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Abstract. For almost 40 years, building energy codes have been used to try to 

improve the energy efficiency of newly constructed and renovated buildings. But 

recent empirical research has cast doubt on how much they actually affect energy 

use. Moreover, it is routinely pointed out that pricing the externalities of energy 

use directly would be a more efficient policy than a building standard. However, 

energy pricing policies are often regressive, and transfers that would offset this 

regressivity may be difficult or impossible to implement. At the same time, 

whether building energy codes themselves are regressive or not is unclear. Using 

spatial discontinuities in California’s building code strictness and information 

about over 185,000 homes located around such borders, we evaluate the effect of 

building codes on home characteristics, energy use, and sales prices; we also 

study building codes’ distributional burdens. We find that stricter energy use 

requirements cause builders to build smaller homes, creating an aggregate 

reduction in energy use but not leading to a detectable change in consumption on 

a per-square-foot basis. There is, however, substantial heterogeneity by income.    
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I. Introduction 
Building energy codes are widely employed throughout the United States. Although they 

are likely less efficient than pricing the externalities associated with energy use directly, building 

energy codes may be preferable if there are informational failures, if individuals are myopic, or if 

energy pricing policies lead to undesirable distributional outcomes. However, whether building 

energy codes actually reduce residential energy use or lead to better distributional outcomes is 

unclear. Part of the difficulty in evaluating the effectiveness of building energy codes is that the 

existing empirical studies focus on changes in building codes over time (Jacobsen and Kotchen 

2013; Levinson 2015; Kotchen 2016). As such, they lack a comparison group of homes that were 

built at same time but don’t face the same building energy code.    

We adopt a novel approach to this question by exploiting spatial and temporal 

discontinuities in California’s energy building codes. California has 16 distinct climate zones 

with different energy requirements for each. While the climate in each of these zones may be 

different on average, the weather conditions on either side of the border are essentially identical. 

We obtain account-level electricity and natural gas billing data for the years 2009-2015 from 

four California utilities, which together serve the vast majority of homes in the state. We then 

restrict our sample to about 185,000 homes that are located in 11 cities spanning multiple climate 

zones and that are within 3 kilometers of a climate zone border. We use a difference-in-

differences approach, comparing cross-border differences in energy use among homes built prior 

to the introduction of energy building codes (before 1977) to differences among homes built after 

climate zones were introduced (1982 and later).3 Importantly, our approach allows us to flexibly 

control for changes in building practices over time with vintage fixed effects, something previous 

studies have been unable to do.  

We also estimate how the effect of building codes on energy use and housing prices 

varies by income group. Specifically, we use Census block-group-level income data to look at 

the heterogeneity of building codes’ impact on home characteristics, energy use, and housing 

prices across different income groups. 

																																																													
3 Between 1977 and 1982, building requirements varied slightly according to heating and cooling degree days. 
However, the modern climate zones did not yet exist. 
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We find that building codes reduce natural gas consumption by about 6% for the average 

household in our sample; average electricity consumption has a negative but statistically 

indistinguishable from zero point estimate. However, these averages mask substantial 

heterogeneity across income groups, and we find that households in the top of the income 

distribution save substantially more energy on an aggregate and on a per square foot basis, while 

households at the bottom of the distribution use significantly more electricity per square foot.  

We also show that the stricter energy codes reduce home size, which in addition to better 

building materials is a channel through which the codes might reduce energy consumption. We 

are the first to our knowledge to be able to measure how builder respond to codes along the 

dimension of home attributes.   

Using the same methodology, we also estimate the degree to which the energy code 

changes are capitalized into housing prices. We find that housing prices decrease on average, but 

that this effect is due to the reduction in home size discussed above rather than to a decrease in 

the price per square foot of the home. Furthermore, sales prices actually increase on an absolute 

and a per square foot basis for households in the lowest quartile of the income distribution, while 

home prices in the second and third income quartiles fall.  

Our paper makes contributions along several dimensions. First, our identification strategy 

is unique in this literature. With the exception of Aroonruengsawat et al. (2012), the empirical 

literature on building codes uses only intertemporal variation (Jacobsen and Kotchen 2013; 

Levinson 2015; Kotchen 2016). Aroonruengsawat et al. (2012) use state-level panel data from 

the US and find that building energy codes reduce electricity use by as much as 5%. Because 

their estimation strategy is based largely on differential timing in the introduction of energy 

codes across states, the accuracy of their results depends crucially on their ability to control for 

potential confounding factors, such as heterogeneous trends and non-linear relationships between 

weather and electricity use. By contrast, our estimates rely on a much weaker identification 

assumption: we only require parallel trends near climate zone borders. We are also able to 

consider natural gas use, something Aroonruengsawat et al. (2012) do not observe. Unlike any of 

the existing studies, we also examine capitalization, distributional consequences, and whether 

building codes affect home characteristics, such as square footage. 
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The rest of the paper is organized as follows. In Section II, we provide background on 

energy building codes in the US and California and discuss our data. In Section III, we detail our 

estimation strategy. Section IV presents and discusses our results, and Section V concludes. 

II. Background and data 

A. California’s energy efficiency building codes 
Broadly, building codes are sets of practices that builders must follow. Some building codes 

target fire safety; others aim to make homes more resistant to hurricanes or more energy 

efficient. Typically, the imposition of a building code is motivated by either an externality (e.g., 

an individual will not take into account their neighbor’s house catching fire when choosing the 

level of fire safety) or myopia/informational barriers (e.g., it is difficult to observe how sturdy a 

building is). We focus on building codes that target energy efficiency. Such building codes have 

been in part justified by the significant externalities associated with energy use. However, no 

state currently taxes building energy use, which is a more efficient way to achieve lower energy 

consumption in the absence of informational or landlord-tenant market failures.  

In addition to the market failures mentioned above, a possible justification for eschewing 

such a tax is that it would disproportionately affect poor households and that redistribution of the 

tax revenue to offset this effect is not feasible. In other words, while building energy codes are 

less efficient, they may achieve a more preferable distributional outcome than energy taxes. 

However, it is unclear whether building codes themselves are progressive or not. For example, 

savings from building codes requiring greater energy efficiency may be larger for richer 

households, because their houses tend to be bigger and they may use more energy overall. On the 

other hand, even if the monetary savings are larger for richer households in absolute terms, the 

savings relative to income may be much larger for the poor. In addition, how binding and how 

costly building energy codes are may vary by the likely income category of a house’s buyer. If 

certain buyers already demand highly efficient homes, the additional effect of a building energy 

code on energy use (and the additional compliance cost) may be zero. 

