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misperception, and this approximation can lead to an economically important bias. The direction
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Further, we show that even if measured correctly, the average amount of misperception in a market
is not sufficient for optimal policy design, and can in fact be misleading. Using data for the U.S.
refrigerator market, we quantify the bias of the first order approximation and demonstrate the
importance of accounting for heterogeneity of misperception. We find substantial heterogeneity in
perception of energy costs and show that this heterogeneity is not driven by income. In our context
the first-order approach provides a downward bias of the average degree of misperception. We use
the estimated distribution the two responsiveness coefficients to simulate different optimal policies
and show that heterogeneity in the degree of misperception can significantly impact optimal policy
design and estimates of welfare effects.
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1. Introduction

There is a large literature estimating misperception of certain complex and potentially less salient

aspects of product costs, such as shipping and handling (Hossain and Morgan 2006), sales tax

(Chetty et al. 2009), highway tolls (Finkelstein 2009), and medical expenses (Loewenstein et al.

2013), to name a few. In the energy context, misperception of the operating costs of energy using

durables has been debated for more than three decades (e.g., Hausman 1979; Dubin and McFadden

1984; Dubin 1992; Goldberg 1998; Allcott 2011; Grigolon et al. 2014; Busse et al. 2013; Houde

2016) and is still central to the debate on how to design policies to account for various negative

externalities associated with energy use.

The general test used to quantify the degree of misperception consists of comparing the demand

response to an assumed-to-be correctly perceived aspect of product cost (e.g. posted purchase price)

against the potentially mis-perceived aspect of product cost. This paper makes two methodological

contributions for the execution of these types of studies. First, we show that the methods that have

been used to quantify misperception, both structural and reduced-form, implicitly rely on a first-

order approximation of the distribution between the coefficients on the correctly perceived aspects

of cost and the potentially mis-perceived aspects of cost. We demonstrate that this approximation

can lead to an economically important estimation bias of average misperception and the direction of

this bias depends on the sign of the correlation between the sensitivity to assumed-to-be correctly

perceived and potentially mis-perceived costs. Our second contribution is to show that even if

measured correctly, the average amount of misperception in a market is not sufficient for optimal

policy design, and can be in fact very misleading. Recent papers by Allcott and Taubinsky (2014),

Farhi and Gabaix (2016), and Taubinsky and Rees-Jones (2016) investigating optimal taxation

in the presence of behavioral biases make a similar point. Building on the framework proposed

in these papers, we derive new results in the context of environmental taxation that show how

heterogeneity in misperception affects the economic efficiency of different types of policies if not

properly accounted for.

Our empirical investigation focuses on the U.S. refrigerator market and proceeds in three steps.

First, we replicate the standard approach to estimating the average degree of misperception of

energy costs. Using a unique administrative data set with micro-level sales data from a large
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appliance retailer, we are able to recover more credible estimates of the coefficients on price and

energy costs than has been possible in the past. Previous work has focused largely on cross-sectional

variation in energy price (e.g., Hausman 1979; Houde 2016; Rapson 2014), or has used aggregated

state-level annual data (Jacobsen 2015). Similar to recent papers in the context of cars and housing

(e.g., Busse et al. 2013; Allcott and Wozny 2014; Grigolon et al. 2014; Sallee et al. 2016; ?), our

empirical strategy exploits fine-grained panel data, allowing us to control for product, region, and

time specific unobservables. Using the first-order approximation, we find that consumers do respond

to energy costs, but tend to undervalue them. The fact that we find a response to energy costs

in this context and that the coefficient is credibly estimated and robust is in itself a contribution

to the debate of misperception of energy costs. Previous studies for the appliance sector provided

mixed evidence that consumers respond to energy costs.

In the second step of our empirical investigation we recover the full joint distribution of prefer-

ences for prices and energy costs. We find substantial heterogeneity in perception of energy costs

and show that this heterogeneity is not driven by income. Misperception does appear to be impor-

tant and to vary widely across consumers—some consumers appear to not pay attention to energy

costs, a large fraction respond to energy costs, but tend to undervalue them, and another fraction

overvalue energy costs. These patterns are strikingly similar across income groups and imply that

the first-order approach provides a downward bias of the average degree of misperception in the

appliance market. In the third step, we use the distribution to simulate different optimal policies

and show that heterogeneity in the degree of misperception can significantly impact optimal policy

design and the estimates of the welfare effects.

The paper is organized as follows. In the next section, we present the standard framework used

to quantify misperception and show how this framework has commonly been used. In particular,

we show why the statistic used to quantify misperception corresponds to an approximation and

present a formal expression to evaluate the bias of this approximation. In Section 3, we discuss the

data and choice environment for our empirical investigation. In Section 4, we develop an empirical

strategy to quantity the average amount of misperception using the first-order approximation. In

Section 5, we estimate the full distribution of heterogeneity that allows us to compute the bias of the
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first-order approximation. Section 6 follows and investigates how heterogeneity in misperception

impacts the design of policies.

2. Framework

2.1. Set-Up

Consumer i chooses among J different energy-intensive durables. The price (capital cost) of product

j is pj and the future operating energy cost over the entire expected lifetime of the product is Ej . For

ease of exposition and without loss of generality, we abstract away from uncertainty and consumer-

specific heterogeneity in the product lifetime, future energy prices, utilization, depreciation, and

discount factor. We simply assume that Ej is the exact measure of expected energy operating costs

discounted with a normal rate of return. Consumer i values product j as follows:

(1) Uij = ηiPj + θiEj + γj + εij

where γj is the vertical quality of product j and captures all the attributes of the products and εij
captures idiosyncratic preferences. A large literature has estimated variants of this model with the

goal of identifying the preference parameters for price and energy cost: η and θ, respectively. The

common approach used to quantify the degree of misperception is to test whether consumers trade

off one dollar of energy cost the same way they trade off one dollar of purchase price. Formally, the

test of misperception is whether θ/η 6= 1. An alternative, but equivalent test that has been widely

used in the literature solves for the implicit discount rate such that the ratio θ/η = 1. Using this

latter approach, an implicit discount rate that is markedly above the normal rate of return is seen

as a sign that consumers undervalue energy costs.

