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Abstract

The intermittency (variability) of solar and wind power imposes network costs associated with

maintaining system stability. We examine how the socially optimal deployment of intermittent

renewable generation capacity depends on such ancillary services costs and demonstrate how

network interconnection tariffs can be designed to implement the efficient outcome. We then

apply our theory to obtain quantitative results for the California electricity market.
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1 Introduction

The intermittency (variability) of solar and wind power imposes costs on the grid associated with

maintaining system stability and reliability. Examples of such ancillary services costs include auto-

matic generation control (AGC), spinning reserves, non-spinning reserves, and fast ramping reserves.

Historically, the share of intermittent renewable generation capacity in most jurisdictions was small,

which meant that allocating ancillary services costs across consumers and/or producers in an ar-

bitrary manner did not result in significant economic efficiency losses. However, in many regions

ancillary services costs have become increasingly important with the surge in intermittent renewable

energy production brought about by renewable energy mandates.

In California, for example, annual ancillary services costs as a share of total wholesale energy

costs more than doubled from 2015 to 2016.1 The California Independent System Operator (ISO)

also more than doubled its average hourly regulation reserve (AGC) requirement between 2015

and 2016. The primary driver of these changes was almost 2,000 megawatts (MWs) of new grid

scale solar generation capacity coming on line during 2016. California has a 33% percent renewable

portfolio standard (RPS) by 2020 and a 50% RPS by 2030, so ancillary services quantities and

ancillary services costs are likely to become an even larger share of total wholesale energy costs in

the future.

These trends in ancillary services quantities and costs are common to all regions with significant

intermittent renewable energy goals. They provide strong evidence that the economic efficiency

consequences of continuing to allocate ancillary services costs in an arbitrary manner are increasing.

One way of internalizing ancillary services costs is through network interconnection tariffs that

price locational differences in the factors driving these costs. Specifically, different dollar per MW

of capacity installed interconnection tariffs would be assessed for intermittent renewable resources

interconnecting at different renewable resource locations in the transmission grid. Keeping other

factors the same, this tariff should encourage interconnection at locations that minimize the adverse

market efficiency consequences of meeting a region’s intermittent renewable energy goals.

This paper characterizes the socially efficient expansion of intermittent renewable generation

capacity needed to achieve a specified renewable energy target (such as California’s 33 percent re-

newable energy goal) in a manner that accounts for the reliability externality associated with the

necessary intermittent generation investments. By subtracting the first-order condition for a gener-

ation unit owner’s capacity expansion decision at a location in the grid and the first-order conditions

from our socially optimal investment solution at that same location, we derive an expression for

the dollars per MW marginal interconnection charge that could implement the social optimum as

decentralized market outcome. We then use market outcome and hourly generation data from the

California ISO control area to estimate features of the joint distribution of hourly capacity factors

1California Independent System Operator, 2016 Annual Report on Market Performance and Issues, p. 141, available
at https://caiso.com/Documents/2016AnnualReportonMarketIssuesandPerformance.pdf
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for all renewable resource areas in California and the other parameters of our model necessary to

compute values of the locational interconnection charges. Based on those estimates, we compute

two socially efficient investment solutions (one constraining investment at each location to be at

least the current capacity at that location and the other only requiring non-negative capacities at

all locations) and the optimal locational interconnection charges associated with them. Finally, we

compute several alternative solutions to achieving California’s renewable energy goals and compare

the costs of attaining those goals under these solutions to the costs under our two efficient solutions.

The social planner’s problem is how to distribute incremental or total intermittent capacity

across renewable resource locations in a control area so as to maximize total surplus, subject to

an annual output target for renewable energy production. This problem is very similar to a port-

folio selection problem in which a manager distributes investment dollars across financial assets to

minimize the variance of returns subject to achieving a minimal expected return. There are two

major differences between the classical portfolio choice and the renewable generation investment

problems. First, short sales are impossible because capacity at each location must be non-negative.

In the incremental capacity expansion problem, existing capacity at that location is sunk. Second,

the optimal renewable generation capacity investment portfolio depends on factors other than the

variance and covariance of outputs, for instance the covariance with consumption. This second

feature is likely to be important in reality because some intermittent generation technologies are

better suited to meet peak demand than others. For example, in California solar generation capac-

ity produces the most energy during daylight hours versus wind generation capacity that tends to

produce more energy in the early morning and late evening hours.

We find significant differences across locations in the value of the optimal interconnection tariffs

for California renewable generation locations. Although the absolute level of the tariffs are modest,

less than one dollar per MW of installed capacity for each hour of the year, they differ by multiples

as high as four to one across California renewable resource locations. We also find that plausible

counterfactual renewable generation capacity expansion paths to achieve the 33% renewable energy

goal lead to significantly higher total costs of meeting the RPS. Our empirical results demonstrate

the feasibility and effectiveness of implementing location-specific renewable generation capacity

interconnection tariffs for regions with ambitious renewable generation capacity expansion goals.

The remainder of the paper proceeds as follows. Section 2 characterizes the growing renewable

generation intermittency challenge facing California. Section 3 presents our theoretical modeling

framework and derives the socially optimal renewable energy investment solution for meeting a

given renewable energy goal. This section then uses this modeling framework to derive the optimal

locational renewable resource interconnection tariff. Section 4 contains our application to the Cal-

ifornia electricity market and derives two social solutions to meeting California’s 33 percent RPS

along with the optimal locational renewable resource interconnection tariffs. Section 5 considers

several counterfactuals that illustrate the increased cost of meeting California’s RPS goal using

plausible non-optimal policies for intermittent renewable generation capacity expansion. Section 6
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concludes the paper with a brief policy discussion.

2 California’s Renewable Generation Challenge

California has invested in over 6,500 MW in grid-scale solar generation capacity and over 4,400 MW

of grid-scale wind generation capacity between 2002, when the state’s RPS was first implemented,

and the end of 2015.2 For solar capacity, virtually all of this investment has taken place since

2011, whereas for wind this investment has occurred at a steady annual rate since 2002. As of the

beginning of 2016, there was almost 7,000 MW of solar generation capacity and almost 6,000 MW

of wind capacity in California. However, average hourly wind and solar energy produced in 2016

is significantly lower. More than fifty percent of the hours in 2016, hourly wind output was less

than 1,500 MWh and hourly solar output was less than 1,000 MWh. For combined wind and solar

output, more than fifty percent of the hours of the year hourly output was less than 2,500 MWh.