California was one of many states to implement a statewide energy efficiency code in the 

1970s (Aroonruengsawat et al. 2012). It officially adopted such a code in 1978, although, some 

building energy standards that were adopted in the code began to be enforced in late December, 
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1976 (CEC, 1978). Because we focus on energy use in single-family homes, we restrict the 

discussion below only to requirements that apply to such dwellings. 

Between 1978-1982, building requirements differed somewhat depending on local heating 

and cooling degree days, but the variation was relatively small.4 Starting in 1982, California 

introduced 16 “climate zones” (see Figure 1) and specified different energy requirements for 

each one. Climate zones are enforced at the zip code level and, in many cases, do not cross city 

boundaries. We obtain each zip code’s climate zone from the California Energy Commission 

(CEC) and use this information along with the homes’ latitude and longitude to classify homes 

into climate zones.5 In 1995, CEC conducted a thorough review of the climate zones and 

changed the climate zone of several cities (California Energy Commission 1995). As we discuss 

below, this re-classification affects relatively few homes in our sample and we omit them from 

the analysis.6  

Builders in each climate zone can meet the energy efficiency requirements in two ways. 

First, they can demonstrate that the building is expected to use less than the allowed energy 

budget for that climate zone, expressed in thousands of BTUs per square foot of conditioned 

space per year for space conditioning or thousands of BTUs per dwelling unit per year for water 

heating (“performance standard”). There are separate energy budgets for heating and cooling. 

Table 1 lists different energy budget components by climate zone for the years 1982-1983. 

Whether or not a particular building meets the required energy budget is determined by software 

that simulates energy use as a function of building characteristics and location. Alternatively, 

builders can use an “alternative package” of requirements for how the building must be built. 

The 1982 building code contained 3 such packages for each climate zone; starting in 1983, there 

have been 5. Tables A1 and A2 in the Online Appendix provide examples of alternative 

packages for zones 1 and 16. Because the performance standard offers much more flexibility, the 

																																																													
4 We do not know how heating and cooling degree days were determined for each location during this time period, 
so we are unable to exploit this variation. 
5 Available from http://www.energy.ca.gov/maps/renewable/BuildingClimateZonesByZIPCode.pdf  
6 In principle, these changes create the perfect natural experiment since the California Energy Commission points 
out that the reclassification was due to mistakes in the original boundaries. Unfortunately there are not enough 
homes affected by the change to detect an effect on energy usage, so we omit these homes from our sample rather 
than try to exploit the change for identification.  
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vast majority of new home builders choose to use the performance standard.7 Thus, our measure 

of building code strictness is based on energy budget differences for neighboring climate zones. 

Energy budgets vary by climate zone because some zones have milder climates than others, 

on average.8 For example, zone 15 is located in the Southeast of California, far from the ocean, 

and has a heating budget of only 1.4 thousand BTUs per square foot of conditioned space per 

year. But because of its hot climate, its cooling budget is 38.9 thousand BTUs per square foot. 

By contrast, zone 1 is located in the Northwest, which is much colder, and has a heating budget 

of 11.1. Because it is near the ocean, which prevents summer temperatures from getting too high, 

its cooling budget is only 0.1. However, there are also zones with both high heating and high 

cooling energy budgets (e.g., zones 11-14). Thus, whether a particular climate zone is “stricter” 

than its neighbor sometimes depends on whether we consider the heating or the cooling budget. 

Because cooling is almost always done with electricity and heating is almost always done with 

natural gas, we use the cooling budget rankings for analyzing differences in electricity use 

(measured in kWh) and the heating budget rankings for analyzing natural gas consumption 

(measured in therms).9 

Energy budgets change discontinuously at climate zone borders while the climate itself is 

expected to be continuous.10 Tables 2 and 3 tabulate the heating and cooling budget differences 

for each climate zone pair, denoting differences of zones that border each other with a box. To 

put these differences in perspective, 1,000 BTUs is equivalent to about 0.293 kWh or to about 

0.01 therms. The average home in our sample uses 13.5 kWh and 0.67 therms per day and has 

about 1800 square feet of living space. Thus, for the average home, a binding reduction in the 

energy budget of 1,000 BTUs per square foot would translate into a 1.3 kWh per day reduction 
																																																													
7 We contacted plans examiners in three jurisdictions across the state of California (Ryan Pursley from the City of 
Concord Building Office, Joe Espinsoa from the Palo Alto Building Office, and Leslie Edwards from the Kern 
County Building Office) and Michael Kunz from Title 24 Express, a company that helps builders certify energy 
building code compliance. All of them confirmed that new homes almost exclusively utilize the performance 
method for compliance. 	
8 The California Energy Commission uses weather from a ‘representative city’ in each climate zone to determine the 
stringency of the standard. A list of the representative city for each zone is available from 
http://www.energy.ca.gov/maps/renewable/building_climate_zones.html.  
9 It is possible that there are spillovers from the heating budget to kWh and from the cooling budget to therms 
because of building choices that affect both heating and cooling (e.g., insulation). We are currently investigating this 
possibility. 
10 We have examined the borders in our sample for indications of discontinuities. With the exception of one border 
that appears to coincide with a large hill/small mountain range, topographic characteristics appear to be continuous 
across borders. 
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in electricity use (over 10% of the mean) and a 0.05 therms per day reduction in natural gas use 

(about 7% of the mean). Almost all of the border energy budget differences exceed 1,000 BTUs, 

and some exceed 5,000 BTUs. Cooling budget differences are generally larger than heating 

budget differences. If energy building codes are binding, the magnitudes of energy budget 

differences suggest that we should expect substantial differences in energy use for homes on 

different sides of climate zone borders. 

B. Data and estimation sample 
Home characteristics and sales prices. We obtain housing characteristics data from CoreLogic. 

The dataset contains detailed characteristics for over 6 million single-family homes, including 

the exact premise address and latitude/longitude coordinates, the square footage of the home, 

number of bedrooms, and the historical housing transaction dates and prices. To ensure that sales 

prices in our sample represent arms-length transactions, we eliminate sales of less than $10,000.   