The literature has focused on a wide range of issues associated with the estimation of η and

θ. The seminal paper that started the debate about misperceptions of energy costs is Hausman

(1979), which focused on addressing the endogeneity of utilization and purchase decisions. To

address this problem, he developed an estimator that jointly modeled the utilization and purchase

decisions and found an implicit discount rate of about 20%. Following Hausman (1979), a large
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number of studies have performed a similar exercise and found a wide range of discount rates,

but that all tend to exceed normal rate of return (Train 1985). One shortcoming of Hausman

(1979) and other early studies on the topic is that most estimators did not control for unobserved

product attributes correlated with Eij . This is in contrast with most recent studies (Busse et al.

2013; Allcott and Wozny 2014; Grigolon et al. 2014; Sallee et al. 2016; ?), which have paid close

attention to unobservables that might bias the estimate of θ. In these studies, rich panel data are

exploited where the same technology is sold across different regions and time periods subject to

credible exogeneous variation in energy prices or technology features. This allows to use empirical

strategies that control for time trends, region specific unobservables, product-specific time invariant

characteristics, and selection issue due to the utilization decision. One important point to note is

that the recent literature has focused less on the estimation of the parameter η. In fact, in several

papers (Busse et al., Lin et al.), the coefficient on price is treated as a free parameter and calibrated

using price elasticities found in the literature.

The point we raise is that even if η and θ are credibly estimated, using these two parameters alone

to measure the average degree of misperception can lead to a biased quantification of misperception.

2.2. Bias in Measuring Average Misperception

If the preference parameters for prices and energy costs η and θ vary in the population, the statistic

used to measure misperception: m = θ/η, is the ratio of two random variables. A closed form

solution for the distribution of m exists only for a few specific distributions (e.g., two lognormals),

but moments of that distribution can be easily approximated given any distributions of η and θ,

as we show below.

Proposition 1. The first-order Taylor approximation of E[m] = E[θ/η] ≈ E[θ]/E[η].

The second-order Taylor approximation of E[m] is:

E[θ]
E[η] −

cov(η, θ)
E[η2] + V ar(η)E[θ]

E[η3]

The approach commonly used to quantify misperceptions of energy costs is the first-order Taylor

approximation shown in Proposition 1. The size of the bias of this approximation is therefore of
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the order:

(2) −Cov[η, θ]
E[η2] + V ar[η] · E[θ]

E[η3] +O(n−1)

The size and the sign of the correlation between the parameters η and θ play an important

role in determining the bias of the first-order approximation. If these parameters are positively

correlated, the first-order approximation will be biased upward. From Equation 2, it is also clear

that heterogeneity in the perception of price plays a particularly important role in quantifying E[m]

as the first three moments of the distribution of η enter the expression. Heterogeneous responses

to both prices and energy costs and how these responses are correlated are thus crucial to infer

accurately measure misperception. To illustrate, consider this simple example where η and θ are

strongly positively correlated because some consumers do not pay attention to prices or energy

costs. Suppose that there are only two consumer types who make a purchase decision according to

Equation 1, where βi = {ηi, θi}, i = 1, 2. A fraction σ of consumers of type 1 only pay attention

to quality so that β1 = {0, 0} and a fraction 1 − σ pay equal attention to both prices and energy

costs, so that β2 = {η, η}. In this market, the first-order approximation implies:

E[m] ≈ E[θ]
E[η] = (1− σ)η

(1− σ)η = 1.

Clearly, this leads to a misleading conclusion even for the case where the share of inattentive

consumers is very large, i.e., σ ≈ 1, we will still conclude that the degree of inattention is low in

this market.

3. Data and Environment

Our empirical investigation focuses on the U.S. refrigerator market, which offers several advantages.

First and foremost, refrigerators are one of the few appliance categories that consume a large amount

of energy, but for which the utilization decision is not likely to be a main driver of the overall energy

operating costs over the lifetime of the appliance. Although refrigerator energy costs could be

subject to idiosyncratic variation across households, the characteristics of a refrigerator such as it

size, door design, presence of ice maker are the main determinants of its energy costs. Endogeneity

of the utilization and purchase decisions are therefore not a main concern, which simplifies the
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estimation. Second, the U.S. refrigerator market is subject to rich variation in refrigerator prices,

energy costs, rebates for energy efficient appliances, and choice sets that allow us to identify the

preference parameters and infer the degree of misprception to energy costs. Third, refrigerators

is an important market in the U.S. and elsewhere, which is expected to grow particularly fast in

developing countries in the upcoming decades. Contributing to the design of policies that improve

the energy efficiency of refrigerators is thus important to reduce the negative externalities associated

with household energy use.

The main data source used for the estimation consists of transaction level data from a large U.S.

appliance retailer. The sample includes all transactions where a refrigerator was purchased during

the period 2007-2012. We observe each transaction, which contains information about the price

paid by the consumer, the zip code of the store where the purchase was made, the manufacturer

model number of the model purchased, and a transaction identifier that tracks consumers making

multiple purchases. For a large subset of transactions, the identifier is matched with household

demographics collected by a data aggregator (Table 1). Detailed attribute information for each

manufacturer model number is also available and include: manufacturers’ reported energy use,

dimensions (width, height, depth), whether a product is certified Energy Star, the presence of ice

maker, color, brand, door design, and several other features pertaining to design and technology

options.

