + Σ̃−1
22 Σ̃2cΣ̃

−1
∗ Σ̃c2Σ̃−1

22 Σ̃21

= Σ̃−1
22 Σ̃21 +Op

(
1

T

)
= Φ′ +Op

(
1√
T

)
.

Finally, using results (B.21) and (B.23) we can compute:

R̃ = ÃB̃ =

[
Ikc Ãcs
0 Ãss

] [
Ikc B̃cs
0 B̃ss

]
=

[
Ikc R̃cs
0 R̃ss

]
,

where

R̃cs = B̃cs + ÃcsB̃ss = Op(1/
√
T ),

R̃ss = ÃssB̃ss = Σ̃−1
11 Σ̃12Σ̃−1

22 Σ̃21 +Op (1/T ) = ΦΦ′ +Op(1/
√
T ).

The eigenvalues of matrix R̃ are ρ̃2
1 = ... = ρ̃2

kc = 1 > ρ̃2
kc+1 ≥ ... ≥ ρ̃2

k1
. The eigenvectors associated with the first kc

eigenvalues are spanned by the columns of matrix:

Ec
(k1×kc)

=

[
Ikc

0

]
. (B.24)

Define:

Es
(k1×(k1−kc))

=

[
0

Ik1−kc

]
. (B.25)

We note Ik1 =
[
Ec

... Es

]
, so that the columns of matrices Ec and Es span the space Rk1 .

B.3.3 Perturbation of the eigenvalues and eigenvectors of matrix R̂
The estimators of the first kc canonical correlations are such that ρ̂2

` , with ` = 1, ..., kc are the kc largest eigenvalues
of matrix R̂. Using (B.14), we now derive their asymptotic expansion using perturbations arguments. Under the null
hypothesisH(kc), let Ŵ ∗1 be a (k1, k

c) matrix whose columns are eigenvectors of matrix R̂ associated with the eigenvalues
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ρ̂2
` , with ` = 1, ..., kc. We have:

R̂Ŵ ∗1 = Ŵ ∗1 Λ̂, (B.26)

where Λ̂ = diag(ρ̂2
` , ` = 1, ..., kc) is the (kc, kc) diagonal matrix containing the kc largest eigenvalues of R̂. We know

from the previous subsection that the eigenspace associated with the largest eigenvalue of R̃ (equal to 1) has dimension
kc and is spanned by the columns of matrix Ec. Since the columns of Ec and Es span Rk1 , we can write the following
expansions:

Ŵ ∗1 = Ec Û + Esα, (B.27)
Λ̂ = Ikc + M̂, (B.28)

where Ec and Es are defined in equations (B.24) and (B.25), Û is a (kc, kc) nonsingular matrix, M̂ = diag(µ̂1, ..., µ̂kc),
and α is a (k1 − kc, kc) matrix, with α, µ̂1, ..., µ̂kc converging to zero as N1, N2, T →∞. Substituting the expansions in
equations (B.14) and (B.26) we get:

(R̃+ Ψ̂)(Ec Û + Esα) ' (Ec Û + Esα)(Ikc + M̂).

By using R̃Ec = Ec, and keeping only the terms at first order, we get:

R̃Esα+ Ψ̂Ec Û ' Esα+ Ec ÛM̂. (B.29)

Pre-multiplying equation (B.29) by E′c, we get:

E′cR̃Esα+ E′cΨ̂Ec Û ' ÛM̂ ⇔ M̂ ' Û−1
(
R̃csα+ Ψ̂cc Û

)
, (B.30)

where we use the fact that Û is non-singular, Ψ̂cc = E′cΨ̂Ec and R̃cs = E′cR̃Es. Pre-multiplying equation (B.29) by E′s,
we get:

E′sR̃Esα+ E′sΨ̂Ec Û ' α ⇔ α ' R̃ssα+ Ψ̂sc Û ,

where Ψ̂sc = E′sΨ̂Ec. This implies:

α ' (Ik1−kc − R̃ss)−1Ψ̂sc Û . (B.31)

Substituting the first order approximation of α from equation (B.31) into equation (B.27) we get:

Ŵ ∗1 '
(
Ec + Es(Ik1−kc − R̃ss)−1Ψ̂sc

)
Û . (B.32)

The normalized eigenvectors corresponding to the canonical directions are:

Ŵ1 = Ŵ ∗1 · diag(Ŵ ∗ ′1 V̂11Ŵ
∗
1 )−1/2. (B.33)

Substituting the first order approximation of α from equation (B.31) into (B.30), we get the first order approximation of
matrix M̂ :

M̂ ' Û−1
(

Ψ̂cc + R̃cs(Ik1−kc − R̃ss)−1Ψ̂sc

)
Û . (B.34)

Substituting the first order approximation of M̂ from equation (B.34) into (B.28), matrix Λ̂ can be approximated as:

Λ̂ ' Ikc + Û−1
(

Ψ̂cc + R̃cs(Ik1−kc − R̃ss)−1Ψ̂sc

)
Û .
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Note that this first order approximation holds for the terms in the main diagonal, as matrix Λ̂ has been defined to be
diagonal, and the out-of-diagonal terms are of higher order. Up to higher order terms we have:

Λ̂1/2 ' Ikc +
1

2
Û−1

[
Ψ̂cc + R̃cs(Ik1−kc − R̃ss)−1Ψ̂sc

]
Û ,

which implies:

kc∑
`=1

ρ̂` = tr(Λ̂1/2) = kc +
1

2
tr
[
Û−1

(
Ψ̂cc + R̃cs(Ik1−kc − R̃ss)−1Ψ̂sc

)
Û
]

+Op

(
1

NT

)
,

= kc +
1

2
tr
[
Ψ̂cc + R̃cs(Ik1−kc − R̃ss)−1Ψ̂sc

]
+Op

(
1

NT

)
, (B.35)

by the commutative property of the trace.

B.3.4 Asymptotic expansion of
∑kc

`=1 ρ̂`

Let us now derive an asymptotic expansion for the sum of the canonical correlations
kc∑
`=1

ρ̂`. From equation (B.35), and

using (B.13), we get:

kc∑
`=1

ρ̂` = kc +
1

2
tr

{[
Ikc

... R̃cs(I(k1−kc) − R̃ss)−1

]
Ψ̂Ec

}
+Op

(
1

NT

)

= kc +
1

2
tr

{[
Ikc

... R̃cs(I(k1−kc) − R̃ss)−1

]
Ṽ −1

11

[
Ψ̂∗cc
Ψ̂∗sc

]}
+Op

(
1

NT

)
, (B.36)

where Ψ̂∗cc and Ψ̂∗sc are blocks of matrix Ψ̂∗. In order to further simplify this asymptotic expansion, let us consider the
following matrix: [

Ikc
... R̃cs(I(k1−kc) − R̃ss)−1

]
Ṽ −1

11 .

Using equation (B.20), we have:[
Ikc

... R̃cs(Ik1−kc − R̃ss)−1

]
Ṽ −1

11 =

[
Ikc

... R̃cs(Ik1−kc − R̃ss)−1

] [
Σ̃−1
cc −Σ̃c1
−Σ̃1c Σ̃−1

11

]
+Op

(
1

T

)
=

[
Σ̃−1
cc − R̃cs(Ik1−kc − R̃ss)−1Σ̃1c

... − Σ̃c1 + R̃cs(Ik1−kc − R̃ss)−1Σ̃−1
11

]
+Op

(
1

T

)
=

[
Σ̃−1
cc

... − Σ̃c1 + R̃cs(Ik1−kc − R̃ss)−1

]
+Op

(
1

T

)
, (B.37)

where the last equality follows from the bounds R̃cs = Op(1/
√
T ), Σ̃1c = Op(1/

√
T ) and Σ̃11 = Ik1 +Op(1/

√
T ). Note

that equation (B.37) can be further simplified by considering the asymptotic expansion of term R̃cs. Let us consider the
different terms in the equations of R̃cs and R̃ss:

R̃cs = B̃cs + ÃcsB̃ss, R̃ss = ÃssB̃ss, (B.38)

where:

Ãcs = Σ̃−1
∗1 Σ̃c2 − Σ̃−1

∗1 Σ̃c1Σ̃−1
11 Σ̃12, Ãss = Σ−1

11 Σ̃12 +Op

(
1

T

)
, (B.39)

B̃cs = Σ̃−1
∗2 Σ̃c1 − Σ̃−1

∗2 Σ̃c2Σ̃−1
22 Σ̃21, B̃ss = Σ̃−1

22 Σ̃21 +Op

(
1

T

)
. (B.40)

63



Substituting equations (B.39) - (B.40) into the equations in (B.38) we get:

R̃cs = Σ̃−1
∗2 Σ̃c1 − Σ̃−1

∗2 Σ̃c2Σ̃−1
22 Σ̃21 +

[
Σ̃−1
∗1 Σ̃c2 − Σ̃−1

∗1 Σ̃c1Σ̃−1
11 Σ̃12

] [
Σ̃−1

22 Σ̃21 +Op

(
1

T

)]
= Σ̃c1

[
Iks1 − Σ̃−1

11 Σ̃12Σ̃−1
22 Σ̃21

]
+Op

(
1

T

)
,

and

R̃ss =

[
Σ̃−1

11 Σ̃12 +Op

(
1

T

)][
Σ̃−1

22 Σ̃21 +Op

(
1

T

)]
= Σ̃−1

11 Σ̃12Σ̃−1
22 Σ̃21 +Op

(
1

T

)
.