CoreLogic also reports two measures of a home’s vintage: the year it was first built and the year 

it went through major renovations, if any (“effective year built”). If renovations affect a large 

enough fraction of a home’s square footage, current building standards will generally apply to 

the entire home. For smaller additions, only the new portion of the home will need to comply, 

and prescriptive standards are more common in this scenario. Since we do not observe the size or 

nature of home renovations, we cannot determine which energy building code applies to a home 

whose effective year built is more recent than its original year of construction. For these reasons, 

we use the year a home was first built as our vintage measure.  

Using the latitude and longitude provided by CoreLogic, we calculate each home’s own climate 

zone and its distance to the nearest climate zone. We then restrict the sample to single-family 

homes that are within 3 kilometers of a climate zone border, leaving us with almost 2 million 

homes. Because there was some variation in building requirements by heating and cooling 

degree days between 1977 and 1981, some of which may have corresponded to modern climate 

zone boundaries and some of which almost certainly did not, we omit these homes from our 

analysis. For the same reason, we omit homes located in cities whose climate zone changed in 

1995.11 To maximize the comparability of the treated and control group, we also omit homes 

																																																													
11 We could in principle leverage this change as part of our empirical analysis. However, our sample contains only 
about 17,000 homes in these cities that were built between 1946-2008. 



8	
	

built prior to 1946 or after 2008, as there is evidence that new homes use less energy in the first 

few years of their existence than in the longer run (Levinson 2015; Kotchen 2016). Finally, we 

restrict our analysis to areas where there is a mix of older (pre-1977) and newer (post-1981) 

homes on each side of the climate zone border. We perform this last step in the sample selection 

process by plotting each home in our dataset on a map and visually identifying regions with a 

roughly equal proportion of pre-1977 and post-1981 homes on either side of the border. This 

eliminates regions where home are geographically isolated from each other (even though they 

might be adjacent to the same border), as well as regions where new development primarily 

occurred on a single side of the climate zone border.   

Energy use. We obtain monthly premise-level electricity and natural gas usage data from four 

major California utilities: San Diego Gas & Electric, PG&E, South California Edison, and South 

California Gas. Figure 2 shows the geographic areas covered by each of these utilities. Together, 

they serve almost all of California, with the exception of the very northern part of the state, the 

Sacramento area, and a few cities that have their own electric and gas utilities. Thus, every 

climate zone border has the possibility of being represented in our sample although in practice 

some borders do not have any homes located nearby. 

Our energy usage data span the time period of January 2009 through July 2015, allowing us to 

obtain a fairly precise measure of each premise’s expected electricity and natural gas usage. 

Because our variation is ultimately at the premise-level, we calculate the average daily electricity 

and natural gas use of each premise over this entire time period. 

We use the address provided by the utility to try to match each home in the 3-kilometer 

CoreLogic sample described above to its energy use. To minimize false matches, which could 

introduce measurement error in our measure of building code strictness, we only retain cases 

where addresses match perfectly (including the street number, street name, city, and zip code) or 

where the only difference in the addresses is an abbreviated street suffix (e.g., “Ave” instead of 

“Avenue”, “Rd” instead of “Road”, etc.).12 We then drop a few homes that match to more than 

one utility providing the same type of energy. Our final sample contains 647,434 single-family 

homes near climate zone borders, 577,115 of which have electricity usage information and 

																																																													
12 In addition, we found that attempting to match more homes by accounting for misspellings and other errors did 
not significantly increase the number of matches, at least for homes in the San Diego Gas and Electric utility area.	
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519,856 of which have natural gas usage information. We then further restrict the sample to 

about 185,000 homes located in 11 cities that span two or more climate zones, 136,000 of which 

have natural gas usage information and 155,000 of which have electricity usage information. 

Figure 3 shows a map of these homes.  

Household demographics. Finally, to categorize the income of each household, we use the 

American Community Survey for 2010, which is publicly available from the US Census. The 

data are at the block group level (the smallest geographic unit for which income is publically 

available) and contains information on education, race, and income. For each home in the 

sample, we calculate an inverse distance weighted average of these demographic characteristics 

from the centroids of the 3 nearest block groups. Currently, we are only using the income 

information in the analysis. 

Summary statistics. Panel A in Table 4 presents the summary statistics for all the homes around 

climate zone borders. As mentioned above, the average home uses 13.5 kWh and 0.67 therms per 

day. Even after eliminating homes built before 1946, the average year built in our sample is 

fairly low (1967), suggesting that we have many control homes that were not subject to building 

codes when they were first constructed. The average home in our sample has 1,814 square feet of 

living space, 3.36 bedrooms, and 2.31 bathrooms. There is substantial variation in sales prices, 

but on average the most recent transaction for homes in the sample is $355,207. Even 

normalizing the sales price by the square footage results in a standard deviation that is more than 

three times the mean. Finally, occupants of the homes in our sample make about $35,900 per 

person per year. 

Panel B of Table 4 shows minimum and maximum per-capita income in each income quartile. If 

the income numbers appear low for California, remember that we are measuring per-capita 

income rather than household income. At the low end of the distribution, occupants of homes in 

our samples earn between $1,800 and $21,753 per person per year. The range of the second 

quartile is the smallest, spanning $21,756 to $32,002. Quartile 3 ranges from $32,008 to $43,255, 

and we see the large right tail of the income distribution in the top income quartile, which 

includes households where occupants earn between $43,264 and $316,856 per person per year.  
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III. Empirical strategy 

A. Estimating equation 
Although climate zone borders are largely determined by the local weather, to reduce the 

administrative burdens, climate zones are enforced at the zip code level. While this gives us 

more confidence that weather does not change discontinuously across climate zones, it also 

raises the possibility that there are other discontinuities at the border. We do two things to 

control for these.  First, rather than simply comparing post-1982 homes on different sides of a 

climate zone border, we adopt a difference-in-differences approach. Specifically, we compare 

cross-border differences between homes built prior to 1977 to cross-border differences between 

homes built in or after 1982. Our identifying assumption is that, conditional on the fixed effects 

we discuss below, differences between cross-border homes that are not driven by energy building 

codes are on average the same for pre-1977 and post-1981 homes. Second, in our primary 

specification, we restrict the sample of homes to eleven cities that straddle two or more climate 

zones where we can be more confident that the identification assumption holds and where we 

can also control for city-by-vintage fixed effects.13 Although this specification only uses one 

third of our data, we show that the results are qualitatively similar (although not statistically 

significant) for the full sample of homes. As a further means of controlling for confounding 

factors, we also restrict the sample to three cities – Los Angeles, San Diego, and Vallejo – where 

the heating and cooling budget differences move in the same directions across the climate zone 

borders. Finally we provide a formal test of the parallel trends assumption in the next subsection.   

