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1. Introduction 

Financial institutions account for a large and growing fraction of US equity holdings—up 

from roughly a third in 1980 to roughly two thirds in 2014—with the vast majority of this 

increase coming from the investment advisory sector (see table 1). Investment advisors are 

delegated asset management companies hired by institutional clients such as mutual funds, and 

thus are particularly prone to agency conflicts.1 In the face of such conflicts, the optimal 

contract involves evaluating investment performance relative to a benchmark index (e.g. 

Binsbergen, Brandt, and Koijen (2008); Maug and Naik (2011); Buffa, Vayanos, and Woolley 

(2014)). Indeed, benchmark-based compensation is ubiquitous in practice, whether explicitly 

in the form of direct performance fees or implicitly as a result of capital flows into the best 

performing funds.2 Given the large size of the advisory sector (almost 30% of the market in 

2014), it is crucial to understand the incentives of these institutions and the consequences of 

their behaviour for equilibrium outcomes. 

This paper investigates how asset prices might be distorted as a result of the incentives 

generated by benchmarking. I show that risk-averse preferences over relative returns induce a 

penalty for tracking error variance. When aggregate volatility rises, in order to maintain an 

optimal portfolio allocation, investment advisors should seek to reduce the absolute deviation 

of their portfolio weights from those of the benchmark, buying underweight stocks and selling 

overweight stocks.3 If these shifts in demand are not offset by other market participants, assets 

that are collectively underweight by the advisory sector should see their equilibrium prices rise 

relative to those that are collectively overweight. The opposite should occur when volatility 

falls. I document these effects for actively-managed investment advisors using form-13F 

institutional holdings data. On average, active fund managers deviate less from the benchmark 

for stocks with higher individual volatilities, and track the benchmark more closely following 

time-series increases in volatility. I also show that this behaviour has significant price effects: 

a portfolio of underweight minus overweight stocks generates large alphas when volatility 

rises. Placebo tests using other types of institutions that either invest passively or are not 

typically compensated for relative performance (index funds, banks, insurance companies, and 

                                                           
1 Investment advisors should not be confused with financial advisors, who offer arms-length recommendations to 
clients but do not manage money directly. See section 3 for a full description of the institutional setting. 
2 There is some debate over the shape of the flow-performance relationship. Chevalier and Ellison (1997) and 
Sirri and Tufano (1998) find a convex relationship, while more recently Spiegel and Zhang (2013) argue that the 
apparent convexity is due to empirical misspecification, and that the relationship is in fact linear. A linear 
relationship fits the assumptions of my model most closely. 
3 While the unconstrained relationship between absolute distance from the benchmark (“active share”) and 
tracking error variance is many-to-one, it is uniquely pinned down in the context of an optimization problem. 
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conventional pension funds) rule out many alternative explanations. The price distortions I 

observe occur when aggregate uncertainty is on the rise and informative prices would be 

particularly beneficial—for example, as firms decide whether to delay investment or abandon 

planned M&A activity.4 

While the contribution of the paper is primarily empirical, I start by laying out a simple 

model to illustrate formally the above intuition. Based on Brennan’s (1993) seminal paper, the 

model features a one-period economy populated by two CARA-utility agents: a household and 

an institution. The household solves the standard mean-variance optimization problem, while 

the institution maximizes expected utility over an end-of-period management fee that is 

proportional to its portfolio return in excess of an exogenous benchmark. Both agents have 

access to � risky stocks and a riskless bond with an exogenous interest rate. The stocks pay 

liquidating dividends that are distributed independently but with an aggregate component to 

volatility. The model delivers closed-form expressions for equilibrium allocations and prices, 

and the effects of varying aggregate volatility are derived via comparative statics.  

To test the model’s predictions, I use the Thomson Reuters S34 institutional holdings dataset 

(constructed from mandatory Form-13F SEC filings) supplemented with three standard mutual 

fund datasets: Thomson Reuters S12 (formerly CDA/Spectrum), CRSP and Morningstar. The 

majority of the analysis is performed using the 13F dataset, which covers the entire institutional 

sector and is ideal for estimating equilibrium price effects. However, these data are at the 

institution level rather than the fund level, which means that funds with different benchmarks 

and investment objectives are lumped together. I therefore use the mutual fund data to verify 

that the aggregation does not introduce bias. I also use it to identify index funds.  

The paper’s two main results are summarized in figure 2. Panel A shows 13F investment 

advisors’ average active share (the sum of absolute deviations from benchmark weights) for 

five quintiles of quarterly S&P 500 index volatility, assuming that the benchmark is the S&P 

500 index.5 The relationship is negative and statistically significant: when volatility rises, 

active advisors track the index more closely. The magnitude, ~4% reduction in active share 

from the lowest to the highest volatility quintile, is also economically meaningful. Even small 

changes in average active share translate into substantial buying and selling pressure due to the 

                                                           
4 See, for example, Edmans, Goldstein, and Jiang (2012).  
5 I use the S&P 500 index because it is by far the most common among funds where the benchmark is observable, 
and because weights for any broad value-weighted benchmark will be similar for the largest stocks, which are the 
focus of my analysis. In section 3 I give a more detailed argument for using the S&P 500 index as a proxy for the 
“aggregate” benchmark. 
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large size of the advisory sector (USD 9 trillion, or 28% of the market, in 2014).6 Moreover, 

the effect is amplified because institutional portfolios tend to be highly concentrated.  

Panel B shows the corresponding price effects. The horizontal axis indicates volatility-

change quintiles, while the vertical axis shows the average quarterly return on a long-short 

“underweight minus overweight” (UMO) portfolio, formed by ranking stocks on investment 

advisors’ AUM-weighted average deviations from benchmark. When volatility rises most (top 

quintile), underweight stocks outperform overweight stocks by about 8% per quarter. When 

volatility falls most (bottom quintile), overweight stocks outperform instead, by about 5%. 

The remainder of the paper is dedicated to showing that these results are robust and cannot 

be explained by alternative mechanisms. To rule out any biases resulting from advisors who 

are benchmarked to indices other than the S&P 500, I replicate the first main result (that 

managers reduce active share when volatility rises) among the subset of mutual funds for which 

Morningstar reports the S&P 500 as their primary prospectus benchmark. The result is robust 

to the inclusion of control variables for manager characteristics and the use of different 

volatility forecasts.7  

Returning to the broader 13F dataset, I examine the cross-sectional determinants of the 

advisory sector’s aggregate deviations from the benchmark weights—both signed and in 

absolute value. In addition to the time-series effects discussed above, a further implication of 

the model is that absolute deviations from the benchmark should vary in the cross-section. 

Consistent with the model, I show that absolute deviations are smaller for stocks with higher 

individual stock volatility. I also examine the effect of fund flows. Using a measure of 

aggregate percentage flows to/from investment advisors holding a particular stock, I provide 

some evidence that inflows are associated with larger subsequent deviations and outflows with 

smaller subsequent deviations. However, controlling for flows does not change the effect of 

volatility. 

For signed deviations, I find that advisors tend to be more overweight in smaller, high-beta 

stocks with high past returns. It is therefore important to control for these characteristics when 

examining price distortions, which involve the interplay between aggregate deviations, 

volatility, and returns.  

                                                           
6 The change is also fairly large relative to normal time-series variation in active share: the median fund’s time-
series standard deviation is 2.1%. 
7 What matters for the institution’s behaviour in my model is expected volatility rather than realized volatility. 
While historical volatility is arguably the most robust out-of-sample forecast for future volatility (Figlewski 
(1997)), changes in a GARCH(1,1) forecast of volatility give similar results. 
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I use two methods to estimate price distortions: a stock-level regression approach and a 

portfolio approach. For the former, I regress quarterly stock returns on the interaction between 

quarterly volatility changes and aggregate deviation from the benchmark at the start of the 

quarter. The negative and significant coefficient on this interaction term indicates that the 

returns on overweight stocks are lower than the returns on underweight stocks when volatility 

rises, and higher when volatility falls. This approach also accounts directly for the influence of 

stock characteristics. While I find that advisors being overweight in small, high-beta stocks 

explains some of the observed differences in returns, controlling for these and other 

characteristics does not drive out the main effect. I also control for stock-level aggregated fund 

flows. Inflows push up the prices of overweight stocks and push down the prices of 

underweight stocks; this effect is also unrelated to the main effect of volatility. 

The second approach to estimating price distortions involves forming quintile portfolios by 

ranking stocks on aggregate deviation from benchmark (among investment advisors), and 

rebalancing each quarter. I then divide the 1980-2014 sample into five volatility-change 

quintiles. In quarters with the greatest increase in volatility, the most underweight stocks 

(bottom deviation quintile) outperform the most overweight stocks (top deviation quintile) by 

between 3% and 7%. The former number is risk-adjusted using a five-factor model (market, 

size, value, momentum, and liquidity), and the latter is the raw return. The results are robust to 

subsampling, and in fact are larger (4-8%) in the second half of the sample (1997-2014), 

consistent with the increasing influence of institutional investors. Returns one quarter ahead 

show a reversal of about the same magnitude: overweight stocks now outperform underweight 

stocks by 7-8%. This reversal is accompanied by a reversal in volatility, consistent with the 

equilibrium mechanism proposed in the model.  

A useful check on the results is to run placebo tests using different types of institutions. 

First, I document that the negative relationship between active share and volatility is not 

observed for S&P 500 index funds. Second, I show that forming underweight-minus-

overweight (UMO) portfolios using the aggregate deviations of insurance companies, banks, 

and defined-benefit pension funds fails to produce the results observed for the investment 

advisors. These placebo tests render many competing explanations, such as time-varying risk-

aversion, unlikely. One would need to explain how differences among these institutions—other 

than benchmarking incentives—could cause differences in the behaviour of the stocks in which 

they are overweight versus underweight, and only in specific volatility states.  
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This paper is related to two strands of the literature—equilibrium asset pricing with 

institutional investors, empirical research on the price effects of institutional demand.8 Among 

asset pricing theory, the most closely related paper is by Brennan (1993), who derives a two-

factor extension of the CAPM in an economy with a benchmarked institution, but does not 

solve for prices in terms of model primitives or consider the effects of varying aggregate 

volatility. Cuoco and Kaniel (2011), Basak and Pavlova (2013) and Buffa, Vayanos, and 

Woolley (2014) extend Brennan’s (1993) insights to dynamic economies with more realistic 

preferences.9 Intermediary asset pricing is a rapidly-developing field with no current agreement 

on a standard framework. This paper is the first to provide direct empirical evidence consistent 

with the novel predictions of models where benchmarking plays a prominent role. 

It has been understood that institutional buying and selling pressure can affect asset prices 

since at least Shleifer (1986) and Harris and Gurel (1986), who document price increases for 

stocks upon being added to the S&P 500 index. Kaniel, Carhart, Musto, and Reed (2002) 

provide evidence that fund managers push up prices of the stocks they hold at quarter-ends. 

More recently, Coval and Stafford (2007) and Lou (2012) show that flow-driven trading by 

mutual funds can have large price effects, and Barberis, Shleifer, and Wurgler (2005), Boyer 

(2011), Greenwood and Thesmar (2011), and Anton and Polk (2014) examine comovement in 

returns induced by institutional/concentrated ownership. Koijen and Yogo (2015) estimate an 

equilibrium asset pricing model based on institutional demand curves, and Chen (2015) studies 

price pressure created by institutional portfolio rebalancing after extreme returns in particular 

stocks. My contribution relative to these papers is to link demand-related price distortions to 

specific institutional incentives studied in the theoretical literature. The price effects I observe 

are arguably more consequential because of their timing.  

The paper proceeds as follows. In section 2 I develop the model and derive its testable 

implications. In section 3 I describe the institutional setting and the data. In section 4 I examine 

the relationship between volatility and distance from the benchmark, and in section 5 I study 

the related price effects. Section 6 reports the results of placebo tests, and section 7 concludes.  

 

2. Model 

 In the emerging theoretical literature on asset pricing with institutional investors, most 

models share a set of basic features that distinguish them from the traditional asset pricing 

                                                           
8 The paper is also related to the literature on mutual fund tournaments (e.g. Brown, Harlow, and Starks (1996)).  
9 Basak, Pavlova, and Shapiro (2007) study institutions’ responses to benchmarking incentives in a partial 

equilibrium setting. Basak and Pavlova (2015) explore benchmarking incentives in the commodities market. 
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paradigm (e.g. Cuoco and Kaniel (2011), Basak and Pavlova (2013), Buffa, Vayanos, and 

Woolley (2014)). However, because these models tend to be quite complex, several of their 

key predictions are difficult to identify and, as such, have not previously been examined. The 

purpose of this section is to distil the most salient features into an extremely simple one-period 

model, based on Brennan (1993), with only the minimum elements necessary to establish the 

main hypotheses.  

Of course, the simplicity of my model comes at a cost: its predictions will not be 

quantitative. Rather the magnitudes of predicted effects will be left as open questions to be 

answered by data.  

 

2.1 Assets 

The economy lasts for one period (two dates). At the beginning of the period (date 0), agents 

trade � risky stocks at endogenously-determined prices � ≡ (��, … , ��)′ and a riskless bond 

with an exogenous gross interest rate of ��. All stocks are in net supply of 1 share. There is an 

exogenous benchmark index, defined as a vector of weights for each stock,  ≡ (�, … , �), 

where ∑ ����� = 1. At the end of the period (date 1), risky asset � pays liquidating dividend	��. 
The vector of dividends � ≡ (��, … , ��)′ is jointly normally distributed: 

�	~		�(�, Σ), (1) 

where � ≡ (��, … , ��)�. For simplicity Σ is assumed to take the form �����(���, … , ���)� ; that 

is, assets’ dividends are independent. The individual dividend volatilities �� are also assumed 

to have a particular structure: 

�� = �! + #�, (2) 

where �! is an aggregate component and #� is an idiosyncratic component. The parameters �, �!, and # ≡ (#�, … , #�) are known by all agents at date 0. The endogenous gross return on asset � is given by � ≡ (��, … , ��)′ and is distributed as follows: 

�	~		�(�$ , Σ%), (3) 

with �$ ≡ (��$ , … , ��$)′. Since �� = ��/��, the mean return on asset � can be written as ��$ =��/�� and the asset return covariance matrix can be written as Σ% = �����(���/���, … , ���/��� )� . 
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 2.2 Agents 

 There are two agents, a representative household and a representative institution. Both 

agents consume only at date 1 and have negative exponential (CARA) utility over terminal 

consumption '�: 

( = −exp(−-'�), (4) 

where - is the coefficient of absolute risk aversion. The household and the institution differ 

only in their wealth accumulation. The household invests directly in the � + 1 available assets, 

choosing a portfolio with weights ./ ≡ (.�/, … , .�/)′ in the � stocks and a residual weight of 1 − .0′1 in the bond (where 1 is a vector of ones). Terminal household wealth is therefore given 

by: 

2�/ = 23/4./′� + (1 − .0�1)��5, (5) 

where 23/ is the household’s starting wealth. The institution, on the other hand, does not 

accumulate wealth directly but is paid a variable management fee as payment for investing on 

behalf of a set of unmodelled fund investors. These fund investors can be thought of as 

additional households who simply invest in the “default” 401(K) plan offered by their 

employers. They do not make active portfolio or manager-selection choices.  