Therefore we have R̃cs = Σ̃c1(Ik1−kc − R̃ss) +Op
(

1
T

)
, which implies:

−Σ̃c1 + R̃cs(Ik1−kc − R̃ss)−1 = Op

(
1

T

)
. (B.41)

Equations (B.37) and (B.41), bound Ψ̂∗sc = Op

(
1√
NT

)
, together with the assumption

√
N/T = o(1), imply:

[
Ikc

... R̃cs(I(k1−kc) − R̃ss)−1

]
Ṽ −1

11

[
Ψ̂∗cc
Ψ̂∗sc

]
= Σ̃−1

cc Ψ̂∗cc + op

(
1

N
√
T

)
.

Thus, from (B.36) we get the asymptotic expansion:

kc∑
`=1

ρ̂` = kc +
1

2
tr
{

Σ̃−1
cc Ψ̂∗cc

}
+ op

(
1

N
√
T

)
. (B.42)

Now, let us derive the asymptotic expansion of Ψ̂∗cc. From equation (B.12), this term is given by:

Ψ̂∗cc =
[
−X̂11R̃+ X̂12B̃ − B̃′X̂22B̃ + B̃′X̂21

]
(11)

,

with M(ij) denoting the block in position (i, j) of matrix M . As matrices R̃ and B̃ have the same structure [ Ec
... ∗ ], we

have:

Ψ̂∗cc =
[
−X̂11 + X̂12 − X̂22 + X̂21

]
(11)

. (B.43)

Let us compute the asymptotic expansions of the terms X̂11, X̂12, X̂22 and X̂21. Vectors uj,t, with j = 1, 2, can be
partitioned into the kc-dimensional vector u(c)

jt and the ksj -dimensional vector u(s)
jt :

ujt =

[
u

(c)
jt

u
(s)
jt

]
, j = 1, 2 ,

and from Assumption A.5 we can express Σu,j , j = 1, 2, as:35

Σu,j = E[ujtu
′
jt] = E

[
u

(c)
jt u

(c)′
jt u

(c)
jt u

(s)′
jt

u
(s)
jt u

(c)′
jt u

(s)
jt u

(s)′
jt

]
=

[
Σ

(cc)
u,j Σ

(cs)
u,j

Σ
(sc)
u,j Σ

(ss)
u,j

]
, j = 1, 2 . (B.44)

35Matrix Σu,j is the asymptotic variance of uj,t as Nj →∞. We omit the limit for expository purpose.
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We also define:

Σu,12 := E[u1tu
′
2t] := E

[
u

(c)
1t u

(c)′
2t u

(c)
1t u

(s)′
2t

u
(s)
1t u

(c)′
2t u

(s)
1t u

(s)′
2t

]
=

[
Σ

(cc)
u,12 Σ

(cs)
u,12

Σ
(sc)
u,12 Σ

(ss)
u,12

]
,

and Σu,21 = Σ′u,12. From equation (B.10) we have:

X̂11 =
µN

T
√
N

T∑
t=1

(h1,tu
′
1,t + u1,th

′
1,t) +

µ2
N

TN

T∑
t=1

u1,tu
′
1,t

=
µN√
TN

(
1√
T

T∑
t=1

[
f ct u

(c)′
1t + u

(c)
1t f

c′
t f ct u

(s)′
1t + u

(c)
1t f

s′
1t

fs1tu
(c)′
1t + u

(s)
1t f

c′
t fs1tu

(s)′
1t + u

(s)
1t f

s′
1t

])
+
µ2
N

TN

T∑
t=1

[
u

(c)
1t u

(c)′
1t u

(c)
1t u

(s)′
1t

u
(s)
1t u

(c)′
1t u

(s)
1t u

(s)′
1t

]
,

and using the definition of matrix Σu,1 in equation (B.44) we get:

X̂11 =
µN√
TN

(
1√
T

T∑
t=1

[
f ct u

(c)′
1t + u

(c)
1t f

c′
t f ct u

(s)′
1t + u

(c)
1t f

s′
1t

fs1tu
(c)′
1t + u

(s)
1t f

c′
t fs1tu

(s)′
1t + u

(s)
1t f

s′
1t

])

+
µ2
N

N

[
Σ

(cc)
u,1 Σ

(cs)
u,1

Σ
(sc)
u,1 Σ

(ss)
u,1

]
+

µ2
N

N
√
T

(
1√
T

T∑
t=1

[
u

(c)
1t u

(c)′
1t − Σ

(cc)
u,1 u

(c)
1t u

(s)′
1t − Σ

(cs)
u,1

u
(s)
1t u

(c)′
1t − Σ

(sc)
u,1 u

(s)
1t u

(s)′
1t − Σ

(ss)
u,1

])
.

Analogously, from (B.11) we have:

X̂22 =
1√
TN

(
1√
T

T∑
t=1

[
f ct u

(c)′
2t + u

(c)
2t f

c′
t f ct u

(s)′
2t + u

(c)
2t f

s′
2t

fs2tu
(c)′
2t + u

(s)
2t f

c′
t fs2tu

(s)′
2t + u

(s)
2t f

s′
2t

])

+
1

N

[
Σ

(cc)
u,2 Σ

(cs)
u,2

Σ
(sc)
u,2 Σ

(22)
u,2

]
+

1

N
√
T

(
1√
T

T∑
t=1

[
u

(c)
2t u

(c)′
2t − Σ

(cc)
u,2 u

(c)
2t u

(s)′
2t − Σ

(cs)
u,2

u
(s)
2t u

(c)′
2t − Σ

(sc)
u,2 u

(s)
2t u

(s)′
2t − Σ

(ss)
u,2

])
.

From equation (B.9), the term X̂12 results to be:

X̂12 =
1

T
√
N

T∑
t=1

(h1,tu
′
2,t + µNu1,th

′
2,t) +

µN
TN

T∑
t=1

u1,tu
′
2,t

=
1√
TN

(
1√
T

T∑
t=1

[
f ct u

(c)′
2t + µNu

(c)
1t f

c′
t f ct u

(s)′
2t + µNu

(c)
1t f

s′
2t

fs1tu
(c)′
2t + µNu

(s)
1t f

c′
t fs1tu

(s)′
2t + µNu

(s)
1t f

s′
2t

])
+
µN
N

[
Σ

(cc)
u,12 Σ

(cs)
u,12

Σ
(sc)
u,12 Σ

(ss)
u,12

]

+
µN

N
√
T

(
1√
T

T∑
t=1

[
u

(c)
1t u

(c)′
2t − Σ

(cc)
u,12 u

(c)
1t u

(s)′
2t − Σ

(cs)
u,12

u
(s)
1t u

(c)′
2t − Σ

(sc)
u,12 u

(s)
1t u

(s)′
2t − Σ

(ss)
u,12

])
.