Figure 1 plots the histogram of hourly wind output in the California ISO control area for 2016

conditional on a positive value of hourly wind output. The expression P(TotalOutput=0) at the

bottom of Figure 1 is equal to the fraction of hours in the year with zero wind output–approximately

1 percent of the hours in 2016. This histogram is extremely skewed to the right and has a substantial

amount of frequency mass close to zero hourly output. The histogram rapidly decreases to zero

frequency more than 2,000 MWh below the installed capacity of wind units in the state.

Figure 2 plots the histogram of hourly solar output for 2016 conditional on a positive value of

hourly solar output. As shown at the bottom left of the figure, in more than 45 percent of the

hours in 2016 hourly solar output was equal to zero. This histogram is bimodal, with one peak very

close to zero and another smaller peak close to 5,000 MWh. With the exception of very low hourly

output levels, the distribution of hourly solar output levels is relatively flat across all output levels.

Different from the case of wind capacity, there are a number of hours in 2016 when the hourly solar

output was very close to the amount of installed solar generation capacity in the California.

Figure 3 plots the histogram of the sum of hourly wind and solar output for 2016 conditional

on this sum being positive. Approximately 0.4 percent of the hours in 2016 no wind nor solar

energy was produced. This histogram is tri-modal, with the largest frequency at very low levels of

hourly output. There is second spike at 2,000 MWh and another smaller one at 6,000 MWh. This

histogram also has a very significant right skew.

How have this distribution changed over time as California has expanded the amount of solar

and wind generation capacity? One might expect that as more renewable resource locations are

developed, the uncertainty in hourly wind, solar, and wind and solar output should decline. This

intuition is based on the logic that there is little contemporaneous correlation between hourly

renewable energy output at different resource locations in California. However, as shown in Wolak

2California Energy Commission–Tracking Progress available at http://www.energy.ca.gov/renewables/

tracking_progress/documents/installed_capacity.pdf
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(2016), there is a substantial amount of contemporaneous correlation between the hourly output of

solar locations in California and hourly output of wind locations in California.

Wolak (2016) uses one year of hourly output data from all wind and solar units in California

between April 1, 2011 and March March 31, 2012 and computes the capacity factor fjh at location

j during hour h for all hours of the year as fjh =
Qjh

Kj
, where Qjh is the hourly output in MWh at

renewable energy location j during hour h and Kj is the amount of renewable generation capacity

in MW at location j. Wolak (2016) then computes the contemporaneous covariance matrices of

the hourly capacity factors of all 13 solar locations, all 40 wind location and all 53 wind and solar

locations that existed during his same period. He then performs and eigenvalue decomposition of

these covariance matrices and finds that more than 80 percent of the sum of variances in hourly

capacity factors across the 13 solar locations can be explained by a single factor. For the 40 wind

locations, more than 80 percent of the sum of the variances in the hourly capacity factors across

these locations can be explained by three orthogonal factors. For the 53 wind and solar locations,

more than 80 percent of the sum of the variances in the hourly capacity factors across these locations

can be explained by 5 orthogonal factors.

Wolak (2016) argues that these results demonstrate that adding more renewable generation

capacity in California is likely to increase significantly the aggregate uncertainty in renewable energy

output. To demonstrate this point, Wolak (2016) uses parameterized expressions for the mean and

covariance of the vector of hourly capacity factors across all renewable energy locations to compute

the efficient frontier of portfolios of renewable generation capacity investments with the same total

installed capacity of wind and solar generation units in California, but with every portfolio on this

efficient frontier having the largest mean hourly capacity factor for the given portfolio standard

deviation of the hourly capacity factor. The actual portfolio of wind and solar generation units in

California is shown to lie significantly inside this efficient frontier, which indicates the significant

potential reliability and economic benefits of locational interconnection pricing as a mechanism for

the reducing the variability in aggregate hourly renewable output and the costs of managing system

reliability.

Table 1 reports the annual mean, standard deviation, Coefficient of Variation (CV), standardized

skewness, and standardized kurtosis of the hourly wind, solar and combined wind and solar output

for 2013 to 2016.3 Standard deviations increase across all years and all three types of hourly

output. This is consistent with the amount of installed renewable generation capacity increasing

across the years. The sample CV provides a normalized measure of the variability in the three

hourly output measures that accounts for the growth in the annual mean hourly output across the

years. Consistent with the results reported in Wolak (2016), the general trend is that CV increases

across the years. The standardized skewness of the annual distribution of hourly output of wind

3If Xh is the output in hour h, X̄ is the annual mean of hourly output and s is the annual standard deviation of
hourly output, then the Coefficient of Variation is equal to s/X̄, the standardized skewness is equal to 1/H

∑H
h=1(Xh−

X̄)3/s3 , and the standardized kurtosis equals 1/H
∑H

h=1(Xh − X̄)4/s4, where H is the number of hours in a year.
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and solar resources also increases across the years.

Another measure of intermittency that signals the need for system operators to purchase more

ancillary services as the share of intermittent renewable resources increases is the duration of low

hourly renewable output levels. For each year from 2013 to 2016, we choose an hourly output level,

say 500 MWh, and then starting with the first hour of January 1 of the year, we look for the first

hour that has an hourly output of wind, solar, or wind and solar energy production below this level.

Then we count how many consecutive hours the hourly output remains below this level. This counts

as one duration of low output levels below the 500 MWh threshold and then we record the length

of this duration in hours. We repeat this same process of finding spells of hourly output less than

500 MWh for all hours of the year. Table 2 reports the number of durations of low hourly output

of wind for 500, 100, 1,500 and 2,000 MWh threshold values. The length of the these durations

in hours and the standard deviation of these durations, as well as the maximum length duration

is reported. Particularly, for the earlier years in the sample, there are extremely long maximum

periods of low renewable output. Even by 2016, when there is almost 6,000 MW of wind capacity

in California, the maximum duration of less than 2,000 MWh of wind output was 399 hours, which

is more than 16 days.