At this point, the primary agency friction enters the model in a reduced-form manner: to 

prevent the institution from shirking or taking the wrong amount of risk (see Buffa, Vayanos, 

and Woolley (2014)), the management fee is assumed to be a function of the return generated 

by the institution in excess of the benchmark index return. Further, following Berk and Green 

(2004), I assume that all surplus generated relative to the benchmark is extracted by the 

institution. Thus at date 1 the unmodelled fund investors simply receive their starting wealth 230 multiplied by the benchmark index return ��, while the institution’s terminal wealth is 

given by: 

2�0 = 2304.0′� + (1 − .0�1)��5 − 230′� 

	= 230 6(.0 − )′� + (1 − .0�1)��7,	 (6) 

where .0 ≡ (.�0 , … , .�0 ) is the institution’s vector of stock weights and 1 − .0′1 is its weight in 

the bond.  
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2.3 Household’s optimization problem 

 Since consumption happens only at date 1 and utility is monotonically increasing, all wealth 

is consumed at the end of the period. The household therefore solves the following problem: 

max:; <3=−exp>−-/23/4./′� + (1 − .0�1)��5?@, (7) 

 

which has the standard mean-variance portfolio choice solution (all proofs are in the appendix): 

.�/ = ��$ − ��-/23/(��$)� ,					� = 1,… ,�. (8) 

Rewriting this expression in terms of prices and the parameters of the dividend distribution 

gives: 

.�/ = �� − ����-/23/��� ∙ ��. (9) 

  

2.4 Institutions’ optimization problem 

The institution’s problem is similar to the household’s problem, the only difference being 

that the relative portfolio return (.0 − )′� now replaces the absolute portfolio return ./′� in 

the objective function. Thus the institution solves: 

max:C <3=− exp>−-02304(.0 − )�� + (1 − .0�1)��5?@. (10) 

The solution is also similar to that of the households, with the benchmark weight in stock � 
simply appearing as an extra term in the otherwise standard mean-variance formula (rewritten 

again in terms of prices and dividend parameters): 

.�0 = �� − ����-0230��� ∙ �� + �,					� = 1,… ,�. (11) 

Since the benchmark is exogenously specified, it will not generally be mean-variance 

efficient. This is the reason why the institution will want to deviate in the first place.  
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2.5 Equilibrium 

The definition of equilibrium is standard: 

 

Definition 1. A vector of prices �∗, and vectors of household portfolio weights ./∗  and 
institutional portfolio weights .0∗, together constitute an equilibrium if: 

 

(i) ./∗  solves the household’s optimization problem (equation 7); 

(ii) .0∗ solves the institution’s optimization problem (equation 10); 

(iii) Markets clear: 

23/.�/ + 230.�0 = ��,					� = 1,… ,�. (12) 

This setup yields closed-form solutions for all endogenous quantities in the model.  

For ease of illustration, I make two further simplifying assumptions:  

 

Assumption 1. The household and the unmodeled investors have the same initial wealth: 23/ = 230 = 23. 
 

Assumption 2. The household and the institution have the same risk aversion: -/ = -0 = -. 
 

These assumptions only affect the solution quantitatively and are not crucial for the predictions 

discussed below. I now proceed to the main proposition of the model. 

 

Proposition 1. The elements of the equilibrium price vector �∗, household portfolio weight 

vector ./∗  and institutional portfolio weight vector .0∗ are given, respectively, by: 

��∗ = 2�� − -��� + F(2�� − -���)� + 8-���23���4�� ,					� = 1,… ,�; (13) 

.�/∗ = ��∗223 − �2 ,					� = 1,… ,�; (14) 

.�0∗ = ��∗223 + �2 ,					� = 1,… ,�. 
(15) 
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The first noteworthy feature of the solution is that the equilibrium price ��∗ reduces to the 

standard mean-variance price (i.e., without institutions) if the stock is not part of the benchmark 

index. This occurs when � = 0:  

��∗ = 1�� K�� − 12-���L ,					� = 1,… ,�. (16) 

The institution exerts no “excess” demand pressure on non-benchmark stocks because it has 

access to the riskless bond and uses leverage to fund its increased holdings of benchmark stocks 

rather than shorting non-benchmark stocks. For non-benchmark stocks, the expressions for the 

household’s and the institution’s equilibrium portfolio weights also reduce to the standard 

mean-variance solution. Allowing the institution access to unlimited borrowing and lending at 

the risk-free rate may seem an unrealistic assumption, since most equity funds are required to 

remain fully invested and/or are prohibited from using leverage.10 Indeed, in Brennan’s (1993) 

original paper, the institution cannot invest in the riskless bond. However, the assumption is 

necessary in order to obtain closed-form solutions for prices, and more importantly it does not 

qualitatively change the model’s predictions for benchmark stocks—which are the focus of the 

paper. 

Second, if a stock is included in the benchmark (� > 0), its price is inflated relative to an 

otherwise identical non-benchmark stock. This result is common to all models with 

benchmarked institutions, and is highlighted in particular by Cuoco and Kaniel (2011) and 

Basak and Pavlova (2013).  

 

2.6 Comparative statics 

The advantage of a simple model is that the effects of changes in underlying parameters can 

be more easily identified. In this paper I am mostly concerned with the effects of changes in 

dividend volatility—and, consequentially, return volatility. The intuition for why these changes 

should matter is that risk-averse, benchmarked institutions incur a penalty for tracking error 

variance (the variance of the difference between their portfolio return and that of the benchmark 

index). This penalty can be seen directly from the institution’s optimization problem (equation 

10), which can be rewritten in mean-variance form using the properties of the normal 

distribution:  

                                                           
10 One exception to this rule is 130/30 funds (and other variants such as 150/50 or 120/20), which have been 
increasing in popularity. 
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max:C 2304(.0 − )��$ + (1 − .0�1)��5 − 12 -(230)� (.0 − )�Σ$(.0 − )NOOOOOPOOOOOQRSTUVWXY	ZSS[S	\TSWTXUZ . (17) 

Unlike the household, which can lower its variance penalty by holding more of the riskless 

bond, the institution can only lower its variance penalty by adjusting its portfolio weights .0 	towards those of the benchmark . The institution’s incentive to deviate in the first place 

comes because the benchmark is specified exogenously and therefore not generally mean-

variance efficient. However, if volatility rises, the variance penalty increases and the institution 

is incentivised to reduce its distance from the benchmark in response. Recall that the diagonal 

elements of Σ are assumed to have an aggregate component and an idiosyncratic component 

(equation 2). Thus changes in aggregate volatility �! will drive changes in the institution’s 

portfolio weights. 

Adjustments in the institution’s portfolio holdings that are not offset by opposite 

adjustments in the household’s portfolio holdings must have price effects. Because these price 

effects are the product of institutional incentives, they can be regarded as distortions relative to 

the frictionless case where institutions simply act in the best interests of their investors without 

the need for agency-mitigating contracts.  

 

Proposition 2. The responses of equilibrium institutional portfolio weights .�0∗ and equilibrium 

prices ��∗ to the aggregate component of dividend volatility �! are given, respectively, by: 
].�0∗]�! = -�!423�� ^� ,					� = 1,… ,�; (18) 

]��∗]�! = -�!2 ^� ,					� = 1,… ,�; (19) 

where ^� = _àbc�defghi$jkeF(_àbc�de)bfl_àbhi$jke − 1. 
(20) 

When will these partial derivatives be positive (negative)? From equation 20 it can be seen 

that both derivatives will be zero when the first term of ^� is equal to 1, or, equivalently, when: 
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-�!� − 2�� + 423��� = F(-�!� − 2��)� + 8-�!�23���. (21) 

The two solutions to equation 21 are: 

� = m0,			 ����23n. (22) 

Substituting the nonzero solution into equation 15, I obtain .�0∗ = �. 11 In words, the partial 

derivatives of prices and institutional holdings with respect to dividend volatility will be zero 

when the institution’s weight is equal to the benchmark weight. It is then straightforward to 

show (see appendix) that both derivatives will be positive when � > de$jhi, or equivalently, 

.�0∗ < �. So underweight (overweight) stocks will see an increase (decrease) both in 

institutional portfolio weight and the equilibrium price when aggregate volatility rises. 

 

2.7 Testable hypotheses 

The model’s predictions serve as the basis of my empirical tests. If the model is an adequate 

description of reality, the relationship between institutional portfolio holdings, prices and 

aggregate volatility should resemble that shown in figure 3. Because return volatility is easier 

to measure than dividend volatility, the figure uses the former, computed as follows: 

�!$ = �!|��| = 4���!2�� − -�!� + q(2�� − -�!�)� + 8-�!�23���. (23) 

The left panel of figure 3 plots the institutions’ deviation from the benchmark weight  .�0∗ − � (for stock �) against aggregate return volatility �!$for several values of the benchmark 

weight �, holding the other model parameters fixed. In particular, the mean dividend �� is set 

to 10, the risk-aversion parameter - is set to 4, the gross risk-free rate �� is set to 1, and initial 

wealth is set to 100. Thus, � < dehi = 0.1 indicates that the stock is overweighted by the 

institution, and � > 0.1 indicates that it is underweighted. The resulting plots are typical. As �!$ increases, overweight stocks become less overweight, and underweight stocks become less 

underweight. In other words, absolute deviation from the benchmark decreases.  

                                                           
11 The solution with nonzero � is used because I am concerned with the behaviour of benchmark stocks.  
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The right panel of figure 3 plots the equilibrium price ��∗ as a function of the aggregate return 

volatility �!$, again for various values of �, which determine whether the stock is overweight 

or underweight. The other parameters are as described above, and the plots are typical. The 

right panel shows that the prices of overweight stocks fall relative to the prices of underweight 

stocks. The model is extreme in this regard—it predicts that the prices of overweight stocks 

will actually rise as volatility increases. Given that the model is not designed to be quantitative, 

I focus instead on the difference between overweight and underweight stocks. 

The two main empirical hypotheses can be summarized as follows: 

 

Hypothesis 1. Fund managers’ total distance from their benchmarks should decrease when 

expected volatility rises, and increase when expected volatility falls. 

 

Hypothesis 2. Prices of underweight stocks should rise relative to prices of overweight stocks 

when expected volatility rises, and vice versa when expected volatility falls. 

 

3. Institutional setting and data sources 

Delegated asset management in the United States has a particular institutional and legal 

structure, established by the 1940 Investment Company Act. Mutual funds do not manage the 

assets of their shareholders directly—rather, the fund’s board of directors hires an investment 

advisory firm, which supplies portfolio management services in exchange for an advisory fee. 

The investment advisor then hires the portfolio manager(s), investment analysts, and support 

staff required to operate the fund. The advisor may either be external or owned by the mutual 

fund family itself, but is a separate legal entity with a separate compensation arrangement. In 

addition to mutual funds, investment advisors manage money on behalf of other institutions 

such as pension sponsors or endowments.  

The compensation structure of investment advisors is tightly regulated. In a 1970 

amendment to the Investment Company Act, the US congress mandated that any advisory fees 

with a performance-based component must be symmetric with respect to the performance 

benchmark—that is, underperforming the benchmark should incur a penalty of the same size 

as the bonus earned from outperforming the benchmark by the same amount. Advisory 

contracts must also be disclosed on form N-SAR. Perhaps as a result of the symmetric fee 

restriction, Elton, Gruber, and Blake (2003) report that many advisory contracts do not make 

use of performance fees, instead paying the advisor a fixed percentage of assets under 
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management (AUM). In these cases, incentives are generated implicitly through fund flows, 

especially in the case of open-ended mutual funds where capital moves continuously into and 

out of the fund. Even in cases where month-to-month flows are largely unrelated to 

performance (e.g. pension sponsors), similar incentives nonetheless operate because the 

advisor is able to win new business as a result of superior performance or lose existing business 

as a result of inferior performance. The shape of the flow-performance relationship is disputed. 

Chevalier and Ellison (1997) and Sirri and Tufano (1998) find a convex relationship, while 

Spiegel and Zhang (2013) argue that the apparent convexity is the result of empirical 

misspecification and the true relationship is linear. A linear relationship fits my model most 

closely.  

A second layer of agency exists between the investment advisor and the portfolio manager. 

In 2005, the Securities and Exchange Commission (SEC) adopted Rule S7-12-04, requiring 

advisors to disclose the details of the portfolio managers’ compensation contracts. Using these 

disclosures, Ma, Tang, and Gómez (2016) document that portfolio manager bonuses are 

typically based on multiple factors, with 77% involving investment performance, 52% 

involving the profitability of the advisor, and 19% involving AUM. Whether explicitly or 

implicitly, portfolio managers thus face similar incentives personally to those faced by the 

advisory firm as a whole.  

All institutions in the United States with at least USD 100 million under management must 

file form 13F with the SEC, as stipulated by the Securities Exchange Act of 1934. Through this 

form institutions must disclose their stock holdings once per calendar quarter. With minor 

exceptions, such as small holdings (under USD 200,000) and limited confidentiality 

restrictions (see sections 13(f)(4) and (5)), the 13F data provide a complete picture of 

institutional common stock ownership in the US.  

The 13F data are compiled by Thomson Reuters in the “S34 file”, and include the number 

of shares of each stock held, as well as some limited information about the filing institution. 

Thomson Reuters classifies institutions into types according to the following scheme: (1) 

banks; (2) insurance companies; (3) investment companies; (4) investment advisors; (5) “other” 

(mostly pensions and endowments).12 In addition, I construct two additional institution type 

codes: (6) hedge funds, using the methodology of as Agarwal, Jiang, Tang, and Yang (2013); 

                                                           
12 There are significant errors in the raw typecodes reported in the Thomson Reuters S34 file after 1999, which I 

correct as per Kacperczyk, Nosal, and Stevens (2014). 
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and (7) index funds, identified using fund-level data, which I describe below. The remainder 

of total market capitalization is attributed to the household sector.  

Figure 1 displays the share of US equity held by the seven classes of institutions, plus 

households, from 1980-2014. In particular, the share held by investment advisors increases 

from 5% to 28% over the sample period, ultimately displacing households as the largest single 

investor group. It is important to note that assets owned by non-advisor institutions but 

managed by investment advisors are classified as type 4 in the S34 file. The proportion of 

stocks held by banks, pensions and insurance companies declines over the sample, while the 

proportion held by index funds and hedge funds increases.  