Finally we have:

X̂21 = X̂ ′12 =
1√
TN

(
1√
T

T∑
t=1

[
u

(c)
2t f

c′
t + µNf

c
t u

(c)′
1t u

(c)
2t f

s′
1t + µNf

c
t u

(s)′
1t

u
(s)
2t f

c′
t + µNf

s
2tu

(c)′
1t u

(s)
2t f

s′
1t + µNf

s
2tu

(s)′
1t

])

+
µN
N

[
Σ

(cc)
u,21 Σ

(cs)
u,21

Σ
(sc)
u,21 Σ

(22)
u,21

]
+

µN

N
√
T

(
1√
T

T∑
t=1

[
u

(c)
2t u

(c)′
1t − Σ

(cc)
u,21 u

(c)
2t u

(s)′
1t − Σ

(cs)
u,21

u
(s)
2t u

(c)′
1t − Σ

(sc)
u,21 u

(s)
2t u

(s)′
1t − Σ

(ss)
u,21

])
.
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We can now compute directly term Ψ̂∗cc. From equation (B.43), we get:

Ψ̂∗cc

=
1√
TN

(
1√
T

T∑
t=1

[
−µNf ct u

(c)′
1t − µNu

(c)
1t f

c′
t + f ct u

(c)′
2t + µNu

(c)
1t f

c′
t − f ct u

(c)′
2t − u

(c)
2t f

c′
t + u

(c)
2t f

c′
t + µNf

c
t u

(c)′
1t

])

+
1

N
[−µ2

NΣ
(cc)
u,1 − Σ

(cc)
u,2 + µNΣ

(cc)
u,12 + µNΣ

(cc)
u,21]

+
1

N
√
T

(
1√
T

T∑
t=1

[
−µ2

N [u
(c)
1t u

(c)′
1t − Σ

(cc)
u,1 ] + µN [u

(c)
1t u

(c)′
2t − Σ

(cc)
u,12]− [u

(c)
2t u

(c)′
2t − Σ

(cc)
u,2 ] + µN [u

(c)
2t u

(c)′
1t − Σ

(cc)
u,12]

])

= − 1

N
E[(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′]

− 1

N
√
T

(
1√
T

T∑
t=1

[
(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′ − E[(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′]

])
,

where the term at order Op(1/
√
NT ) vanishes. Using the limit µN → µ, we get the asymptotic expansion of Ψ̂∗cc:

Ψ̂∗cc = − 1

N
E[(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′]

− 1

N
√
T

(
1√
T

T∑
t=1

[
(µu

(c)
1t − u

(c)
2t )(µu

(c)
1t − u

(c)
2t )′ − E[(µu

(c)
1t − u

(c)
2t )(µu

(c)
1t − u

(c)
2t )′]

])
+ op

(
1

N
√
T

)
.

(B.45)

By substituting (B.45) into (B.42), and using Σ̃cc = Ikc + op(1), we get:

kc∑
`=1

ρ̂` = kc − 1

2N
tr
{

Σ̃−1
cc E[(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′]

}
− 1

2N
√
T
tr

{
1√
T

T∑
t=1

[
(µu

(c)
1t − u

(c)
2t )(µu

(c)
1t − u

(c)
2t )′ − E[(µu

(c)
1t − u

(c)
2t )(µu

(c)
1t − u

(c)
2t )′]

]}

+op

(
1

N
√
T

)
. (B.46)

From the definition of matrix ΣU,N we have E[(µNu
(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′] = ΣU,N . Moreover, let us define the

process
Ut := µu

(c)
1t − u

(c)
2t .

Using these definitions together with the commutativity and linearity properties of the trace operator, from equation (B.46)
we get the asymptotic expansion:

kc∑
`=1

ρ̂` = kc − 1

2N
tr
{

Σ̃−1
cc ΣU,N

}
− 1

2N
√
T

(
1√
T

T∑
t=1

[U ′tUt − E(U ′tUt)]

)
+ op

(
1

N
√
T

)
.

(B.47)
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B.3.5 Asymptotic distribution of the test statistic under the null hypothesis of kc common fac-
tors

From the asymptotic expansion (B.47) we obtain the asymptotic distribution of ξ̂(kc) =

kc∑
`=1

ρ̂` under the null hypothesis

H(kc). By a CLT for weakly dependent data we have:

1√
T

T∑
t=1

[U ′tUt − E(U ′tUt)]
d−→ N (0,ΩU ) , (B.48)

where the long-run variance-covariance matrix is given by:

ΩU = lim
T→∞

V

(
1√
T

T∑
t=1

U ′tUt

)
=

∞∑
h=−∞

Cov(U ′tUt, U
′
t−hUt−h). (B.49)

From equations (B.47) and (B.48), the asymptotic distribution of ξ̂(kc) =

kc∑
`=1

ρ̂`, under the hypothesis of kc common

factors in each group, is:

N
√
T

[
ξ̂(kc)− kc +

1

2N
tr
{

Σ̃−1
cc ΣU,N

}]
d−→ N

(
0,

1

4
ΩU

)
.

To conclude the proof of Theorem 1, let us derive the expression of matrix ΩU defined in equation (B.49). For this purpose,
note that vector (U ′t , U

′
t−h)′ is asymptotically Gaussian for any h:(

Ut
Ut−h

)
d→ N

(
0,

[
ΣU (0) ΣU (h)
ΣU (h)′ ΣU (0)

])
.

We use the following lemma (see Theorem 12 p. 284 in Magnus and Neudecker (2007) and Theorem 10.21 in Schott
(2005) for the proof).

LEMMA B.1. Let the (n, 1) random vector x and the (m, 1) random vector y be such that(
x
y

)
∼ N

(
0,

[
Ωxx Ωxy
Ω′xy Ωyy

])
,

and let A and B be symmetric (n, n) and (m,m) matrices, respectively. Then Cov(x′Ax, y′By) = 2tr
{
AΩxyBΩ′xy

}
.

From Lemma B.1 we get (asymptotically) Cov(U ′tUt, U
′
t−hUt−h) = 2tr {ΣU (h)ΣU (h)′} and:

ΩU = 2

∞∑
h=−∞

tr {ΣU (h)ΣU (h)′} .

The conclusion follows.
Q.E.D.

B.4 Proofs of Propositions 3 and 4
We prove Propositions 3 and 4 by establishing the asymptotic distribution of the estimators of the common factor values
(Section B.4.1), the common factor loadings (Section B.4.2), the specific factor values (Section B.4.3), and the specific
factor loadings (Section B.4.4).
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B.4.1 Asymptotic distribution of f̂ ct and f̂ c ∗t

Equation (B.32) and Ψ̂sc = Op

(
1√
NT

)
imply Ŵ ∗1 = Ec Û + Op

(
1√
NT

)
. Recall from equation (B.33) that the

normalized eigenvectors corresponding to the canonical directions are: Ŵ1 = Ŵ ∗1 D̂, where D̂ = diag(Ŵ ∗ ′1 V̂11Ŵ
∗
1 )−1/2.

Then, we get:

f̂ ct = Ŵ ′1ĥ1,t = D̂Û ′E′c
(
h1,t +

1√
N1

u1,t

)
+Op

(
1√
NT

)
= D̂Û ′

(
f ct +

1√
N1

u
(c)
1,t

)
+Op

(
1√
NT

)
.

Therefore the estimated factor can be written as:

f̂ ct = Ĥ−1
c

(
f ct +

1√
N1

u
(c)
1,t

)
+Op

(
1√
NT

)
, (B.50)

where Ĥ−1
c = D̂Û ′. Given that

1

T

T∑
t=1

f̂ ct f̂
c′
t = Ikc , and

1

T

T∑
t=1

f ct f
c′
t = Ikc + op(1), we have

ĤcĤ′c = Ikc + op(1). (B.51)

Equations (B.50) and (4.2) imply:√
N1

(
Ĥcf̂ ct − f ct

)
= u

(c)
1,t + op(1)

d−→ N
(

0,Σ
(cc)
u,1

)
,

which proves the result in (4.3). The derivation of the asymptotic distribution of
√
N2

(
Ĥ∗c f̂ c ∗t − f ct

)
in (4.4) from the

canonical direction Ŵ2 is analogous, and is omitted.