Table 3 reports Table 2 for solar output. The maximum duration of low levels of solar output

are significantly smaller than those for wind output. Table 4 reports Table 2 for the combined

hourly wind and solar output for 1,000, 2,000, 3,000, and 4,000 MWh hourly output thresholds.

Comparing the 1,000 and 2,000 MWh threshold mean duration, standard deviation, and maximum

value in Table 4 to those in Tables 2 and 3 demonstrates that combining these two sources of

renewable energy reduces the mean duration of low output levels and maximum duration of low

output levels relative to the solar or wind alone. However, there are still substantial durations of

low output levels that battery storage technologies would have a difficult time dealing with. For

example, in 2016 although there is more than 13,000 MW of wind and solar capacity in California,

the maximum duration of less than 4,000 MWh of output from these units was 178 hours, which is

more than one week.

These results provide empirical support for the California ISO’s increasing demand for ancillary

services as the state has scaled up its wind and solar generation capacity. Further evidence for

the increased demand for ancillary services and dispatchable generation capacity is the fact that

between 2002 and the end of 2015, California has added slightly more natural gas-fired generation

capacity, 11,573 MW, than renewable generation capacity, 10,993 MW. Figure 4 plots the installed

capacity in California by technology as of the end of the years from 2001 to 2015. Although wind

and solar investments have made up virtually all of the capacity additions since 2011, there is still

substantial amount of natural gas-fired capacity in California.

The above analysis distribution of the hourly output and wind ans solar generation units in

California argues that a significant fraction of this thermal capacity will continue to be needed to

provide ancillary services and energy as California brings on line more renewable generation units to
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meet its RPS goals. These thermal units must be fully compensated for the services they provide or

their owners are likely to take them mothball or retire the units, and these costs must ultimately be

paid by electricity consumers. Our analysis of optimal renewable generation interconnection pricing

is aimed at minimizing these thermal energy and ancillary services costs associated with meeting

California’s RPS goals.

3 Optimal Renewable Generation Investment and Tariffs

3.1 Modeling Renewable Generation Investment

Consider a control area with J possible locations of intermittent electricity production. This energy

typically comes from wind and solar generation capacity. Denote by Kj the installed intermittent

generation capacity at location j, measured in megawatts (MW), with K = (K1,K2, ...,KJ)′ being

the J×1 vector of intermittent generation capacity at all possible locations. Let Qhj be the amount

of electricity actually produced at location j during hour h = 1, 2, ...,H, where H is the total number

of hours in the year.

Define fjh = Qhj/Kj as the hourly capacity factor at location j during hour h, i.e. actual

production at location j during hour h divided by the amount that could be produced by full

utilization of the Kj MWs of capacity at that location. Let µj be the expected value of fjh. The

corresponding vector of realized capacity factors during hour h is equal to fh = (f1h, f2h, ..., fJh)′,

and the expected value of fh is equal to µ = (µ1, µ2, ..., µJ)′. Also, define the J×J (positive definite)

covariance matrix Σ = E[(fh−µ)(fh−µ)′]. Let σij be the (i, j)th element of Σ. We assume that

these moments are constant across H.

In terms of this notation, the actual output during hour h at location j, Qjh, is equal to

fjhKj , and the expected output, E[Qjh], is equal to µjKj . Total renewable energy output during

hour h therefore equals Rh =
∑J

j=1Qjh = f′hK, and the expected renewable energy output is

E[Rh] = f′hK. The variance of hourly renewable energy production is equal to K′ΣK. Let QDh be

the realized value of system demand during hour h and E[QDh] its expected value.

The difference between system demand QDh and the intermittent renewable electricity produc-

tion Rh during hour h, yields a residual demand that must be covered by dispatchable generation

capacity, primarily thermal generation units. Let Ch(Rh, QDh) be the total variable cost of serving

this residual demand during hour h. In addition, there is an ancillary services cost Ah(Rh, QDh)

associated with maintaining system stability. Let Ch(Rh, QDh) and Ah(Rh, QDh) be convex in

Rh. Assume also that the total amount of thermal generation capacity and transmission network

capacity are sufficiently large and intermittent electricity production sufficiently small relative to

these capacities that neither demand nor renewable output has to be curtailed.

Under the assumption that all of the random variables–the elements of the vector fh and QDh–

have the same first two moments across years, the expected net present value (ENPV) of investing
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one MW of capacity at location j equals:

τ∑
t=1

H∑
h=1

δtE[prjhfjh −
Sj(K)

Kj
] − Fj , (1)

where τ is the life-span of the investment and δ the annual discount rate. The price prjh paid per

unit of renewable output at location j during hour h typically contains a subsidy to the renewable

resource owners and therefore can differ substantially from the wholesale price pjh. Often, renew-

ables receive an additional payment per MWh produced that is fixed for the entire term of the

power purchase agreement used to finance the construction of the facility: prjh = pµj for all h.

We assume that investors treat prjh as exogenous when making their investment decision. We

introduce the term, Sj(K)/Kj into (1) to account for our proposed hourly interconnection tariff

paid per unit of capacity installed at that location by the producer for generation unit at location

j in the grid. We allow this charge to depend on the installed capacity K at all locations in

the grid. Finally, Fj is the capital cost per MW of capacity, which encompasses the (overnight)

construction cost, the cost of connecting the plant to the grid plus the discounted expected overhead

and maintenance costs over the life-span of the plant. The investment is undertaken if and only if

it has a non-negative ENPV. Let all payments during the H hours of year t be made at the end of

the year. Normalize the capital cost at location j to

DFj =
Fj
H

1− δ
δ(1− δτ )

and let DF = (DF1, DF2, ..., DFJ)′ be the vector of normalized capital costs across all J locations.