In addition to the institution-level 13F dataset, I also make use of a combined dataset of 

open-ended mutual funds, which is better suited to examining fund manager behaviour since 

the individual benchmarks can be identified and there are no aggregation issues. The mutual 

fund dataset (which is at the fund level rather than the fund family level) is formed by merging 

the three most commonly-used data sources: Thomson Reuters S12 (formerly CDA/Spectrum), 

which contains quarterly stock holdings; CRSP, which contains index fund flags and can be 

linked to the Morningstar database; and Morningstar Direct, which contains its own index fund 

flags as well as benchmarks obtained directly from the fund prospectuses.  

These datasets are merged using three separate procedures. First, Morningstar Direct is 

merged with CRSP using the method of Pástor, Stambaugh, and Taylor (2015). The combined 

Morningstar/CRSP dataset is then merged (via CRSP) with Thomson Reuters S12 using 

MFLINKS (see Wermers (2000)). Finally, the combined Morningstar/CRSP/S12 dataset is 

partially matched to the 13F institution-level data using the Thomson Reuters “S12Type5” 

linking file.  

I classify an individual fund in the Morningstar/CRSP/S12 dataset as an index fund if the 

CRSP variable Index_fund_flag has a value of ‘D’ or ‘E’, if either of the Morningstar variables 

Index and Enhanced Index have a value of ‘Yes’, or any of the following words appear in the 

CRSP or Morningstar fundname: ‘Index’, ‘Ind’, ‘Idx’, ‘Indx’, ‘Mkt’, ‘Market’, ‘Composite’, 

‘S&P’, ‘SP’, ‘Russell’, ‘Nasdaq’, ‘DJ’, ‘Dow’, ‘Jones’, ‘Wilshire’, ‘NYSE’, ‘iShares’, 

‘SPDR’, ‘HOLDRs’, ‘ETF’, ‘Exchange-Traded Fund’, ‘PowerShares’, ‘StreetTRACKS’, 

‘100’, ‘400’, ‘500’, ‘600’, ‘1000’, ‘1500’, ‘2000’, ‘3000’, ‘5000’ (following Ma, Tang, and 

Gómez (2016)). After identifying index funds at the fund level, I designate any S34 (13F) 

institution with more than half of its assets in index fund products as an overall index fund. 

I use the S&P 500 index as the “aggregate” benchmark for 13F investment advisors. 

Although different funds in the same family may have different benchmarks, the 13F data are 
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at the institution level, meaning a single choice of benchmark must be made. I choose the S&P 

500 index for three reasons. First, it is by far the most common benchmark among the subset 

of funds for which Morningstar reports benchmark information, accounting for almost 60% of 

domestic US equity funds by assets under management. Second, the largest 500 stocks have 

very similar weights in broader value-weighted benchmarks such as the Russell 1000, Russell 

3000, and Wilshire 5000, because the S&P 500 is a substantial fraction of the total market. 

Third, when aggregating across opposite investment styles, such as value and growth, 

benchmarks should net to something close to the S&P 500 for the largest 500 stocks. What 

matters for equilibrium pricing is aggregate deviations from the benchmark across the entire 

sector.  

At the stock level, security prices, returns, shares outstanding, and trading volume come 

from CRSP, while book values come from Compustat.  

 

4. Volatility and deviations from the benchmark 

In this section I investigate Hypothesis 1 from the model (see section 2.7): namely, that 

investment advisors’ absolute distance from the S&P 500 index should decrease when volatility 

rises. I start by examining time-series movement towards the benchmark at the fund level when 

aggregate volatility rises, before considering how stock-level deviations are related to 

individual stock volatility in the cross section. I then investigate the role played by fund flows, 

asking whether outflows in uncertain times can account for the observed effects.  

 

4.1 Fund-level deviations from benchmark 

As a summary fund-level measure of distance from the benchmark, I use Cremers and 

Petajisto’s (2009) active share. Active share is defined as the sum of absolute differences 

between portfolio weights and benchmark weights (divided by two, since for each overweight 

there will be a corresponding underweight). In more concrete terms, active share is a number 

between zero and one that measures the fraction of portfolio holdings that are different from 

those of the benchmark. Although it is possible for investment opportunities (i.e., expected 

future dividends) to change at the same time as volatility increases, prompting managers to 

increase deviation in some stocks, the portfolio as a whole should still move closer to the 

benchmark. Active share captures this overall effect.  

It should be noted that the relationship between active share and tracking error variance is 

not identified in a general sense—many different levels of active share can give rise to the same 

tracking error. However, if fund managers are optimizing, in theory all but one of these 
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different possible configurations will be ruled out due to having lower expected returns. Thus, 

when volatility rises, the optimal response is to scale down overweights and underweights 

proportionally (see the model in section 2). 

Active share is formally defined as follows: 

rs�,t ≡ 12 u v sℎ�xyz�,{,t × }x�~y{,t∑ 4sℎ�xyz�,�,t × }x�~y�,t5���� − �'��{,t	∑ �'���,t���� v�
{�� , (24) 

where the first term inside the absolute value is the portfolio weight in stock � and the second 

term is the benchmark weight in stock �. The outer sum is over �, which denotes all stocks in 

the S&P 500 index. sℎ�xyz�,{,t is the number of shares of stock � held by fund � at quarter-

end �; }x�~y{,t is the price of stock � at quarter-end �; and �'��{,t is the market capitalization 

(price multiplied by shares outstanding) of stock � at quarter-end �. Thus rs�,t is computed 

within the universe of S&P 500 stocks—each fund’s holdings are reweighted using only the 

stocks that appear in the index.13 This reweighting is done in order to isolate changes in active 

share that are driven by changes in benchmark stock weights, since these stocks are where the 

model’s predictions regarding price distortions are most salient.  

Figure 2, panel B, shows that active share decreases by 4.1% from the first to the fifth 

quintile of S&P 500 volatility (significant at the 5% level). However, this number is computed 

using the institution-level 13F dataset (Thomson Reuters S34), and may be affected by the 

assumption that all investment advisors are benchmarked against the S&P 500 index. Another 

potentially problematic assumption is that the institution-level holdings can be meaningfully 

aggregated across different funds within the same fund family, some of which may have very 

different investment styles and thus different benchmarks (e.g. value and growth).  

To verify that these assumptions do not introduce bias, I replicate this result at the fund level. 

Using the combined Morningstar/CRSP/S12 mutual fund sample (see section 3), I identify 

active US equity mutual funds by first removing index funds and any fund with less than 50% 

of its assets in common equity.14 I identify funds benchmarked to the S&P 500 using the 

Primary Prospectus Benchmark variable in the Morningstar Direct database.  

Table 1 shows a breakdown of the number of funds with the most common benchmarks, 

and the fraction of total AUM accounted for by these funds. While Morningstar does not report 

benchmarks for 45% of the US equity funds in its database, these funds tend to be very small, 

                                                           
13 The reweighting does not qualitatively affect the results. 
14 The results are insensitive to the exact cut-off in this percentage. 
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constituting only about a tenth of a percent of the total universe by AUM. Among those funds 

for which Morningstar does report benchmark information, the S&P 500 is by far the most 

common, being used by 57% of funds by AUM (23% by number).  

What matters for the institution in the model is expected volatility rather than realized 

volatility. Assuming rational expectations, I construct forecasts of future realized S&P 500 

index volatility based on information available prior to quarter-end � (I use S&P 500 index 

volatility as a proxy for aggregate market volatility). Two different forecast methods are used 

to ensure robustness: (1) historical volatility, computed as the annualized standard deviation of 

daily returns within quarter � (prior to quarter-end); and (2) quarterly forecasts from a 

GARCH(1,1) model estimated on past daily returns over a five-year rolling window (Engel 

(2001); Figlewski (1997)): 

��f�� = � + �(x� − x̅)� + -���, (25) 

where ��� is the variance on day �, and x� is the S&P 500 index return from day � − 1 to day �. The model parameters �, � and -, are estimated by maximum likelihood, using daily data 

from the five years (or five times 252 trading days) prior to quarter-end �. This procedure yields 

time-varying estimates ��(�), ��(�), and -�(�). Following Figlewski (1997), I impose a mean 

daily return x̅ equal to zero, which gives more stable estimates by eliminating sampling 

variation from estimating the mean while introducing negligible bias. I compute 63 daily 

variance forecasts, starting from quarter-end �: 

��t,f�� = ��(�) + ��(�)(xt − x̅)� + -�(�)��t�,																								 
��t,f�� = 6��(�) + -�(�)7�c� ��t,f�� , � = 2, … ,63,							 (26) 

where �t,f��  is the variance � days after quarter-end �, and the mean daily return x̅ is again 

assumed to be zero. I then compute the average of the daily variance forecasts over the next 

quarter, annualize, and convert to volatilities: 

��t�&� = � 163 u ��t,f����
��� × 252. (27) 
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Figlewski’s (1997) out-of-sample forecasting exercise indicates that realized volatility is the 

most robust predictor of future volatility for broad stock indices, but GARCH(1,1) performs 

almost as well.15   

For the universe of active mutual funds that are benchmarked to the S&P 500, I estimate 

variants of the following regression: 

rs�,t = �� + ���t�&� + �rs�,tc� + -����,tc� + ��,t, (28) 

where rs�,t is the active share at the end of quarter �; �� is a fund-specific intercept (fixed 

effect) included to absorb base levels of activeness that may vary across funds; ��t�&� is a 

quarter-end-� forecast for quarter � + 1 S&P 500 index volatility; and ����,tc� is the natural 

logarithm of fund �’s assets under management in quarter � − 1. Lagged active share rs�,tc� is 

included in the regression as active share is highly persistent. Standard errors are clustered by 

quarter to account for potential commonality in manager behaviour and the fact that ��t�&� is 

the same for all funds at a point in time.16  

Table 2 reports the estimated coefficients from equation 28. Columns 1 and 2 show 

specifications using historical quarterly S&P 500 index volatility as a proxy for expected 

volatility, while columns 3 and 4 show specifications using the GARCH(1,1) volatility forecast. 

Columns 1 and 3 show specifications without control variables, and columns 2 and 3 show 

specifications with controls.  

A two-standard-deviation increase in volatility leads to a highly significant 1-3% decline in 

active share, depending on how the regression is specified. This effect is of the same magnitude 

as the 4.1% decline in active share observed at the institution level (moving from the first to 

the fifth volatility quintile is a 2.3 standard deviation increase). The decline in active share is 

economically significant as well as statistically significant. Because the investment advisory 

sector is so large (about USD 9 trillion, or 28% of the market, in 2014), even small shifts in 

active share can have large impacts on trading volume. Note that the raw change in active share 

is only half of the full effect—to reduce active share, every purchase must be matched with an 

equivalent sale. The change is also fairly large relative to normal time-series variation in active 

share, with the median fund’s time-series standard deviation of active share being 2.1%. 

                                                           
15 I do not use option implied volatility as there is some debate (see Canina and Figlewski (1993)) over its 

suitability as a forecast of future realized volatility. 
16 This turns out to be the most stringent method of clustering. 
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Finally, since the average fund only holds about a hundred stocks, the impact of the portfolio 

adjustment on individual stocks will be proportionately even larger. 

Adding control variables—especially the past active share—increases the adjusted R-square 

of the regression from <1% to 92%. The full regression specification thus appears to be a good 

fit for the evolution of active share over time, with most of the explanatory power coming from 

the persistence of the dependent variable. The high persistence can be seen from the coefficient 

on lagged active share (~0.70). Assets under management also play a role, with a one-standard 

deviation change in log assets translating into a decline in active share of 0.015. Funds tend to 

become somewhat less active as they grow.  

The evidence is consistent with investment advisors reducing their distance from the 

benchmark when aggregate volatility rises, as predicted by the model. It is also robust, showing 

up in both the institution-level data and the fund-level data.  

 

4.2 Stock-level deviations from benchmark 

For the stock-level regressions, I compute each stock’s aggregate deviation from benchmark 

across the entire investment advisory sector (13F dataset). I use the institution-level data as it 

is the sector-wide deviations that matter most for the asset pricing implications.  

Departing slightly from the idealized setting of the model, I compute the log aggregate 

deviation instead of the arithmetic aggregate deviation. Log deviations are approximately equal 

to percentage deviations. This methodological adjustment is due to the large differences in 

market capitalization—and therefore large differences in benchmark weights—among S&P 

500 index stocks. For example, a 1% overweight position in Apple (roughly 3% of the index 

in 2016) is much less consequential than a 1% overweight position in Advance Auto Parts 

(roughly 0.07% of the index). If the entire investment advisory sector were overweight by 1% 

in Advance Auto Parts, an attempt to rebalance towards the benchmark would have a much 

larger price effect because its market capitalization and trading volume are much lower than 

Apple’s. Percentage/log deviations account for this effect.  

Formally, the aggregate deviation variable �y�{,t is defined as follows: 

�y�{,t ≡ log �∑ r(��,t × .�,{,t00���∑ r(��,t0��� � − log	({,t), (29) 

where r(��,t is the value of assets under management of advisor � as of quarter-end �; .�,{,t0  

is advisor �’s portfolio weight in stock � at quarter-end �; and {,t is stock �’s weight in the 
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benchmark (the S&P 500 index) at quarter-end �. As with active share, I compute �y�{,t only 

for stocks that are part of the S&P 500 index at time �. The reason for this is threefold. First, 

non-index stocks are not as widely held by institutions. Second, in analysing only large, 

heavily-traded stocks, I can be confident that the effects I report are consequential for the real 

economy and are not driven by microstructure noise or small-stock return anomalies. Third, 

and most importantly, the novel predictions of my model concern the relative behaviour of 

stocks within the index.  

 In addition to investment advisors’ time-series response to aggregate volatility, the model 

also predicts that the same pattern should hold in the cross-section of stocks (see figure 3). The 

more volatile a particular stock is individually, the lower should be its absolute deviation from 

the benchmark—holding expected returns constant.  

Controlling for expected returns is less important at the fund level, since changes in expected 

returns average out when calculating active share across the whole portfolio.17 However, it is 

essential in the cross-section of stocks. This is because especially high (or low) expected returns 

can offset high volatility and result in a larger absolute deviation from the benchmark. 

Therefore I use a variety of methods to capture expected returns, which can be summarized in 

the following regression framework: 

��y�{,t� =   + ���{,t� + �{ + �¡ + -�'ℎ�x�~�yx�z��~z{,tc� + �{,t; (30) 

��y�{,t� =   + ���{,t� + �{,¡ + -�'ℎ�x�~�yx�z��~z{,tc� + �{,t.								 (31) 

where   is a regression intercept, ��{,t�  is the stock’s volatility estimated using daily returns from 

quarter-end � − 1 up to (but not including) quarter-end �, �{ is a stock dummy, �¡ is a year 

dummy, and �{,¡ is a combined stock-year dummy. 'ℎ�x�~�yx�z��~z{,t is a vector of stock 

characteristics measured as of the previous quarter-end (� − 1): single-factor market beta, the 

log of market capitalization, the log of book-to-market ratio, annual dividend yield, quarterly 

turnover (trading volume divided by shares outstanding), past returns for the prior four quarters, 

and the long-run past return from three years to one year prior. These characteristics have been 

shown to correlate highly with future expected returns (Brennan, Chordia, and Subrahmanyam 

(1998)). 