B.4.2 Asymptotic distribution of λ̂cj,i
Let us derive the asymptotic expansion of the loading estimator λ̂cj,i = F̂ c′yj,i/T , where yj,i is the i-th column of matrix
Yj . From equation (B.50) we can express F̂ c = [f̂ c1 , ..., f̂

c
T ]′ as:

F̂ c =

(
F c +

1√
N1

U
(c)
1

)(
Ĥ−1
c

)′
+Op

(
1√
NT

)
= F c

(
Ĥ−1
c

)′
+

1√
N1

U
(c)
1

(
Ĥ−1
c

)′
+Op

(
1√
NT

)
, (B.52)

where U (c)
1 = [u

(c)
1,1, ..., u

(c)
1,T ]′. Equation (B.52) implies:

F̂ cĤ′c − F c =
1√
N1

U
(c)
1 +Op

(
1√
NT

)
. (B.53)

Then, denoting with ξj,i the i-th column of matrix Ξj , we get:

λ̂cj,i =
1

T
F̂ c ′yj,i =

1

T
F̂ c ′

(
F cλcj,i + F sj λ

s
j,i + εj,i

)
=

1

T
F̂ c ′

[(
F c − F̂ cĤ′c + F̂ cĤ′c

)
λcj,i + F sj λ

s
j,i + εj,i

]
= Ĥ′cλcj,i +

1

T
F̂ c ′εj,i +

1

T
F̂ c ′

(
F c − F̂ cĤ′c

)
λcj,i +

1

T
F̂ c ′F sj λ

s
j,i, j = 1, 2. (B.54)
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Equations (B.52) and (B.53) allow to compute:

1

T
F̂ c ′

(
F c − F̂ cĤ′c

)
' − 1

T
√
N1

Ĥ−1
c F c ′U

(c)
1 − 1

N1T
Ĥ−1
c U

(c) ′
1 U

(c)
1 = Op

(
1√
NT

)
, (B.55)

and:

1

T
F̂ c ′εj,i = Ĥ−1

c

(
1

T
F c′εj,i +

1

T
√
N1

U
(c)′
1 εj,i

)
= Ĥ−1

c

1

T
F c′εj,i +Op

(
1√
NT

)
. (B.56)

We also have:

1

T
F̂ c ′F sj = Ĥ−1

c

(
1

T
F c′F sj +

1

T
√
N1

U
(c)′
1 F sj

)
= Ĥ−1

c

1

T
F c′F sj +Op

(
1√
NT

)
. (B.57)

Substituting approximations (B.55) - (B.57) into equation (B.54) we get:

λ̂cj,i ' Ĥ′cλcj,i + Ĥ−1
c

1

T
F c ′εj,i + Ĥ−1

c

1

T
F c ′F sj λ

s
j,i +Op

(
1√
NT

)
, j = 1, 2.

The last equation and (B.51) imply:

√
T

[(
Ĥ′c
)−1

λ̂cj,i − λcj,i
]

= ϕj,i +Kjλ
s
j,i + op(1), (B.58)

where:

ϕj,i =
1√
T
F c ′εj,i, Kj =

1√
T
F c ′F sj .

The r.h.s. of equation (B.58) can be rewritten to get:

√
T

[(
Ĥ′c
)−1

λ̂cj,i − λcj,i
]

=
1√
T

T∑
t=1

f ct (εj,i,t + fs ′j,tλ
s
j,i) + op(1) ≡ wcj,i + op(1). (B.59)

Term wcj,i can be written as:

wcj,i =
1√
T

T∑
t=1

[
f ct εj,i,t + (λs′j,i ⊗ Ikc)(fsj,t ⊗ f ct )

]
.

Then, since the errors and the factors are independent (Assumption A.5 a)), a CLT for weakly dependent data yields
equation (4.6).

B.4.3 Asymptotic distribution of f̂ sj,t
Let us now derive the asymptotic expansion of term f̂sj,t. We start by computing the asymptotic expansion of the regression
residuals yj,i,t − f̂ c ′t λ̂cj,i:

yj,i,t − f̂ c ′t λ̂cj,i = fs ′j,tλ
s
j,i + εj,i,t −

(
f̂ c ′t λ̂cj,i − f c ′t λcj,i

)
' fs ′j,tλ

s
j,i + εj,i,t −

[(
f ct +

1√
N1

u
(c)
1,t

)′(
λcj,i +

1√
T
ϕj,i +

1√
T
Kjλ

s
j,i

)
− f c ′t λcj,i

]
' g′j,tλ

s
j,i + ej,i,t, (B.60)
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where we use equation (B.50) and (B.58), and we define:

gj,t := fsj,t −
1√
T
K ′jf

c
t ' fsj,t − (F s ′j F c)(F c ′F c)−1f ct , ej,i,t := εj,i,t −

1√
T
f c′t ϕj,i.

Then, the residuals yj,i,t− f̂ c ′t λ̂cj,i, with i = 1, ..., Nj and t = 1, ..., T , satisfy an approximate factor structure with factors
gj,t and errors ej,i,t. From asymptotic theory of the PC estimators in large panels, we know that:√

Nj

[
Ĥs,j f̂sj,t − gj,t

]
= v∗sj,t + op(1), j = 1, 2, (B.61)

where Ĥs,j , j = 1, 2, is a non-singular matrix and:

v∗sj,t =

(
Λs′j Λsj
Nj

)−1
1√
Nj

Λs′j ej,t

=

(
Λs′j Λsj
Nj

)−1
1√
Nj

Nj∑
i=1

λsj,iεj,i,t −
(

Λs′j Λsj
Nj

)−1
1√
NT

Nj∑
i=1

λsj,if
c′
t

(
1√
T

T∑
r=1

f cr εj,ir

)

=

(
Λs′j Λsj
Nj

)−1
1√
Nj

Nj∑
i=1

λsj,iεj,i,t + op (1) .

Therefore we have√
Nj

[
Ĥs,j f̂sj,t − (fsj,t − (F s ′j F c)(F c ′F c)−1f ct )

]
= vsj,t + op(1), j = 1, 2,

where vsj,t =

(
Λs′j Λsj
Nj

)−1
1√
Nj

Nj∑
i=1

λsj,iεj,i,t, which yields equation (4.5).

B.4.4 Asymptotic distribution of λ̂sj,i
From asymptotic theory of the PC estimators in large panels, we know that the following result must hold for the loadings
estimator of factor model (B.60):

√
T

[(
Ĥ′s,j

)−1

λ̂sj,i − λsj,i
]

= w∗sj,i + op(1), j = 1, 2,

where Ĥs,j , j = 1, 2 are the same non-singular matrices in equation (B.61), and

w∗sj,i =
1√
T

T∑
t=1

(
fsj,t +

1√
T
K ′jf

c
t

)
ej,i,t =

1√
T

T∑
t=1

(
fsj,t +

1√
T
K ′jf

c
t

)(
εj,i,t −

1√
T
f c′t ϕj,i

)
,

=
1√
T

T∑
t=1

fsj,tεj,i,t −
1

T

T∑
t=1

fsj,tf
c′
t ϕj,i +K ′j

1

T

T∑
t=1

f c′t εj,i,t −K ′j
1

T
√
T

T∑
t=1

f ct f
c′
t ϕj,i

=
1√
T

T∑
t=1

fsj,tεj,i,t + op(1),

since
1

T

T∑
t=1

fsj,tf
c′
t = op(1). Therefore, we get:

√
T

[(
Ĥ′s,j

)−1

λ̂sj,i − λsj,i
]

=
1√
T

T∑
t=1

fsj,tεj,i,t + op(1) ≡ wsj,i + op(1), (B.62)
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which yields equation (4.7).
Q.E.D.

B.5 Proof of Theorem 2
B.5.1 Proof of part (i)
Let us first consider the asymptotic distribution of ξ̃(kc) under the null hypothesis of kc common factors. Theorem 2 i)
follows from Theorem 1 since we have:

tr
{

Σ̂U

}
= tr

{
Σ̃−1
cc ΣU,N

}
+ op(1/

√
T ), (B.63)

tr
{

Σ̂2
U

}
= tr

{
ΣU (0)2

}
+ op(1), (B.64)

and ΩU = 2tr
{

ΣU (0)2
}

under Assumption A.7. Equations (B.63) and (B.64) are proved next, by deriving the asymptotic
expansions of Σ̃−1

cc and Σ̂U .

a) Asymptotic expansion of Σ̂−1
cc

Substituting the expression of f̂ ct from equation (B.50) into the equality
1

T

T∑
t=1

f̂ ct f̂
c′
t = Ikc , we get:

Ikc =
1

T

T∑
t=1

Ĥ−1
c

(
f ct +

1√
N1

u
(c)
1,t

)(
f ct +

1√
N1

u
(c)
1,t

)′ (
Ĥ−1
c

)′
+Op

(
1√
NT

)
= Ĥ−1

c Σ̃cc

(
Ĥ−1
c

)′
+Op

(
1√
NT

)
.

