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Abstract 

Under climate change, the average daily temperature and the frequency of extreme weather 

occurrences are expected to increase in the United States. This paper employs a stochastic 

frontier approach to examine how climate change and extreme weather affect U.S. agricultural 

productivity using 1940-1970 historical weather data (mean and variation) as the norm. We have 

four major findings. First, using temperature humidity index (THI) load and Oury index for the 

period 1960-2010 we find each state has experienced different patterns of climate change in the 

past half century, with some states incurring drier and warmer conditions than others. Second, 

the higher the THI load (more heat waves) and the lower the Oury index (much drier) will tend 

to lower a state’s productivity. Third, the impacts of THI load shock and Oury index shock 

variables (deviations from historical norm fluctuations) on productivity are more robust than the 

level of THI and Oury index variables across specifications. Fourth, we project potential impacts 

of climate change and extreme weather on U.S. regional productivity based on the estimates. We 

find that the same degree changes in temperature or precipitation will have uneven impacts on 

regional productivities, with Delta, Northeast, and Southeast regions incurring much greater 

effects than other regions, using 2000-2010 as the reference period. 
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Impacts of Climate Change and Extreme Weather on U.S. Agricultural Productivity: 

Evidence and Projection 

 

In the past four decades, the frequency of adverse weather events has increased (Parry et 

al. 2007; IPCC, 2007; Hatfield et al., 2014). Bad weather can result in higher unit production cost 

when producers try to mitigate the heat stress on animals or drought effects on crop production. 

It can also widen the distance between observed production and the feasible production frontier, 

and lower productivity estimates. According to USDA agricultural productivity statistics (USDA, 

2015), in 2013 farm output was more than 2.7 times its 1948 level. With little growth in input use, 

the growth of total factor productivity (TFP) accounted for nearly all output growth during that 

period. However, TFP growth rates fluctuate considerably from year to year in response to 

transitory events, mostly adverse weathers. Since there is a growing consensus that climate 

change is occurring and the average daily temperature and the frequency of extreme weather are 

likely to increase in the future (IPCC, EPA, NASA, 2015), how climate change or weather 

fluctuation affect agricultural productivity or economic activity have gained much attention in 

recent studies.  

In literature “weather” is usually used to address short-term variation of temperature or 

precipitation while “climate change” is usually referred to as the average level changes of weather 

outcomes (e.g., degree of temperature) that cover a long period of time. While climate change and 

weather variation are two different issues, one phenomenon of climate change is the increasing 

frequency of weather shocks (extreme weather). Therefore, it is critical to consider the case of 

extreme weather in addressing the effect of climate on agricultural productivity.   
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There are three major streams of literature studying the relationship between climate 

change/weather effect and economic activities. One body of work focuses on biophysical impacts 

through  examining the relationship between climatic factors and individual commodity production 

or productivity, such as weather and crop yield or livestock production (e.g., Cobanov, and 

Schnitkey, 2003; Schlenker and Roberts, 2009; Lobell, Schlenker, and Costa-Roberts, 2011; 

Hatfield et al. 2014; St-Pierre, Cobanov and Schnitkey, 2003; and Key and Sneeringer, 2014). A 

second body of work focusses on adaptive response at the individual/frrm level through evaluating 

how an individual farm/firm/person reacts to climatic impacts, such as a farmer’s behavior under 

uncertainty (risk management, see Schimmelpfennig, 1996; Kim and Chavas, 2003; Falco and 

Veronesi, 2013; Yang and Shumway, 2015.) The third stream of literature addresses impacts at a 

regional/national/sectoral scale, considering both biophysical effects and adaptation. They are 

usually done by quantifying the effects of climate/weather changes on aggregate economic 

performance using country/regional level data (e.g., Sachs and Warner, 1997, Dell, Jones, and 

Olken, 2009, Dell et al., 2012) or sectoral data (e.g., Malcom et al., 2012; Hatfield et al., 2014; 

Marshall et al., 2015).  

In the literature on identifying climatic impacts on aggregate economic performance, 

researchers either employ an empirical approach based on historical data, or utilize simulation 

techniques to project economic responses to climate/weather shocks based on baseline projections 

and scenarios analysis, especially in agricultural study. While projecting climatic impacts can be 

useful for informing policy or making policy recommendations, empirical studies can help identify 

the relationship between climate/weather and economic activities and provide statistical evidence 

in explaining economic phenomenon. Empirical studies can rely on either time series data or cross-
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sectional data. Although the latter contain information on geospatial differences, the statistical 

results may be biased if regionally specific characteristics are not taken into account, such as 

irrigation areas (Schlenker, Hanemann and Fisher, 2006). The advantage of incorporating time 

series is that it captures the impacts of climate change and the farmers’ adaption to these changes 

over time. Nevertheless, it could fail to capture varied effects across regions. Panel data, on the 

other hand, can preserve both desired features and avoid their weaknesses and has become a 

preferred approach in recent studies.  

Literature on the impact of climate change on crop production has shown that while 

moderate warming may benefit crop and pasture yields in temperate regions, further temperature 

increase can reduce crop yields in all regions (Carter et al., 1996; Lobell and Asner, 2003; 

Schlenker and Roberts, 2006; Tubiello and Rosenzweig, 2008.) In addition, some studies suggest 

that higher variance in climate conditions lead to lower average crop yields and greater yield 

variability (McCarl, Villaviencio, and Wu, 2008; Semenov and Porter, 1995; Ferris et al., 1998; 

among others). Weather extremes can also cause disease outbreaks and impact agricultural 

production (Yu and Babcock, 1992; Anyamba et al., 2014). In livestock studies, evidence indicates 

that when animals’ thermal environment is altered due to climate change it could affect animal 

health and reproduction. The feed conversion rate can also be affected (St-Pierre, Cobanov and 

Schnitkey, 2003; Morrison 1983; Fuquay, 1981). Mukherjee, Bravo-Ureta, and Vries (2012) and 

Key and Sneeringer (2014) indicate that an increase in temperature humidity index (THI) could 

help to explain the technical inefficiency of dairy production based on a stochastic frontier estimate. 

In an aggregate economy study, Dell, Jones, and Olken (2012) uses historical cross-countries data 

to identify the relationship between temperature shocks and economic growth. They find climatic 
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effects vary across countries with different economic development stage. They suggest that in the 

long run, countries may adapt to a particular temperature, mitigating the short-run economic 

impacts.   