To quantify the effect of the building code regime on home characteristics, energy usage, 

or housing prices, we estimate the following equation:  

!! = !"#$!! ∗ !"#$%!! + !! + !! + !! ,                                          (1)	

where !! is a home characteristic, the average daily energy use (electricity or natural gas), or 

most recent sale price of dwelling !. The variable !"#$%"! is an indicator for dwelling !’s building 

code being stricter than the nearest climate zone, while !"#$! is an indicator for the dwelling 

being built after 1981. In some specifications, instead of !"#$%!! we use the continuous variable 

!"#$%&'())!, which measures the budget difference (in thousands of BTUs) of home !’s climate 

																																																													
13 These eleven cities are Carson, Garden Grove, Long Beach, Los Angeles, Palmdale, San Bernardino, San Diego, 
Santa Barbara, Santa Clarita, Torrance, and Vallejo.  
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zone relative to the neighboring climate zone. If building codes significantly reduce energy usage 

and our identification assumption holds, we expect ! to be significant and negative when using 

the !"#!! ∗ !"#$%!! variable and significant and positive when using the !"#!! ∗ !"#$%&'())! 
variable. 

We control for the fact that there may be a secular trend in the energy efficiency of new homes 

with vintage (year built) fixed effects, !!. In our primary eleven-city specification, we allow the 

time fixed effects !! to vary at the city level. To control for any spatial differences that are 

common to all homes in a particular area, we include a set of zip code fixed effects, !!. 

Regressions where the dependent variable is the sale price also include month-by-year fixed 

effects for when the sale took place. Standard errors are clustered by zip code throughout. 

To estimate the heterogeneity in the impact of building codes by income quartile, we allow ! to 

vary by the household’s estimated income quartile: 

!! = !!(!"#!! ∗ !"#$%!!
!

!!!
∗ 1[!"!! = !])+ !!! + !!" + !! ,                         (2) 

where 1[!"!! = !] is an indicator equal to 1 if household !’s estimated income falls into quartile 

!, where quartiles are defined relative to other households in our sample. In addition, we control 

for quartile-specific year built and zip code fixed effects.  

B. Testing the parallel trends assumption 
As discussed above, climate zones in many cases respect city borders by design. A natural 

concern is that cities on either side of the border may have different trends in energy usage (with 

respect to house vintage) by chance. In that case, we could mistakenly attribute post-1981 

differences in electricity usage to building codes. Luckily, we have a large number of homes in 

our 11-city sample that were built prior to 1977, so we can directly test whether there are any 

differential trends that could not have been caused by building codes (absent differential sorting 

into older homes).  

Figure 4 provides a visual check of the parallel trends assumption and provides a preview of the 

treatment effect that we will discuss in the next section. Each plot shows the residuals we obtain 

when we omit the !"#!! ∗ !"#$%!! variable from our main specification in Equation 1 for the 
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strict and lax side of each border, averaged by year built and weighted by the number of 

observations. In all four panels, notice that the trend in the dependent variable prior to the 

introduction of the building codes in 1977 is close to zero for both sides of the yet-to-be-

introduced climate zone border, and the trends diverge after the introduction of the introduction 

of climate zones in the 1982 building code.  

In addition to the visual check of the parallel trends assumption, we perform a formal statistical 

test by estimating the model  

!! = !!(!"#$%&'(!! = !) ∗ !"#$%!!
!"#$

!!!"#$
+ !! + !! + !! ,                          (3)	

and omitting the (!"#$%&'(!! = 1946) ∗ !"#$%!!. In this model, the coefficients !! give the 

difference-in-differences estimates of the change in the dependent variable between 1946 and 

each subsequent year in the sample (Autor 2003). We fail to reject the parallel trends assumption 

using a Wald test for the null hypothesis that the average of the pre-1977 !-coefficients is non-

zero. Test statistics are available upon request.  

IV. Results 

A. Home characteristics 
First, we consider the possibility that more stringent building codes affect the observable 

characteristics of homes constructed after the code begins to be enforced, such as the square 

footage or number of bedrooms. The results for square footage are shown in Table 5A. In the 

first row of each panel, we use a binary measure of strictness that uses the sum of the heating and 

cooling budgets to determine the overall budget. In each of the binary specifications, we estimate 

an economically meaningful decrease in home size, but the point estimates are not statistically 

distinguishable from zero. To increase the power of our estimates, we use the difference in the 

heating and cooling budgets as a continuous measure of code strictness. This specification 

doesn’t attenuate the effect of the code when small differences in the dependent variable 

correspond to small differences in the code strictness. When we measure code strictness with the 

continuous budget difference, we find consistently positive and significant impacts of a larger 

energy budget (which corresponds to a less strict building code). Specifically, for every 1,000 

BTU increase in the total energy budget in our primary specification in Panel A, we see a 0.38% 
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increase in living square footage. Evaluated at the mean budget difference of nearly 10,000 

BTUs, this corresponds to roughly a 4% decrease in home size. In our three-city sample in Panel 

B, the effect is an even larger 0.47% increase in living square footage for each 1,000 BTU 

change in the code stringency.  

Table 5B shows the effect of the building code on the number of bedrooms. All of the 

specifications show a statistically significant change in the number of bedrooms. Using the 

binary measure of strictness, we find a 5% decrease in the eleven-city sample and a 9.5% 

decrease in the three-city sample.  

The overall patterns from the previous two tables show a decrease in home size as a result of 

stricter building codes, but interesting patterns emerge when we look at changes in home 

characteristics for households in different income brackets in Tables 6A and 6B. Beginning with 

the building codes’ effect on square footage in Table 6A, we see that on a percentage basis the 

reduction in home size (8.7%) is concentrated among households in the second income quartile. 