This implies:

Σ̃−1
cc =

(
Ĥ−1
c

)′
Ĥ−1
c +Op

(
1√
NT

)
. (B.65)

To derive the asymptotic expansion of Σ̂U , we use its definition Σ̂U = µ2
N Σ̂

(cc)
u,1 + Σ̂

(cc)
u,2 , and expand each component of

Σ̂
(cc)
u,j , j = 1, 2, in (4.8).

b) Asymptotic expansion of
Λ̂′jΛ̂j

Nj
.

To derive the asymptotic expansion of matrix Λ̂′jΛ̂j/Nj , it is useful to write the matrix versions of the quantities defined in
equations (B.59) and (B.62). Stacking the loadings λ̂cj,i in matrix Λ̂cj = [λ̂cj,1, ..., λ̂

c
j,N ]′ we get:

Λ̂cj =

[
Λcj +

1√
T
Gcj

]
Ĥc + op

(
1√
T

)
,

where

Gcj =
1√
T
ε′jF

c + Λsj

(
1√
T
F s′j F

c

)
(B.66)

=
1√
T
ε′jF

c + Λsj

(
1√
T

T∑
t=1

fsj,tf
c′
t

)
. (B.67)

Similarly, stacking the loadings λ̂sj,i in matrix Λ̂sj = [λ̂sj,1, ..., λ̂
s
j,N ]′ we get:

Λ̂sj =

[
Λcj +

1√
T
Gsj

]
Ĥj,s + op

(
1√
T

)
,
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where

Gsj =
1√
T
ε′jF

s
j . (B.68)

By gathering these expansions, we get:

Λ̂j '
(

Λj +
1√
T
Gj

)
Ûj , j = 1, 2, (B.69)

where

Gj =
[
Gcj

... Gsj

]
, (B.70)

Ûj =

[
Ĥc 0

0 Ĥs,j

]
. (B.71)

We start by computing the asymptotic expansion of
Λ̂′jΛ̂j

Nj
. From Assumptions A.1, A.2 and A.5 we get:

1

Nj

[
Λj +

1√
T
Gj

]′ [
Λj +

1√
T
Gj

]
' 1

Nj
Λ′jΛj +

1

N
√
T

(
Λ′jGj +G′jΛj

)
+

1

NT
G′jGj . (B.72)

Let us compute the asymptotic expansion of
1

N
√
T

Λ′jGj :

1

Nj
√
T

Λ′jGj =
1

Nj
√
T

[
Λc′j G

c
j Λc′j G

s
j

Λs′j G
c
j Λs′j G

s
j

]
.

Using equation (B.66) we get:

1

Nj
√
T

Λc′j G
c
j =

1

Nj
√
T

Λc′j

[
1√
T
ε′jF

c + Λsj

(
1√
T
F s′j F

c

)]
=

1

NjT
Λc′j ε

′
jF

c +
1

NjT
Λc′j Λsj

(
F s′j F

c
)

=

(
Λc′j Λsj
Nj

)
1

T

T∑
t=1

fsj,tf
c′
t +Op

(
1√
NjT

)
,

Using analogous arguments and equation (B.68), we get:

1

Nj
√
T

Λs′j G
c
j =

(
Λs′j Λsj
Nj

)
1

T

T∑
t=1

fsj,tf
c′
t +Op

(
1√
NjT

)
,

1

Nj
√
T

Λc′j G
s
j =

1

Nj
√
T

Λc′j ε
′
jF

s = Op

(
1√
NjT

)
,

1

Nj
√
T

Λs′j G
s
j =

1

Nj
√
T

Λs′j ε
′
jF

s = Op

(
1√
NjT

)
.
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The last four equations imply:

1

Nj
√
T

Λ′jGj =


(

Λc′j Λsj
Nj

)
1

T

T∑
t=1

fsj,tf
c′
t 0(

Λs′j Λsj
Nj

)
1

T

T∑
t=1

fsj,tf
c′
t 0

+Op

(
1√
NjT

)

=

[ (
Λ′jΛ

s
j

Nj

)
1

T

T∑
t=1

fsj,tf
c′
t

... 0(kj×ksj )

]
+Op

(
1√
NjT

)
. (B.73)

Using analogous arguments, we have:

1

NjT
Gc′j G

c
j =

1

NjT

[
1√
T
ε′jF

c + Λsj

(
1√
T
F s′j F

c

)]′ [
1√
T
ε′jF

c + Λsj

(
1√
T
F s′j F

c

)]
= op

(
1√
T

)
and

1

NjT
G′jGj = op

(
1√
T

)
. (B.74)

Substituting (B.73) and (B.74) into equation (B.72) we get:

1

Nj

[
Λj +

1√
T
Gj

]′ [
Λj +

1√
T
Gj

]
' ΣΛ,j +

1√
T

(
L1,j + L′1,j

)
+Op

(
1√
N

)
where

L1,j =

[ (
Λ′jΛ

s
j

Nj

)(
1√
T
F s′j F

c

)
... 0(kj×ksj )

]
. (B.75)

Therefore we have:

Λ̂′jΛ̂j

Nj
= Û ′j

[
ΣΛ,j +

1√
T

(
L1,j + L′1,j

)]
Ûj + op

(
1√
T

)
. (B.76)

c) Asymptotic expansion of Γ̂j
The approximations in Propositions 3 and 4 allow to compute the asymptotic expansion of ε̂j,i,t:

ε̂j,i,t = yj,i,t − λ̂c ′j,if̂ ct − λ̂s ′j,if̂sj,t = εj,i,t −
[
λ̂c ′j,if̂

c
t − λc ′j,if ct

]
−
[
λ̂s ′j,if̂

s
j,t − λs ′j,ifsj,t

]
' εj,i,t −

[(
λcj,i +

1√
T
wcj,i

)′(
f ct +

1√
N1

u
(c)
1,t

)
− λc ′j,if ct

]

−

[(
λsj,i +

1√
T
wsj,i

)′(
fsj,t −

1√
T
K ′jf

c
t +

1√
Nj

vsj,t

)
− λs ′j,ifsj,t

]

' εj,i,t −
(

1√
N1

λc ′j,iu
(c)
1,t +

1√
T
wc′j,if

c
t

)
−

(
1√
Nj

λs ′j,iv
s
j,t +

1√
T
ws′j,if

s
j,t

)

+λs ′j,i
1√
T
K ′jf

c
t . (B.77)

Since T/Nj = o(1), we keep only the terms of order 1/
√
T in equation (B.77), and we get:

ε̂j,i,t = εj,i,t −
1√
T

(
wc′j,if

c
t + ws′j,if

s
j,t

)
+ λs ′j,i

1√
T
K ′jf

c
t + op

(
1√
T

)
. (B.78)
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From the definition of wcj,i in Proposition 4 we get:

wc′j,if
c
t =

1√
T

(
T∑
r=1

εj,irf
c′
r

)
f ct + λs′j,iK

′
jf
c
t ,

which implies:

ε̂j,i,t = εj,i,t −
1√
T

(
w̃c′j,if

c
t + ws′j,if

s
j,t

)
+ op

(
1√
T

)
,

where:

w̃cj,i =
1√
T

T∑
r=1

f cr εj,ir.

Equation (B.78) allows us to compute:

γ̂j,ii =
1

T

T∑
t=1

ε̂2
j,i,t '

1

T

T∑
t=1

[
εj,i,t −

1√
T

(
w̃c′j,if

c
t + ws′j,if

s
j,t

)]2

=
1

T

T∑
t=1

ε2
j,i,t −

2

T
√
T

T∑
t=1

εj,i,t
(
w̃c ′j,if

c
t + ws ′j,if

s
j,t

)
+

1

T 2

T∑
t=1

(
w̃c ′j,if

c
t + ws ′j,if

s
j,t

)2
.