In light of recent development in the literature, in this paper we use state panel data to study 

the impact of climate change and extreme weather on U.S. agricultural productivity empirically, 

from the entire farm sector aspect (including both crop and livestock production.) One major 

challenge on quantifying climatic effects on the aggregate sector is constructing appropriate 

climatic variables. Although Dell, Jones, and Olken (2012) uses historical fluctuations in 

temperature within countries to identify its effects on aggregate economic outcomes and find 

significant results, our climate variables are not limited to temperature and also include 

precipitation and humidity estimates as precipitation is relevant to crop production. Scientific 

literature suggests that a heat stress that exceeds livestock’s optimal thermoneutral zone (THI load) 

can reduce fertility, feed efficiency, weight gain, etc. (NRC, 1981; Fuquay 1981; Hansen et al., 

2001, and West 2003). THI load has been shown to be an effective measure in evaluating the 

environmental effects on livestock. The Oury index, on the other hand, is an aridity index that 

combines temperature and precipitation in the measurement, and is effective in connecting climatic 

effects to crop growth (Oury 1965, Zhang and Carter, 1997). A lower Oury index indicates drier 

conditions that would be less favorable to crop production.  Drawing from the literature we use 

historical temperature, humidity, and precipitation data to form a temperature-humidity-index 

(THI) and an Oury index (an aridity index) to construct desired climatic variables that can either 

reflect the annual changes in average weather outcome (mean level of THI and Oury indices) or 

capture the unexpected extreme weather effects (shocks of THI and Oury indies that measure the 
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degree of deviations from their respective historical (1941-1970) annual variations).  

Using constructed climatic variables and aggregate economic data within states we 

examine the relationships between the climatic variables and regional agricultural productivity.  

Given that there may be spatial heterogeneity problems we also include state characteristics 

variables—including irrigated area ratio, state level R&D, extension, and road infrastructure in 

alternative model specifications in addition to using a fixed effect approach. We further conduct 

scenario analysis to project how future temperature and precipitation changes, under climate 

change expectations, affect agricultural productivity using 2000-2010 as the reference period.    

In this study we have four major findings.  First, using THI load and Oury indices we find 

the patterns of climate change varied from region to region in the last half century (1960-2010) 

with some states becoming drier or warmer while some states have little changes on average but 

have become more volatile in more recent years. Second, using mean level of THI and Oury indices 

we find that higher THI load and lower Oury index (much drier condition) will lower a state’s 

productivity. However, the results become insignificant when more state characteristic variables 

are incorporated in the model specifications. Third, using THI shock and Oury shock variables the 

results are more robust across model specifications in both signs and coefficient estimates. Positive 

THI shocks and negative Oury shocks will lower state technical efficiency. It suggests that over 

the long run each state has gradually adapted to state-specific climate condition (the average level 

of temperature and precipitation, and the degree of weather fluctuations). It is the unexpected 

weather shocks that are affecting regional productivity more profoundly. Fourth, using weather 

shock variables we project potential impacts of increasing temperature and extreme weather (the 
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expected climate change phenomenon) on U.S. regional productivity.  Results show that the same 

degree changes in temperature or precipitation will have uneven impacts on regional productivities, 

with Delta, Northeast, and Southeast regions incurring much greater effects than the other regions, 

using 2000-2010 as the reference period.  

This paper is the first empirical study, we believe, to estimate the climatic effect on 

agricultural productivity from the perspective of the entire farm sector, including both livestock 

and crop production. The study adds new insight into identifying the climatic effects on overall 

agricultural productivity. Our evidence suggests that weather shocks have more consistent and 

profound impacts on regional productivity when each state faces its particular weather condition. 

The diverse weather impacts on regional productivity from the same degree of changes in 

temperature and precipitation suggest the need for state-specific research programs to help 

producers manage their own climatic situations and future challenges.  

We organize the remainder of the paper as follows: Section 1 introduces the empirical 

approach. Section II describes the data and variables, and provides descriptive statistics. Section 

III presents the empirical results and discussion. Section IV reports the projection of regional 

productivity based on climate change scenarios. Section V provides concluding remarks.    

I. Empirical Framework 

Among the literature discussing climate and its economic impacts, some studies 

incorporate climate variables along with other input variables in one production function to test 

for the climatic effects on crop yield, livestock production, or productivity growth. However, 
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input use can be endogenous on the climate variable as producers may try to mitigate output 

losses by increasing their expense on capital, energy, labor, or other intermediate inputs. To 

resolve this problem there are a few studies that model weather variables as factors impacting 

technical inefficiency (e.g., Key and Sneering, 2014). In a study of climatic effect on U.S. dairy 

productivity Key and Sneeringer (2014) assert that operators in a region under adverse weather 

conditions will operate further from the production frontier (i.e. be less technically efficient) 

even when technology similar to what other operators in different regions have are available to 

them. The study employs a stochastic production frontier approach in its estimates where climate 

variables are incorporated as determinants of a one-sided error that drive farm production from 

its production frontier. In this study, we employ the same approach to evaluate the potential 

impacts of climate change and extreme weather on U.S. regional agricultural productivity.  

The stochastic frontier approach was first developed by Aigner, Lovell, and Schmidt 

(1977) and Meeusen and van den Brocck (1977) and has been applied to numerous studies. In 

earlier applications, researchers tried to explain those inefficiency effects by conducting a two-

stage approach that requires predicting the inefficiency effects first, then running a regression 

model that relates the inefficiency effects and the explanatory variables in a second step. Using 

cross-section data, Kumbhakar, Ghosh and McGuckin (1991), Reifschneider and Stevenson 

(1991) and Huang and Liu (1994) later proposed models that allow the estimation of technical 

inefficiency effects with parameters simultaneously estimated in the stochastic frontier function 

and inefficiency model. Bassete and Coelli (1995) further proposed a model to estimate the 

technical inefficiency effects in a stochastic frontier production function for panel data. Since 

Wang and Schmidt (2002) has theoretically explained that two-step procedures are biased, in this 
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study we follow Key and Sneeringer (2014) to employ a one-step procedure to test the climatic 

effects on regional productivity using a state panel data of 48 contiguous states for the period 

1960-2004. Each state is treated as an individual producer facing its particular climate patterns, 

state-specific characteristics, and resources.  

Under the stochastic frontier production function framework, the model can be expressed 

as: 

 ln(yit)=f(xit, ß)+vit-uit   (1) 

where yit is the observed aggregate output of state i at time t, and f(xit, ß) is the maximum output 

that can be produced with a technology described by parameters ß (to be estimated), and a vector 

of inputs xi. The deviations (εit) from the frontier are composed of a two-sided random error (vit) 

and a one-side error term (uit≥0). 𝑣𝑖𝑡 is a random error that can be positive or negative, and is 

assumed to be normally and independently distributed, with a zero mean and constant variance 

of ơ𝑣
2.  uit is assumed to be half-normally and independently distributed, uit~N+ (0, ơ𝑢

2  ).  