We match the transaction data with local energy prices and rebate information. Energy prices

are constructed from the form 861 of the Energy Information Administration (EIA), which contains

revenue and quantity of kWh consumed by residential consumers. Together, these variables provide

a measure of average electricity price for each electric utility operating in the U.S. The EIA also

provides information about which utility is operating in each county, which allows us to compute

average electricity prices at the county level. One important feature of the U.S. electricity market

is that prices vary widely across regions due to difference in generation technologies across unit

and market structure (Figure 2). Variation in prices over time tend, however, to be modest, with

the exception of a few local markets. This contrasts with gas prices that vary widely over time,

but much less across regions. For our estimation, we exploit both the persistent differences across

regions and the existing within county variation over time.
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Rebates for energy efficient appliances were offered during the sample period by both state gov-

ernments and electric utilities. The State Energy Efficiency Appliance Rebate Program (SEEARP)

was funded as part of the stimulus package of the American Recovery Act. This program led to

generous rebates for Energy Star certified products during the year 2010 and 2011. Several electric

utilities also offer rebates for Energy Star certified-refrigerators. Both of the rebate programs vary

across time and regions. Houde and Aldy (2017) find that consumers responded to SEEARP, but a

large fraction of consumers were inframarginal to the program. Houde and Aldy (2017) and Datta

and Filippini (2016) also find that rebates offered by electric utilities have a modest impact on

demand due to a low take-up rate.

One particular feature of the U.S. appliance market is that appliance retailers, such as ours, have

a national price policy and retail prices are subject to large and frequent variations. Houde (2016)

shows that the price of each refrigerator model at this same retailer is subject to weekly variation

that can exceed 20% and that variation is model-specific and not perfectly correlated across brands.

Therefore, even after controlling for week-of-sample fixed effects interacted with brand dummies,

large variation in price remains (Figure 3). This model-specific variation is highly idiosyncratic and

is generated by the retailer’s dynamic pricing algorithm. We exploit this variation to identify the

coefficient on price.

4. Empirics Part I: Homogeneous Model

Our empirical strategy is based on a simple discrete choice model, where utility of consumer i for

product j in region r and time t is given by:

(3) Uijrt = ηpjrt + θEjrt + εijrt

where Pjrt is the purchase price and Ejrt is the annual operating cost ($/year), and εijrt represents

the unobservable portion of utility. Our goal is to first estimate η and θ without considering

heterogeneity in the distribution of preferences.



9

To obtain our estimating equation, we first assume that εijrt is extreme value distributed, which

gives rise to the multinomial logit:

(4) Pjrt = eUjrt∑J
k=0 e

Ukrt

The number of units sold for a particular product can be obtained by multiplying Pjrt by the size

of the market in region r and time t: Mrt: Mrt · Pjrt = qjrt. The local market size, Mrt is defined

as all potential buyers of a refrigerator in a given region and time period. The outside option in

this context (j = 0) refers to the decision to: 1) not purchase a refrigerator in this particular week,

2) purchase a refrigerator at another retailer, or 3) to purchase a refrigerator model at the retailer,

which has very low market share, and has been excluded from our final sample. We normalized the

utility from the outside option in each market (r × t) to a constant: U0rt = αrt. Using the Berry

(1994) transformation, we obtain a log-linear expression with the log of the quantity of a product

sold as the dependent variable:

log(Mrt · Pjrt)− log(Mrt · P0rt) = Ujrt − U0rt

log(qjrt)− log(q0rt) = Ujrt − U0rt

log(qjrt)− log(q0rt) = ηPjrt + θEjrt + εijrt − αrt

log(qjrt) = ηPjrt + θEjrt + εijrt − αrt + log(q0rt)

Our estimation equation is a version of this log-linear expression, where the unobservable component

of utility is made up of several sets of fixed-effects as well as an idiosyncratic error term as follows.

(5) log(qjrt) = ηPjrt + θEjrt + γj + ξrt +Week ×Brandjt + EStar × Statejrt + εijrt.

where

εijrt = γj +Week ×Brandjt + EStar × Statejrt + εijrt
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and

ξrt = log(q0rt) + αrt

The term ξrt represents region by time fixed effects. By including these fixed effects in our

estimation, we can flexibly control for trends in preferences for the outside option, without having

to make explicit assumptions about local market size or the level of utility from the outside option.

In our preferred specification, we control for these trends using zip-code by six-month fixed effects.

We will also present specifications with zip code month-of-sample fixed effects.

Model-specific fixed effects, γj represent time and region invariant preferences for a particular

model. Week by brand specific fixed effects, Week×Brandjt, control for trends in the attractiveness

of particular brands, which may effect market share. This set of fixed effects is notably important

to rule out the effect of promotions and marketing campaigns that might be correlated with price

changes.

We also include Energy Star by region specific fixed effects, EStar × Statejrt. We do this

primarily to ensure that the cross-sectional variation in local electricity prices can be treated as

exogeneous. One concern is that preferences for energy efficient products are correlated with local

electricity prices. This correlation may arise for a variety of reasons. In regions with high electricity

prices, electric utilities, retailers, and local governments may market energy efficient products more,

for instance. In the appliance market, the Energy Star certification plays a particularly important

role in helping various stakeholders to promote energy efficiency and there is substantial variation

across regions in how the program is publicized. Figure 1 shows a map compiled by the U.S. EPA

that classifies each designated market area (DMA) has a high, low, or medium (coded as “other”

by the EPA) level area of publicity for Energy Star. Regions with the highest electricity prices,

such as New England and California, also tend to have a large number of high publicity DMAs.

On the other hand, regions with low electricity prices tend to have low level of publicity for Energy

Star. To account for the possible effect of Energy Star, and region-specific preferences for energy

efficiency more generally, we add Energy Star (ES) dummies interacted with region fixed effects.