Using
1√
T

T∑
t=1

εj,i,tf
c
t = Op(1) and

1√
T

T∑
t=1

εj,i,tf
s
j,t = Op(1) we get:

γ̂j,ii =
1

T

T∑
t=1

ε2
j,i,t +Op

(
1

T

)
,

which implies:

γ̂j,ii =
1

T

T∑
t=1

ε2
j,i,t + op

(
1√
T

)
= γj,ii +

1√
T
wj,i + op

(
1√
T

)
,

where

wj,i =
1√
T

T∑
t=1

(ε2
j,i,t − γj,ii) = Op(1),

from Assumptions A.4 and A.7. Therefore, we have:

Γ̂j ' Γj +
1√
T
Wj .

where Γj = diag(γj,ii, i = 1, ..., N) and Wj = diag(wj,i, i = 1, ..., N), for j = 1, 2.
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d) Asymptotic expansion of
1

Nj
Λ̂′jΓ̂jΛ̂j Let us define

Ω̂∗j :=
1

Nj

(
Λj +

1√
T
Gj

)′
Γ̂j

(
Λj +

1√
T
Gj

)
=

1

Nj

(
Λj +

1√
T
Gj

)′(
Γj +

1√
T
Wj

)(
Λj +

1√
T
Gj

)
=

1

Nj
Λ′jΓjΛj + Ω̂∗j,I + Ω̂∗j,II + Ω̂∗j,III + Ω̂∗ ′j,II + Ω̂∗ ′j,III + Ω̂∗j,IV + Ω̂∗j,V ,

where

Ω̂∗j,I =
1

Nj
√
T

Λ′jWjΛj = Op

(
1√
NT

)
, Ω̂∗j,III =

1

NjT
Λ′jWjGj = Op

(
1

T

)
,

Ω̂∗j,IV =
1

NjT
G′jΓjGj = Op

(
1

T

)
, Ω̂∗j,V =

1

NjT
√
T
G′jWjGj = Op

(
1

T
√
T

)
.

Moreover, similarly as for (B.73) we have:

Ω̂∗j,II =
1

Nj
√
T

Λ′jΓjGj =

[
1

Nj
Λ′jΓjΛ

s
j

(
1

T

T∑
t=1

fsj,tf
c′
t

)
... 0(kj×ksj )

]
+ op

(
1√
T

)
,

=
1√
T

[ (
1

Nj
Λ′jΓjΛ

s
j

)(
1√
T
F s ′j Fc

)
... 0(kj×ksj )

]
+ op

(
1√
T

)
=

1√
T
L2,j + op

(
1√
T

)
,

where

L2,j =

[ (
1

N
Λ′jΓjΛ

s
j

)(
1√
T
F s ′j Fc

)
... 0(kj×ksj )

]
.

Collecting the previous results, using T/N = op(1), and defining Ω∗j = limN→∞
1
NΛ′jΓjΛj we get:

Ω̂∗j =
1

N
Λ′jΓjΛj +

1√
T

(
L2,j + L′2,j

)
+ op

(
1√
T

)
= Ω∗j +

1√
T

(
L2,j + L′2,j

)
+ op

(
1√
T

)
. (B.79)

Substituting equation (B.69) into
1

Nj
Λ̂′jΓ̂jΛ̂j , and using equation (B.79) we get:

1

Nj
Λ̂′jΓ̂jΛ̂j = Û ′jΩ̂∗j Ûj = Û ′j

[
Ω∗j +

1√
T

(
L2,j + L′2,j

)]
Ûj + op

(
1√
T

)
, j = 1, 2. (B.80)

e) Asymptotic expansion of Σ̂U
The estimator of Σu,j is given in equation (4.8). Equation (B.76) allows to compute the asymptotic approximation of(

Λ̂′jΛ̂j

Nj

)−1

:

(
Λ̂′jΛ̂j

Nj

)−1

' Û−1
j

[
Σ−1

Λ,j −
1√
T

Σ−1
Λ,j

(
L1,j + L′1,j

)
Σ−1

Λ,j

](
Û ′j
)−1

. (B.81)
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Substituting equations (B.81) and (B.80) into equation (4.8), we get:

Σ̂u,j ' Û−1
j

[
Σ−1

Λ,j −
1√
T

Σ−1
Λ,j

(
L1,j + L′1,j

)
Σ−1

Λ,j

] [
Ω∗j +

1√
T

(
L2,j + L′2,j

)]
×
[
Σ−1

Λ,j −
1√
T

Σ−1
Λ,j

(
L1,j + L′1,j

)
Σ−1

Λ,j

](
Û ′j
)−1

' Û−1
j Σ−1

Λ,j

[
I − 1√

T

(
L1,j + L′1,j

)
Σ−1

Λ,j

] [
Ω∗j +

1√
T

(
L2,j + L′2,j

)] [
I − 1√

T
Σ−1

Λ,j

(
L1,j + L′1,j

)]
Σ−1

Λ,j

(
Û ′j
)−1

' Û−1
j Σ−1

Λ,j

[
Ω∗j +

1√
T

(
L2,j + L′2,j

)
− 1√

T
Ω∗jΣ

−1
Λ,j

(
L1,j + L′1,j

)
− 1√

T

(
L1,j + L′1,j

)
Σ−1

Λ,jΩ
∗
j

]
Σ−1

Λ,j

(
Û ′j
)−1

,

which implies:

Σ̂u,j = Û−1
j Σu,j

(
Û ′j
)−1

+
1√
T
Û−1
j L3,j

(
Û ′j
)−1

+ op

(
1√
T

)
,

where

L3,j = Σ−1
Λ,j

[(
L2,j + L′2,j

)
− Ω∗jΣ

−1
Λ,j

(
L1,j + L′1,j

)
−
(
L1,j + L′1,j

)
Σ−1

Λ,jΩ
∗
j

]
Σ−1

Λ,j . (B.82)

From equation (B.71) we have:

Σ̂U = µ2
N Σ̂

(cc)
u,1 + Σ̂

(cc)
u,2

= Ĥ−1
c

[
µ2
NΣu,1 + Σu,2

](cc) (Ĥ′c)−1

+
1√
T
Ĥ−1
c

(
µ2
NL3,1 + L3,2

)(cc) (Ĥ′c)−1

+ op

(
1√
T

)
= Ĥ−1

c ΣU,N

(
Ĥ′c
)−1

+
1√
T
Ĥ−1
c

(
µ2
NL3,1 + L3,2

)(cc) (Ĥ′c)−1

+ op

(
1√
T

)
. (B.83)

This expansion, the convergence ΣU,N → ΣU (0) and the commutative property of the trace, imply equation (B.64).

f) Asymptotic expansion of tr
{

Σ̃−1
cc Σ̂U

}
Results (B.65) and (B.83), and the commutative property of the trace, imply:

tr
{

Σ̂U

}
= tr

{
Σ̃−1
cc ΣU,N

}
+

1√
T
tr
{

Σ̃−1
cc

(
µ2
NL3,1 + L3,2

)(cc)}
+ op

(
1√
T

)
.

Noting that L3,j = Op(1), for j = 1, 2, and recalling that Σ̃cc = Ikc + Op(1/
√
T ) and µN = µ+ o(1), the last equation

can be further simplified to

tr
{

Σ̂U

}
= tr

{
Σ̃−1
cc ΣU,N

}
+

1√
T
tr
{(
µ2L3,1 + L3,2

)(cc)}
+ op

(
1√
T

)
. (B.84)

Let us compute L3,j explicitly. From equation (B.75) we get:

L1,j =


(

Λc′j Λsj
N

)(
1√
T
F s ′j F c

)
0(kc×ksj )(

Λs′j Λsj
N

)(
1√
T
F s ′j F c

)
0(ksj×ksj )


=

 ΣΛ,j,cs

(
1√
T
F s ′j F c

)
0

ΣΛ,j,ss

(
1√
T
F s ′j F c

)
0

+Op

(
1√
N

)
= ΣΛ,j

[
0(kc×kc) 0(kc×ksj )

K ′j 0(ksj×ksj )

]
+Op

(
1√
N

)
.(B.85)
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Equation (B.85) implies:

Ω∗jΣ
−1
Λ,jL1,j = L2,j +Op

(
1√
N

)
. (B.86)

Substituting results (B.85) and (B.86) into equation (B.82) we get:

L3,j = −Σ−1
Λ,j

[
Ω∗jΣ

−1
Λ,jL

′
1,j + L1,jΣ

−1
Λ,jΩ

∗
j

]
Σ−1

Λ,j = − Σu,jL
′
1,jΣ

−1
Λ,j − Σ−1

Λ,jL1,jΣu,j +Op

(
1√
N

)
.