                                                           
17 At least, the part of the portfolio invested in S&P 500 stocks. 
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The estimated coefficients from variants of equations 30 and 31 are reported in table 3. The 

terms of each equation are added cumulatively to control for expected returns in an increasingly 

strong form. First, the regression in equation 30 is estimated with just the intercept and 

volatility, along with stock-level fixed effects to control for time-invariant determinants of 

expected returns across different stocks; e.g. industry effects (column 1). The effect of volatility 

is thus estimated using only time-series variation in volatility within each stock. Although the 

coefficient on volatility (-0.039) is negative, it is not significant. However, as I control more 

stringently for expected returns, the coefficient becomes larger in magnitude (i.e., more 

negative) and more significant. Simply adding year fixed effects to the previous specification 

(column 2), and thus controlling for common variation in expected returns through time, is 

sufficient to produce a significant (at the 1% level) and more negative (-0.068) estimate. 

Adding time-varying stock characteristics (column 3) further increases the economic 

significance (-0.139) and statistical significance of the result. The more accurately one controls 

for expected returns, the less it appears that investment advisors deviate from the benchmark 

(in either direction) in stocks whose volatility is higher. A one-standard-deviation change in 

stock volatility leads to a decrease in absolute deviation of between 1.7% and 6.0%, confirming 

the cross-sectional predictions of the model.  

Columns 4 and 5 of table 3 show the estimated coefficients from two variants of equation 

31. Here the combination of stock and year fixed effects is replaced by combined stock-year 

fixed effects. This specification controls for expected returns that can vary from year to year in 

different ways for each stock; the estimation of the main effect thus comes from variation in 

volatility within each stock within a given year. This approach leaves few degrees of freedom 

but theoretically allows for a more comprehensive accounting for differences in expected 

returns. The estimated coefficient is nonetheless similar: -0.039 (column 4) without stock 

characteristics in the regression and -0.047 (column 5) with stock characteristics. Both 

estimates are significant at the 5% level.  

 

4.3 Effect of fund flows 

 Much of the literature on the price effects of institutional demand has focused on the role of 

fund flows. Coval and Stafford (2007) study flow-induced buying and selling pressure when a 

group of mutual funds holding similar stocks collectively underperforms or outperforms. Lou 

(2012) shows how fund flows can generate stock return momentum and persistence in mutual 

fund performance. Vayanos and Woolley (2013) model this phenomenon theoretically.  
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 It is therefore important to ask whether fund flows could be responsible for the effects 

studied in this paper. If flows are negatively correlated with changes in volatility—possibly 

because investors flee risky assets in times of rising uncertainty—then outflows could prompt 

a decrease in active risk taking and therefore a narrowing of the distance between funds and 

their benchmarks. If this effect of flows drives out the effect of volatility, it would suggest a 

different channel than the one proposed in my model.  

 I first compute capital flows at the institution level:  

¢£¤¥�,t ≡ rzzy�z�,t − rzzy�z�,tc�41 + ��,t5rzzy�z�,tc�41 + ��,t5 , (32) 

where rzzy�z�,t is the total assets of advisor � at quarter-end �, and ��,t is the total return on 

the stocks held by advisor � at quarter-end �. I then compute aggregate fund flows at the stock 

level as follows:  

r��¦£¤¥{,t ≡ ∑ sℎ�xyz�,{,t × ¢£¤¥�,t0���∑ sℎ�xyz�,{,t0��� , (33) 

where sℎ�xyz�,{,t is the number of shares of stock � held by advisor � at quarter-end �.  

 I re-run the regressions described in equations 30 and 31, adding the aggregate fund flow 

variable on the left-hand side: 

��y�{,t� =   + ���{,t� + §r��¦£¤¥{,t + �{ + �¡ + -�'ℎ�x�~�yx�z��~z{,tc� + �{,t; (34) 

��y�{,t� =   + ���{,t� + §r��¦£¤¥{,t + �{,¡ + -�'ℎ�x�~�yx�z��~z{,tc� + �{,t.								 (35) 

 Table 4 reports the estimated coefficients. The most important feature is that there is 

virtually no difference between the estimated coefficients on volatility in this table and those 

reported in table 3. Both in terms of magnitudes and in terms of statistical significance, the 

addition of the aggregate flow variable does not change the effect of volatility. This result rules 

out a purely flow-driven explanation and is consistent with the predictions of my model.  

Secondly, there is evidence that flows do play an independent role in determining absolute 

aggregate deviation from the benchmark, though this evidence is mixed. While the sign of the 

estimated coefficient is always positive—inflows to the funds holding a particular stock tend 

to result in an increased aggregate distance from the benchmark in that stock—the magnitudes 
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and statistical significance vary considerably depending on the regression specification and the 

choice of standard error clustering. Panel A and B of table 4 report the results using different 

clustering methods: panel A uses quarter-level clustering, and panel B uses stock-level 

clustering. The magnitudes range from 0.05 to 0.24—in other words, a one-standard-deviation 

increase in aggregate flows is associated with an increase in distance from the benchmark of 

between 0.5% and 2%. This finding is consistent with the predictions of Basak and Pavlova 

(2013), where increased wealth leads to greater deviation from the benchmark through 

decreased absolute risk aversion. 

 

5. Price distortions 

This section investigates whether the changes in demand observed in the previous section 

are associated with the type of price distortions predicted by the model. Specifically, do stocks 

that are underweighted in aggregate by the investment advisory sector outperform stocks that 

are overweighted when S&P 500 index volatility rises? And vice versa when volatility falls?  

I use two approaches to estimate the price effects, each with its own set of advantages and 

disadvantages. The first approach is to estimate a stock-level regression of individual realized 

returns on the interaction between aggregate deviation and changes in aggregate volatility. A 

negative coefficient on this interaction term would indicate that low-deviation (underweight) 

stocks have more positive/less negative price changes (higher returns) than high-deviation 

(overweight) stocks when aggregate volatility rises. Stock characteristics can also be included 

as explanatory variables in the regression, as well as the interaction between these 

characteristics and changes in volatility. The regression approach thus controls in a multivariate 

setting for a variety of factors known to affect future returns (e.g. Brennan, Chordia, and 

Subrahmanyam (1998)). Moreover, it allows me to control for the influence of fund flows, 

which could be correlated with the state of volatility. Disadvantages of this approach are, 

firstly, that magnitudes of interaction terms are cumbersome to interpret, and, secondly, that 

the model constrains the estimated effect to be linear.  

The second approach overcomes these difficulties by forming quintile portfolios of stocks 

ranked on aggregate deviation from the benchmark, and examining their (risk-adjusted) returns 

in different volatility states. The magnitudes of portfolio returns are straightforward to 

interpret, and nonlinearity can be observed across both the aggregate deviation and volatility 

dimensions. The portfolio approach, however, has drawbacks of its own. The sample size is 

much smaller, and statistical power that much weaker, than for the regression approach. The 
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portfolio approach also does not lend itself to controlling for stock characteristics in a 

multivariate setting.  

In order to accurately estimate equilibrium price effects, deviations must be aggregated over 

all investment advisors in the economy. Using only a subset of funds, as would be the case for 

the mutual fund data used in section 4.1, would not account for netting of overweight and 

underweight positions within fund families, or across funds with complementary investment 

styles (such as value and growth). I therefore carry out the analysis in this section using the 

institution-level data in the Thomson Reuters S34 file (13F), which contains the common stock 

holdings of all investment advisors in the US with equity investments of $100 million or more.  

 

5.1 What determines aggregate overweight/underweight? 

Before estimating price distortions, I first ask what drives investment advisors as a group to 

be overweight or underweight in particular stocks. Are there particular characteristics that 

could provide an alternative reason for why underweight stocks might outperform overweight 

stocks when volatility rises?  

Using the (signed) aggregate deviation variable defined in equation 29 as the dependent 

variable, I estimate variants of the following regression: 

�y�{,t = � + -�'ℎ�x�~�yx�z��~z{,tc� + �{,t, (36) 

where 'ℎ�x�~�yx�z��~z{,tc� is a vector of stock characteristics recorded in the prior quarter. I 

use the same characteristics as in the previous section: single-factor market beta, the log of 

market capitalization, the log of book-to-market ratio, annual dividend yield, quarterly turnover 

(trading volume divided by shares outstanding), past returns for the prior four quarters, and the 

long-run past return from three years to one year prior.  

The results are presented in table 5. When the stock characteristics are included as univariate 

regressors, only market beta, log size and log book-to-market show up as significant. When 

including all characteristics in the same regression, the coefficient on book-to-market flips sign 

and the coefficients on dividend yield, turnover, and past return become significant.  

The relationship of signed deviation with beta and size is robustly positive: the portfolios of 

investment advisors tend to be overweight in small, high-beta stocks. Looking at the full 

specification (column 7), value stocks and high dividend-yield stocks tend to be more 

underweight, while stocks with high trade turnover and high past returns tend to be more 

overweight.  
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These relationships are potentially important. Market beta, in particular, could be a driving 

factor in the return pattern observed in figure 2. The well-known negative relationship between 

returns and volatility could mean that high-beta (and thus overweight) stocks mechanically 

have lower returns than low-beta (i.e., underweight) stocks when volatility rises. It is therefore 

of particular importance to account for beta when testing for price effects. The fact that advisors 

tend to be overweight in small stocks and in momentum stocks could also play a role. 

Momentum has been linked to institutional price effects in many other studies (e.g. Lou 

(2012)). As such, I ensure that these characteristics are controlled for when studying price 

effects.  

 

5.2 Regression-based estimates of price distortions  

 The regression approach to testing for price distortions involves estimating variants of the 

following equation: 

�y�{,t = � +  Δ�t�&� + ��y�{,t + -�'ℎ�x�~�yx�z��~z{,tc�+ >��y�{,t + §�'ℎ�x�~�yx�z��~z{,tc�? × Δ�t�&� + �{,t, (37) 

where Δ�t�&� is the change in S&P 500 index volatility from quarter � − 1 to quarter �; �y�{,t 
is the aggregate deviation from benchmark in stock � at quarter-end �; and 'ℎ�x�~�yx�z��~z{,tc� is the same vector of stock characteristics as in equation 36: single-

factor market beta, the log of market capitalization, the log of book-to-market ratio, annual 

dividend yield, quarterly turnover, and past returns over various horizons. All right-hand-side 

variables are also interacted with the change in S&P 500 index volatility. In particular, the 

interaction between volatility change and market beta controls for the mechanical effect of beta 

on returns when volatility rises or falls. Standard errors are clustered by quarter to account for 

common factors in returns, but are robust to clustering at any level.   

The coefficient of primary interest in this regression is �, which measures the extent to 

which overweight stocks’ realized returns rise relative to those of underweight stocks when 

volatility rises. A direct test of the model’s prediction for asset prices is therefore whether � is 

negative.  

The estimated coefficients are reported in table 6. The measure of volatility used to obtain 

the reported results is the historical quarterly standard deviation. For robustness, I run the same 

regressions using changes in a GARCH(1,1) forecast and obtain similar results (see appendix). 
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Columns 1-3 of table 6 show the estimates for the full sample (1980-2014), and columns 4-

6 show the estimates for the second half of the sample (1997-2014). The subsample analysis 

serves two functions: to check robustness to the sample construction and to examine the 

hypothesis that price effects will get stronger over time as the size of the investment advisory 

sector grows.  

For the full sample, the specification in column 1 includes just the interaction between 

aggregate deviations and volatility changes, and results in a highly significant negative 

coefficient estimate (�© = -75.31). Adding deviations and volatility separately (column 2) 

reduces the magnitude of the coefficient to -19.90 but maintains its 1% level of significance. 

Finally, the specification in column 3 also includes the stock characteristics and their 

interactions with volatility changes. In this case, the magnitude of the estimate �© rises again, 

to -34.38. To put these numbers into economic terms (using the specification with the full set 

of controls): if the volatility change moves from the 10th to the 90th percentile of its empirical 

distribution, the effect of a two-standard-deviation increase in deviation from benchmark on 

quarterly stock return shifts from +1.46% to -4.30%. These results strongly confirm the 

predictions of the model.  

Running the same specifications for the second half of the sample yields coefficient 

estimates of -108.71, -40.22, and -39.80 (all significant at the 1% level), which are larger than 

for the full sample. Thus, the degree to which underweight stocks outperform overweight 

stocks when volatility rises is greater in the second half of the sample, when investment 

advisors have more wealth relative to the rest of the market.  

Adjusted R-squares are quite high for regressions that have returns on the left-hand side, 

indicating that the price effects stemming from the interaction of volatility account for around 

5% of the variance of quarterly stock returns in the full sample, and 8% of the variance in the 

second half of the sample. The goodness of fit statistics thus provide further evidence that the 

effect increases in importance over time.  

The coefficients on stock characteristics are left unreported for the sake of brevity. Only two 

of the characteristics’ interactions with volatility changes turn out to be significant. The first is 

indeed the market beta of the stock. As expected, there is a mechanical relationship between 

the fact that advisors’ portfolios tend to be overweight in high-beta stocks and outperformance 

of underweight stocks when volatility rises. This can be seen from the negative coefficient on 

the interaction between beta and volatility changes, which indicates that high-beta stocks tend 

to underperform low-beta stocks when volatility rises. The coefficient on the interaction 
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between size and volatility changes has the same interpretation: small stocks tend to outperform 

when volatility rises. However, neither of these characteristic-drive effects drive out the 

independent effect of being overweight or underweight, again consistent with price effects as 

predicted by the model. 

 

5.3 Effect of fund flows 

As with fund manager behaviour examined in section 4.3, one plausible alternative 

mechanism that could account for the above price effects is the influence of fund flows. Flows 

may be negatively correlated with changes in volatility—i.e., investors may withdraw their 

money from equity funds when aggregate uncertainty rises, and reallocate towards lower risk 

assets. This reallocation would leave investment advisors with less wealth. Advisors might then 

scale back their overweights and underweights, not due to volatility changes directly, but 

because their absolute risk-aversion increases. According to this story, the relationship with 

volatility is only incidental.  