In our analysis, we will consider both ES-state and ES-county-year fixed effects.
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We aggregate our transaction data to the product-zip code-week level and our energy cost data

for a particular product vary by county-month (the level of variation of our average energy price

data). For the estimation, we compute Ejrt as the annual operating energy cost of product j, which

is the annual kWh consumption reported by the manufacturer multiplied by the county average

electricity price in a particular month. Not all products sell every week in every zip code, so there

are a large number of zero sales in our dependent variable.

For our preferred specification, we estimate Equation 5 with a Poisson regression model. The

Poisson estimation has several advantages in our context. First, since we are estimating a log-

linear relationship, it is better to model the conditional expectation of the dependent variable

directly rather than applying a transformation to the dependent variable. Simply taking the log

of sales counts (y) is not possible, since the value is zero for a non-trivial fraction of our data.

We could apply other transformations that are defined for all y ≥ 0, such as log(1 + y), but it

is not obvious how to recover E(y|x) from a linear model for E(log(y + 1)|x). Second, like OLS,

which is consistent and aymptotically normal even if the normality assumption is violated, Poisson

has the nice property that quasi-maximum likelihood estimation recovers consistent, asympotically

normal coefficient estimates even if the Poisson distribution does not hold and standard errors can

be adjusted for violations of the Poisson variance assumption that the variance is equal to the mean

(Wooldridge 2010). Third, we are able to efficiently estimate models with high-dimensional fixed

effects using the algorithm proposed by (?). Unlike other count models, e.g., negative binomial,

the Poisson model is very computationally efficient with this algorithm. One down-side of directly

modeling E(y|x) is that the identification of the parameters is not as transparent as with OLS,

since it is being driven in part by the non-linear functional form assumptions. However, as we show

in Appendix XX our results are qualitatively consistent with an OLS estimate of both a linear

probability model and a linear model with log(1 + y) as the dependent variable.

Measurement Error. Since we constructed our county-level electricity price as an average price

for the utilities that serve a particular county, there will be some measurement error in the calculated

operating costs for individual purchases. Another potential source of measurement error is that

we use the average county price of the county in which the appliance was purchased, which may

differ in some cases from the county in which the consumer lives. This type of classic measurement
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error could attenuate our estimates of the coefficient on operating cost, and bias our estimates of

the “perception of energy costs” parameter towards zero. In order to address this possibility, we

estimate our model limiting our sample to those counties that are served by only one utility, so

that our average energy price is not subject to this type of measurement error for everyone living in

that county. If the measurement error were a significant biasing factor in our estimates, we would

expect the coefficient estimates on operating cost to increase in magnitude using this sub-sample.

Another potential source of measurement error results from our calculation of average electricity

price for a utility as residential revenue divided by residential sales. In states where there is retail

competition, incumbent utilities earn revenue for providing distribution services, even when they

are not directly selling electricity to a customer. In these cases, our estimation of average utility

price may be systematically biased upwards, since not all of the revenue is directly tied to sales.

If the effect of this type of non-classical measurement error were large, it would bias our estimates

of the “perception of energy costs” upwards, away from under-valuation. In order to address this

possibility, we estimate a model limiting our sample only to states without retail competition. 1

Interpretation of Model Parameters. The coefficient on annual energy cost, θ, reflects how

future energy operating costs affect the probability of purchase. Assuming that consumers form

time-invariant expectations about the annual operating electricity expenditure and do not account

for the effect of depreciation, the lifetime energy operating cost (LCj) for the durable j is given by:

LCjrt =
L∑
t=1

ρtEjrt = ρ · 1− ρL

1− ρ · Ejrt,

where L is the lifetime of the durable, ρ = 1/(1 + r) is the discount factor, and Ejrt is the product

of the electricity price paid by a household in region r at time t and the manufacturer’s expected

annual electricity consumption for durable j.2 In the estimation model specified by Equation 5, the

coefficient on electricity cost is a reduced form parameter that relates to the discount factor and

marginal utility of income as follows:
1The following states (and the District of Columbia) have retail competition and are omitted for this part
of the analysis: Texas, Illinois, Ohio, Pennsylvania, Maryland, Washington DC, Delaware, New Jersey, New
York, Rhode Island, Connecticut, Massachusetts, New Hampshire, and Maine.
2Ejrt maps one-to-one to Elecjrt based on the region of residence for the household.
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(6) θ = η · ρ · 1− ρL

1− ρ .

The estimates of η and θ can then be used to infer a value of an implicit discount rate r.

Alternatively, we can take a stand on the what is the appropriate normal rate of return for the

consumers in the sample, use it to compute ρ, and test if the ratio θ/η · ρ · 1−ρL

1−ρ is equal to one.

Results: Main Specification. Table 2 displays the results from our main estimation. The first

column estimation includes zip code by six-month fixed effects and Energy Star by State FE along

with product fixed effects and brand by week fixed effects. The estimation in column 2 is the same

as column 1 except for zip code specific trends at the zip code by month level rather than zip code

by 6 months, and the estimation in column 3 is the same as column 1 except for Energy Star by

county by year fixed effects rather than Energy Star by state fixed effects. The results are consistent

across all three of these specifications. We find that a $1 increase in purchase price corresponds

to a .2% change in purchase probability and a $1 increase in annual operating cost corresponds to

a 1.6% change in purchase probability. Using Equation 6, we transform these estimates into an

applied discount rate reported in the last row of Table 2. The results imply a 8.5% to 9.5% discount

rate, which is consistent with recent work on automobile purchases (Busse et al. 2013; ?; Sallee et

al. 2016; Grigolon et al. 2014) and housing purchases (?).

Results: Robustness to Measurement Error in Electricity Price. Table 3 displays the

results from our estimates limiting our sample in ways that will minimize measurement error.