In a one-step approach we assume the technical inefficiency component is 

heteroskedastic, that the variance ơ𝑢𝑖
2  depends on a vector of exogenous variables zi and a set of 

parameters γ (to be estimated), such as climate variables and state-specific characteristics that 

can affect the individual state’s ability of adopting the best technology given its inputs level.  

ơ𝑢𝑖
2 =exp(𝒛𝒊

′ γ)   (2) 

Therefore, zi affect the mean and variance of the inefficiency term ui. If ui =0, then state i 
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is at the production frontier and is technically efficient. If ui >0 then state i is deviated from the 

frontier, and is technically inefficient.  The technical efficiency of state i (TEi) is defined as the 

ratio of the ith state’s observed output to its feasible output (the maximum output it can produce 

with given inputs). Once the technical inefficiency ui is estimated, technical efficiency (TEit) can 

be obtained by the following formulas:  

TEit=
𝑦𝑖

exp(𝑓(𝒙𝒊𝒕,ß)+𝑣𝑖𝑡)
=exp(-uit)     (3) 

TEit ranges between 0 and 1 with 1 being on the frontier. In this study the empirical stochastic 

frontier production function to be estimated is as follows: 

ln𝑦𝑖𝑡 = ß0 + ∑ ß𝑘𝑙𝑛𝐾
𝑘=1 𝑥𝑘𝑖𝑡 + ß𝑡𝑡+∑ ß𝑗𝐷𝑗

𝐽
𝑗=1 + ∑ ß𝑚𝐷𝑚

𝑁
𝑚=1 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡    (4) 

where yi is an implicit quantity of state i’s  total output; xki’s are implicit quantities of state i’s k 

inputs, including labor, capital, land, and intermediate goods; t is a time trend to capture natural 

technical changes driven by research development from both public and private sectors (public 

R&D and private R&D) over time; Dj’s are state dummy variables (j=1…47), and Dm’s are time 

dummy variables (m=1..43) to capture cross-state, time-invariant, unobserved heterogeneity. The 

time dummy can also help reflect part of the development of technical change effects driven by 

the overall knowledge stock that are not captured by the time trend but could have shifted the 

overall production frontier unevenly across years. Equation (4) can be viewed as a log-linearized 

form of the Cobb-Douglas (C-D) production function3. We estimate an inefficiency variance 

                                                           
3 While translog form is a more flexible form, given that the preferred curvature condition cannot hold globally 

using this form we chose the C-D functional form to approximate the underlying technology of the production 

frontier in this study.    
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regression model simultaneously with equation (4), i.e. 

𝑙𝑛ơ𝑢𝑖𝑡
2 = γ0 + ∑ 𝛾𝑛𝑧𝑛𝑖𝑡

𝑁
𝑛=1 + 𝜔𝑖𝑡 ;  𝜔𝑖𝑡~𝑁(0, 𝜎𝜔

2 )         (5)  

z’s include climate variables, irrigation-ready land density that may help to mitigate the 

impacts of adverse weather, and other control variables that capture the heterogeneity of 

individual state.  

We include various forms of climate variables in our estimation, including THI load (for 

livestock) and Oury index (an aridity index for crops), in their mean or “shock” (the unit of 

standard deviation from its historical norm) measures. We also include state—specific 

characteristics variables that may affect each state’s technical efficiency, including R&D stock, 

extension capacity, and road density as these variables are suggested to have impacts on state 

level productivity in the literature (Alston et al., 2010; Rada et al., 2012; Wang et al., 2015; and 

Jin and Huffman, 2015 among others). We will explain how we construct those variables in the 

next section. The stochastic frontier is estimated by a maximum likelihood (ML) procedure.  

II. Variables, Data Sources, and Descriptive Analysis 

In this paper we employ a panel of state level aggregate agricultural output, as well as 

inputs of labor, capital, land, and intermediate goods to form the stochastic frontier production 

function. To identify the impacts of climate change on technical inefficiency changes we 

construct climate variables that can capture either the impacts on crops or livestock production.  

We also construct irrigated land area ratio and other local public goods variables—R&D, 

extension, capacity and roads density—as control variables to test for the robustness of the 
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climatic effects on state inefficiency.    

Agricultural output and inputs  

We draw state-specific aggregates of output and capital, labor, intermediate goods, and land 

inputs from USDA’s state productivity accounts. Agricultural output and four inputs are implicit 

quantities measurement based on the Törnqvist indexes approach over detailed output and input 

information. A full description of the underlying data sources and aggregation procedures can be 

found in Ball et al. (1999) and the USDA-ERS (2016) website. 

Climate variables 

Since our purpose is to estimate an overall impact of climate changes on the agricultural 

sector we need to consider climate variables that have strong relationships with livestock or 

crops. However, there is no single measurement that can capture the weather impacts on both 

livestock and crops as livestock production is more related to animals’ year-around thermal 

environment, while crop production is affected by precipitation and temperature during the 

growing seasons. In addition, researchers have found nonlinear temperature effects for 

agriculture (Deschenes, and Greenstone (2007), Schlenker and Roberts (2006), and Schlenker 

and Roberts (2009)). To meet our objective, we construct two different weather measures to 

capture their effects on either livestock or crops. One is temperature-humidity index (THI), a 

combined measure of temperature and relative humidity that has been shown to have significant 

impacts on livestock production; and one is the Oury index, an aridity index that combines 

temperature and precipitation information that can capture more impact on crop production than 

a single measure of temperature or precipitation. We draw monthly temperature and precipitation 
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data at the county level from a weather dataset produced by Oregon State University’s PRISM4 

climate group (Daly et al. 2008).  Since PRISM extrapolates between weather stations to 

generate climate estimates for each 4km grid cell in the U.S. we are able to link county level 

weather information and agricultural production to construct climate variables that could explain 

climate variations across regions and over time. 

Livestock scientists have found that livestock productivity is related to climate through a 

THI measure (Thom 1958, St-Pierre, Cobanov and Schnitkey 2003; Zimbelman, et. al. 2009). 

THI can be measured using the following equation:  

THI=(dry bulb temperature oC) + (0.36*dew point temperature oC) + 41.2             (6) 

When animal stress is above a certain THI threshold, productivity declines. Following St-

Pierre, Cobanov and Schnitkey (2003) and Key and Sneeringer (2014) we generate a minimum 

and maximum THI for each month and location based on minimum and maximum dry bulb 

temperatures and dew point data from PRISM. To estimate the THI load, the number of hours 

that the location has a THI above the threshold, we employ a method proposed by St-Pierre, 

Cobanov and Schnitkey (2003) to estimate a Sine curve between the maximum and minimum 

THI over a 24-hour period. We then estimate the number of hours and degree to which THI is 

above threshold5 (See Key and Sneering (2014) appendix for details).  To construct state-level 

                                                           
4 The PRISM Climate Group gathers climate observations from a wide range of monitoring networks, applies 

sophisticated quality control measures, and develops spatial climate datasets to reveal short- and long-term climate 

patterns. The PRISM data can be accessed at http://www.prism.oregonstate.edu. 
5 We employ a THI load threshold of 70 for dairy cow, as it is the least threshold among a broad category of 

livestock production (St-Pierre, Cobanov and Schnitkey, 2003).  
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THI load we aggregate up the county-level6  monthly calculations to the state-level using county 

animal units derived from the Census of Agriculture (USDA, 2002) as the weight.  