I control for fund flows by re-estimating equation 37 but adding stock-level aggregate fund 

flows (see definition 33) and the interaction of flows with aggregate deviations (see definition 

29) on the right-hand side: 

�y�{,t = � + ��y�{,t +  Δ�t�&� + §r��¦£¤¥{,t + -�'ℎ�x�~�yx�z��~z{,tc�+ >��y�{,t + §�'ℎ�x�~�yx�z��~z{,tc�? × Δ�t�&�
+ ª4r��¦£¤¥{,t × �y�{,t5 + �{,t, (38) 

where Δ�t�&� is the change in S&P 500 index volatility from quarter � − 1 to quarter �; �y�{,t 
is the aggregate deviation from benchmark in stock � at quarter-end �; r��¦£¤¥{,t is the 

holdings-weighted average fund flow from quarter � − 1 to quarter � among the investment 

advisors who hold stock �, and 'ℎ�x�~�yx�z��~z{,tc� is the same vector of stock 

characteristics as in equations 36 and 37.  

 The coefficient on the interaction between aggregate deviation and aggregate flow, ª, 

measures the degree to which stock returns are higher/lower for overweight or underweight 

stocks when there are inflows to or outflows from funds holding the stock. If the return 

differentials observed in the previous subsection are due to flows, the estimate for ª should be 

negative and the estimate for � should be driven to zero.  
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 Table 7 shows, however, that while ª� is negative and significant across all specifications in 

the full sample (1980-2014, columns 1-3), and most specifications in the second half of the 

sample (1997-2014, columns 4-6), the estimates �© are little changed from those in table 6. This 

indicates that fund flows affect returns in the expected way, but there is still an independent 

effect from incentive-driven responses to volatility changes, consistent with the predictions of 

the model. 

 

5.4 Portfolios sorted on aggregate deviation from benchmark 

At the beginning of each quarter (i.e., at the end of quarter � − 1), I sort stocks cross-

sectionally from lowest aggregate deviation (most underweight) to highest aggregate deviation 

(most overweight), forming five quintile portfolios of approximately 100 stocks each. To 

capture the potential price effect in a single number, I form a zero-net-investment portfolio that 

is long the stocks in the lowest deviation portfolio (first quintile) and short the stocks in the 

highest deviation portfolio (fifth quintile).18 I refer to this as the underweight-minus-

overweight (UMO) portfolio. All portfolios are value-weighted, but the results are robust to 

using equal weights.  

From quarter � − 1 to quarter �, I record the returns on each quintile portfolio and the UMO 

portfolio, as well as the change in S&P 500 index volatility.19 I then perform a time-series sort 

by the volatility change, and subdivide the five portfolio’s returns into five volatility-change 

quintiles. The first quintile consists of quarters where volatility decreases most compared to 

the previous quarter, and the fifth quintile is where volatility shows the largest increase. The 

volatility measure is the annualized daily standard deviation.20 Standard errors on the portfolio 

returns are adjusted for clustering by quarter to account for error dependencies introduced by 

common variation in the cross-section of returns.  

According to the predictions of the model, the UMO portfolio should have positive returns 

in high volatility-change states and negative returns in low volatility-change states. The model 

is not designed to be quantitative, though it does predict a symmetric response to positive and 

negative changes in volatility. There are reasons that reality might deviate from the model in 

this regard, however. If fund managers face asymmetric penalties for high tracking error, such 

                                                           
18 As the focus of this paper is price distortions rather than trading strategies, I do not account specifically for 
transaction costs involved in short-selling or turning over the portfolio. 
19 I use contemporaneous measures of price and volatility changes because the low frequency data do not allow 
me to measure the precise moment within the quarter when the market’s expectation of future volatility changes. 
20 In untabulated results, I obtain qualitatively similar portfolio returns using changes in a GARCH(1,1) volatility 
forecast.  
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as the threat of litigation,21 rising volatility may prompt a more rapid response and therefore 

larger price effects than falling volatility.  

Table 8 shows the results of these portfolio sorts for two different samples: the full sample, 

running from 1980 to 2014 (panel A), and the second half of the sample, running from 1997 to 

2014 (panel B). The reason for subsampling is to test the adjunct hypothesis that incentive-

driven price distortions become stronger over time, as institutions come to represent a greater 

share of stock ownership.  

In panel A, for quarters in the full sample with the largest decreases in volatility (quintile 

1), the UMO portfolio has an average return of -2.5%. This indicates that overweight stocks 

outperform underweight stocks by 2.5%, which is significantly different from zero at the 5% 

level. Most of the effect comes via lower returns from the lowest aggregate deviation portfolio 

(underweight stocks). As we move towards higher volatility-change quarters the UMO 

portfolio return increases nearly monotonically, to 2.4% (significant at the 10% level) in the 

fourth volatility-change quintile, and to 7.1% (significant at the 5% level) in the fifth, highest, 

volatility-change quintile. In these quarters where volatility increases most, the effect is also 

monotonic in the cross-section: the first aggregate deviation quintile portfolio outperforms the 

second, which outperforms the third, and so on. There does indeed appear to be an asymmetry 

between the strength of the effect in the top and bottom volatility-change quintiles, suggesting 

that fund managers are penalized more heavily when volatility rises than they benefit when 

volatility falls.  

The overall magnitudes are large: 7.1% is a quarterly return. While annualization is 

inappropriate due to the fact that these returns occur on average only every five quarters, 7% 

over a single quarter is a significant price change differential that is likely to affect the decision-

making of affected firms. The timing of the price change also makes the effect more 

consequential. For example, firms with an option to defer investment will see the value of their 

option rise when aggregate uncertainty rises, bringing many of them closer to the margin of 

whether or not to invest. At the margin, a temporarily high or low stock price can make the 

difference.   

The picture grows even more stark in the second half of the sample, as seen in panel B. In 

the lowest volatility-change quarters (quintile 1), the UMO portfolio has an average return of  

-5% (significant at the 1% level), indicating that overweight stocks outperform underweight 

stocks. Moving towards the higher volatility states, the return on the UMO portfolio increases 

                                                           
21 See, for example, Unilever Superannuation Fund vs. Merrill Lynch, Harvard Business School Case Study (2002) 
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monotonically, reaching 8.5% (significant at the 5% level) for the highest volatility-change 

quarters (quintile 5). The monotonicity is also apparent in the cross-section for both the lowest 

and the highest volatility-change states. The fact that the effect both strengthens and becomes 

more regular in the latter period is what we should expect to see in a world where institutional 

investors (and investment advisors in particular) are increasing in importance. In further 

unreported subsamples, the UMO portfolio returns remain highly robust.  

These portfolio returns alone do not, of course, indicate that the price changes are 

distortionary. The first step I take in judging whether this is the case is to examine returns in 

the subsequent quarter. If the price changes during quarter � are due to information about the 

future cash flows of the company, or variation in stock characteristics or fund managers’ 

demand for those characteristics, we would expect the changes to be permanent. However, if 

the changes are distortionary, we would expect them to revert to their previous levels in quarters 

after �. I perform exactly the same sorting exercise as the one described above, but this time I 

record returns in quarter � + 1 instead of quarter �. 

The � + 1 portfolio returns are reported in table 9 for the same quintiles of aggregate 

deviation (underweight/overweight) and changes in S&P 500 index volatility as in table 8. The 

most readily apparent feature of the table is that for quarters with the greatest increase in 

volatility during quarter � (quintile 5), the UMO portfolio’s average return over the subsequent 

quarter (� + 1) is highly significant, of similar magnitude to the return over quarter �, but with 

the opposite sign. This is the case for both the full sample (1980-2014, panel A), where the 

average UMO return is -7.8%, and the second half of the sample (1997-2014, panel B), where 

the return is -7.0%. That is, overweight stocks outperform underweight stocks, whereas the 

quarter before it had been underweight stocks outperforming overweight stocks. A rebound in 

prices also appears to occur in quarters following the largest decreases in volatility (quintile 1), 

but the test is not powerful enough to confidently state that the UMO portfolio returns are 

greater than zero in these states. The magnitudes (2.3% in the full sample, and 3.8% in the 

second half of the sample) are smaller than for the fifth quintile volatility change states, which 

is consistent with the asymmetry observed in quarter � returns. Another noteworthy feature of 

table 9 is that most of the rebound after high-volatility quarters seems to come from the fifth 

aggregate deviation quintile portfolio (i.e., the most overweight stocks).  

The � + 1 return patterns indicate a reversion in prices, suggesting that the effects in quarter � were merely temporary. This result lends support to an interpretation of these price changes 

as distortions. The consistent asymmetry between high and low volatility-change states is 



33 
 

consistent with portfolio managers being more heavily penalized for high tracking error than 

they are rewarded for low tracking error, perhaps due to the threat of costly litigation. 

At this stage, two explanations for the � + 1 reversion in prices seem plausible. First, due to 

information asymmetries, the market may be misinterpreting incentive-driven buying pressure 

for underweight stocks and selling pressure for overweight stocks as private information, in the 

sense of Kyle (1985). Once it becomes clear that the trades by investment advisors were not 

informed, prices would then revert to their previous level. The second explanation follows from 

the equilibrium described in the model in section 2: the reversion in prices may be driven by 

negative serial correlation in volatility changes. I shed some light on this question of 

asymmetric information versus equilibrium explanations by examining volatility changes in 

the subsequent quarter. For each of the five volatility quintiles, I compute the average change 

in volatility over the subsequent quarter (� to � + 1). 

Table 10 displays the results. Consistent with the equilibrium view, initially large increases 

in volatility (quintile 5) are followed by significantly negative changes in volatility in the 

subsequent quarter. According to the model, these volatility reversions would incentivize fund 

managers to return to larger deviations from the benchmark after volatility peaks. In the full 

sample (1980-2014), average � + 1 volatility falls by 3.2% (significant at the 1% level) 

following the fifth quintile of volatility changes in quarter �. In the second half of the sample 

(1997-2014), the fall in volatility is slightly greater, at 3.8%. The is no consistent significant 

reversion for the lowest volatility-change quintile (or any other quintile except the fifth). While 

the magnitudes of the fifth quintile reversions are not particularly large, leaving room for the 

asymmetric information explanation to still account for some of the rebound in � + 1 returns, 

the asymmetry in � + 1 volatility changes (significant reversion in volatility only after quarters 

with the highest increase) closely matches the asymmetry observed in the � + 1 returns. This 

is again consistent with the equilibrium explanation. 

Given the correlation shown between market beta and aggregate deviation from the S&P 

500 index (table 5), it seems important to consider to what extent differences in beta are driving 

the UMO portfolio returns. Investment advisors tend to be overweight high-beta stocks, and 

because of the negative relationship between volatility and returns, stocks with higher betas 

could mechanically have lower returns than stocks with low betas when volatility rises. 

Therefore, I estimate time-varying factor loadings ��t� for four standard empirical asset pricing 

factor models, using monthly returns over a five-year rolling window.  
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Armed with these estimated loadings, I compute portfolio alphas from the raw returns (�t) 
as follows: 

«�tℱ = �t − 4��,t + ��t�¢t� + ⋯+ ��tℱ¢tℱ5, (39) 

where ¢t� is the return on a replicating portfolio for the first risk factor, and so on up to the ℱth 

risk factor, ¢tℱ. The set of factors is taken from the risk models most commonly used in the 

empirical asset pricing literature: the Fama-French three-factor model (market risk premium, 

size, and book-to-market); the Fama-French-Carhart four-factor model (market risk premium, 

size, book-to-market, and momentum); the Fama-French model plus the Pástor-Stambaugh 

liquidity factor; and the Fama-French-Carhart model plus the Pástor-Stambaugh liquidity 

factor.22  

Table 11 reports the average alphas on the UMO portfolio for each of the five volatility-

change quintiles—largest decrease (quintile 1) to largest increase (quintile 5). Alphas 

computed using each of the aforementioned factor models are shown alongside the raw average 

returns for comparison (see the last column of table 8). As in previous tables, panel A reports 

alphas computed over the full sample (1980-2014) and panel B reports alphas computed over 

the second half of the sample (1997-2014).  

Starting with the full-sample alphas, it is evident that the linear, almost-monotonic 

relationship between the raw UMO portfolio return and changes in volatility disappears once 

risk factor exposures are accounted for. Instead, the relationship starts to look binary. Only in 

quarters with the largest increases in volatility (quintile 5) do we see a positive and consistently 

significant alpha on the UMO portfolio. Simply adjusting for exposure to the market risk 

premium is sufficient to reveal this binary effect, which seems to indicate that the linear 

relationship is induced simply by variations in beta across the underweight and overweight 

portfolios. However, the large and reliably significant UMO alphas (from 3.0% using the 

Fama-Frency-Carhart plus liquidity model, to 4.0% using just the Fama-French three-factor 

model) continue to support an interpretation of the evidence as incentive-driven price 

distortions. This evidence is consistent with an asymmetric penalty for tracking error variance, 

where fund managers are hurt more when volatility rises than they gain when volatility falls.  

                                                           
22 Fama and French (1993); Carhart (1997); Pastor and Stambaugh (2003). The market, size, book-to-market, and 
momentum factors are taken from Kenneth French’s website: 
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. The liquidity factor is taken from 
Ľuboš Pástor’s website: http://faculty.chicagobooth.edu/lubos.pastor/research/. 
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The results for the second half of the sample are again stronger, and once again consistently 

show a binary relationship between the UMO portfolio return and the change in volatility. In 

the highest volatility-change quintile, underweight stocks outperform overweight stocks on a 

risk-adjusted basis by between 3.9% (Fama-French-Carhart plus liquidity factor) and 5.0% 

(Fama-French three-factor model). Alphas are not consistently significant for lower volatility-

change states. 

 

6. Placebo tests 

My claim in this paper is that the UMO portfolio returns reported in section 5 are the result 

of excess demand (buying and selling pressure) by investment advisors, stemming from their 

benchmarking incentives. This “excess” buying and selling—compared to an economy with no 

benchmarked institutions—is not offset by opposite behaviour from other market participants, 

which results in temporary price distortions. To strengthen further the argument that 

institutional incentives are in fact responsible for the observed price distortions, I conduct 

placebo tests using passively managed index funds, as well as other institution types for which 

benchmarking incentives are much weaker.  

Index funds’ portfolio allocations are determined simply by minimizing tracking error 

variance; i.e., there is no “mean” in an index fund’s “mean-variance” optimization problem. 

As such, the only incentive these funds have to deviate from the benchmark is in order to 

control trading costs. Because of this simpler objective function, the relationship between 

tracking error variance and active share is no longer identified (many different levels of active 

share will give rise to the same tracking error variance). Therefore we should not expect index 

funds to reduce their distance from the benchmark when volatility increases, and 

consequentially we should not observe price distortions based on their holdings. 