Column 1 displays the results from the estimation of 5 using just those counties served by a single

utility and column 2 displays the results of the same estimation using just those states with no retail

competition. The results are consistent with the results using all counties in all states. The results

from the sub-sample with counties served by just one utility also suggest that a $1 increase in annual

operating cost results in a 1.6% change in purchase probability. This suggests that attenuation bias

from classical measurement error in defining local energy price is not significantly driving down our

estimates of θ. The results from the sub-sample with states with no retail competition suggest

that a $1 increase in annual operating cost results in a 1.7% change in purchase probability. Since

the point estimate of the coefficient on energy operating cost is slightly higher than in the main
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specification rather than substantially lower, it does not seem like a systematic upward bias in

energy price from retail competition states is driving our moderate discount rate estimates.

5. Empirics Part II: Recovering Heterogeneity

To assess the bias due to the first-order approximation, we need to characterize the joint distribution

of the parameters η and θ. In the literature pertaining to energy efficiency durables, it is common

to account for preference heterogeneity using random coefficient models, especially the random

coefficient logit with normally distributed coefficients. Proposition 1, however, suggests that the

normal distribution is not well suited to evaluate the bias as its symmetry imposes a skewness

that is close to zero. The coefficient of skewness of the distribution of the parameter η matters in

evaluating the bias and setting it to zero may lead to overvalue or undervalue the size of the bias.3

In sum, to accurately characterize the bias it is important to recover the joint distribution of η and

θ without imposing distributional assumptions that determine the high order moments.

Our strategy to estimate the joint distribution of η and θ consists of using the estimator proposed

by Fox, Kim, Ryan, and Bajari (2010) (FKRB, therafter), which recovers a fully non-parametric

distribution of heterogeneity. Using this non-parametric distribution, the quantity of interest E[ θη ]

can be exactly computed and compared to its first-order approximation.

The FKRB estimator relies on the intuition that a continuous distribution of random parameters

can be approximated by a discrete distribution defined over the discretization of the support of

the continuous distribution. This suggests a simple estimator that consists of first discretizing the

support of the random parameters into a large number of grid points, say K, evaluating the choice

model at each grid point k, and then integrating over the discrete distribution by simply weighting

and summing the choice model at each grid point. The estimator returns the weights, which

correspond to the discrete probability density function of the random parameters. To illustrate,

consider our setting where we are interested in evaluating the joint distribution of F (η, θ). Discretize

the support of η and θ into K grid points, and define βk = {ηk, θk} as one grid point. We
3The expression E[η3] in Equation 2 can be expressed as a function of the coefficient of skewness: E[η3] =
Skew[η] ·V ar[η]3/2 +3E[η] ·V ar[η]−E[η]3. Given that the coefficient of skewness can be positive or negative,
setting Skew[η] to zero has an ambiguous effect on the estimate of E[η3] and thus the overall expression for
the bias.
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can compute the choice model for each βk using a parametric model (e.g., the conditional logit),

where the probability of choosing product j given βk is noted Pj(βk) = P kj . The observed choice

probability, Pj , is then equal to:

(7) Pj =
∫
Pj(η, θ)dF (η, θ) ≈

K∑
k

αkP kj

where
∑K
k α

k = 1 because the weights are a discrete probability density function. By choosing a

parametric form for the choice model, each P kj can be first be computed for each grid point and

treated as data in the estimation. The estimator is thus semi-parametric and the estimation can

simply proceed by running a linear regression with Pj as the dependent variable, P kj as regressors,

and αk as coefficient to be estimated. To ensure that the weights αk sum to one, constrained linear

least squares must be used with the constraint:
∑K
k α

k = 1. The estimator is appealing for a number

of reasons. First, it is a computationally simple way to recover a fully non-parametric distribution

of heterogeneity. Second, constrained linear least square is guaranteed to provide a global optimum

if a solution exists, a non-trivial advantage over other estimators of random coefficients models,

such as maximum likelihood, the EM algorithm, GMM, or bayesian methods, which are all prone

to local optima and convergence issues.

The main weakness of the FKRB estimator is that it suffers from the curse of dimensionality. The

number of grid points increases exponentially with the number of random coefficients. For instance,

a model with three random coefficients discretized with hundred grid points in each dimension must

be evaluated for a combination of 1003 grid points. If the number of preference parameters is large,

it becomes rapidly intractable to model each parameter with a random coefficient. FKRB propose

two solutions. Some parameters can be estimated in a model without heterogeneity in a first step

and then treated as data when estimating the weights αk. For instance, a simple conditional logit

can be estimated in a first step, and then the FKRB can be implemented where only a subset of the

parameters are treated as heterogeneous. This approach is particularly appealing with models with

a large number of fixed effects. It should, however, be noted that this two-step estimation may not

produce consistent estimates and standard errors need to be adjusted in the second step. The second
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approach proposed by FKRB is estimate the model in one step with non-linear constrained least-

squares. The feasibility of this estimator is context specific. Consider the case where the number of

grid points is 1,000 and it takes 1 second to evaluate the choice model for each grid point, computing

the choice probability will then take 1,000 seconds, which will result in a very long computing time

for a non-linear optimization.4 The non-linear optimization is also not guaranteed to converge to

a global optimum.

For our application, the number of preference parameters is very large due to the number of

product fixed effects (> 500). Moreover, the choice probabilities take a relatively long time to

compute given the large number of observations used for the estimation. We thus favor the two-

step estimator discussed above. We implement the estimator as follows.

From the entire sample of transactions, we take a large random subsample (N = 66, 000). As

with our homogeneous estimation, the subsample is restricted to transactions made by households

owning their housing unit5 with the goal of focusing on transactions made by consumers who are

likely to pay the energy operating costs of their appliances.