By this normalization, the average hourly ENPV of investing Kj MW of renewable capacity at

location j equals

1

H

H∑
h=1

E[prjhfjhKj − DFjKj − Sj(K)]. (2)

3.2 The Efficient Portfolio of Renewable Generation Capacity

To determine the function form of the per MW installed hourly locational interconnection charge

Sj(K), we first solve the social planner’s problem and compare it to the one facing the private

investor. The social planner minimizes the sum of expected thermal energy costs, ancillary services

costs and renewable generation investment costs,

1

H

H∑
h=1

E[Ch(Rh, QDh) + Ah(Rh, QDha)] + DF′K, (3)
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subject to the renewable portfolio standard (RPS),

µ′K ≥ α
1

H

H∑
h=1

E(QDh), (4)

which requires that the expected annual hourly renewable energy production be greater than or

equal to 100α (0 < α < 1) percent of expected annual hourly electricity demand.

Depending on the problem, we impose the constraint that the installed capacity at location j

must be greater than or equal to zero, Kj ≥ 0, or the installed capacity at location j be greater

than or equal to the existing capacity Ke
j at location j, Kj > Ke

j . Let Ke be the vector of existing

capacity at all renewable locations.

The Lagrangian for the social planner’s problem where investment at all locations must be

greater than or equal to the existing capacity at that location is:

L(K, λ, ξ) = − 1

H

H∑
h=1

E[Ch(Rh, QDh) + Ah(Rh, QDh)] − DF′K

− λ[α(
1

H

H∑
h=1

E(QDh)) − µ′K] + ξ′(K−Ke)

(5)

where λ ≥ 0 is the Kuhn-Tucker (KT) multiplier associated with the RPS constraint, ξj ≥ 0

is the KT multiplier associated with (Kj − Ke
j ) ≥ 0, and ξ is the vector of KT multipliers

associated with capacity investment constraints at the J renewable resource locations. This is a

strictly concave optimization problem, which allows us to state Proposition 1:

Proposition 1 The efficient portfolio K∗ of renewable generation capacity, the shadow price λ∗ on

the renewable target, and the shadow prices ξ∗ at the J locations are jointly characterized by the J

first-order conditions

− 1

H

H∑
h=1

E

[
[
∂Ch(R∗h, QDh)

∂Rh
+

∂Ah(R∗h, QDh)

∂Rh
]fjh

]
− DFj + λ∗µj + ξ∗j = 0, ∀j, (6)

where R∗h = f′hK
∗, and the J + 1 complementary slackness conditions

µ′K∗ ≥ α
1

H

H∑
h=1

E[QDh], λ∗ ≥ 0, λ∗(µ′K∗ − α
1

H

H∑
h=1

E(QDh)) = 0, (7)

K∗j ≥ Ke
j , ξ

∗
j ≥ 0, ξ∗j (K∗j −Ke

j ) = 0 ∀j. (8)

The first term in (6) is the sum of the marginal reduction in the expected thermal production

cost and the marginal reduction in ancillary services costs associated with an increase in renewable
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investment at location j. The second term is the capital cost of the marginal capacity, and the third

term is the marginal value of the expected contribution to achieving the RPS target. The last term

is shadow price associated with the constraint that renewable capacity K∗j at location j must be at

least equal to existing capacity Ke
j at that location. It is suboptimal to increase capacity above Ke

j

if the marginal costs dominate the first two effects, in which case ξ∗j ≥ 0 and K∗j = Ke
j . Otherwise,

ξ∗j = 0 and capacity at location j strictly exceeds the existing capacity at that location.

Computing the optimal portfolio of renewable capacity investments assuming that all locations

have zero existing capacity simply sets Ke
j = 0 for all j. For this case, ξj is the shadow cost of

installing capacity at location j when there is no capacity at location j and it will be equal to zero

if the optimal solution installs any capacity at that location.

Different from the case of the thermal cost of meeting the difference between the hourly demand,

QDh, and hourly renewable output, Rh, where one can simply integrate under the aggregate thermal

cost curve up to the residual demand for thermal energy, there is no straightforward way to compute

the ancillary services costs associated with any possible combination of hourly renewable output

and system demand. Consequently, we assume a functional form that captures three basic features

about the relationship between expected ancillary service costs and the first two moments of system

demand and renewable energy production.

We assume that Ah(Rh, QDh) = θ
2(Rh − QDh)2 for θ > 0, where Rh = K′fh. Taking the

expectation of this function we obtain:

E[Ah(Rh, QDh)] =
θ

2
[V ar(Rh)− 2Cov(Rh, QDh) + V ar(QDh) + (E[Rh]− E[QDh])2]. (9)

This functional form captures a number of features of the actual relationship between expected

ancillary costs and the first two moments of the joint distribution of hourly renewable output and

hourly demand. First, expected ancillary services costs are increasing in the variance of both re-

newable output and system demand. Second, expected ancillary services costs are decreasing in the

covariance between renewable output and demand. Third, ancillary services costs are increasing

in the difference between expected renewable output and expected demand. In our empirical ap-

plication, we econometrically estimate θ using using hourly total ancillary services cost and hourly

values of Rh and QDh from the California ISO find that the θ is positive and precisely estimated.

With this functional form for Ah(Rh, QDh), an expression for the marginal increase in the

expected ancillary services cost with respect to an increase in capacity at renewable location j that

enters (6),

E[
∂Ah(Rh, QDh)]

∂Rh
fjh] = −θ[E[QDh]− µ′K]µj + θ[σjjKj +

J∑
i 6=j

σijKi − cov(fjh, QDh)],

can be expressed in terms of the parameters of the first two moments of the joint distribution of the

10



vector of hourly locational capacity factors and hourly demand. We now have all of the ingredients

necessary to derive the optimal interconnection tariffs for each renewable energy location. The

marginal ancillary services cost associated with investment at a particular location j, all else equal,

is small if the variance in output is small, the covariance with output at other locations is small and

the covariance with consumption is large. It is small also if the expected output at the location is

large. In theory, the marginal ancillary services cost could be negative with this specification.