Moreover, noting that:

Σ−1
Λ,jL1,j =

[
0(kc×kc) 0(kc×ksj )(

1√
T
F s ′j F c

)
0(ksj×ksj )

]
+Op

(
1√
N

)
,

we get:

Σ−1
Λ,jL1,jΣu,j =

[
0(kc×kc) 0(kc×ksj )

∗ ∗

]
+Op

(
1√
N

)
. (B.87)

Equation (B.87) implies:

(L3,j)
(cc) = Op

(
1√
N

)
. (B.88)

Finally, substituting result (B.88) into equation (B.84), equation (B.63) follows, which concludes the proof of part (i).

B.5.2 Proof of part (ii)
In order to prove Theorem 2 (ii), we consider the behaviour of statistic ξ̃(kc) under the alternative hypothesis H1 of less
than kc common factors. Specifically, let r < kc be the true number of common factors in the DGP. The statistic is given
by:

ξ̃(kc) = N
√
T

(
1

2
tr{Σ̂2

U}
)−1/2

[
kc∑
`=1

ρ̂` − kc +
1

2N
tr
{

Σ̂U

}]
.

Since the eigenvalues are continuous functions of the matrix, and R̂ converges to R in probability, we have:

kc∑
`=1

ρ̂` =

kc∑
`=1

ρ` + op(1). (B.89)

Moreover, we rely on the following Lemma:

LEMMA B.2. Under the alternative hypothesis H(r), with r < kc, we have ‖Σ̂U‖ ≤ C, with probability approaching
(w.p.a.) 1, for a constant C > 0.

Proof: See Online Appendix, Section C.4.

From (B.89) and Lemma B.2, we have:

ξ̃(kc) = N
√
T

(
1

2
tr{Σ̂2

U}
)−1/2

[
kc∑
`=1

ρ` − kc + op(1)

]
.

Under H(r), we have r < kc canonical correlations that are equal to 1, while the other ones are strictly smaller than 1.
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Thus,
kc∑
`=1

ρ` − kc < 0. Then, from Lemma B.2 (ii) we get:

ξ̃(kc) ≤ −N
√
Tc1, w.p.a. 1, (B.90)

for a constant c1 > 0. The conclusion follows.
Q.E.D.

B.6 Proof of Proposition 5
Let us define the events Ωr,αN,T

≡ {ξ̃(r) < zαN,T
}, for r = 1, ..., k, and their complementary events Ωcr,αN,T

= {ξ̃(r) ≥
zαN,T

}. For any integer k∗ we have:

{k̂c = k∗} = Ωck∗,αN,T
, if k∗ = k,

=

 k⋂
r=k∗+1

Ωr,αN,T

⋂Ωck∗,αN,T
, if 0 < k∗ < k,

=

k⋂
r=k∗+1

Ωr,αN,T
, if k∗ = 0.

We prove Proposition 5 by distinguishing three cases according to the true number of common factors: kc0 = k, 0 < kc0 ≤ k,
kc0 = 0. Moreover, we use the convergence results:

P (Ωr,αN,T
) → 1, r > kc0, (B.91)

P (Ωr,αN,T
) → 0, r = kc0, (B.92)

which are proved at the end of the section.

B.6.1 Case kc0 = k

We have P (k̂c = kc0) = P (Ωck,αN,T
) = 1− P (Ωk,αN,T

)→ 1, from equation (B.92).

B.6.2 Case 0 < kc0 < k

The event {k̂c = kc0} can be written as:

{k̂c = kc0} =

 k⋂
r=kc0+1

Ωr,αN,T

⋂Ωckc0,αN,T
.

The events Ωr,αN,T
, for r = kc0 + 1, ..., k, have all probability tending to 1 from equation (B.91), and so do events⋂k

r=kc0+1 Ωr,αN,T
and

(⋂k
r=kc0+1 Ωr,αN,T

)⋃
Ωckc0,,αN,T

. Moreover, P (Ωckc0,αN,T
) = 1− P (Ωkc0,αN,T

)→ 1 from equation
(B.92). Thus, we get:

P (k̂c = kc0) = P

 k⋂
r=kc0+1

Ωr,αN,T

⋂Ωckc0,αN,T


= P

 k⋂
r=kc0+1

Ωr,αN,T

+ P
(

Ωckc0,αN,T

)
− P

 k⋂
r=kc0+1

Ωr,αN,T

⋃Ωckc0,αN,T

→ 1 .

78



B.6.3 Case kc0 = 0

We have:

P (k̂c = kc0) = P

 k⋂
r=1

Ωr,αN,T

→ 1,

because the events Ωr,αN,T
, for r = 1, ..., k, have all probability tending to 1, from equation (B.91).

B.6.4 Proof of result (B.91)
We have:

P (Ωr,αN,T
) = P

(
ξ̃(r)

N
√
T
<
zαN,T

N
√
T

)
.

Since r > kc0, from equation (B.90) we have
ξ̃(r)

N
√
T
≤ −c1, w.p.a. 1, for a constant c1. By Condition (ii), we have

zαN,T

N
√
T
→ 0. Then, P (Ωr,αN,T

)→ 1 follows.

B.6.5 Proof of result (B.92)

If r = kc0, from Theorem 2 (ii) we have ξ̃(r) d→ N(0, 1). Moreover, since αN,T → 0 by Condition (i), we have
zαN,T

≤ zα∗ for large N,T , for any given α∗ ∈ (0, 1). Thus:

P (Ωr,αN,T
) = P (ξ̃(r) < zαN,T

) ≤ P (ξ̃(r) < zα∗)→ α∗.

Thus, we have lim inf
N,T→∞

P (Ωr,αN,T
) ≤ α∗, for any α∗ ∈ (0, 1). It follows P (Ωr,αN,T

)→ 0. Q.E.D.

B.7 Proof of Proposition 6
Let us re-write the model for the high frequency observables xHm,t, where m = 1, ...,M , and t = 1, ..., T in equation (2.1)
as:

xHm,t = ΛHCg
C
m,t + ΛHg

H
m,t + eHm,t, = Λ1gm,t + eHm,t,

= Λ̂1Û−1
1 gm,t −

(
Λ̂1Û−1

1 − Λ1

)
gm,t + eHm,t, (B.93)

where gm,t = [ gC ′m,t

... gH ′m,t ]′, Λ1 = [ΛHC
... ΛH ] = [Λc1

... Λs1], Λ̂1 = [Λ̂HC
... Λ̂H ] = [Λ̂c1

... Λ̂s1], and Û1 has been defined in

equation (B.71). Let us also define the estimator ĝm,t = [ ĝC ′m,t

... ĝH ′m,t ]′ as in equation (3.6):

ĝm,t =

[
ĝCm,t

ĝHm,t

]
=
(

Λ̂′1Λ̂1

)−1

Λ̂′1x
H
m,t, m = 1, ...,M, t = 1, ..., T. (B.94)

Substituting equation (B.93) into equation (B.94), and rearranging terms, we get:

ĝm,t = Û−1
1 gm,t −

(
Λ̂′1Λ̂1

NH

)−1
1

NH
Λ̂′1

(
Λ̂1Û−1

1 − Λ1

)
gm,t +

(
Λ̂′1Λ̂1

NH

)−1
1

NH
Λ̂′1e

H
m,t. (B.95)

From equations (B.75) and (B.76) we have:

Λ̂′1Λ̂1

NH
= Û ′1ΣΛ,1Û1 +Op

(
1√
T

)
,
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which implies: (
Λ̂′1Λ̂1

NH

)−1

= Û−1
1 Σ−1

Λ,1

(
Û ′1
)−1

+Op

(
1√
T

)
. (B.96)

From equations (B.66) - (B.70) we get:

Λ̂1Û−1
1 − Λ1 ' 1√

T
G1, (B.97)

where

G1 =

[
Gc1

... Gs1

]
, (B.98)

with

Gc1 =
1√
T
ēH′ḡC + ΛH

(
1√
T
ḡH′ḡC

)
, (B.99)

Gs1 =
1√
T
ēH′ḡH , (B.100)

ēH =
[
ēH1 , ..., ē

H
T

]′
, ḡC =

[
ḡC1 , ..., ḡ

C
T

]′
and ḡH =

[
ḡH1 , ..., ḡ

H
T

]′
. Moreover, we have:

Λ̂1 ' Λ1Û1 +
1√
T
G1Û1. (B.101)

From equations (B.97) and (B.101) it follows:

1

NH
Λ̂′1

(
Λ̂1Û−1

1 − Λ1

)
' 1

NH

(
Λ1Û1 +

1√
T
G1Û1

)′
1√
T
G1

=
1

NH
√
T
Û ′1Λ′1G1 +

1

NHT
Û ′1G′1G1. (B.102)

Equations (B.96) and (B.102) allow to express the second term in the r.h.s. of equation (B.95) as:(
Λ̂′1Λ̂1

NH

)−1
1

NH
Λ̂′1

(
Λ̂′1Û−1

1 − Λ1

)
gm,t ' Û−1

1 Σ−1
Λ,1

1

NH
√
T

Λ′1G1gm,t + Û−1
1 Σ−1

Λ,1

1

NHT
G′1G1gm,t.