For each transaction, we inter a zip code-trimester-specific choice set, i.e., all models offered

in a given zip code6 and during a trimester are considered to be in the consideration set of the

consumer.7 The parametric choice model is the conditional logit with alternative-specific utility

given by

(8) Uijrt = ηPjrt + θEjrt + τESjt + φRebatejrt + γj +Demoi ×Attt + εijrt

4The computing time can be greatly reduced by using parallel processing to compute the choice model over
all the grid points.
5The data do not explicitly identify transactions that are made by households. We infer this information using
a transaction identifier that tracks multiple purchases of customers. We classify customers that purchase
more than one refrigerator during the sample period as non-households. This criterion is a conservative way
to rule out contractors and other entities that buy a large number of appliances in bulk.
6##% of zip codes have only one store. Our choice set are thus mostly store specific.
7We do not observe floor inventory. Therefore, a model is deemed to be offered if we observe at least one
sale of that model at a given location and time period.
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Relative to the homogeneous model, the model has a parsimonious set of controls: the energy

star certification, energy star rebates, product fixed effects, and demographic information interacted

with a subset of attributes. But we show that the model does well in replicating the estimates of

Section 4 and is not subject to a large bias. To ease computations, only the parameters η and θ

are random coefficients. We first estimate all coefficients with a conditional logit. In the second

step, we fix all the regressors, except η and θ. The grid points for η and θ are determined by

scaling the estimates of the conditional logit with various scaling factors ranging from -1 to 3. This

means that we allow the maximum of the support of each parameter to be three times as large the

estimated mean, and the minimum to take a positive value, although η and θ should be negative

to be consistent with consumer optimization.

5.1. Results

Figure 4 shows the estimated probability density of the ratio θ/η. The distribution has three modes

and shows that a large share of consumers respond to energy costs, but undervalue them. There

is some probability mass close to zero, which suggests that some consumers do not pay attention

to energy costs. It also appears that some consumers overvalue energy costs. This finding might

appear surprising, but is consistent with other evidence for the U.S. appliance market. For instance,

Houde (2016) shows that a fraction of consumers value Energy Star certified products well beyond

the energy savings associated with the certification. Newell and Siikamäki (2014) also found that

a coarse certification such as Energy Star can lead to overvaluation of energy costs.

The red and black horizontal lines in 4 show the bias in evaluating E[θ/η]. According to the

first-order approximation, the value of E[θ]/E[η] =
∑
k αkθk/

∑
k αkηk is 0.66 (red line), but if we

evaluate E[θ/η] exactly by computing
∑
k αkθk/ηk, we find a value of 0.75 (black line). Therefore,

heterogeneity in misperception of energy costs is such that the first-order approximation leads to a

downward bias in evaluating E[θ/η].

Another important take-away from the above results is that the quantity E[θ/η], even when

computed accurately, is also misleading in diagnosing the degree of misperception of energy costs.

For instance, we find that there is no probability mass at E[θ/η] = 0.75. In other words, the

distribution is highly skewed and there are no consumers that behave as the average consumer. If



18

we were to design a policy solely based on the average degree of misperception and overlook the

substantial heterogeneity in how consumers value energy costs, we would set a policy that is too

stringent for some and too lenient for others.

There are many factors that drive the heterogeneity patterns found in Figure 4. For instance,

households with different income levels might have different levels of credit constraints, which would

lead to a different response to energy costs. We explore this hypothesis, by recovering the non-

parametric distribution of η and θ controlling for income. We do so by estimating the FKRB

estimator for six different income groups. Figure 5 shows the results, where each panel corresponds

to the probability density for a specific income group. There are three important results. First, all

six distributions follow a similar pattern to the one we found using the whole sample. This suggests

that the existence of the three consumer types that we identify is not driven by access to credit

or other factors related to income. Second, the first-order approximation is downward biased in

all cases. Third, the ratio m is increasing with income. Note that the ratio is computed using a

discount rate of 3% for all income groups. If we were to apply higher discount rates for lower income

groups the average value of m would be constant across groups. Therefore, credit constraints do

appear to play a role in the present context. However, even if we were to adjust the discount rates

to reflect access to credit, substantial heterogeneity in the distribution of m would persist, which

we take as evidence that misperceptions of energy costs are important in this market.

6. Implications for Policy Design

In this section, we assess how heterogeneity in misperception of energy costs impacts the design

of policies used to address negative externalities associated with energy use. To illustrate the role

that plays heterogeneity, we first focus on the simple case where the planner uses a single policy

instrument, a Pigouvian tax, to address negative externalities and misperceptions. We show how

heterogeneous misperceptions affect the level of the optimal Pigouvian tax and the measurement

of its welfare effect.

Our measure of welfare is a direct application of Leggett (2002)’s formula to measure welfare

in a discrete choice framework in the presence of imperfect information. This framework has been

further developed by Allcott (2011), ?, and Houde (2016) to measure welfare in the presence of
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consumers’ biases. The first step in applying this framework is to take a stand on whether the

utility function specified to model consumers’ decisions coincides with the utility function that

captures what consumers experience after making a purchase decision. If decision and experience

utility do not coincide, because we believe that consumers misperceive some components of product

costs for instance, the change in consumer surplus for a given policy change can be expressed as:

∆CSktr = 1
ηk
·

ln J∑
j

exp(Ũkjtr) +
J∑
j

P̃kjtr(ŨEkjtr − Ũkjtr)

−(9)

1
ηk
·

ln J∑
j

exp(Ukjtr) +
J∑
j

Pkjtr(UEkjtr − Ukjtr)

 .
where the terms with a tilde are evaluated after the policy change, UEkjtr denotes experienced utility

and Ukjtr corresponds to decision utility for consumer of type k. The expression in 9 corresponds

to the standard measure of welfare for the multinomial logit (?) plus the term
∑J
j Pkjtr(UEkjtr −

Ukjtr), which we refers as the Leggett (2002)’s correction. The correction term arises because of

the discrepancy between what consumers perceive they will experience and what they actually

experience, and simply represents the expected (private) cost that consumers incur because of their

misperceptions.