“Weather” is a critical factor influencing the production of crops. While precipitation and 

temperature are mostly considered in previous studies due to lack of information on other 

factors, such as sunshine and wind velocity, Oury (1965) recommended the use of aridity index 

in identifying the relationship between crop production and weather. Oury argued that it is hard 

to define a meaningful relationship between crop production and weather based only on one 

weather factor since they are interrelated. The proposed aridity index, which is termed the Oury 

index, is defined (Oury, 1965; Zhang and Carter, 1997) as: 

𝑊𝑠 =
𝑃𝑠

1.07𝑇𝑠
                    (6) 

where W represents the aridity index (Oury idex), s is the month (s=1…12), Ps is the total 

precipitation for month s in millimeters; and Ts is the mean temperature for month s in degrees 

Celsius. The Oury index can be viewed as rainfall normalized with respect to temperature. We 

draw county-level monthly temperature and precipitation data from PRISM to aggregate up to a 

state level Oury index, using county cropland density drawn from National Land Cover Database 

2006 (NLCD 2006) as the weight. The NLCD cropland pixels are composed of the combination 

of NLCD classes 81 (pasture/hay) and 82 (cultivated crops), with the notion that pasture/hay is a 

potentially convertible land cover to cultivated crops. The cropland area in the weight data is 

therefore a representation of current and potential cultivated cropland. 

                                                           
6 Climate estimates were limited only to cropland areas as defined by the combination of the Cultivated Crops and 

the Pasture/Hay classes in the National Land Cover Dataset (NLCD 2006). Therefore, it eliminates the effect of 

urban heat islands, mountains, etc. 
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While all months of the year were considered for the THI measures, only the primary 

growing season months, approximately April through August, were considered for the Oury 

aridity index. Both THI and Oury measures were generated for a 30-year normal spanning from 

1941 to 1970 and for individual years from 1961 to 2004 (our study period).  

Irrigation-ready land density (irrigation ratio) variable 

Irrigation infrastructure can help to mitigate the impact of adverse weather. We construct an 

irrigation-ready land density (irrigation ratio thereafter) variable to capture the impact of 

irrigation system availability in production. The variable is constructed as the ratio of land area 

with irrigation system to total cropland area. The cropland area and land area with irrigation 

system are available for census years (USDA-NASS, 2013) on the state level. We employ a 

cubic spline technique to interpolate the information between census years. The expanded 

irrigated areas and cropland areas are used to construct a panel of irrigation-ready density 

(irrigation ratio) variable across states and over time.  

R&D, Extension, and Roads 

To capture specific state characteristics that could have also impacted the state’s technical 

inefficiency we included state level variables on public R&D stock, extension, and roads (Rada, 

Buccola, and Fuglie, 2010, Wang et al., 2015). The annual agricultural research expenditure data 

and the research price index used to deflate expenditures are provided by Huffman (2009).  

Extension variable is a measure of extension capacity calculated as total full-time equivalent 

(FTE) extension staff divided by the land areas. Data on FTEs by state were drawn from the 

Salary Analysis of the Cooperative Extension Service from the Human Resource Division at the 
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USDA. Road infrastructure is a road density index constructed by dividing total road miles 

excluding local (e.g. citystreet) miles with total land area.  

III. Patterns of state productivity growth and climate changes 

Table 1 provides a summary table of state level TFP growth during 1960-20047 (USDA, 

2015), as well as the mean and standard deviation of the normal THI index and Oury index over 

the historical period 1941-1970. In general, TFP growth varied across USDA’s production 

regions and within the region. Still, some regions seem to have an overall higher TFP growth, 

such as Northeast, Corn Belt, and Delta regions, than others during the study period. Given the 

variances in geo-climate condition and natural resources, states tend to have notable differences 

in their composition of livestock and crop production. For example, states in the Northeast region 

tend to have a higher ratio of livestock production while the Corn Belt and Pacific regions tend 

to produce more crops than livestock. Usually, a higher THI indicates more intensive heat stress 

and can hinder livestock productivity growth. On the other hand, a lower Oury index indicates a 

much drier condition that would lower crop production. If the Oury index is lower than 20, it 

indicates a very dry situation that could be seen as a drought condition, and if the Oury index is 

less than 10, it implies a “desertlike” state (Carter and Zhang, 1997).  

(Insert table 1 here) 

While the relative level of THI and Oury index could result in geospatial differences in 

technical inefficiency, an unexpected climate “shock”, such as extreme weather, could cause 

more of an impact as farmers will have expected climate changes to be similar to the past. 

                                                           
7 USDA’s state productivity indexes only cover the period 1960-2004.  
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Farmers could have already invested in appropriate facilities, such as irrigation systems or 

cooling systems, in areas with low Oury index or high THI load. It is the unexpected weather 

changes that result in the inefficient inputs use as yields decline (or a waste of inputs when crops 

cannot be harvested due to an extreme weather event), as well as a decrease in livestock 

production due to unexpected heat stress. According to table 1, some regions may have much 

higher variation in their Oury index than in their THI index, such as the Mountain and Pacific 

regions. If famers expect dramatic variation from year to year in advance, they may have already 

invested in an irrigation system to damper the impacts of climate changes on farm production.  

TFP growth estimates usually move closely with output growth. In 1983 and 1995, the 

dramatic impacts from adverse weather events caused significant drops in both output and TFP 

(figure 1). In figure 2 we map the normal Oury index, based on 1941-1970 data, and Oury 

indexes in 1983 and 1995 at the state level. We find that Oury index varied for many states in 

1983 and 1995 while the shocks (figure 3) from its norm show a different picture regarding 

climate changes.  

(Insert Figure 1, Figure 2, and Figure 3 here) 

Figure 4 presents the normal THI load (1941-1970), as well as the THI indexes in 1983 

and 1995 across states. When compared with the Oury index, however, THI load shows less 

variation over time. Nevertheless, if we look at the maps of shock indexes in different years (figure 

5) we may find that there are noticeable differences over the years. 