While we can’t distinguish the point estimates in the highest quartile from zero, the wealthiest 

households seem to have the largest absolute reduction in home size (619 square feet). Just as we 

saw for the total change in home size, the number of bedrooms in top income homes seems 

mostly unaffected by the building code. However, we see a large change of more than 13% in the 

third income quartile and very little change in the bottom income quartile. Results for our three-

city sample and full sample as well as results for the heating and cooling definitions of strictness 

are largely similar and can be found in tables A3 to A6 of the appendix.  

B. Energy usage 
Overall, it appears that stricter energy building codes led builders to construct smaller homes. To 

test for both unconditional and conditional changes in energy use, we consider both aggregate 

energy use and energy use per square foot.  

Table 7 shows the effect of a more stringent energy building code on natural gas usage. In our 

primary sample, we see a marginally significant reduction of 6.2% on the strict side of a border. 

The effect is slightly stronger, 7.2%, when we restrict our sample to homes in the three cities 

where the heating and cooling strictness definitions agree. The results are qualitatively and 

quantitatively similar when we use the full sample of all homes within three kilometers of a 
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climate zone border (available upon request). In terms of our continuous measure, we estimate a 

0.33% increase in natural gas usage per 1,000 BTU increase in the heat energy budget. 

Restricting the sample to Vallejo, Los Angeles, and San Diego homes results in a 1.5% per 1,000 

BTU reduction in natural gas usage. These differences become smaller and cease to be 

significant when natural gas usage is measured on a per square foot basis. 

Table 8 shows the corresponding estimates broken down by income quartile. Here, we see 

significant decreases of over 20% in natural gas use only for the third quantile when using the 

binary “strict” measure. The second quintile saves close to 10%, but the top and bottom quartiles 

don’t show a statistically significant change in natural gas consumption. The budget difference 

measure tells the same story, although the estimates for the second income quintile cease to be 

statistically significant. When we consider energy usage per square foot, we actually see an 

increase in natural gas usage per square foot for the second income quintile. This result 

underscores the importance of accounting for changes in home size as part of the total effect of 

the building codes on energy usage.  

Table 9 shows the same estimates for electricity usage, measured in log(kilowatt hours per day) 

and log(kilowatt hours per day per square foot). In the preferred sample, we see no change in 

consumption on the side with the stricter cooling budget. However, when we restrict our sample 

to the three cities where the heating and cooling budgets agree, we see a meaningful (but 

statistically indistinguishable from zero) 6.2% decrease in consumption on the strict side; the 

continuous measure shows a marginally significant reduction of .36% kWh per 1,000 BTU 

difference in the energy budget. In both samples, the energy intensity of each square foot 

actually seems to increase under the stricter code, but the results are not statistically significant.  

The averages in Table 9 mask a substantial amount of heterogeneity in usage changes by income 

quartile. While the change in overall consumption by quintile are largely insignificant, there are 

substantial decreases in the energy intensity per square foot of living space in the top two income 

quintiles and substantial increases in the bottom two quintiles.  

C. Housing prices 
Finally, we consider the effect of stricter building codes on housing prices in Table 11. As we 

discussed in the models where square-footage and bedrooms were the dependent variables, the 
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binary measure of strictness is noisier and hence less powerful than the continuous measure. 

Multiplying the continuous point estimate by the mean budget difference of about 10,000 BTUs, 

we see that home prices on the strict side of the border fall on average by about 5% in the 

continuous specification and by 3.8% in the binary specification. The three-city sample produces 

slightly larger estimates of 11% for the binary measure and 8.6% (5.75% / 10,000 BTUs x 

15,000 BTUs) for the continuous measure of strictness. However, when we normalize price by 

square footage, our estimates become largely insignificant, suggesting that the effect of building 

codes on home prices is operating solely through their effect on the size of the home.  

There is a substantial amount of variation in the way that prices capitalize the building code 

changes across income groups. In Table 12, we see that home prices in the lowest income 

quintile actually increase as a result of the stricter codes, while prices in each of the other income 

quartiles fall. The continuous measure of strictness implies a 5.6% increase in the sales prices of 

homes owned by households in the lowest quartile of the income distribution and a 1.5% 

decrease in the price of homes at the top of the income distribution. Furthermore, the price per 

square foot also increases in the lowest income quintile, a result that we could have inferred from 

the decrease in home size and the increase in sales price for these homes.  

D. Distributional implications of results 
Recall the following findings about the income heterogeneity of stricter building codes’ impacts: 

(a) the characteristics of low- and high-income homes are statistically unaffected (although our 

point estimates for the latter are large), while the size and number of bedrooms falls for middle-

income (quartiles 2 and 3) households; (b) gas usage is unchanged for the low- and high-income 

homes, either on an aggregate or per-square-foot basis, whereas the findings for middle-income 

households are mixed; (c) on a per-square-foot basis, electricity usage rises for low-income and 

2nd quartile households and decreases for 3rd quartile and high-income households; and (d) both 

on a per-square-foot and aggregate basis, housing prices increase for low-income households, 

fall for middle-income households, and are unchanged for the highest income households.  

Thus, while the electricity use of high-income households falls, this does not appear to translate 

meaningfully into changes in their housing prices. A simple explanation for this is that energy 

costs are likely to be much smaller than the sale price for the highest-income households; thus, 
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even if energy savings are fully capitalized into the housing price, this may not lead to a 

detectable change in an expensive home’s sale price. 

For the third quartile, we see stricter building codes leading to reductions in energy use coupled 

with reductions in the sale price, both on an aggregate and per-square-foot basis. Although 

building codes do not significantly reduce the size of this group’s homes, they do reduce the 

number of bedrooms, which could account for the reduction in the sale price. 

The second income quartile sees the largest reduction in house size and number of bedrooms (in 

relative terms), coupled with a decrease in gas use and increase in electricity use on a per-square-

foot basis. Unsurprisingly, it sees the largest decrease in housing prices. 

Finally, one explanation for the housing price increases for low-income households coupled with 

the increase in energy use is the rebound effect: building codes make low-income homes more 

energy-efficient and occupants respond by using more energy. We can test this hypothesis by 

using monthly data to see whether the gradient of energy use with respect to temperature of pre- 

versus post-1981 low-income homes differs across the climate zone borders. Unfortunately, we 

did not have time to do this yet. 