Moreover, institutions that do not outsource their portfolio management needs should have 

less acute (or at least different) agency problems, and thus weaker benchmark-driven 

incentives. Banks, insurance companies and traditional pension funds have objective functions 

that are quite different from those of investment advisors. Banks hold investment assets to 

bolster their profitability in absolute terms, and can be thought of as being closer to households 

in this regard. Insurance companies and defined-benefit pension funds hold assets primarily to 

match the duration of their liabilities rather than to outperform competitors. Thus, with less 

incentive to rebalance towards the benchmark when volatility rises, we should not expect 

observe a significant return on UMO portfolios when they are constructed using the holdings 

of these institutions. 
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In table 12, I test whether index funds reduce their active share when volatility rises. I re-

estimate 28 (table 2) using only funds designated as index funds by CRSP or Morningstar, or 

whose names indicate that they are passively managed (see section 3 for details). Consistent 

with the objective function described above, these passive vehicles do not exhibit the same 

decrease in active share that actively managed funds show when S&P 500 index volatility rises. 

If anything the relationship appears to be slightly positive, but the coefficients on volatility 

(first row) are insignificant for most specifications whether I use historical standard deviation 

or the GARCH(1,1) forecast. Active share remains persistent with a coefficient on its lagged 

values of around 0.11, but it is much less persistent than for the actively managed funds. The 

base level of active share is also lower, as shown by an intercept between 0.10 and 0.15, again 

consistent with the expected behaviour of index funds.  

The second set of placebo tests uses the same portfolio sorting approach described in section 

5. The difference is that now I compute the aggregate deviation from benchmark for each stock 

using only the portfolio holdings of index funds, banks, insurance companies, and pension 

funds (separately), rather than the holdings of investment advisors. I then form underweight-

minus-overweight (UMO) portfolios that are long stocks in the lowest deviation quintile (1) 

and short stocks in the highest deviation quintile (5). 

Table 13 reports the returns on these portfolios for five volatility-change quintiles. The 

returns on the investment-advisor-deviation UMO portfolio (see table 8) are shown in the first 

column for comparison. I report raw portfolio returns as these are the most likely to show 

statistically significant results (alphas tend to be closer to zero), and thus make it easier to reject 

the null hypothesis that the portfolios have zero average returns when volatility rises or falls.  

I am unable to consistently reject this hypothesis for any of the placebo institution types. 

Aside from sporadic cases of statistical significance at the 10% level, which are to be expected 

due to type I error, returns across volatility-change states are effectively zero for the UMO 

portfolios based on index funds (column 2), insurance companies (column 3), and pension 

funds (column 4). In addition, I do not observe the pattern of increasing portfolio returns when 

moving from a fall in volatility to a rise in volatility, which can be seen for investment advisors 

(column 1). There is some indication, mostly in the second half of the sample (panel B), that 

banks (column 5) show the opposite pattern: UMO portfolio returns decrease and ultimately 

become significantly negative as we move from low to high volatility-change states (-5.4%, 

significant at the 5% level, for the top volatility-change quintile). However, these returns 

appear to be driven entirely by factor exposures. Column 6 reports the Fama-French-Carhart 

alphas for banks’ UMO portfolio, which are again economically and statistically close to zero 
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across all volatility-change quintiles. In untabulated results, I confirm that banks tend to be 

overweight in low-beta stocks. 

The difference between the price effects observed for the advisory sector and for other 

institution types is striking, and lends further credibility to the proposed incentive-based 

mechanism.  

 

7. Conclusion 

This paper investigates how asset prices are distorted as a result of the incentives generated 

by benchmarking, a ubiquitous feature of the fund management industry. Intuitively, risk-

averse preferences over relative returns induce a penalty for tracking error variance for 

benchmarked institutions. When aggregate volatility rises, in order to maintain an optimal 

portfolio allocation, benchmarked institutions seek to reduce the absolute deviation of their 

portfolio weights from those of the benchmark, buying underweight stocks and selling 

overweight stocks. Since these shifts in demand are not offset by other market participants 

(who have different incentives), assets that are collectively underweight by the advisory sector 

see their equilibrium prices rise relative to those that are collectively overweight. The 

difference in returns can be substantial: a portfolio of underweight minus overweight stocks 

(UMO) returns 7% to 8% in quarters where volatility rises most (fifth quintile) and -2.5% to -

5% in quarters where volatility falls most (first quintile). Prices rebound the following quarter: 

the UMO portfolio returns -7% to -8% the quarter after large rises in volatility, and 2% to 4% 

the quarter after large decreases in volatility. The price reversal coincides with a reversal in 

volatility, supporting an equilibrium mechanism.  

The UMO portfolio returns are robust to risk-adjustment using standard asset pricing factor 

models and controls for stock characteristics in a stock-level regression framework. All results 

are also robust to controlling for fund flows. I document these effects only for actively-

managed form-13F investment advisors, and not for other types of institutions that either invest 

passively or do not have strong incentives to care about relative performance. The price 

distortions I observe occur precisely when aggregate uncertainty is rising and informative 

prices would be most beneficial. The results therefore have large potential consequences for 

real outcomes such as firm investment and M&A transactions.  
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Appendix 

 

A.1 Model solution 

Households solve: 

max:; <3=− exp>−-/23/4./′� + (1 − .0�1)��5?@											 
=	max:; 23/4./��$ + (1 − ./′1)��5 − 12 -/(23/)�./′Σ$./ 

(40) 

by the properties of the normal distribution. Using the fact that Σ$ is diagonal with elements ���, the FOCs can be written: 

23/4��$ − ��5 − 12 -/(23/)����.�/ = 0. (41) 

Rearranging gives: 

.�/ = ��$ − ��-/23/(��$)�. (42) 

Substituting in for ��$ = ��/�� and (��$)� = ���/���, I obtain: 

.�/ = �� − ����-/23/��� ∙ ��. (43) 

Institutions solve: 

max:C <3=− exp>−-02304(.0 − )�� + (1 − .0�1)��5?@																											 
=	max:C 2304(.0 − )��$ + (1 − .0�1)��5 − 12 -(230)�(.0 − )�Σ$(.0 − ), (44) 

by the properties of the normal distribution. Using the fact that Σ$ is diagonal with elements ���, the FOCs can be written: 

2304��$ − ��5 − 12 -0(230)����(.�0 − �) = 0. (45) 
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Rearranging gives: 

.�0 = ��$ − ��-0230(��$)� + � . (46) 

Substituting in for ��$ = ��/�� and (��$)� = ���/���, I obtain: 

.�0 = �� − ����-0230��� ∙ �� + � . (47) 

The market clearing condition is as follows: 

23/.�/ + 230.�0 = ��∗. (48) 

Substituting in for .�/ and .�0 using equations 43 and 47: 

�� − ��∗��-/��� + �� − ��∗��-0��� + 230���∗ = 1. (49) 

Setting 23/ = 230 = 23 and -/ = -0 = -: 

2(�� − ��∗��)-��� + 23���∗ = 1. (50) 

Solving for ��∗ gives: 

��∗ = 2�� − -��� ± F(2�� − -���)� + 8-���23���4�� . (51) 

One of these solutions is always positive and the other always negative, since ��, -,23, ��� ≥0. Given that prices must be positive, the valid solution is the one shown in equation 13. 

Substituting the expression for ��∗ in equation 13 into equations 43 and 47 and simplifying, 

gives: 
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.�/∗ = 2�� − -��� − 4�23�� + F(2�� − -���)� + 8-���23���823��  

= ��∗223 − �2 ;																																																																													 
(52) 

.�0∗ = 2�� − -��� + 4�23�� + F(2�� − -���)� + 8-���23���823��  

= ��∗223 + �2 .																																																																																 
(53) 

To derive the implications of a change in the aggregate component of volatility, substitute �� = �! + #� into equations 51 and 53, and compute partial derivatives with respect to �!: 

]��∗]�! = -�!2 � -�!� − 2�� + 423���q(-�!� − 2��)� + 8-�!�23��� − 1� ; (54) 

].�0∗]�! = -�!423�� � -�!� − 2�� + 423���q(-�!� − 2��)� + 8-�!�23��� − 1�. (55) 

These derivatives will both be zero when:  

-�!� − 2�� + 423��� = F(-�!� − 2��)� + 8-�!�23���. (56) 

Equation 56 is implicitly quadratic. One solution can be found by squaring both sides: 

4-�!� − 2�� + 423���5� = (-�!� − 2��)� + 8-�!�23���. 
⟹ (-�!� − 2��)� + 823���(-�!� − 2��) + 4423���5� 																= (-�!� − 2��)� + 8-�!�23��� 
⟹ 2(-�!� − 2��) + 423��� = 2-�!�																																																			 
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⟹ � = ����23.																																																																																													 (57) 

The other solution can be found by inspection: setting � = 0 leaves: 

-�!� − 2�� = q(-�!� − 2��)�, (58) 

which holds trivially, provided -�!� − 2�� is positive. 

 The solution � = 0 implies the stock is not part of the benchmark. Thus I focus on the 

solution � = ��/(��23). Substituting � = ��/(��23) 	+ �  (where � > 0)	into the RHS of 

equation 56 gives: 

F(-�!� − 2��)� + 8-�!��� 	+ 8-�!�23���. (59) 

Expanding (-�!� − 2��)� and simplifying gives: 

F(-�!� + 2��)� 	+ 8-�!�23���. (60) 

Substituting � = ��/(��23) 	+ �  (where � > 0)	into the LHS of equation 56 gives: 

-�!� + 2�� + 423���, (61) 

which can be rewritten as: 

F4-�!� + 2�� + 423���5�. (62) 

Expanding the brackets and simplifying gives: 

F(-�!� + 2��)� 	+ 8-�!�23��� + 1623���(� + 23���) 

> F(-�!� + 2��)� 	+ 8-�!�23��� = �²s,																																				 (63) 
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where the inequality holds because =23, �� , �, �@ > 0.  

Therefore,  

� > ����23 ⟹ ]��∗]�! > 0	���	 ].�0∗]�! > 0. (64) 

 

A.2 Price distortion regression with GARCH forecast of volatility  

Table A.1 shows the results of the regression test for price distortions (equation 37) using 

changes in a GARCH(1,1) forecast of volatility instead of changes in the quarterly standard 

deviation of S&P 500 index returns. The results are highly similar to those reported in table 6. 
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Figure 1 

This figure plots the share of the US stock market held by various institution types from 1980 to 2014. Stock 

holdings are taken from form-13F mandatory holdings disclosures. Institution types are identified by Thomson 

Reuters, except for hedge funds and index funds. Hedge funds are identified as in Agarwal, Jiang, Tang, and Yang 

(2013). Index funds are identified by fund name and Morningstar/CRSP index fund flags (see section 3). After 

accounting for the holdings of all institutions, the remainder is assumed to represent the household sector. 

However this remainder includes some institutions that are too small to be represented in the 13F data. 
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Figure 2 

Panel A of this figure plots the quarterly AUM-weighted average active share of the investment advisory sector 

(type 4 in Thomson Reuters S34 file (13F)) for five quintiles of S&P 500 index volatility. Active share is defined 

as the sum of absolute deviations of portfolio weights minus benchmark weights (definition 24), with the 

benchmark being the S&P 500 index. Panel B plots the return on a portfolio of underweight (quintile 1) minus 

overweight (quintile 5) stocks for five quintiles of changes in S&P 500 volatility. Stocks are classed as 

underweight or overweight based on log average deviation from benchmark (definition 26) among investment 

advisors. In both panels, the 95% confidence intervals are derived from standard errors clustered by quarter, and 

the sample runs from 1997-2014. 
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Figure 3 

This figure plots the predicted responses of the institution’s deviation from benchmark weight (.�0 − �) in stock � and the price of stock � to changes in the aggregate component of return volatility (�!$), according to the model 

detailed in section 2. The other model parameters are held fixed: �� = 10; - = 4; 	�� = 1, and 23 = 100. The 

plots are typical. Several values for the benchmark weight (�) are plotted on the same axes. The parameter values 

are such that � > 0.1 implies the stock is underweight, and � < 0.1 implies that it is overweight. 
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Table 1 

Benchmarks 

Mutual fund benchmarks reported in Morningstar Direct (US equity only), 
ranked by share of total assets under management (average over 1980-2014). 
Also shown is the number of funds reporting each benchmark. 

 

Primary Prospectus Benchmark % of AUM No. of Funds 

S&P 500 57.49 5860 

CRSP indices 8.95 38 

Other S&P indices 6.68 1437 

Russell 1000 Value 5.57 1039 

Other Russell indices 5.47 1176 

Russell 1000 Growth 4.37 1109 

Other US Equity indices 3.17 587 

Russell 3000 1.84 636 

Russell 1000 1.41 437 

Russell 2000 1.35 723 

Russell 3000 Growth 1.21 169 

Russell 2000 Value 1.00 485 

Russell 2000 Growth 0.70 575 

Russell 3000 Value 0.67 155 

No reported benchmark 0.12 11572 
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Table 2 

Active share and aggregate volatility 

This table reports the estimated coefficients from a regression of end-of-quarter-� active share (rs�,t) on S&P 

500 volatility forecasts using information up to quarter � (��t�&�) and fund-level control variables: the fund’s 

previous-quarter active share (rs�,tc�), the log of assets under management (����,tc�), and fund-level fixed 

effects. The sample consists only of actively-managed funds that appear in both the Morningstar Direct database 

and the Thomson Reuters S12 file (formerly CDA/Spectrum database), and who report the S&P 500 as their 

primary benchmark. The formal regression specification is given in equation 28. T-statistics are reported in 

parentheses below the coefficient estimates, based on standard errors clustered by quarter. Statistical significance 

is indicated by asterisks: * denotes significance at the 10% level; ** denotes significance at the 5% level; and *** 

denotes significance at the 1% level.  

Dependent Variable: rs�,t 

 (1) (2) (3) (4) �t�&� -0.122*** -0.045*** -0.227*** -0.076*** 

 (-13.48) (-15.81) (-14.11) (-16.56) 

rs�,tc�  0.695***  0.691*** 

  (44.81)  (44.40) 

����,tc�  -0.007***  -0.007*** 

  (-12.62)  (-12.60) 

³��yx~y�� 0.816*** 0.320*** 0.834*** 0.329*** 

 (182.81) (20.51) (185.04) (20.76) 

Fund Fixed Effects No Yes No Yes 

Vol. estimator Std. Dev. Std. Dev. GARCH(1,1) GARCH(1,1) 

Observations 59,877 52,563 59,877 52,563 

Adj. �� 0.005 0.918 0.007 0.919 

 

  



51 
 

Table 3 

Absolute deviations and cross-sectional stock volatility  

This table reports the estimated coefficients from a stock-level regression of absolute aggregate 

deviation from benchmark in quarter �—��y�{,t�—on the volatility of the individual stock (��{,t), and 

various other stock characteristics measured as of quarter � − 1 (see equations 30 and 31). Aggregate 
deviation from benchmark is computed as the log of the AUM-weighted average portfolio weight 
minus the log of the benchmark weight (approximately equal to the average percentage deviation 
from the benchmark). Only the holdings of investment advisors (type 4 in Thomson Reuters S34 file) 
are used to compute the average portfolio weight. Beta is the single-factor market beta estimated 
from monthly returns over a five-year rolling window; log(Size) is the natural logarithm of the stock’s 
market capitalization; log(B/M) is the natural logarithm of the stock’s book-to-market ratio; div. yield 
is the ratio of dividends paid in the past year to the current market price; turnover is the stock’s 
quarterly trading volume as a fraction of shares outstanding; and ret(t) is the stock’s return in quarter �. Standard errors are clustered by quarter. T-statistics are reported in parentheses below the 
coefficient estimates. Statistical significance is indicated by asterisks: * denotes significance at the 
10% level; ** denotes significance at the 5% level; and *** denotes significance at the 1% level. 