For our application, we will make the following two assumptions:

(1) If mk = θk/ηk 6= 1, consumer of type k misperceived energy costs and his decision utility

differs from experience utility. To measure experience utility for type k, we set θk = ηk.

(2) If ηk > 0, consumer of type k misperceived the product price and decision utility differs

from experience utility. To measure experience utility for type k, we set ηk = η̄−k, where

η̄−k refers to the average value for the coefficient η for all types other than k.

The first assumption simply says that if consumers do not perceive a one dollar change in future

energy operating costs (discounted with a normal rate of return) the same way they perceive a dollar

change in product price, they are prone to a bias. Note that by setting θk = ηk, we let consumers

to be heterogeneous with respect to their response to price (i.e. marginal utility of income). The
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second assumption aims to deal with consumer types for which η is greater than zero. A positive

coefficient on price is a manifestation of various consumers’ biases with respect to the product price

and notably high search costs. By setting ηk = η̄−k, we make the implicit assumption for all types

j 6= k for which ηj ≤ 0, that the coefficient on price reflects their true marginal utility of income.

Furthermore, we also implicitly assume that the distribution of the true marginal utility of income

for consumers ηk > 0 follows the same distribution as the remaining of the population.8

Using the welfare measure in 9, Houde and Aldy (2017) derive an expression for the optimal

Pigouvian tax in the presence of misperception of energy costs. Suppose that there are K consumer

types and that the misperception parameter mk applies to the energy costs inclusive of the tax.

They show that if each product j consumes ej amount of energy over its lifetime, consumers pay

pe for each unit of energy consumed, and ej is associated with a constant marginal damage cost,

φ, the optimal Pigouvian tax, τ∗, is:

(10) τ∗ = φ

1−A + pe
A

1−A
with

A =
∑
k

αk(1−mk)
∑
j

∂P kj
∂τ

ej

The expression 10 is similar to the results of Farhi and Gabaix (2016) except that the price of

energy also enters the expression of the optimal Pigouvian tax. Allcott and Taubinsky (2014) also

show that the optimal Pigouvian tax should be adjusted to account for biases, and it should be

an upward adjustment if consumers undervalue the return to energy efficient investments.9 The

intuition in having the price of energy in Equation 10 is that there are two market failures at play,

negative externalities and misperceptions, but only one policy instrument is used. In the presence

of consumers’ biases, the Pigouvian tax is second-best and multiple policy instruments are required
8? propose an alternative approach to deal with consumers’ biases pertaining to product price. They first
devise a procedure to identify choices that are considered a mistake in their sample. They tend exclude these
choices from the sample, and estimate a choice model on what they consider a sample free of consumers’
mistakes. They treat the coefficient on price from this estimation as the true marginal utility of income.
9It can be shown that Proposition 1 of Allcott and Taubinsky (2014) yields a similar expression to Equation
10, except that their expression for the optimal tax is also function of the degree of misperception in future
utilization of the durable, in addition of the price of energy, and misperception mk.
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to achieve the first best outcome (?). Our goal here is to show how heterogeneity in misperception

impacts the level of the optimal tax. We leave the question of the first-best policy design for

future research. We compute the optimal Pigouvian tax under three scenarios: considering the

full distribution of heterogeneity in mk, considering the average value of m computed with the

first-order approximation, and considering the exact value of E[m]. For each of those scenarios, we

provide two measures of welfare: one that considers heterogeneity and the other evaluated for the

average consumer (homogeneous model).

6.1. Results

For all scenarios, we fix the level of the externality at 0.02 $/kWh, this provides the benchmark for

the level of the optimal Pigouvian tax without misperception. If we consider the full distribution

of heterogeneity in misperception, we found that the optimal tax is approximately equal to zero.

This result is driven by the fact that we found a small share of consumers that overvalue energy

costs, which requires a downward adjustment to the tax. If we set the tax using the average value

of m computed using the first-order approximation, the optimal tax is τ =0.087 $/kWh, more than

four times the externality cost. If we use the exact measure of E[m], the optimal tax is τ =0.063

$/kWh. Accounting for heterogeneity has thus a very dramatic effect on the level of the optimal

tax.

Looking at the welfare estimates (Table 4), the level of the tax has a large impact of the various

components of welfare, especially consumer surplus and government revenues. Accounting for

heterogeneity in measuring welfare has however a modest effect on the estimates. Heterogeneity is

thus very important in getting the stringency of the policy instrument, but much less for measuring

welfare for a given policy.

7. Conclusion

The standard test of consumer misperception used widely in the literature compares the respon-

siveness of demand for changes in potentially misperceived aspects of cost against salient, correctly

perceived aspects of cost. Consumers should be indifferent between an additional dollar of purchase

price and an additional dollar of the potentially misperceived cost such as shipping and handling or,
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the present discounted dollar of energy expenditure, since total lifetime cost should be the relevant

metric. The ratio of the responsiveness coefficients has been used as a sufficient statistic for the

degree of consumer misperception.

This paper makes two methodological contributions for quantifying inattention. First, we show

that ignoring heterogeneity in the distribution of the two responsiveness coefficients can lead to

biased estimates of average misperception. The ratio of the two responsiveness coefficients is a

first order approximation of the relationship between the two distributions. Taking into account

higher order terms in a Taylor series approximation shows that the covariance between the two

variables is an important parameter, which determines the direction of the bias. Second, we show

that even if the average amount of misperception is measured correctly, heterogeneity in the degree

of misperception can have significant implications for both optimal policy design and estimates of

welfare effects.