If this explanation is correct, whether or not building codes are welfare-improving for low-

income households is not straightforward. Without knowing the counterfactual energy usage 

absent any rebound effect, we cannot determine how low-income households should value the 

building codes. However, it is worth mentioning that low-income households are often credit-

constrained and/or face very high borrowing rates. To the extent that mortgage rates are lower 

than borrowing rates from other sources, bundling energy efficiency costs into the home price 

may relax low-income households’ borrowing constraints and improve welfare even if there is 

no myopia. 

E. Future work 
In the near future, we hope to leverage the monthly nature of our data. Specifically, we could 

likely obtain more precision by including location-by-month-by-year fixed effects and removing 

energy use fluctuations due to weather shocks. With the monthly data, we can also estimate 

how/whether energy building codes affect the energy use gradient with respect to cooling and 

heating degree days, overall and for high-/low-income households. We are also investigating 
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several explanations for the relatively small differences in energy use across climate zone 

borders, including the possibility that California’s building energy codes are not binding. We 

will also consider whether building codes affect remodeling choices by looking at “effective year 

built” as the outcome. 

V. Conclusion 
We adopt a novel approach to estimating the causal effect of building codes on energy usage 

by using spatial discontinuities in the code’s strictness across California’s 16 climate zones and a 

sample of 11 cities that span one or more climate zone. Comparing cross-border differences in 

the energy use of homes built before the introduction of a state-wide building code in 1977 to 

differences in the energy use of homes built after the introduction of modern climate zones in 

1982, we find strong evidence that building codes led builders to change their building practices, 

resulting in smaller homes with fewer bedrooms. There is some evidence that homes built after 

climate zones’ introduction on the strict side of the border use less natural gas, but the 

differences disappear once we account for the reduced size of the home. Distributionally, we see 

the largest reductions in energy usage among high-income households, while the lowest-income 

households actually increase their energy use. Home prices for the latter group increase, 

suggesting the presence of a rebound effect and/or some difficult-to-observe characteristic 

change caused by building codes.  
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FIGURES 

 

Figure 1. Building climate zones in California 

 
 

 

 



20	
	

 

Figure 2. Territories of major electric and gas utilities in California  
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Figure 3. Locations of in-sample homes 
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Figure 4. Trends in living square feet and number of bedrooms for older and newer homes on 
strict versus lax side of a border 
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TABLES 

	

 

 

Zone
Heating          
budget 

Cooling          
budget

Water heating 
budget

1 11.1 0.1 22,200
2 14.5 8.7 20,800
3 12.3 2.8 20,800
4 9.9 5.7 20,600
5 10.3 3.5 20,600
6 5.2 11.5 19,400
7 2.7 3.9 19,400
8 3.5 13.6 19,400
9 6.9 17.8 19,400
10 5.6 20.9 19,400
11 16.5 22 20,400
12 15.8 14.2 20,600
13 12.4 23 20,400
14 10.7 27 20,900
15 1.4 38.9 18,700
16 20.8 8.9 22,900
Notes:  Heating and cooling budgets are in thousands of 
BTUs per square foot of conditioned space per year. Water 
heating budgets are in thousands of BTUs per dwelling unit 
per year.

Table 1: Single family homes performance standards by 
climate zone, 1982-1983
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 3.4
3 1.2 -2.2
4 -1.2 -4.6 -2.4
5 -0.8 -4.2 -2 0.4
6 -5.9 -9.3 -7.1 -4.7 -5.1
7 -8.4 -11.8 -9.6 -7.2 -7.6 -2.5
8 -7.6 -11 -8.8 -6.4 -6.8 -1.7 0.8
9 -4.2 -7.6 -5.4 -3 -3.4 1.7 4.2 3.4
10 -5.5 -8.9 -6.7 -4.3 -4.7 0.4 2.9 2.1 -1.3
11 5.4 2 4.2 6.6 6.2 11.3 13.8 13 9.6 10.9
12 4.7 1.3 3.5 5.9 5.5 10.6 13.1 12.3 8.9 10.2 -0.7
13 1.3 -2.1 0.1 2.5 2.1 7.2 9.7 8.9 5.5 6.8 -4.1 -3.4
14 -0.4 -3.8 -1.6 0.8 0.4 5.5 8 7.2 3.8 5.1 -5.8 -5.1 -1.7
15 -9.7 -13.1 -10.9 -8.5 -8.9 -3.8 -1.3 -2.1 -5.5 -4.2 -15.1 -14.4 -11 -9.3
16 9.7 6.3 8.5 10.9 10.5 15.6 18.1 17.3 13.9 15.2 4.3 5 8.4 10.1 19.4

Table 2: Heating budget differences between climate zones, 1982-1983

Notes:  table shows the heating budget of the climate zone in the given row minus the heating budget of the zone in the 
given column. Boxes indicate zones that border each other.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 8.6
3 2.7 -5.9
4 5.6 -3 2.9
5 3.4 -5.2 0.7 -2.2
6 11.4 2.8 8.7 5.8 8
7 3.8 -4.8 1.1 -1.8 0.4 -7.6
8 13.5 4.9 10.8 7.9 10.1 2.1 9.7
9 17.7 9.1 15 12.1 14.3 6.3 13.9 4.2
10 20.8 12.2 18.1 15.2 17.4 9.4 17 7.3 3.1
11 21.9 13.3 19.2 16.3 18.5 10.5 18.1 8.4 4.2 1.1
12 14.1 5.5 11.4 8.5 10.7 2.7 10.3 0.6 -3.6 -6.7 -7.8
13 22.9 14.3 20.2 17.3 19.5 11.5 19.1 9.4 5.2 2.1 1 8.8
14 26.9 18.3 24.2 21.3 23.5 15.5 23.1 13.4 9.2 6.1 5 12.8 4
15 38.8 30.2 36.1 33.2 35.4 27.4 35 25.3 21.1 18 16.9 24.7 15.9 11.9
16 8.8 0.2 6.1 3.2 5.4 -2.6 5 -4.7 -8.9 -12 -13.1 -5.3 -14.1 -18.1 -30

Table 3: Cooling budget differences bewteen climate zones, 1982-1983

Notes:  table shows the cooling budget of the climate zone in the given row minus the cooling budget of the zone in the 
given column. Boxes indicate zones that border each other.