(Insert Figure 4 and Figure 5 here) 
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If bad weather is expected and farmers invested in facilities to reduce the potential damage 

from adverse weather conditions, then the impacts of extreme weather on farm production could 

decline. Figure 6 shows irrigation density changes over time. In general, pacific regions and 

mountainous regions have more intensive irrigation systems than other regions. 

(Insert Figure 6 here) 

IV. Empirical results 

We first estimate equation (4) and test the hypothesis of no inefficiency effects that H0: 

 𝜎𝑢
2 = 0, against the alternative hypothesis of H1:  𝜎𝑢

2 > 0. The result shows that the null hypothesis 

is rejected at the 1% level indicating the stochastic frontier approach is valid in our study. We then 

estimate the stochastic frontier model (equation (4)) and the inefficiency determinants regression 

model (equation (5)) simultaneously using alternative weather variables and model specifications 

as a robustness check. Empirical results of both production regression and inefficiency 

determinants regression are presented in table 2. Model 1 and 2 evaluate climatic effects on state 

inefficiency by only including weather variables and irrigation density variable as inefficiency 

determinants. Besides weather variables and irrigation ratio variable, Model 3 and 4 also 

incorporate state specific variables—public R&D stock, extension capacity, and road density 

variables—as control variables to check the robustness of the estimated climatic impacts on state 

inefficiency. The differences between Model 1 and 2 and between Model 3 and 4 are the measures 

of weather variables. Model 1 and 3 use mean levels of THI and Oury indexes while Model 2 and 

4 use THI shocks and Oury index shocks as weather variables. Since outputs and inputs are all in 

natural logarithmic terms, the input coefficients can be interpreted as the output elasticity for 

individual inputs. According to the estimates of production function on the top section of table 2, 
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the output elasticities for specific input across four models are consistent, with the output elasticity 

of intermediate goods at its highest, about 0.6, and capital’s output elasticity at its lowest, about 

0.07-0.08. Since the hypothesis of constant return to scale is rejected, we can infer a decreasing 

return to scale with input coefficients totaling to less than one.  

(Insert Table 2 here) 

The signs of the coefficients of weather variables are as expected and consistent no 

matter the measures. Results of the inefficiency determinants regressions indicate that the 

combined effects of higher temperature and lower precipitation that result in a higher THI load, 

or a lower Oury index measure can drive state production away from its best performance. 

However, without controlling for state-specific variables the coefficient of THI load becomes 

insignificant in Model 1. According to the results, a single unit increase in THI load could result 

in a worse inefficiency, with inefficiency term (lnσu
2 ) increasing by 0.00002 percent in Model 1 

and 0.00006 percent in Model 3. On the other hand, one unit decrease in Oury index (drier 

condition) could cause further inefficiency, with inefficiency term increasing by 0.026 percent in 

Model 1 and 0.02 percent in Model 3. Using “shock” measures (units of standard deviations 

relative to historical norms) of THI load and Oury index as weather variables in Model 2 and 

Model 4, the estimates are all significant and the magnitudes of those coefficients are consistent 

between the two models. According to both models, a single unit shock of THI load will result in 

about a 0.3 percent deterioration in the inefficiency term while a unit of negative shock (drier 

condition) will result in about a 0.18 percent deterioration in the inefficiency term.  

The results show that the deviation from the state’s historical norm in weather variations 
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have more consistent impacts on state production efficiency than the mean level changes of 

weather condition. It implies that farmers in a region with more temperature or precipitation 

variations may have adapted more to the environment by adopting technologies or practices that 

can mitigate the damages from adverse weather. For example, drier regions, such as California 

and Nevada, usually have higher irrigation-ready land density than other regions and that may 

partially offset the negative impacts of bad weather. The negative coefficients of irrigation ratio 

indicate that a state with a higher density in irrigation-system-ready land areas tends to be closer 

to its best production performance when holding other factors constant. After controlling for 

state-specific characteristics the irrigation density’s impacts on inefficiency are also larger in 

Models 3 and 4. 

The signs of the coefficient estimates of state-specific control variables—R&D stock, 

extension, road density are consistent with the literature, wherein higher knowledge capital 

(R&D stock), extension capacity, and road density can enhance individual state’s productivity 

and push its production toward its best performance using given inputs and the best technology.  

Since R&D, Extension, and Road density variables are all in natural log (Ln) form, a 1% percent 

increase in road density and extension capacity may have higher impacts on improving technical 

inefficiency than a 1% increase in local R&D stock. This implies that while public R&D stock 

can contribute to overall technical changes by pushing up the general production frontier for all 

states, its contribution in improving a local state’s inefficiency may be less than that of other 

local public goods. The state extension activity and intensified road infrastructure can help to 

disseminate knowledge, reduce transportation cost, and improve a state’s technical efficiencies 

by catching up with others.  
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Based on the results from Model 4 we estimate Box-and-Whisker plots of individual 

states’ inefficiencies. The mean and distribution of states’ inefficiency scores and rankings are 

presented in figure 7.  We find that over the study period, California ranks first in efficiency, 

making it the most productive state among all 48 contiguous states. The top six most efficient 

states also include Arizona, Florida, New Jersey, Massachusetts, and New York. According to 

the predicted inefficiency scores, individual states’ productivity is strongly affected by its state-

specific characteristics such that even with similar weather patterns and natural resources 

productivity can differ significantly8.  

(Insert Figure 7 here) 

V. Potential Impacts of Future Climate Change on U.S. Agricultural Production: Scenario 

Analysis  

To estimate the heat stress- and drought-related production losses attributable to climate 

change (mean level changes) and extreme weather (weather shock), we simulate the climate 

change projections in temperature and precipitation in the 2030s that result in various THI load 

and Oury index estimates. There are many global models projecting future climate changes, and 

while the magnitudes of future temperature or precipitation may be different from one projection 

to another, the direction of the projections consistently point toward more frequent heat waves, 

warmer temperatures, and increasing incidences of extreme weather. Key and Sneeringer (2014) 

project the potential impacts of climate changes on U.S. dairy production in 2030 based on four 

                                                           
8 The results could also imply that if the major Federal/State water storage and allocation system that helped 
support the high-valued irrigated agricultural sector in California is not to be as resilient in future years under 
prolonged drought conditions due to absent significant new capital investment California may not be as efficient as 
in the past.  
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climate change scenarios drawn from the projections of four General Circulation Models— 

CNR, ECH, CSIRO, and MORPC (see Key and Sneeringer (2014) data appendix for details). 