 

Dependent Variable: ��y�{,t� 
  (1) (2) (3) (4) (5) ��{,t  -0.039 -0.068*** -0.139*** -0.039** -0.047** 

 (-1.49) (-3.51) (-5.04) (-1.97) (-2.08) 

Beta   -0.035***  -0.043*** 

   (-7.07)  (-6.18) 

Log(Size)   -0.179***  -0.155*** 

   (-40.14)  (-32.38) 

Log(B/M)   0.036***  0.013*** 

   (8.73)  (2.66) 

Div. Yield   -0.063  -0.209*** 

   (-1.43)  (-3.41) 

Turnover   0.006  -0.039*** 

   (0.97)  (-4.35) 

Ret(t-1)   0.080***  0.061*** 

   (6.06)  (2.94) 

Ret(t-2)   0.081***  0.078*** 

   (6.29)  (3.60) 

Ret(t-3)   0.051***  0.055** 

   (4.44)  (2.51) 

Ret(t-4)   0.053***  0.058*** 

   (4.76)  (2.90) 

Ret(t-12,t-4)   0.005**  0.006** 

      (2.10)   (2.02) 

Constant Yes Yes Yes Yes Yes 

Stock Fixed Effects Yes Yes Yes No No 

Year Fixed Effects No Yes Yes No No 

Stock × Year Fixed Effects No No No Yes Yes 

Observations 67,489 67,489 57,743 67,489 57,743 

Adj. �� 0.531 0.582 0.668 0.590 0.639 
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Table 4 

 Absolute deviations, stock volatility, and fund flows 

This table reports the estimated coefficients from a stock-level regression of absolute aggregate 

deviation from benchmark in quarter �—��y�{,t�—on the volatility of the individual stock (��{,t), 
aggregate percentage fund flows to/from investment advisors who hold the stock (r��¦£¤¥{,t), and 

various stock characteristics measured as of quarter � − 1 (see equations 34 and 35). Aggregate 
deviation from benchmark is computed as the log of the AUM-weighted average portfolio weight 
minus the log of the benchmark weight (approximately equal to the average percentage deviation 
from the benchmark). Only the holdings of investment advisors (type 4 in Thomson Reuters S34 file) 
are used to compute the average portfolio weight. Stock characteristics are the same as in table 3, but 
are not reported for brevity. Standard errors are clustered by quarter in panel A and by stock in panel 
B. T-statistics are reported in parentheses below the coefficient estimates. Statistical significance is 
indicated by asterisks: * denotes significance at the 10% level; ** denotes significance at the 5% 
level; and *** denotes significance at the 1% level. 

 

Dependent Variable: ��y�{,t� 
  (1) (2) (3) (4) (5) 

Panel A: Clustering by Quarter ��{,t -0.038 -0.069*** -0.153*** -0.039** -0.047** 

 (-1.51) (-3.53) (-5.44) (-1.98) (-2.11) r��¦£¤¥{,t 0.235*** 0.058 0.053 0.183** 0.108 

 (2.79) (0.90) (0.87) (2.55) (1.50) 

Panel B: Clustering by Stock ��{,t -0.038** -0.069*** -0.153*** -0.039*** -0.047*** 

 (-2.33) (-3.49) (-7.77) (-2.59) (-2.70) r��¦£¤¥{,t 0.235*** 0.058 0.053 0.183*** 0.108** 

 (4.44) (1.18) (1.12) (3.56) (2.35) 

Constant Yes Yes Yes Yes Yes 

Stock Fixed Effects Yes Yes Yes No No 

Year Fixed Effects No Yes Yes No No 

Stock × Year Fixed Effects No No No Yes Yes 

Stock Characteristics No No Yes No Yes 

Observations 67,489 67,489 57,743 67,489 57,743 

Adj. �� 0.533 0.585 0.627 0.593 0.640 
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Table 5 

Determinants of aggregate overweight/underweight  

This table reports coefficient estimates from a regression that relates signed aggregate institutional 
deviations from benchmark (in each stock) to a set of stock characteristics recorded one quarter prior 
(see equation 36). Aggregate deviation from benchmark is computed as the log of the AUM-weighted 
average portfolio weight minus the log of the benchmark weight (equation 29). Only the holdings of 
investment advisors (type 4 in Thomson Reuters S34 file) are used to compute the average portfolio 
weight. Beta is the single-factor market beta estimated from monthly returns over a five-year rolling 
window; log(Size) is the natural logarithm of the stock’s market capitalization; log(B/M) is the natural 
logarithm of the stock’s book-to-market ratio; div. yield is the ratio of dividends paid in the past year 
to the current market price; turnover is the stock’s quarterly trading volume as a fraction of shares 

outstanding; and ret(t) is the stock’s return in quarter �. Standard errors are clustered by quarter. T-
statistics are reported in parentheses below the coefficient estimates. Statistical significance is 
indicated by asterisks: * denotes significance at the 10% level; ** denotes significance at the 5% 
level; and *** denotes significance at the 1% level. 

 

  (1) (2) (3) (4) (5) (6) (7) 

Beta 0.184***      0.056*** 

 (9.17)      (3.63) 

Log(Size)  -0.253***     -0.270*** 

  (-24.55)     (-21.67) 

Log(B/M)   0.125***    -0.042*** 

   (6.83)    (-4.05) 

Div. Yield    -0.029   -2.916*** 

    (-0.79)   (-4.95) 

Turnover     0.007  0.082** 

     (0.19)  (2.61) 

Ret(t-1)      0.032 0.076** 

      (0.43) (2.09) 

Ret(t-2)      0.053 0.095*** 

      (0.69) (3.77) 

Ret(t-3)      0.029 0.076* 

      (0.39) (1.90) 

Ret(t-4)      -0.003 0.052* 

      (-0.06) (1.75) 

Ret(t-12,t-4)      -0.017 0.007 

            (-1.03) (0.99) 

Constant Yes Yes Yes Yes Yes Yes Yes 

Observations 66,811 67,480 65,106 66,970 67,224 59,660 57,743 

Adj. �� 0.019 0.354 0.024 0.000 0.000 0.001 0.415 
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Table 6 

Regression test for price distortions 

This table reports the estimated coefficients from a regression of quarterly stock returns (�y�{,t) on the interaction 

between investment advisors’ beginning-of-period aggregate deviation from benchmark (�y�{,tc�) and the 

change in S&P500 quarterly standard deviation over the quarter (Δ�t�&�). The formal specification is given in 

equation 37. Stocks are indexed by � and calendar quarters by �. Aggregate deviation from benchmark is computed 
as the log of the AUM-weighted average portfolio weight minus the log of the benchmark weight (equation 29). 
The benchmark is the S&P 500 index. Only the holdings of investment advisors (type 4 in Thomson Reuters S34 
file) are used to compute the average portfolio weight. Also included as explanatory variables are volatility 

interactions with estimated market beta of the stock (��{,t), the natural logarithm of the stock’s market 

capitalization (´¤�(s�µy{,t)) and other stock characteristics (see section 5.2). T-statistics are reported in parentheses 
below the coefficient estimates, based on standard errors clustered by quarter. Statistical significance is indicated 
by asterisks: * denotes significance at the 10% level; ** denotes significance at the 5% level; and *** denotes 
significance at the 1% level. 

Dependent variable: �y�{,t 
 (1) (2) (3) (4) (5) (6) 

�y�{,tc� × Δ��t�&� -75.31*** -19.90*** -34.38*** -108.71*** -40.22*** -39.80*** 

 (-3.63) (-2.86) (-3.59) (-4.89) (-5.57) (-4.30) �y�{,tc�  -0.04 -1.08**  -0.76 -1.80*** 

  (-0.10) (-2.58)  (-1.31) (-3.14) Δ��t�&�  -58.30*** 257.60***  -64.16*** 190.60** 

  (-3.87) (3.17)  (-3.02) (2.15) Δ��t�&� × ��{,t   -47.15***   -53.20*** 

   (-5.82)   (-5.99) Δ��t�&� × ´¤�(s�µy{,t)   -11.52***   -8.59** 

   (-3.37)   (-2.47) 

Constant Yes Yes Yes Yes Yes Yes 

Stock Characteristics No No Yes No No Yes 

Char. Interactions No No Yes No No Yes 

Start of Sample 1980 1980 1980 1997 1997 1997 

Observations 66,367 66,367 57,303 34,525 34,525 32,555 

Adj. �� 0.047 0.096 0.110 0.080 0.124 0.151 
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Table 7 

Price distortions and fund flows 

This table reports the estimated coefficients from the regression in table 5, but also adds the interaction between 

investment advisors’ beginning-of-period aggregate deviation from benchmark (�y�{,tc�) and aggregate fund 

flows to the advisors holding this particular stock (¢£¤¥{,t). The formal specification is given in equation 38. 

Stocks are indexed by � and calendar quarters by �. Aggregate deviation from benchmark is computed as the log 
of the AUM-weighted average portfolio weight minus the log of the benchmark weight (equation 29). The 
benchmark is the S&P 500 index. Only the holdings of investment advisors (type 4 in Thomson Reuters S34 file) 
are used to compute the average portfolio weight. Aggregate fund flows are computed as the AUM-weighted 
average percentage change in assets (after adjusting for returns) among investment advisors who hold the stock 
(see equation 33). Also included as explanatory variables are volatility interactions with estimated market beta of 

the stock (��{,t), the natural logarithm of the stock’s market capitalization (´¤�(s�µy{,t)) and other stock 

characteristics (see section 5.2). T-statistics are reported in parentheses below the coefficient estimates, based on 
standard errors clustered by quarter. Statistical significance is indicated by asterisks: * denotes significance at the 
10% level; ** denotes significance at the 5% level; and *** denotes significance at the 1% level. 

Dependent variable: �y�{,t 
 (1) (2) (3) (4) (5) (6) 

�y�{,tc� × Δ��t�&� -68.86*** -19.38*** -26.35*** -108.6*** -40.83*** -40.90*** 

 (-5.12) (-2.95) (-3.37) (-4.93) (-5.94) (-4.77) �y�{,tc� × ¢£¤¥{,t 19.96** 18.96*** 20.25*** -1.79 23.78* 26.50** 

 (2.00) (3.06) (3.21) (-0.08) (1.81) (2.33) �y�{,tc�  -0.44 -1.40***  -1.17* -2.35*** 

  (-1.14) (-3.08)  (-1.95) (-3.62) Δ��t�&�  -58.65*** 145.85  -63.28*** 198.10** 

  (-3.95) (1.52)  (-3.03)   (2.27)   ¢£¤¥{,t  8.52 3.21  -22.54 -21.37    

  (0.39) (0.16)  (-1.15) (-1.17) 

Constant Yes Yes Yes Yes Yes Yes 

Stock Characteristics No No Yes No No Yes 

Char. Interactions No No Yes No No Yes 

Start of Sample 1980 1980 1980 1997 1997 1997 

Observations 66,878 66,878 57,774 34,532 34,532 32,562 

Adj. �� 0.058 0.098   0.132 0.080 0.125   0.153   
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Table 8 

Portfolio sorts: returns in quarter � 

This table reports quarter-� returns on five value-weighted portfolios formed by ranking stocks on aggregate 

deviation from benchmark in quarter � − 1. Low quintiles indicate underweight stocks and high quintiles indicate 
overweight stocks. Aggregate deviation is computed as the log of the AUM-weighted average portfolio weight 
minus the log of the benchmark weight (approximately equal to the average percentage deviation from the 
benchmark). The benchmark is the S&P 500 index. Only the holdings of investment advisors (type 4 in Thomson 
Reuters S34 file) are used to compute the average portfolio weight. Returns are reported for different S&P 500 
volatility-change quintiles, with low quintiles representing declines in volatility and high quintiles representing 
volatility increases. Returns on the underweight-minus-overweight portfolio, formed by subtracting the fifth from 
the first underweight/overweight quintile portfolio, are shown in the final column. T-statistics are reported in 
parentheses below the coefficient estimates, based on standard errors clustered by quarter. Statistical significance 
is indicated by asterisks: * denotes significance at the 10% level; ** denotes significance at the 5% level; and *** 
denotes significance at the 1% level. 
 

Return on Quintile Portfolios 

Underweight/Overweight Quintiles 

    
1 2 3 4 5 1-5 

Panel A: 1980 – 2014  

V
o

la
ti

li
ty

 C
h

an
g

e 
Q

u
in

ti
le

 

1 
5.379*** 8.021*** 8.114*** 7.292*** 7.919*** -2.540** 

(2.78) (6.78) (5.34) (5.29) (5.85) (-2.15) 

2 
3.805*** 4.518*** 4.785*** 4.051*** 3.684** 0.121 

(3.73) (4.04) (4.99) (3.32) (2.39) (0.10) 

3 
0.328 1.420 1.305 0.111 1.539 -1.211 

(0.22) (1.23) (1.14) (0.06) (0.95) (-0.66) 

4 
0.836 1.725 1.807 -0.801 -1.597 2.433* 

(0.38) (0.84) (1.00) (-0.28) (-0.58) (1.87) 

5 
-5.143*** -6.772** -7.418*** -9.644*** -12.195*** 7.052** 

(-2.68) (-2.56) (-2.66) (-3.57) (-3.74) (2.26) 

Panel B: 1997 – 2014  

V
o

la
ti

li
ty

 C
h

an
g

e 
Q

u
in

ti
le

 

1 
5.610** 8.575*** 8.757*** 8.263*** 10.631*** -5.021*** 

(2.54) (6.57) (4.89) (4.71) (7.49) (-3.03) 

2 
3.733*** 4.571*** 4.954*** 4.411** 4.292 -0.559 

(3.08) (3.36) (4.19) (2.54) (1.53) (-0.28) 

3 
-0.050 0.975 0.598 -1.391 -0.545 0.495 

(-0.03) (0.78) (0.48) (-0.68) (-0.29) (0.24) 

4 
-0.116 1.075 1.290 -2.774 -4.408 4.292 

(-0.04) (0.39) (0.49) (-0.62) (-0.78) (1.27) 

5 
-5.418*** -7.133** -7.591** -9.882*** -13.917*** 8.499** 

(-2.69) (-2.57) (-2.56) (-3.35) (-3.74) (2.44) 
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Table 9 

Portfolio sorts: returns in quarter � + 1  

This table reports quarter � + 1 returns on five value-weighted portfolios formed by ranking stocks on aggregate 

deviation from benchmark in quarter � − 1. Low quintiles indicate underweight stocks and high quintiles indicate 
overweight stocks. Aggregate deviation is computed as the log of the AUM-weighted average portfolio weight 
minus the log of the benchmark weight (approximately equal to the average percentage deviation from the 
benchmark). The benchmark is the S&P 500 index. Only the holdings of investment advisors (type 4 in Thomson 
Reuters S34 file) are used to compute the average portfolio weight. Returns are reported for different S&P 500 
volatility-change quintiles, with low quintiles representing declines in volatility and high quintiles representing 
volatility increases. Returns on the underweight-minus-overweight portfolio, formed by subtracting the fifth from 
the first underweight/overweight quintile portfolio, are shown in the final column. T-statistics are reported in 
parentheses below the coefficient estimates, based on standard errors clustered by quarter. Statistical significance 
is indicated by asterisks: * denotes significance at the 10% level; ** denotes significance at the 5% level; and *** 
denotes significance at the 1% level. 
 