Table 4: Summary statistics

Panel A: Dependent Variables and Key Covariates

Mean SD N

Therms per day 0.674 0.86 647,434
kWh per day 13.49 11.289 647,434

Square feet 1814 870 632,668
Year built 1967 16.248 647,436
Bedrooms 3.36 1.35 647,436

Most Recent Sales Price ($) 355,207.7 1,083,561 457,705
Sales Price / Square Foot ($) 185.2804 626.2679 444,608

Per capita income ($) 35,852 20,401 647,434

Panel B: Per Capita Income by Quartile

Min Income Max Income N

Quartile 1 1,806 21,753 168,764
Quartile 2 21,756 32,002 174,775
Quartile 3 32,008 43,255 174,221
Quartile 4 43,264 316,856 174,061
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Table 5A. The effects of stricter building codes on home size

log(Square Feet) Square Feet

Panel A: homes near borders within city limits

Strict x YB Post -0.0439 -236.3
(0.0392) (208.8)

Budget Diff x YB Post 0.00381⇤⇤ 12.02⇤

(0.00160) (6.734)

Dependent Var Mean 7.371 7.371 1,714.461 1,714.461
Mean Budget Difference 10.196 10.196
Observations 178,601 178,601 178,601 178,601

Panel B: Vallejo, Los Angeles, and San Diego border homes only

Strict x YB Post -0.101 -435.5
(0.0632) (380.5)

Budget Diff x YB Post 0.00465⇤⇤⇤ 13.64⇤

(0.00170) (7.650)

Dependent Var Mean 7.498 7.498 1,999.848 1,999.848
Mean Budget Difference 14.889 14.889
Observations 55,522 55,522 55,522 55,522

Year Built x City FE Yes Yes Yes Yes
Zip Code FE Yes Yes Yes Yes
Standard errors (clustered by zip code) in parentheses. Significance levels: ⇤ p < 0.1, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01. Results for the full sample of
homes within 3km of a climate zone border are qualatively similar and avaialable upon request.
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Table 5B. The effects of stricter building codes on number of bedrooms

log(Bedrooms) Bedrooms

Panel A: homes near borders within city limits

Strict x YB Post -0.0538⇤⇤⇤ -0.204⇤⇤⇤

(0.0183) (0.0678)

Budget Diff x YB Post 0.00297⇤⇤⇤ 0.0110⇤⇤⇤

(0.00103) (0.00336)

Dependent Var Mean 1.162 1.162 3.299 3.299
Mean Budget Difference 9.94 9.94
Observations 185,078 185,078 185,226 185,226

Panel B: Vallejo, Los Angeles, and San Diego border homes only

Strict x YB Post -0.0952⇤⇤⇤ -0.357⇤⇤⇤

(0.0288) (0.109)

Budget Diff x YB Post 0.00332⇤⇤⇤ 0.0121⇤⇤⇤

(0.00118) (0.00381)

Dependent Var Mean 1.19 1.19 3.409 3.409
Mean Budget Difference 14.885 14.885
Observations 55,520 55,520 55,540 55,540

Year Built x City FE Yes Yes Yes Yes
Zip Code FE Yes Yes Yes Yes
Standard errors (clustered by zip code) in parentheses. Significance levels: ⇤ p < 0.1, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01.
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Table 6A. The effects of stricter building codes on home size. Sample of homes near borders within city limits.

log(Square Feet) Square Feet

Q1 post YB strict -0.000210 -52.86
(0.0339) (54.41)

Q2 post YB strict -0.0873⇤⇤⇤ -225.6⇤⇤⇤
(0.0242) (57.16)

Q3 post YB strict 0.00607 -52.06
(0.0416) (81.21)

Q4 post YB strict -0.0376 -618.6
(0.0891) (678.8)

Q1 post YB diff budget 0.000639 4.423
(0.00273) (4.433)

Q2 post YB diff budget 0.00444⇤⇤⇤ 9.947⇤⇤⇤

(0.00106) (2.471)

Q3 post YB diff budget 0.000103 2.192
(0.00145) (2.865)

Q4 post YB diff budget 0.00347 21.30
(0.00279) (21.83)

Dependent Var Mean 7.371 7.371 1713.951 1713.951
Mean Budget Difference 10.212 10.212
Year Built x City x Quartile FE Yes Yes Yes Yes
Zip Code x Quartile FE Yes Yes Yes Yes
Observations 178,415 178,415 178,415 178,415
Standard errors (clustered by zip code) in parentheses. Significance levels: ⇤ p < 0.1, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01.
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Table 6B. The effects of stricter building codes on number of bedrooms. Sample homes of near borders within city
limits.

log(Bedrooms) Bedrooms
Q1 post YB strict 0.00674 0.00686

(0.0265) (0.0866)

Q2 post YB strict -0.0578 -0.238⇤

(0.0362) (0.134)

Q3 post YB strict -0.133⇤⇤ -0.435⇤⇤⇤
(0.0560) (0.160)

Q4 post YB strict -0.0446 -0.196
(0.0340) (0.142)

Q1 post YB diff budget 0.000393 0.00262
(0.00212) (0.00690)

Q2 post YB diff budget 0.00301⇤⇤⇤ 0.0116⇤⇤⇤
(0.000659) (0.00241)

Q3 post YB diff budget 0.00418⇤ 0.0137⇤
(0.00242) (0.00698)

Q4 post YB diff budget 0.00147 0.00628
(0.00179) (0.00701)

Dependent Var Mean 1.162 1.162 3.298 3.298
Mean Budget Difference 9.955 9.955
Year Built x City x Quartile FE Yes Yes Yes Yes
Zip Code x Quartile FE Yes Yes Yes Yes
Observations 184,890 184,890 185,038 185,038
Standard errors (clustered by zip code) in parentheses. Significance levels: ⇤ p < 0.1, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01.
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Table 7. The effects of stricter building codes on natural gas use

log(therms per day) log(therms per square foot per day)

Panel A: homes near borders within city limits

Post⇥ StrictHeat -0.0620⇤ 0.0303
(0.0356) (0.0290)

Post⇥DiffBudgetHeat 0.00335 -0.00229
(0.00287) (0.00174)

Observations 136,268 136,268 129,939 129,939

Panel B: Vallejo, Los Angeles, and San Diego border homes only

Post⇥ StrictHeat -0.0724⇤ 0.0259
(0.0417) (0.0324)

Post⇥DiffBudgetHeat 0.0153⇤⇤⇤ -0.00399
(0.00553) (0.00627)