We also contribute to the literature on the “energy efficiency gap”, the observation that con-

sumers seem to systematically undervalue operating costs relative to purchase price in energy

using durables. In recent years, this issue has received attention because governments around the

world have become interested in designing successful policy instruments for reducing greenhouse

gas (GHG) emissions. The effectiveness of price-based instruments such as taxes or cap-and-trade

programs depends crucially on whether consumers are responsive to fuel prices in markets for

energy-using durables. Previous work in the appliance sector has shown mixed evidence as to

whether consumers respond to local energy costs at all. Using a unique administrative data set

with micro-level sales data from a large appliance retailer, we are able to recover more credible

estimates of the coefficients on price and energy costs than has been possible in the past. Our

empirical strategy exploits fine-grained panel data, allowing us to control for product, region, and

time specific unobservables.

We find that the first-order approximation provides a downward bias of the average degree of

misperception. Our results show that consumers are responsive to changes in local energy costs,

even if they do undervalue them somewhat relative to purchase price. Our findings also show

substantial heterogeneity in the degree of misperception, which significantly impact optimal policy

design and estimates of welfare effects.
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8. Tables and Figures

Figure 1. Source: EPA
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Figure 2. Average County Electricity: 2010
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Figure 3. Price Variation
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(a) Misperception Parameter

(b) Coefficient on Price (c) Coefficient on Energy Costs

Figure 4. FKRB Joint and Marginal Probability Densities for Parameters η and θ

Notes: The first panel plots the estimated probability density for the ratio θ/η. The distri-
bution identifies three consumer types and shows that the first-order approximation leads
to a downward bias in evaluating E[m]. Panels b) and c) are the estimated marginal distri-
butions for the parameters η and θ, respectively.
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(a) <$30k (b) $30k-$50k

(c) $50k-$75k (d) $75k-$100k

(e) $100k-$150k (f) >150k

Figure 5. FKRB Probability Density Estimation by Income Group

Notes: Each panel plots the estimated probability density for the ratio θ/η. For all income
groups, we compute the ratio assuming a discount rate of 3%, r = 3%.



30

Table 1. Summary Statistics

Mean SD
Price ($) 1252.6 627.0
kWh/y 514.9 78.4
County Elec. Price (cents) 11.4 3.7
State Elec. Price (cents) 12.3 3.3
County Elec. Cost/y ($) 58.5 20.6
State Elec. Cost/y ($) 63.2 18.9
Rebate Amount ($) 25.9 68.8
% Energy Star 68.5
% w Ice-Maker 76.0
Overal Size (cu. ft.) 22.5 3.4
% w Top Freezer 30.3
Demographics
% of Households 67.6
% w. Demo. Info. 56.6
% Renters 1.9
Income distribution
<$30k 12.2
$30k-$50k 16.8
$50k-$75k 25.2
$75k-$100k 18.2
$100k-$150k 11.8
>$150k) 15.7
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Table 2. Estimation of the Effect of Purchase Price and Operating Cost on
Sales Count

Dependent Variable sales count sales count sales count
purchase price -0.00190(∗∗∗) -0.00196(∗∗∗) -0.00186(∗∗∗)

(0.00002) (0.00002) (0.00002)

annual electric cost -0.01596(∗∗∗) -0.01687(∗∗∗) -0.01667(∗∗∗)
(0.00067) (0.00076) (0.00077)

Product FE Yes Yes Yes
Brand × Week FE Yes Yes Yes
Zip × 6 month FE Yes No Yes
Zip × month FE No Yes No
EStar × State FE Yes Yes No
EStar × County × Year FE No No Yes
N 1090865 1090865 1090865
Implied Discount Rate 9.6% 9.3% 8.6%
Notes: The dependent variable is the number of units of a particular appliance sold in a given week in a

given zip code. The model is estimated according to a Poisson regression, using the algorithm proposed by
Guimares and Portugal (2009) to absorb high dimensional fixed effects. The Standard errors are in

parentheses. ***, ** and * denote statistical significance at the 1, 5 and 10 percent levels.
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Table 3. Estimation of the Effect of Purchase Price and Operating Cost on
Sales Count: Sample Limited to Address Measurement Error

Dependent Variable sales count sales count
Sub-sample (counties served by one utility) (states with no retail competition)
purchase price -0.00155(∗∗∗) -0.00192(∗∗∗)

(0.0000467) (0.0000257)

annual electric cost -0.0160(∗∗∗) -0.0174(∗∗∗)
(0.000985) (0.000927)

Product FE Yes Yes
Brand × Week FE Yes Yes
Zip × 6 month FE Yes Yes
EStar × State FE Yes Yes
N 136471 618358
Implied Discount Rate 6.6% 8.5%
Notes: The dependent variable is the number of units of a particular appliance sold in a given week in a

given zip code. The model is estimated according to a Poisson regression, using the algorithm proposed by
Guimares and Portugal (2009) to absorb high dimensional fixed effects. The Standard errors are in

parentheses. ***, ** and * denote statistical significance at the 1, 5 and 10 percent levels.

Table 4. Welfare Effects: Pigouvian Tax

No Adjustment Adjustment w. Adjustment w.
First-Order Approx. Exact E[m]

τ =0.02 $/kWh τ =0.087 $/kWh τ =0.063 $/kWh
∆ CS w. Heterogeneity -140.3 -604.8 -441.8
∆ CS Homogeneous -137.4 -589.1 -431.1
∆ Externality w. Heterogeneity -0.9 -3.6 -2.7
∆ Externality Homogeneous -0.9 -3.6 -2.7
∆ Gvt Revenue w. Heterogeneity 138.7 591.2 433.6
∆ Gvt Revenue Homogeneous 139.0 592.2 434.3
∆ SW w. Heterogeneity -0.7 -9.9 -5.5
∆ SW Homogeneous 2.5 6.7 5.9
Notes: Social Welfare (SW) is the sum of the consumer surplus (CS), externality costs, and
government (GVT) revenues. The externality cost is 0.02 $/kWh in all scenarios. All welfare
estimates are measured in dollar and compare to the case where there is no tax levied, which
is the optimal policy if we account for heterogeneity in determining the level of the tax.