3.3 Optimal Network Interconnection Tariffs

To derive an optimal interconnection tariff, consider the marginal profitability of investing an ad-

ditional MW at renewable resource location j:

1

H

H∑
h=1

E[prjhfjh]−DFj −
∂Sj(K)

∂Kj
|Kj=K∗j

+ ξ∗j (10)

evaluated at the efficient portfolio K∗. The first term is the expected revenue, the second term is

the capital cost of the marginal increase in capacity at location j. The third term is the marginal

interconnection tariff at location j. By subtracting the marginal profitability condition (10) from

(6), we can align the marginal private and social incentives if and only if

∂Sj(K)

∂Kj
|Kj=K∗j

=
1

H

H∑
h=1

E[
∂Ah(R∗h, QDh)

∂Rh
fjh]

+
1

H

H∑
h=1

E[(prjh +
∂Ch(R∗h, QDh)

∂Rh
− λ∗)fjh].

(11)

Implementing the social optimum as a decentralized equilibrium requires a network tariff Sj(K) at

location j that causes investors to internalize the externality associated with the cost of maintaining

system stability. This is the first term on the right-hand side of (11). Furthermore, the remuneration

prjh to renewable electricity production may differ from the marginal social benefit (
∂Ch(R∗h,QDh)

∂Rh
−

λ∗) from the investment. If so, the network tariff must also correct this second distortion, which is

the term in (11).

Assume that the total hourly price prjh paid to renewable resource at location j is the sum of

the wholesale price pjh and a fixed subsidy pµj per MWh produced, e.g. a feed-in tariff. Assume

also that the wholesale price equals the marginal thermal production cost at every location, so

that pjh = −∂Ch(Rh,QDh)
∂Rh

. In that case, the role of the network tariff is to capture the expected

marginal ancillary services cost and to correct any distortions associated with the support system
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for renewable electricity, which yields:

βj =
∂Sj(K)

∂Kj
|Kj=K∗j

=
1

H

H∑
h=1

E[
∂Ah(R∗h, QDh)

∂Rh
fjh] + (pµj − λ)µj . (12)

This expression can be used to implement the efficient portfolio. Assume, for instance, that the

annual hourly network tariff for connecting Kj MW of renewable capacity at location j to the grid

equals

Sj(K) =
βj
2

K2
j

K∗j
(13)

The expected profit then becomes

1

H

H∑
h=1

E[prjhKjfhj ]−KjDFj −
βj
2

K2
j

K∗j

at location j, which has a unique solution Kj = K∗j if K−j = K∗−j , where K−j (K∗−j) is the vector of

all other locational (socially optimal) capacity choices besides location j. The equilibrium network

tariff at location j simply becomes Sj(K∗)
K∗j

= βj/2 per unit of installed capacity K∗j .

4 Application to the California Electricity Market

This section presents a stylized application of our modeling framework to the California electricity

market. To do this, we require three sets of inputs. First, we need estimates of the first two

moments of the hourly joint distribution of (f′h, QDh) to compute elements of E[Ah(Rh, QDh)], the

expected ancillary services cost function. Second, we need the information necessary to compute

Ch(Rh, QDh), the total variable cost of meeting the residual demand with thermal units, for each

hour of the year. Third, we need information on the realized value of Ah(Rh, QDh) and Rh and

QDh) for a sample of hours to estimate the value of θ. Plugging this information into our model

allows us to compute the optimal portfolio of renewable generation investments all locations in

California to achieve the 33 percent RPS goal.

Before proceeding with this analysis, we would like emphasize that there are many ways to

enhance our model to better reflect actual system conditions in California, but these extensions

would either significantly complicate the process of solving our model or require additional data we

are currently unable to access. We therefore view the application in this section as demonstration

of the feasibility and practicality of implementing a locational interconnection charge rather than

as finding the correct value for all renewable resource locations in California.

To obtain data on the first two moments of the hourly joint distribution of (f′h, QDh), we rely

on the data used in Wolak (2016), which contains the hourly capacity factor, fjh for all 13 solar

locations and 40 wind locations producing energy and hourly system demand, QDh during the
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period April 1, 2011 to March 31, 2012. In terms of the notation of model, the dimension of the

vector, fh equals J = 53. Section 4 in Wolak (2016) presents a comprehensive analysis of the high

degree contemporaneous correlation between the hourly renewable energy output at all locations

in California. This analysis also demonstrates that the hourly outputs of all solar locations are

positively correlated with hourly system demand, whereas the outputs at some wind locations are

slightly negatively correlated with hourly system load and others are slightly negatively correlated.

For the second set of data, we have compiled the technical characteristics of all thermal gener-

ation units operating in California between April 1, 2011 and March 31, 2012. This information

includes the heat rate in millions of BTU (MMBTU) per MWh, the nameplate capacity in MW,

and variable operating maintenance costs in dollars per MWh. As shown in Figure 4, all thermal

capacity in California is natural gas-fired during this time period.

The heat rate HRg of natural gas-fired generation unit g gives the MMBTUs of natural gas

required to produce one MWh of electricity from that unit. We combine this information with the

delivered price of natural gas to generation unit g during day d, PNATGATgd, for each genera-

tion unit during our sample period to compute the variable cost of producing a MWh at thermal

generation unit g during day d as:

V Cgd = V OMg +HRg × PNATGASgd,

where V OMg is the variable operating and maintenance cost of unit g. we then compute the hourly

system-wide marginal cost curve for the time period April 1, 2011 to March 31, 2012, using the

value of V Cgd as the height of the step and CAPg, the capacity in MW of generation unit g as the

length of the step, for all generation units that are available produce electricity during the hour.

Stacking these variable cost and capacity steps from the lowest to highest variable cost yields the

system-wide marginal cost curve for hour h of day d. Integrating this curve from zero to the level

of (QDh −Rh), the residual demand to be served by thermal units, yields the total variable cost of

meeting this residual demand.

Although California is currently a significant net importer of electricity, meeting approximately

25 percent of it annual demand from imports, it is likely that it will increasingly export renewable

energy during low demand periods with significant in-state renewable energy production. To account

for this outcome in our modeling, we allow any excess renewable production in an hour to be

sold at the lowest variable cost of any generation unit in California during that hour. Because

California relies on incremental imports to meet unexpectedly high demand conditions, we also

allow California to meet any shortfall between the production of instate thermal units the residual

demand, (QDh − Rh), from imports at an offer price equal to the highest variable cost unit in

California during that hour.