Under their scenarios temperature change during the period of 2010-2030 ranges from 0.65oC to 

1.38oC. According to EPA9, earth's average temperature has risen by 0.83°C over the past 

century, and is projected to rise another 0.3 to 4.8°C over the next hundred years. According to 

the U.S. Global Change Research Program Report (USGCRP 2014)10, the overall temperatures 

will continue to warm over the century in the U.S. with a projected average increase by the end 

of the century of approximately 3.9 to 6.1° C under the high emission scenario and 2.2 to 3.6°C 

under the low emission scenario. We draw information from various projected trends in future 

temperature and precipitation changes to form three scenarios from mild to extreme. The 

scenarios are as follows:     

Scenario 1: we assume a mild climate change during the growing season of the 2030s with a 1°C 

increase relative to 1940-1970 temperature levels ;  

Scenario 2: we assume a more serious climate change scenario in the 2030s with a 2°C increase 

relative to 1940-1970 temperature levels;  

                                                           
9 See https://www3.epa.gov/climatechange/basics/ for more details.  
10 Established under the Global Research Act of 1990, the U.S. Global Change Research Program (USGCRP) has 
provided strategic planning and coordination to 13 participating federal agencies working to advance the science 
of global environmental change. The 3rd National Climate Assessment, released by USGCRP in May 2014, is the 
most comprehensive and authoritative report on climate change and its impacts in the United States. See 

http://nca2014.globalchange.gov/ for more details. 

https://www3.epa.gov/climatechange/basics/
http://nca2014.globalchange.gov/
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Scenario 3: we assume an extreme-weather scenario during the 2030s with a 2°C temperature 

increase and one-inch decrease in monthly average precipitation relative to 1940-70 

levels.  

We estimate the production response as if there are no changes in prices, input use, 

technology, or farm practice11. The projections are conducted using Model 4 estimates where 

weather variables are shocks of THI load and Oury index with state-specific control variables 

kept constant as in the following equation:  

 𝑙𝑛ơ𝑢𝑖𝑡
2 = γ0 + 𝛾1𝑧𝑇𝐻𝐼𝑠ℎ𝑜𝑐𝑘,𝑖𝑡 + 𝛾2𝑧𝑂𝑢𝑟𝑦𝑠ℎ𝑜𝑐𝑘,𝑖𝑡 + 𝑟3𝑧𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜,𝑖𝑡 + 𝑟4𝑙𝑛𝑅𝐷𝑖𝑡 + 𝑟5𝑙𝑛𝐸𝑇𝑖𝑡 +

𝑟6𝑙𝑛𝑅𝑂𝑖𝑡 + 𝜔𝑖𝑡  ;  𝜔𝑖𝑡~𝑁(0, 𝜎𝜔
2 )         (7)  

 Since each state has its own genuine pattern of historical climatic variations, each 

could have adjusted its farm production by adopting various production practices 

or technologies to adapt to the weather it is facing (Shumway et al. 2015, Huang, 

Wang, and Wang, 2015; Marshall et al. 2015; Heisey and Day-Rubinstein 2015). 

Therefore, the unexpected same degree change in temperature and precipitation 

may have different impacts on individual state’s THI shock and Oury index shock 

estimates, resulting in varying effects on state production efficiency estimates. 

The impact of temperature changes on estimated state inefficiency can be derived 

by taking the first derivative of equation (7) with respect to temperature changes 

as follows:  

                                                           
11 This is so-called “dumb farmer” (a naïve case) assumption (Mendelsohn, Nordhaus, and Shaw (1994); Key and 

Sneeringer (2014)) where farm operators are assumed not to anticipate or respond to changing environmental 

conditions. The impacts may be reduced by allowing for some level of adaptation by producer.  
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𝜕𝑙𝑛ơ𝑢𝑖
2

𝜕𝑇
=  

𝜕𝑙𝑛ơ𝑢𝑖
2

𝜕𝑍𝑇𝐻𝐼𝑠ℎ𝑜𝑐𝑘,𝑖

𝜕𝑍𝑇𝐻𝐼𝑠ℎ𝑜𝑐𝑘,𝑖

𝜕𝑇
+

𝜕𝑙𝑛ơ𝑢𝑖
2

𝜕𝑍𝑂𝑢𝑟𝑦𝑠ℎ𝑜𝑐𝑘,𝑖

𝜕𝑍𝑂𝑢𝑟𝑦𝑠ℎ𝑜𝑐𝑘,𝑖

𝜕𝑇
     

=𝛾1 ∗
𝜕𝑍𝑇𝐻𝐼𝑠ℎ𝑜𝑐𝑘,𝑖

𝜕𝑇
+ 𝛾2 ∗

𝜕𝑍𝑂𝑢𝑟𝑦𝑠ℎ𝑜𝑐𝑘,𝑖

𝜕𝑇
    (8) 

The impact of precipitation changes on state inefficiency can be derived by taking the 

first derivative of equation (7) with respect to precipitation changes as follows: 

𝜕𝑙𝑛ơ𝑢𝑖
2

𝜕𝑃
=  

𝜕𝑙𝑛ơ𝑢𝑖
2

𝜕𝑍𝑂𝑢𝑟𝑦𝑠ℎ𝑜𝑐𝑘,𝑖

𝜕𝑍𝑂𝑢𝑟𝑦𝑠ℎ𝑜𝑐𝑘,𝑖

𝜕𝑃
     

=𝛾2 ∗
𝜕𝑍𝑂𝑢𝑟𝑦𝑠ℎ𝑜𝑐𝑘,𝑖

𝜕𝑃
   (9) 

The total impact of projected temperature changes and precipitation changes is the sum of 

equations (8) and (9):  

𝜕𝑙𝑛ơ𝑢𝑖
2

𝜕𝑇
+

𝜕𝑙𝑛ơ𝑢𝑖
2

𝜕𝑃
= 𝛾1 ∗

𝜕𝑍𝑇𝐻𝐼𝑠ℎ𝑜𝑐𝑘,𝑖

𝜕𝑇
+ 𝛾2 ∗ (

𝜕𝑍𝑂𝑢𝑟𝑦𝑠ℎ𝑜𝑐𝑘,𝑖

𝜕𝑇
+

𝜕𝑍𝑂𝑢𝑟𝑦𝑠ℎ𝑜𝑐𝑘,𝑖

𝜕𝑃
)      (10) 

We predict the potential impacts of three climate change scenarios in the 2030s on state 

production inefficiency using the average weather conditions during 2000-10 as the baseline. 

The results are reported in table 3 and are grouped by production region (see notes in table 3 for 

region details). All regions will move further away from the production frontier with increasing 

temperature and declining precipitation. On average, a 1o C increase in temperature will cause 

the production efficiency to decrease by 0.38 % in Pacific region and by 1.31% in Delta region 

relative to the 2000-10 mean inefficiency level (𝑙𝑛𝜎𝑢
2) (see table 3). When temperature increases 

by 2oC the production efficiency will decrease further, ranging from by 0.73 % in Pacific region 
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to 3.23% in Delta region relative to the 2000-10 mean inefficiency level (𝑙𝑛𝜎𝑢
2) .  