Return on Quintile Portfolios 

Overweight/Underweight Quintiles 

    
1 2 3 4 5 1-5 

Panel A: 1980 – 2014  

V
o

la
ti

li
ty

 C
h

an
g

e 
Q

u
in

ti
le

 

1 
2.652* 4.363** 4.003** 2.924 0.348 2.304 

(1.72) (2.46) (2.15) (1.40) (0.13) (1.06) 

2 
1.113 0.892 0.421 1.016 1.222 -0.109 

(0.83) (0.53) (0.22) (0.46) (0.54) (-0.10) 

3 
0.821 0.614 1.169 1.785 2.956 -2.135 

(0.57) (0.33) (0.62) (0.97) (1.27) (-1.02) 

4 
2.194* 2.416** 3.424*** 2.644 2.489 -0.295 

(1.93) (2.23) (3.06) (1.54) (1.45) (-0.32) 

5 
0.795 1.082 1.029 2.430 8.555*** -7.76*** 

(0.33) (0.39) (0.31) (0.98) (3.40) (-3.05) 

Panel B: 1997 – 2014  

V
o

la
ti

li
ty

 C
h

an
g

e 
Q

u
in

ti
le

 

1 
3.022 5.329** 5.494** 4.682** -0.811 3.833 

(1.54) (2.56) (2.48) (2.01) (-0.38) (1.48) 

2 
0.232 0.160 -0.225 0.498 2.809 -2.577 

(0.12) (0.06) (-0.08) (0.14) (0.50) (0.58) 

3 
-1.262 -1.227 -0.813 -0.499 -2.073 0.811 

(-0.65) (-0.49) (-0.31) (-0.18) (-0.49) (0.20) 

4 
2.418 2.541 3.912* 2.825 3.644 -1.226 

(0.98) (1.28) (1.73) (0.61) (0.51) (0.26) 

5 
-0.728 0.184 -0.236 0.713 6.244** -6.972*** 

(-0.25) (0.06) (-0.06) (0.22) (2.29) (3.06) 
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Table 10 

Volatility changes in quarter � + 1  

This table reports the change in S&P500 volatility from quarter � to 

quarter � + 1 for each volatility-change quintile from table 6. T-
statistics are reported in parentheses below the coefficient estimates. 
Standard errors are clustered by quarter. Statistical significance is 
indicated by asterisks: * denotes significance at the 10% level; ** 
denotes significance at the 5% level; and *** denotes significance at 
the 1% level. 

 

Average subsequent (� + 1) change in volatility  

    
1980 – 2014  1997 – 2014  

V
o

la
ti

li
ty

 C
h

an
g

e 
Q

u
in

ti
le

 (
�) 1 

0.011 -0.009 

(0.55) (-0.39) 

2 
0.010 0.013 

(1.36) (0.87) 

3 
0.020* 0.027 

(1.76) (1.51) 

4 
-0.005 0.006 

(-0.70) (0.35) 

5 
-0.032*** -0.038** 

(-3.36) (-2.89) 
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Table 11 

Portfolio sorts: alphas  

This table reports quarter-� risk-adjusted returns on five value-weighted portfolios formed by ranking stocks on 

aggregate deviation from benchmark in quarter � − 1. Low quintiles indicate underweight stocks and high 
quintiles indicate overweight stocks. Aggregate deviation is computed as the log of the AUM-weighted average 
portfolio weight minus the log of the benchmark weight (approximately equal to the average percentage deviation 
from the benchmark). The benchmark is the S&P 500 index. Only the holdings of investment advisors (type 4 in 
Thomson Reuters S34 file) are used to compute the average portfolio weight. Returns are reported for different 
S&P 500 volatility-change quintiles, with low quintiles representing declines in volatility and high quintiles 
representing volatility increases. Returns on the underweight-minus-overweight portfolio, formed by subtracting 
the fifth from the first underweight/overweight quintile portfolio, are shown in the final column. I use four standard 
asset pricing factor models to adjust returns: the Fama-French three-factor model (FF), the Fama-French three-
factor model plus the Pástor-Stambaugh liquidity factor (FF+LIQ), the Fama-French-Carhart four-factor model 
(FFC), and the Fama-French-Carhart model plus the Pástor-Stambaugh liquidity factor (FFC+LIQ). T-statistics 
are reported in parentheses below the coefficient estimates, based on standard errors clustered by quarter. 
Statistical significance is indicated by asterisks: * denotes significance at the 10% level; ** denotes significance 
at the 5% level; and *** denotes significance at the 1% level. 
 

Panel A: 1980 – 2014  

"UMO" 1-5 Quintile Portfolios 

  Raw Return FF Alpha FF+LIQ Alpha FFC Alpha FFC+LIQ Alpha 

V
o

la
ti

li
ty

 C
h

an
g

e 
Q

u
in

ti
le

 

1 
-2.540** 1.068** 1.23** 0.817 0.987 

(-2.15) (2.08) (2.33) (1.43) (1.63) 

2 
0.121 1.071* 1.073* 0.554 0.519 

(0.10) (1.84) (1.88) (0.81) (0.71) 

3 
-1.211 1.674** 1.564** 1.004 0.814 

(-0.66) (2.41) (2.20) (1.45) (1.23) 

4 
2.433* 1.020* 0.97 0.418 0.339 

(1.87) (1.86) (1.62) (0.82) (0.60) 

5 
7.052** 4.008*** 3.965*** 3.146*** 3.061*** 

(2.26) (4.95) (4.66) (3.87) (3.65) 

Panel B: 1997 – 2014  

"UMO" 1-5 Quintile Portfolios 

  Raw Return FF Alpha FF+LIQ Alpha FFC Alpha FFC+LIQ Alpha 

V
o

la
ti

li
ty

 C
h

an
g

e 
Q

u
in

ti
le

 

1 
-5.021*** 0.961 0.982 0.832 0.857 

(-3.03) (0.93) (0.59) (1.44) (1.25) 

2 
-0.559 0.24 0.476 0.075 0.238 

(-0.28) (0.20) (0.45) (0.10) (0.32) 

3 
0.495 2.549*** 2.401** 1.688** 1.439 

(0.24) (2.78) (2.27) (2.14) (1.64) 

4 
4.292 1.330** 1.247** 0.298 0.144 

(1.27) (2.59) (2.10) (0.62) (0.22) 

5 
8.499** 5.047*** 4.998*** 3.963*** 3.870*** 

(2.44) (6.05) (5.67) (4.44) (4.06) 
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Table 12 

Active share and volatility—index funds 

This table reports the estimated coefficients from a regression of end-of-quarter-� 

active share (rs�,t) on S&P 500 volatility forecasts using information up to quarter � 

(��t�&�) and fund-level control variables: the fund’s previous-quarter active share 

(rs�,tc�), the log of assets under management (����,tc�), and fund-level fixed 

effects. The sample consists only of S&P 500 index funds that appear in both the 

Morningstar Direct database and the Thomson Reuters S12 file (formerly 

CDA/Spectrum database). The formal regression specification is given in equation 

28. T-statistics are reported in parentheses below the coefficient estimates, based on 

standard errors clustered by quarter. Statistical significance is indicated by asterisks: 

* denotes significance at the 10% level; ** denotes significance at the 5% level; and 

*** denotes significance at the 1% level.  

 Dependent Variable 

 rs�,t 

 (1) (2) (3) (4) �t�&� 0.054** 0.021 0.066 -0.010 

 (1.99) (1.53) (1.55) (-0.49) rs�,tc�  0.113***  0.112*** 

  (6.36)  (6.31) ����,tc�  -0.005**  -0.005* 

  (-2.01)  (-1.94) ³��yx~y�� 0.102*** 0.146*** 0.100*** 0.150*** 

 (7.24) (5.57) (6.69) (5.65) 

Constant Yes Yes Yes Yes 

Fund Fixed Effects No Yes No Yes 

Vol. estimator Std. Dev. Std. Dev. GARCH GARCH 

Observations 59,877 52,563 59,877 52,563 

Adj. �� 0.005 0.918 0.007 0.919 
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Table 13 

Placebo UMO portfolios  

This table reports returns on underweight-minus-overweight (UMO) portfolios, formed by ranking on aggregate 
deviation from benchmark and subtracting the fifth deviation quintile from the first deviation quintile. Aggregate 
deviation is computed as the log of the AUM-weighted average portfolio weight minus the log of the benchmark 
weight (approximately equal to the average percentage deviation from the benchmark). The benchmark is the S&P 
500 index. Holdings used to compute average portfolio weights are taken from institutions not in the investment 

advisory sector: insurance companies (Thomson Reuters S34 type 2), pension funds/endowments (type 5), banks 
(type 1), and index funds (extracted manually—see section 3). Returns are reported for different S&P 500 
volatility-change quintiles, with low quintiles representing declines in volatility and high quintiles representing 
volatility increases. T-statistics are reported in parentheses below the coefficient estimates, based on standard 
errors clustered by quarter. Statistical significance is indicated by asterisks: * denotes significance at the 10% 
level; ** denotes significance at the 5% level; and *** denotes significance at the 1% level. 
 

UMO 1-5 Quintile Portfolios 

    

Advisors 
(Return) 

Index Funds 
(Return) 

Pensions 
(Return) 

Insurance 
(Return) 

Banks  
(Return) 

Banks  
(FFC Alpha) 

Panel A: 1980 – 2014  

V
o

la
ti

li
ty

 C
h

an
g

e 
Q

u
in

ti
le

 

1 
-2.540** -0.240 2.482 1.069 -0.780 0.223 

(-2.15) (-0.28) (1.36) (0.62) (-0.41) (0.37) 

2 
0.121 -1.214 0.116 -0.666 0.588 -0.511 

(0.10) (-1.50) (0.10) (-0.69) (1.10) (0.58) 

3 
-1.211 -0.615 -2.996 -2.853* -2.280 0.362 

(-0.66) (-0.94) (-1.53) (-1.77) (-1.37) (0.22) 

4 
2.433* -1.035* -0.678 -1.708 -2.177 -1.054* 

(1.87) (-1.89) (-0.35) (-1.04) (-1.44) (1.84) 

5 
7.052** 0.540 -1.011 0.313 -5.194 -1.064 

(2.26) (0.48) (-0.28) (0.14) (-1.30) (0.79) 

Panel B: 1997 – 2014  

V
o

la
ti

li
ty
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h

an
g

e 
Q

u
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le

 

1 
-5.021*** -1.948 -0.140 -1.086 0.777 0.920 

(-3.03) (-1.28) (-0.14) (-1.42) (0.35) (0.98) 

2 
-0.559 -2.246* -1.447 -0.842 1.889 0.867 

(-0.28) (-1.98) (-1.60) (-1.24) (2.38) (1.22) 

3 
0.495 -1.504 1.572 -0.062 -0.892 -0.105 

(0.24) (-1.12) (0.98) (-0.10) (-0.81) (-0.10) 

4 
4.292 -0.040 -0.120 -0.442 -4.418* -1.811* 

(1.27) (-0.06) (-0.06) (-0.39) (-1.94) (-1.80) 

5 
8.499** 0.640 2.041 1.641 -5.443** -0.400 

(2.44) (0.35) (1.02) (0.98) (-2.35) (-0.48) 
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Table A.1 

Regression test for price distortions using GARCH(1,1) volatility forecast 

This table reports the estimated coefficients from a regression of quarterly stock returns (�y�{,t) on the interaction 

between investment advisors’ beginning-of-period aggregate deviation from benchmark (�y�{,tc�) and the 

change in a GARCH(1,1) forecast of S&P 500 index volatility over the quarter (Δ�t�&�). The formal specification 

is given in equation 37. Stocks are indexed by � and calendar quarters by �. Aggregate deviation from benchmark 
is computed as the log of the AUM-weighted average portfolio weight minus the log of the benchmark weight 
(equation 29). The benchmark is the S&P 500 index. Only the holdings of investment advisors (type 4 in Thomson 
Reuters S34 file) are used to compute the average portfolio weight. Also included as explanatory variables are 

volatility interactions with estimated market beta of the stock (��{,t), the natural logarithm of the stock’s market 

capitalization (´¤�(s�µy{,t)) and other stock characteristics (see section 5.2). T-statistics are reported in parentheses 
below the coefficient estimates, based on standard errors clustered by quarter. Statistical significance is indicated 
by asterisks: * denotes significance at the 10% level; ** denotes significance at the 5% level; and *** denotes 
significance at the 1% level. 

Dependent variable: �y�{,t 
 (1) (2) (3) (4) (5) (6) 

�y�{,tc� × Δ��t�&� -109.07*** -51.18*** -60.10** -107.90*** -47.74*** -62.09*** 

 (-5.39) (-5.41) (-2.12) (-4.43) (-5.39) (-2.76) �y�{,tc�  0.025 -1.76***  -0.66 -0.86** 

  (0.06) (-3.39)  (-1.13)   (-2.48) Δ��t�&�  -62.38** 132.2  -58.42** 48.3 

  (-2.58) (0.99)  (-2.37) (0.60) Δ��t�&� × ��{,t   -52.85***   -44.85*** 

   (-5.80)   (-6.21) Δ��t�&� × ´¤�(s�µy{,t)   -6.07   -2.55 

   (-1.18)   (-0.75) 

Constant Yes Yes Yes Yes Yes Yes 

Stock Characteristics No No Yes No No Yes 

Char. Interactions No No Yes No No Yes 

Start of Sample 1980 1980 1980 1997 1997 1997 

Observations 67,329 67,329 57,743 34,525 34,525 32,555 

Adj. �� 0.042 0.060 0.160 0.052 0.074    0.138 

 

 