The third dataset is a sample of hourly ancillary services costs, hourly renewable energy pro-

duction, and hourly system demand that can be used to estimate θ, the parameter of our ancillary
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services cost function. To estimate this model for the highest currently existing renewable penetra-

tion in California, we use data from April 1, 2015 to March 31, 2016, to match the same calendar

time period as our other data. During this period there are six ancillary services: Regulation Up,

Regulation Down, Spinning Reserve, Non-Spinning Reserve, Regulation Mileage Up, and Regu-

lation Mileage Down. For all of these ancillary services, market participants have the option to

self-provide from a generation unit they own or have a contract with. For this reason, we follow

the convention used by the California ISO Department of Market Monitoring in reporting ancillary

services costs, and take the market price, multiply by the total amount of each ancillary service in

that hour (the sum of self-procured capacity and capacity purchased from the market) and multiply

that sum by the price. Then we sum these amounts over all the ancillary services to obtain total

hourly ancillary services costs.

Annual ancillary services costs were $62 million in 2015 and $119 million in 2016. However, as

percentage of total wholesale energy purchase costs in the California ISO control area they increased

from 0.7 percent to 1.6 percent across the two years.

Table 5 reports the results of estimating the model

TAShd = αhd + θ(Rh −QDh)2 + εhd, (14)

where TAShd equals total ancillary services cost during hour h of day d, αhd denotes different

combinations of fixed-effects that vary by hour-of-the-day, day-of-the-week and month-of-the-year

and with interactions of these fixed effects. Regardless of which combinations of fixed-effects are

used, the estimate of θ is virtually unchanged and very precisely estimated. We use a value of

θ = 6× 10−5 in solving our model.

The final parameters necessary to solve our model are the dollars per MW of installed capacity

cost of building a wind or solar generation unit. There is considerable debate over the precise value

of these costs. We use estimates of these figures of $2,000 per KW for wind from Anderson et al.

(2017) and $4,000 per KW for solar for all locations from recent data compiled from the California

Solar Initiative for systems larger than 1 MW.4 We also assume δ = 1/(1+r) for r = 0.10 and a life-

span of twenty years, τ = 20. The qualitative features of our empirical results are not significantly

different for reasonable changes in these magnitudes. Only the value of λ∗, the shadow price on the

RPS constraint at the solution, changed with changes in these magnitudes. Higher values of the

capacity costs increase λ∗, as does lower values of the discount rate, δ.

We now turn to computing two solutions to the efficient expansion of California’s renewable

generation capacity to meet its 33 percent RPS goal. The first solution assumes that all locations

must continue to have at least their current capacity. The second solution only assumes that

capacities at all renewable resource locations must be non-negative.

In both cases we solve the Lagrangian (5), in the first case with Kj ≥ Ke
j for all j, and in

4https://www.californiasolarstatistics.ca.gov/reports/cost_vs_system_size/
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the second case with Kj ≥ 0 for all j. We use the realized variable cost of producing electricity

each hour of the year to produce the realized residual demand during that hour, Ch(Rh, QDh) in

place of E[Ch(Rh, QDh)] and the realized value of Ah(Rh, Qh) in place of E[Ah(Rh, Qh)] in 5. In

the RPS constraint we replace E(QDh) with the actual value of QDh. Finding the solution to (5)

requires solving a bound-constrained, nonlinear program with a single linear constraint (the RPS

constraint).

To compute the residual demand faced by thermal resources in California each hour we must

account for the fact that there are other generation technologies in use besides wind, solar and

natural gas-fired generation. As shown in Figure 4, there are also small and large hydroelectric

units, biomass, geothermal and nuclear power. Small hydro, biomass, and geothermal production

count towards the state’s RPS goals. Consequently in computing the RPS constraint, we count the

hourly production of these units, which we denote by QRh. We also subtract the hourly production

of the sum of nuclear units, large hydroelectric units, and net imports which we denote QOh to

compute the value of QDh. In terms of this notation, the RPS constraint in (5) becomes:

1

H

H∑
h=1

f′hK ≥ α[
1

H

H∑
h=1

(QDh +QOh)]− 1

H

H∑
h=1

QRh. (15)

This constraint is more representative of how the actual RPS mandate applies and it also reflects

the fact that hydroelectric and nuclear units contribute to meeting demand in California.

Comparing our two optimal renewable expansion solutions, we find that the Kj ≥ 0 solution

requires less total solar and wind generation capacity and yields lower total costs than the Kj ≥ Ke
j

solution. Specifically, the Kj ≥ 0 solution requires 15,713 MW of wind and solar generation capacity,

whereas the Kj ≥ Ke
j requires a total of 17,233 MW of wind and solar capacity, a difference of 1,520

MW, which is less than the installed capacity of wind and solar in our base year of 2011 of 3,539

MW. This result implies that more than half of this installed capacity would remain if California

was able to start from zero capacity at all wind and solar locations and meet it RPS goals, but it

also suggests that there has been overinvestment at some locations.

The total hourly cost of the Kj ≥ 0 solution is $962,500 per hour, whereas the total cost of the

Kj ≥ Ke
j solution is $1,001,000 per hour, a less than 4 percent increase in costs.

We can compute the optimal locational interconnection charges for each renewable resource

location in California as described in the previous section. We consider the case where tariffs is only

designed to internalizes the increased ancillary services, and does not account for any inefficient

subsidies of renewable energy. Consequently, βj only depends on the first term of (12). To preserve

the confidentiality of the renewable energy locations, we are unable to report characteristics of

specific locations, but we able to present plots as as function of features of each location.

All of our marginal interconnection charges are negative, indicating that interconnection charges

should be a decreasing function of the volume of installed capacity at that location. This result is
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partially driven by our functional form assumption for Ah(Rh, Qh) and the fact that the expected

demand for solar, wind and thermal units exceeds expected solar and wind output, E[Qh] > E[Rh].