The results imply that the impacts of temperature changes on production efficiencies are 

not linear and vary across regions. According to the coefficient of variation (CV) estimates the 

weather impacts are more consistent within the Lake States region and the Northern Plains 

region than in other regions. While the temperature changes seem to cause a more serious impact 

on the Delta region, the variation is also the largest within that region. Several factors can cause 

these differences, including different historical climate patterns in those states and varying 

degrees of irrigation development. Under scenario 3 (extreme weather), the temperature 

increases by 2oC and precipitation decreases by 1 inch on average, and the impacts are more 

consistent for states within the same region as the CV declines in almost all regions when 

compared to scenario 2 (medium weather impact).  This indicates that extreme weather, which is 

beyond the expected climatic change pattern, can have more disastrous effects on all states.  

(Insert table 3 here) 

Responses of agricultural productivity to climate change (mean level changes of Oury 

index and THI load) and extreme weather shocks (deviations from historical average variations of 

Oury index and THI load) can inform agricultural policy decisions. For example, while farmers 

are expected and sometimes observed to adapt to the shifting long-run climate pattern, Dell, Jones, 

and Olken (2014) argue that certain governmental agricultural support programs (such as 

subsidized crop insurance program) could have reduced farmers’ incentives to adapt. Therefore, 

there could be a tradeoff between reducing farmers’ revenue risk and increasing agricultural 

productivity. The diverse weather impacts on regional productivity from a certain degree of 
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temperature and precipitation changes suggest the need for state-specific research programs to help 

producers manage their state-specific climatic situations and future climate change challenges. To 

help agriculture adapt to climate change, Heisey and Day-Rubenstein (2015) suggest the use of 

genetic resources to develop new crop varieties that are more tolerant to both abiotic and biotic 

stresses.  However, they also indicate that given the public-goods characteristics of genetic 

resources there can be obstacles for private research and development. Creating incentives for the 

private sector through intellectual property rules for genetic resources and international agreements 

governing genetic resource exchanges could promote greater use of genetic resources for climate 

change adaptation.  

VI. Summary and Conclusions  

This paper employs state panel data for the period of 1960-2004 to identify the role of 

climate change on U.S. agricultural productivity using a stochastic frontier production frontier 

method. Climate/weather variables are measured using the THI load and Oury index at both their 

mean levels and the degree of deviation from the historical variation norms (during 1941-1970) 

at the state level. We also incorporate the irrigated land area ratio and the measures of local 

public goods—R&D, extension, and road infrastructure—to capture the effects of state 

characteristics and to check for the robustness of the estimate of climate variable impact. 

The state production data and climate information show noticeable variations across and 

within production regions. Some regions seem to have faster overall TFP growth – the Northeast, 

Corn Belt, and Delta regions – than others during the study period. Results indicate that higher 

THI load can drive farm production away from its best performance. However, higher Oury 
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index, irrigated land area ratio, local R&D, Extension, and road density can enhance state farm 

production and move it closer to the production frontier. Although the relative level of THI and 

Oury index could result in geospatial differences in technical inefficiency, the unexpected 

extreme weather “shock” seems to have more robust impacts on estimated inefficiency, and this 

could be because farmers expect some degree of weather variation based on past experience and 

would have already made preparations. Therefore, it is the unexpected climatic shocks that result 

in either an increased use of input, or a drop in production.  

While most studies evaluating the climatic effect on agricultural productivity focus on 

specific crop or livestock commodities, it is also important to identify the climatic effect on 

overall agricultural productivity by region through its impacts on technical inefficiency. 

Responses of agricultural productivity to climate change at the state level can then inform state-

specific agricultural policy decisions.
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Figure 1 U.S. agricultural TFP growth moved closely with output growth (1948-2011) 

 

Data source: Authors’ calculation 
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Figure 2. Oury index comparison, the norm (1941-1970), 1983, and 1995 
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Source: Authors’ calculation 
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Figure 3.  The climate shocks comparison using Oury Index: 1983 vs. 1995 
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Source: Authors’ calculation 
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Figure 4. THI load comparison, the norm, 1983, and 1995 
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Source: Authors’ calculation 
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Figure 5.  The climate shocks comparisons using THI load Index: 1983 vs. 1995 

Panel A        Panel B 

  

 

Source: Authors’ calculation
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Figure 6. Ratios of irrigated land area to total crop land area (irigation ratio) at census year

  

ource s 

Source: Author’s calculation using data from Agricultural Census 

Note: irrigation ratio indicates ratios of irrigated land area to total cropland area.  
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Figure 7 Box and Whiskers Plots of State Efficiency Estimates and Rankings Based on Model 4 
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Table 1 State characteristics on productivity growth and climate indexes  

 

Source: Authors’ calculation  

Production 

Region
State

TFP Annual 

growth (%)