Observations 58,934 58,934 58,916 58,916
Standard errors (clustered by zip code) in parentheses. Significance levels: ⇤ p < 0.1, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01. All regressions include
city-by-vintage (year built) and zip code fixed effects.
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Table 8. Effect of Stricter Building Code on Heating. Sample of homes near borders within city limits.

log(therms per day) log(therms per square foot per day)
Q1⇥ Post⇥ StrictHeat -0.0504 -0.00877

(0.0410) (0.0221)

Q2⇥ Post⇥ StrictHeat -0.0906⇤⇤ 0.128⇤

(0.0436) (0.0748)

Q3⇥ Post⇥ StrictHeat -0.207⇤⇤⇤ -0.145⇤⇤

(0.0638) (0.0600)

Q4⇥ Post⇥ StrictHeat 0.00735 0.0330
(0.0556) (0.0520)

Q1⇥ Post⇥DiffBudgetHeat 0.00161 -0.000601
(0.00207) (0.000594)

Q2⇥ Post⇥DiffBudgetHeat 0.00714 -0.0337⇤⇤⇤
(0.0103) (0.00697)

Q3⇥ Post⇥DiffBudgetHeat 0.0302⇤⇤⇤ 0.0193⇤
(0.00944) (0.0109)

Q4⇥ Post⇥DiffBudgetHeat -0.000747 -0.00102
(0.00724) (0.0108)

Observations 136,143 136,143 129,812 129,812
Standard errors (clustered by zip code) in parentheses. Significance levels: ⇤ p < 0.1, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01. All regressions include income
quartile-by-vintage (year built) and income quartile-by-zip code fixed effects.
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Table 9. The effects of stricter building codes on electricity use

Panel A: homes near borders within city limits

Post⇥ StrictCool 0.00638 0.0487
(0.0305) (0.0325)

Post⇥DiffBudgetCool 0.0000007 -0.00153
(0.00138) (0.00115)

Observations 154,980 154,980 148,513 148,513

Panel B: Vallejo, Los Angeles, and San Diego border homes only

Post⇥ StrictCool -0.0623 0.0699
(0.0562) (0.0504)

Post⇥DiffBudgetCool 0.00364⇤ -0.00150
(0.00186) (0.00240)

Observations 33,251 33,251 33,249 33,249
Standard errors (clustered by zip code) in parentheses. Significance levels: ⇤ p < 0.1, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01. All regressions include
city-by-vintage (year built) and zip code fixed effects.
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Table 10. Effect of Stricter Building Code on cooling. Sample of homes near borders within city limits.

log(kWh per day) log(kWh per square foot per day)
Q1⇥ Post⇥ StrictCool 0.0382 0.0275

(0.0327) (0.0174)

Q2⇥ Post⇥ StrictCool 0.0166 0.134⇤⇤

(0.0353) (0.0649)

Q3⇥ Post⇥ StrictCool -0.0958 -0.165⇤⇤⇤

(0.0705) (0.0414)

Q4⇥ Post⇥ StrictCool -0.0418 -0.103⇤
(0.0725) (0.0530)

Q1⇥ Post⇥DiffBudgetCool -0.00172 -0.000945⇤⇤

(0.00105) (0.000453)

Q2⇥ Post⇥DiffBudgetCool -0.00164 -0.0103⇤⇤⇤

(0.00256) (0.00196)

Q3⇥ Post⇥DiffBudgetCool 0.00439⇤ 0.00573⇤⇤⇤

(0.00229) (0.00119)

Q4⇥ Post⇥DiffBudgetCool 0.00403⇤ 0.00345⇤⇤

(0.00224) (0.00170)
Observations 154,834 154,834 148,357 148,357
Standard errors (clustered by zip code) in parentheses. Significance levels: ⇤ p < 0.1, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01. All regressions include income
quartile-by-vintage (year built) and income quartile-by-zip code fixed effects.
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Table 11. The effects of stricter building codes on sales price

log(Price) log(Price / Square Foot)

Panel A: homes near borders within city limits

Strict x YB Post -0.0383 -0.00208
(0.0531) (0.0375)

Budget Diff x YB Post 0.00507⇤⇤ 0.00167
(0.00194) (0.00110)

Dependent Var Mean 12.281 12.281 4.874 4.874
Mean Budget Difference 9.713 9.713
Observations 119,100 119,100 116,623 116,623

Panel B: Vallejo, Los Angeles, and San Diego border homes only

Strict x YB Post -0.109 -0.00600
(0.0769) (0.0345)

Budget Diff x YB Post 0.00575⇤⇤⇤ 0.00143
(0.00205) (0.00100)

Dependent Var Mean 12.605 12.605 5.0840 5.0840
Mean Budget Difference 15.127 15.127
Observations 34,105 34,105 34,092 34,092

Year Built x City FE Yes Yes Yes Yes
Zip Code FE Yes Yes Yes Yes
Sale YYMM FE Yes Yes Yes Yes
Standard errors (clustered by zip code) in parentheses. Significance levels: ⇤ p < 0.1, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01.
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Table 12. The effects of stricter building codes on sales price. Sample of homes near borders within city limits.

log(Price) log(Price / Square Foot)
Q1 post YB strict 0.0636 0.0695

(0.0484) (0.0518)

Q2 post YB strict -0.0971 -0.0393
(0.133) (0.120)

Q3 post YB strict -0.0465 -0.0508
(0.0356) (0.0321)

Q4 post YB strict 0.0404 0.0832
(0.0972) (0.0752)

Q1 post YB diff budget -0.00566⇤⇤ -0.00611⇤⇤

(0.00216) (0.00269)

Q2 post YB diff budget 0.0150⇤⇤⇤ 0.0110⇤⇤⇤
(0.00501) (0.00382)

Q3 post YB diff budget 0.00211⇤ 0.00251⇤⇤

(0.00120) (0.00102)

Q4 post YB diff budget 0.00148 -0.00221
(0.00373) (0.00275)

Dependent Var Mean 12.281 12.281 4.875 4.875
Mean Budget Difference 9.736 9.736
Year Built x City x Quartile FE Yes Yes Yes Yes
Zip Code x Quartile FE Yes Yes Yes Yes
Sale YYMM FE Yes Yes Yes Yes
Observations 118,879 118,879 116,417 116,417
Standard errors (clustered by zip code) in parentheses. Significance levels: ⇤ p < 0.1, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01.
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