We plan to explore richer functional forms for the ancillary services cost functions to see if this

result continues to hold. For example, assuming that Ah(Rh, Qh) = αQh + βRh + θ(Rh − Qh)2,

might allow for the possibility of positive marginal interconnection charges.

We first present the histograms of Sj(K∗)
K∗j

for all renewable resource locations separately for the

Kj ≥ 0 and Kj ≥ Ke
j solutions. Figure 5 presents the Kj ≥ 0 results and Figure 6 presents the

Kj ≥ Ke
j results. The two histograms are quite similar, which is not surprisingly given the similarity

of the two optimal solutions.

There is a significant amount of variation in the size of these interconnection payments. Most are

in the range of $0.10/MWh and $0.25/MWh, which translates into between $876 per year per MW

and $2,200 per year. As we discussed previously, we expect the absolute value of these magnitudes

to change as we refine our modeling effort. They are also likely to become more economically

significant as the share of renewables increases and we enrich our model of ancillary services costs.

Figure 7 plots these optimal interconnection charges as a function of the annual average hourly

capacity factor at that location for the Kj ≥ Ke
j solutions. Figure 8 plots them as a function of

the annual standard deviation of the hourly factor at that location for this same solution. Figures

9 and 10 repeats these same two figures for the Kj ≥ 0 solution. Both solutions there is a positive

relationship between the mean capacity factor and the magnitude of interconnection subsidy at that

location. There is also a positive relationship between the annual standard deviation of the hourly

capacity factor at a location and the size of the interconnection subsidy.

5 The Cost of Non-Optimal Policies to California

This section compares the cost of alternative policies for attaining California’s 33 percent RPS

goals relative to the optimal policy. To determine the potential cost of not pursuing an optimal

interconnection policy, we compute the compliance cost for several plausible alternatives.

We consider two different approaches. The first computes the dollar per MW of annual revenue

from producing renewable energy at each location valued at the California ISO’s real-time price for

that location for all locations in California. We then restrict all new capacity investments to the

five highest dollar per MW of annual revenue locations. We run this scenario for both the Kj ≥ 0

constraints and the Kj ≥ Ke
j constraints. Specifically, we solve (5) restricting the set of locations

where investment can take place to the top five most profitable locations.

Given that locational prices are observable and a number of private companies sell information

that allows a prospective investor to estimate fairly accurately the annual output at that the lo-

cation, the information necessary to executive this RPS compliance path is readily available. We

experimented with a larger number than five locations, but found the results were not appreciably

different from those obtained with a larger number of locations.
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The second expansion scenario assumes that all locations scale up their existing capacity until

the 33 percent RPS constraint is met. This solution simply finds the smallest value of γ, a scalar

greater than one, such that the modified RPS constraint (15) is satisfied when all values of Ke
j are

multiplied by the γ. We recognize that is an extremely naive expansion strategy, but include it as

an upper bound on how costly non-optimal expansion strategies would be.

For the five-most-profitable-locations solution for the Kj ≥ 0 constraints, the total hourly cost

is $962,800, which is only slightly higher than the optimal solution for this case. For the Kj ≥ Ke
j

constraints case, the total hourly cost is $1,005,900, which is also higher than the optimal solution for

this case. These results support the view that as long as new entrants focus on the most profitable

locations, they should be able to come close to the optimal configuration.

This outcome is not guaranteed because the new entrants will have to find the optimal mix

of capacity at each of these locations, which is what our optimal interconnection tariffs should

deliver. Nevertheless, by restricting attention to just these locations, solutions very close to the

social optimum can be found.

It is interesting to note that in terms of installed capacity the solutions that invest only at the

five most profitable locations are able to satisfy the RPS goals with less investment in renewable

generation capacity than the optimal solutions. For the Kj ≥ 0 solution, the five-most-profitable-

locations solution requires, 15,627 MW, versus 15,713 MW for the least cost solution. For the

Kj ≥ Ke
j solution, the five-most-profitable-locations solution requires 17,200 MW, versus 17,233

MW for the least cost solution.

For the solution that scales up the existing renewable capacity at all locations by the same

factor, γ > 1 is significantly more expensive and requires much more renewable capacity. The total

cost per hour is 1,332,700 dollars and the total amount of installed capacity is 28,790 MW. This

result demonstrates that expansion policies that do not consider the factors we discuss can lead to

substantially more expensive paths to compliance with the RPS.

6 Conclusions

In many regions ancillary services costs have become increasingly important because of the rapid

increase in intermittent renewable energy production brought about by renewable energy mandates.

The traditional approach to recovering ancillary services costs as a per unit charge on demand may

need to be revisited because where renewable generation units locate influences the magnitude of

these costs. We propose locational renewable generation interconnection payments as a way to

provide incentives for more efficient renewable generation locational decisions.

These payments could reduce or replace traditional renewable support mechanisms that pay

per unit of energy produced, such as feed-in tariffs and production tax credits. Instead, renewable

resource owners would receive a dollar per MW payment each hour of the year for each MW of

capacity interconnected at that location. This would eliminate inefficient renewable production
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decisions caused by feed-in tariffs and production tax credits. Renewable resource owners would no

longer have an incentive to produce at negative wholesale prices, as they do with the per-MWh-

produced incentive schemes. Instead, they would receive the $/MW payment per hour regardless

out how much energy they actually produce and cease production when prices are negative.