(B.103)

From equation (B.73) we have:

1

NH
√
T

Λ′1G1 =

[ (
Λ′1ΛH
NH

)
1

T

T∑
t=1

ḡHt ḡ
C′
t

... 0(k1×kH)

]
+Op

(
1√
NHT

)
, (B.104)

where k1 = kC + kH . From equation (B.98) we have:

1

NHT
G′1G1 =

1

NHT

[
Gc′1 G

c
1 Gc′1 G

s
1

Gs′1 G
c
1 Gs′1 G

s
1

]
. (B.105)
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Equation (B.99) implies:

1

NHT
Gc′1 G

c
1 =

1

NHT

[
1√
T
ēH′ḡC + ΛH

(
1√
T
ḡH′ḡC

)]′ [
1√
T
ēH′ḡC + ΛH

(
1√
T
ḡH′ḡC

)]
=

1

NHT 2
ḡC′ēH ēH′ḡC +

1

NHT
√
T
ḡC′ēHΛH

(
1√
T
ḡH′ḡC

)
+

1

NHT
√
T

(
1√
T
ḡH′ḡC

)′
Λ′H ē

H′ḡC +
1

NHT

(
1√
T
ḡH′ḡC

)′
Λ′HΛH

(
1√
T
ḡH′ḡC

)
= Op

(
1

T

)
, (B.106)

where the last equality follows from the assumption T/NH = o(1). Equation (B.106) and the assumption
√
NH/T = o(1)

imply:

1

NHT
Gc′1 G

c
1 = op

(
1√
NH

)
.

Similar arguments applied to the other blocks of the matrix in the r.h.s. of (B.105) yield:

1

NHT
G′1G1 = op

(
1√
NH

)
. (B.107)

Substituting equations (B.104) and (B.107) into equation (B.103) we get:(
Λ̂′1Λ̂1

NH

)−1
1

NH
Λ̂′1

(
Λ̂1Û−1

1 − Λ1

)
gm,t ' Û−1

1 Σ−1
Λ,1

(
Λ′1ΛH
NH

)(
1

T

T∑
t=1

ḡHt ḡ
C′
t

)
gCm,t + op

(
1√
NH

)
.

(B.108)

Let us now focus on the third term in the r.h.s. of equation (B.95). From equation (B.101) we have:

1

NH
Λ̂′1e

H
m,t '

1

NH

(
Λ1Û1 +

1√
T
G1Û1

)′
eHm,t

= Û ′1
1

NH
Λ′1e

H
m,t + Û ′1

1

NH
√
T
G′1e

H
m,t. (B.109)

The second term in the r.h.s. of equation (B.109) can be written as:

1

NH
√
T
G′1e

H
m,t =

1

NH
√
T

[
Gc′1 e

H
m,t

Gs′1 e
H
m,t

]
. (B.110)

Using equation (B.99) we get:

1

NH
√
T
G′1e

H
m,t =

1

NHT
ḡC′ēHeHm,t +

1

NH
√
T

(
1√
T
ḡC′ḡH

)
Λ′He

H
m,t

= Op

(
1√
NHT

)
. (B.111)

Equation (B.100) implies:

1

NH
√
T
Gs′1 e

H
m,t =

1

NHT
ḡH′ēHeHm,t = Op

(
1√
NHT

)
. (B.112)
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Substituting results (B.111) and (B.112) into equations (B.110) and (B.109) we get:

1

NH
Λ̂′1e

H
m,t = Û ′1

1

NH
Λ′1e

H
m,t +Op

(
1√
NHT

)
. (B.113)

Substituting results (B.96), (B.108), and (B.113) into equation (B.95), and rearranging terms we get:

Û1ĝm,t − gm,t = −Σ−1
Λ,1

(
Λ′1ΛH
NH

)(
1

T
ḡH′ḡC

)
gCm,t + Σ−1

Λ,1

1

NH
Λ′1e

H
m,t + op

(
1√
NH

)
. (B.114)

Let us denote the last kH columns of matrix ΣΛ,1 as Σ
(· s)
Λ,1 . The term

Λ′1ΛH
NH

in equation (B.114) can be written as:

Λ′1ΛH
NH

= Σ
(· s)
Λ,1 +

1

NH

NH∑
i=1

λ1,iλ
′
H,i − Σ

(· s)
Λ,1

= Σ
(· s)
Λ,1 +Op

(
1√
NH

)
, (B.115)

where the last equality follows from Assumption A.2. Equation (B.115) implies:

Σ−1
Λ,1

(
Λ′1ΛH
NH

)
=

[
0(kC×kH)

IkH

]
+Op

(
1√
NH

)
. (B.116)

Substituting equation (B.116) into equation (B.114) we have:

Û1ĝm,t − gm,t = −

[
0(kC×kH)

IkH

](
1

T
ḡH′ḡC

)
gCm,t + Σ−1

Λ,1

1

NH
Λ′1e

H
m,t + op

(
1√
NH

)
. (B.117)

Recalling the expression of Û1 from equation (B.71):

Û1 =

[
Ĥc 0

0 Ĥs,1

]
,

from equation (B.117) we get the asymptotic expansions:

ĤcĝCm,t − gCm,t '
[
Σ−1

Λ,1

1

NH
Λ′1e

H
m,t

](C)

, (B.118)

Ĥ1,sĝ
H
m,t − gHm,t ' −

(
1

T
ḡH′ḡC

)
gCm,t +

[
Σ−1

Λ,1

1

NH
Λ′1e

H
m,t

](H)

, (B.119)

where
[
Σ−1

Λ,1

1

NH
Λ′1e

H
m,t

](C)

and
[
Σ−1

Λ,1

1

NH
Λ′1e

H
m,t

](H)

denote the upper kC rows, resp. the lower kH rows, of vector

Σ−1
Λ,1

1

NH
Λ′1e

H
m,t. Since ḡC′ḡC/T = IkC + op(1), we can rewrite equation (B.119) as:

Ĥ1,sĝ
H
m,t − (gHm,t − (ḡH′ḡC)(ḡC′ḡC)−1gCm,t) ' [Σ−1

Λ,1

1

NH
Λ′1e

H
m,t]

(H). (B.120)

From Assumption A.8 we have:

1√
NH

Λ′1e
H
m,t

d−→ N(0,Ω∗Λ,m), (B.121)
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where

Ω∗Λ,m = lim
NH→∞

1

NH

NH∑
i=1

NH∑
`=1

λ1,iλ
′
1,`Cov(ei,Hm,t, e

`,H
m,t).

Equations (B.118) and (B.121) imply:√
NH

(
ĤcĝCm,t − gCm,t

)
d−→ N

(
0,
[
Σ−1

Λ,1Ω∗Λ,mΣ−1
Λ,1

](CC)
)
.

Similarly, equation (B.120) and (B.121) imply:√
NH

[
Ĥ1,sĝ

H
m,t − (gHm,t − (ḡH′ḡC)(ḡC′ḡC)−1)gCm,t

]
d−→ N

(
0,
[
Σ−1

Λ,1Ω∗Λ,mΣ−1
Λ,1

](HH)
)
.

Q.E.D.
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