livestock/crop ratio 

(1960-2004)
THI_mean_Norm THI_stdv_norm Oury_mean_norm Oury_stdv_norm

Northeast Connecticut 2.20 1.04 1055.67 369.43 34.96 21.85

Delaware 1.80 2.65 4852.78 434.19 27.60 15.90

Maine 1.90 0.67 334.10 288.76 35.54 21.02

Maryland 1.83 1.68 3854.23 1219.64 27.85 16.52

Massachusetts 2.29 1.28 837.76 507.73 34.82 22.52

New Hampshire 2.00 1.09 400.82 400.96 34.91 20.69

New Jersey 1.67 1.47 3036.90 1343.49 30.95 19.14

New York 1.48 2.28 631.08 425.65 33.22 19.19

Pennsylvania 1.81 1.55 2132.22 1176.03 34.03 20.20

Rhode Island 2.48 0.57 1082.13 223.34 33.45 24.66

Vermont 1.62 1.22 460.23 431.81 34.84 18.42

Lake States Michigan 2.41 0.68 1337.86 565.03 29.15 18.46

Minnesota 1.86 0.98 1316.14 541.74 30.48 16.84

Wisconsin 1.59 1.77 1278.79 554.74 32.64 17.61

Corn Belt Illinois 1.96 0.65 4700.84 2053.02 29.33 19.38

Indiana 2.28 0.47 3333.96 1300.01 31.05 20.07

Iowa 1.87 0.72 2464.54 683.11 31.38 18.19

Missouri 1.62 1.10 6959.88 824.95 29.46 19.86

Ohio 2.16 0.73 2483.27 756.51 30.19 18.40

Northern PlainsKansas 1.05 1.03 7067.55 1509.53 23.00 17.48

Nebraska 1.60 0.93 4244.28 920.75 25.68 17.53

North Dakota 1.90 1.47 1135.88 362.00 24.17 16.20

South Dakota 1.51 0.96 2385.50 887.56 24.89 16.98

Appalachian Kentucky 1.61 0.88 6493.57 1190.49 27.85 15.95

North Carolina 1.84 1.33 6815.53 2358.49 26.89 13.18

Tennessee 1.13 0.88 7085.80 1830.86 26.26 15.92

Virginia 1.53 3.29 3616.45 1769.74 26.63 13.68

West Virginia 1.29 1.91 2409.00 1605.48 31.13 16.45

Southeast Alabama 1.32 2.43 12354.32 2545.32 25.34 16.03

Florida 1.44 0.33 20328.13 1819.72 26.73 13.90

Georgia 1.91 1.56 12544.53 2573.72 23.97 13.49

South Carolina 1.61 0.73 11534.97 1927.22 24.26 12.62

Delta Arkansas 1.93 0.79 9604.32 2283.24 25.33 19.22

Louisiana 1.93 0.68 16369.98 656.32 24.58 16.22

Mississippi 1.98 1.03 14649.88 1650.05 23.81 16.65

Southern PlainsOklahoma 0.58 1.54 12017.31 1660.94 22.00 18.92

Texas 1.14 1.31 14224.99 3888.87 15.41 14.57

Mountain Arizona 1.53 1.14 15465.14 3681.95 2.37 4.08

Colorado 1.10 1.58 1537.62 785.93 17.21 13.61

Idaho 2.01 1.03 927.67 726.82 12.23 13.29

Montana 1.38 0.69 235.59 384.94 18.53 15.18

Nevada 1.24 0.30 1259.17 722.29 7.12 9.04

New Mexico 1.44 0.46 5982.29 2428.52 10.05 10.54

Utah 1.55 1.88 860.60 790.21 10.46 11.34

Wyoming 0.66 1.75 195.48 409.08 17.70 16.09

Pacific California 1.66 0.48 7412.25 6012.63 3.61 8.93

Oregon 2.58 0.50 355.74 490.08 12.26 15.34

Washington 1.73 0.43 465.32 731.14 9.47 12.08
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Table 2 Stochastic frontier models estimates with alternative inefficiency determinants 

 

Source: Authors’ calculation

variables

coefficient t-ratio coefficient t-ratio coefficient t-ratio coefficient t-ratio

lny

technology (time trend) 0.0009 6.86
***

0.0010 7.49
***

0.0010 7.23
***

0.0010 7.73
***

ln(capital) 0.0813 4.10
***

0.0775 3.96
***

0.0705 3.59
***

0.0785 4.11
***

ln(materials) 0.5959 44.35
***

0.5952 45.24
***

0.5920 45.49
***

0.5879 45.42
***

ln(labor) 0.0982 10.60
***

0.0998 10.98
***

0.1089 11.57
***

0.1079 11.66
***

ln(land) 0.1124 6.55
***

0.1055 6.25
***

0.1083 6.23
***

0.0995 5.80
***

ln ơ v
2

 (noise)

constant -5.8828 -59.40
***

-5.8048 -52.68
***

-5.8232 -71.97
***

-5.8362 -66.84 ***

ln ơ u
2

 (inefficiency)

constant -4.5181 -26.02
***

-5.2706 -25.05
***

-2.4305 -1.14 -2.7825 -1.52

THI load 0.00002 1.31 0.00006 3.38
***

Oury index -0.0257 -4.29
***

-0.0201 -3.06
***

THI load shock 0.3087 5.40
***

0.3073 5.25 ***

Oury index shock -0.1831 -2.15
***

-0.1831 -2.15 ***

Irrigation density -1.6170 -2.89
***

-1.4210 -1.93
***

-2.8771 -3.45
***

-2.2217 -3.01 ***

LnR&D -0.3867 -2.86
***

-0.3314 -2.67 ***

LnExtension -0.6245 -3.71
***

-0.4787 -2.69 ***

LnRoad -0.8779 -3.68
***

-0.7994 -3.78 ***

state fixed effects yes yes yes yes

time fixed effects yes yes yes yes

log-likelihood 2679 2698 2713 2726

X
2
(95) 16,400,000 prob>X

2
=0 11,700,000 prob>X

2
=0 15,900,000 prob>X

2
=0 14,600,000 prob>X

2
=0

Observations 2,112 2,112 2,112 2,112

Model 1 Model 2 Model 3 Model 4
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 Table 3. Potential Impacts of Climate Changes and Extreme Weather on Regional Productivity in 2030-2040: Scenario Analysis 

(Relative to 2000-2010 mean inefficiency level (𝑙𝑛𝜎𝑢
2)) 

Regions Temperature increases by 1oC Temperature increases by 2oC 
Temperature increases by 2oC; 

precipitation declines by 1 inch 

  
Mean  

Standard 

deviation 
CV Mean  

Standard 

deviation 
CV Mean  

Standard 

deviation 
CV 

Appalachian 0.45 0.15 0.33 1.19 0.39 0.33 1.26 0.38 0.30 

Corn Belt 0.68 0.35 0.51 1.73 0.77 0.45 1.80 0.77 0.43 

Delta 1.31 0.93 0.71 3.23 2.48 0.77 3.28 2.48 0.75 

Lake States 0.61 0.04 0.06 1.70 0.05 0.03 1.79 0.04 0.02 

Mountain 0.41 0.24 0.58 0.91 0.30 0.32 1.04 0.31 0.30 

Northeast 0.42 0.19 0.45 1.78 0.97 0.55 1.85 0.97 0.52 

Northern Plains 0.66 0.11 0.16 1.66 0.31 0.19 1.74 0.32 0.19 

Pacific 0.38 0.08 0.20 0.73 0.13 0.18 0.84 0.12 0.15 

Southeast 0.77 0.25 0.33 1.85 0.68 0.37 1.92 0.68 0.35 

Southern Plains 0.69 0.22 0.32 1.51 0.63 0.42 1.57 0.62 0.40 

Sources: Authors’ calculation 

States according to region: 

Appalachian: WV, TN, NC, VA, KY; 

Corn Belt: OH, IA, MO, IN, IL; 

Delta: LA, AR, MS; 

Lake States: MN, MI, WI;  

Mountain: CO, UT, AZ, NM, WY, NV, ID, MT; 

Northeast: NH, PA, ME, MD, RI, MA, DE, CT, VT, NY, NJ; 

Northern Plains: ND, SD, KS, NE; 

Pacific: OR, CA, WA; 

Southeast: SC, AL, GA, FL; 

Southern Plains: TX, OK. 