Although we are cautious in drawing quantitative conclusions from our stylized empirical analy-

sis, we believe several qualitative conclusions are possible that are likely to hold with a more realistic

model. First, we find significant differences across locations in the value of the optimal intercon-

nection payment for California renewable generation locations. Second, the absolute level of the

payments is modest, less than one dollar per MW of installed capacity for each hour of the year, but

they differ by multiples as high as four to one across California renewable resource locations. These

results support the view that interconnections tariff/payments yield a more cost-effective pathway

to meeting RPS goals.
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Table 1: Annual Moments of Hourly Wind, Solar, and Wind and Solar Output (MWh)

2013 2014 2015 2016

Hourly Wind Output (MWh)
Mean 1034.03 1131.52 999.6 1204.8
Standard Deviation 843.15 880.83 822.13 918.27
Coefficient of Variation 0.82 0.78 0.82 0.76
Standard Skewness 0.39 0.49 0.53 0.41
Standard Kurtosis 2.03 2.29 2.18 2.05

Hourly Solar (MWh)
Mean 316.58 1005.01 1518.31 1918.71
Standard Deviation 434.74 1286.77 1900.02 2384.97
Coefficient of Variation 1.37 1.28 1.25 1.24
Standard Skewness 1.23 0.85 0.83 0.73
Standard Kurtosis 3.51 2.14 2.65 1.86

Hourly Combined Wind and Solar Output (MWh)
Mean 1350.61 2136.53 2517.9 3123.51
Standard Deviation 882.46 1457.94 1977.27 2420.45
Coefficient of Variation 0.65 0.68 0.79 0.77
Standard Skewness 0.19 0.45 0.63 0.55
Standard Kurtosis 2.32 2.5 2.97 2.07

Data Source: California ISO Oasis Web-Site

20



Table 2: Wind Output Shortfall Durations (Hours)

2013 2014 2015 2016

Threshold Value 500 MWh
Number of durations 162 190 199 212
Mean 19.19 14.64 16.35 12.82
Standard Deviation 38.61 28.58 28.06 22.5
Maximum 288 216 209 157

Threshold Value 1000 MWh
Number of durations 222 263 227 225
Mean 20.06 16.22 21.15 18.43
Standard Deviation 43.47 39.79 44.65 34.52
Maximum 357 430 434 268

Threshold Value 1500 MWh
Number of durations 255 267 225 262
Mean 23.53 21.78 27.63 20.83
Standard Deviation 49.25 46.68 73.44 38.39
Maximum 374 485 949 290

Threshold Value 2000 MWh
Number of durations 185 211 193 218
Mean 40 33.75 38.66 30.89
Standard Deviation 94.26 87.82 92.48 58.66
Maximum 856 930 952 399

Data Source: California ISO Oasis Web-Site
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Table 3: Solar output Shortfall Durations (Hours)

2013 2014 2015 2016

Threshold Value 500
Number of durations 348 367 365 367
Mean 17.61 13.72 13.33 12.93
Standard Deviation 13.94 1.92 1.5 1.78
Maximum 191 21 17 19

Threshold Value 1000
Number of durations 181 365 365 366
Mean 43.24 14.96 14.01 13.73
Standard Deviation 299.07 2.27 1.68 2.28
Maximum 4041 43 20 42

Threshold Value 1500
Number of durations 30 359 364 365
Mean 288.23 16.35 14.72 14.27
Standard Deviation 1429.85 4.53 2.24 3.35
Maximum 7858 66 42 67

Threshold Value 2000
Number of durations 1 330 360 363
Mean 8758 19.35 15.66 14.94
Standard Deviation 0 21.57 3.58 4.79
Maximum 8758 371 44 94

Data Source: California ISO Oasis Web-Site
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Table 4: Combined Wind and Solar Output Shortfall Durations (Hours)

2013 2014 2015 2016

Threshold Value 1000
Number of durations 230 265 257 225
Mean 13.57 8.34 9.42 8.75
Standard Deviation 27.48 6.13 5.72 5.81
Maximum 288 20 18 21

Threshold Value 2000
Number of durations 260 388 397 380
Mean 25.54 11.41 10.83 9.63
Standard Deviation 53.44 9.07 5.95 6.53
Maximum 637 82 44 66

Threshold Value 3000
Number of durations 53 299 356 367
Mean 160.47 21.33 15.84 14.14
Standard Deviation 238.97 42.22 8.57 8.49
Maximum 1283 684 140 141

Threshold Value 4000
Number of durations 4 191 312 344
Mean 2188 40.06 20.54 16.93
Standard Deviation 1653.46 84.36 30.15 11.69
Maximum 4022 922 501 178

Data Source: California ISO Oasis Web-Site

Table 5: Estimates of θ × 10−5

Total AS Cost / Hour

θ × 10−5 6.02 6.08 6.08
Standard Error (0.137) (0.164) (0.164)

Hour, Day of Week, Month FE Yes Yes Yes
Two-way interactions No Yes Yes
Three-way Interactions No No Yes

Observations 8736 8736 8736

Standard errors in parentheses

FE = Fixed Effects
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Figure 1: Histogram of Hourly Wind Output in California ISO Control Area in 2016 (MWh)
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Figure 2: Histogram of Hourly Solar Output in California ISO Control Area in 2016 (MWh)
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Figure 3: Histogram of Hourly Combined Wind and Solar Output in California ISO Control Area
in 2016 (MWh)
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Source: California Energy Commission, CEC-1304 Power Plant Data Reporting. 
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Figure 5: Histogram of Locational Interconnection Charges for the K∗j ≥ Ke
j Solution
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Figure 6: Histogram of Locational Interconnection Charges for the K∗j ≥ 0 Solution
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Figure 7: Annual Mean Capacity Factor and Interconnection Charge by Location at the K∗j ≥ Ke
j

Solution

30



0 0.25 0.5
Std(Capacity Factor)

-0.25

-0.2

-0.15

-0.1

-0.05

0

In
te

rc
on

ne
ct

io
n 

C
ha

rg
e 

(
 / 

2)

Scenario: X >=act

Figure 8: Annual Standard Deviation of Capacity Factor and Interconnection Charge by Location
at the K∗j ≥ Ke

j Solution

31



0 0.25 0.5
E(Capacity Factor)

-0.25

-0.2

-0.15

-0.1

-0.05

0

In
te

rc
on

ne
ct

io
n 

C
ha

rg
e 

(
 / 

2)

Scenario: X >=0

Figure 9: Annual Mean of Hourly Capacity Factor and Interconnection Charge by Location at the
K∗j ≥ 0 Solution
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Figure 10: Annual Standard Deviation of Capacity Factor and Interconnection Charge by Location
at the K∗j ≥ 0 Solution
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