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Abstract

In this paper, I combine data on incidents associated with rail transportation of crude oil and
detailed data on rail shipments to appraise the relation between increased use of rail to trans-
port crude oil and the risk of safety incidents associated with those shipments. I find a positive
link between the accumulation of minor incidents and the frequency of serious incidents, and
a positive relation between increased rail shipments of crude oil and the occurrence of minor
incidents. I also find that increased shipments are associated with a rightward shift in the distri-
bution of economic damages associated with these shipments. In addition, I find larger average
effects associated with states that represent the greatest source of tight oil production.

JEL Codes: L71, L92, Q35, C14

Keywords: crude oil, railroad, accidents, economic damages

*Thanks are due Thomas van Eaton for superb research assistance, participants at the 2017 ASSA meetings and
the Workshop on Energy Transitions held at the University of Southern Denmark in March 2017 for lively discussion.
Particular thanks are due to Ben Gilbert and Lucy Qiu for their constructive feedback. Any remaining errors are solely
my responsibility.

†H.A. “Dave” True, Jr. Chair in Petroleum and Natural Gas Economics, Department of Economics & Finance,
University of Wyoming; bambuzlr@uwyo.edu

mailto:bambuzlr@uwyo.edu


1 INTRODUCTION

Within the past ten years, widespread use of new extractive technologies, such as 3-D imaging,

horizontal drilling and hydraulic fracturing, has greatly expanded US oil production. What was

fairly recently regarded as a sunset industry has witnessed a renaissance, with production levels

coming very lose to historic highs in 2014. While this increase in production created substantial net

benefits in the form of increased domestic producer surplus, it also presented logistical challenges.

Much of the new production occurs in new regions; as a consequence, these production basins

are not well serviced by existing oil pipelines; consequently, to deliver their product to market

firms have increasingly turned to rail as a mode of transport. In turn, this has lead to concerns

related to safety: the concern is that the increased shipments of oil by rail may lead to a greater

risk of accidents, with related concerns for damages. These concerns are underscored by the

tragic derailment on 6 July, 2013 of a freight train carrying crude oil in the Quebec town of Lac-

Mégantic. The derailment killed 47 people, spilled over one million gallons of crude oil, and

caused widespread destruction; estimated damages exceeded $100,000,000.

Horrific as this event was, it was not singular, nor was 2013 a unique year: statistics com-

piled by the U.S. Department of transportation point to a steady stream of train derailments in

the U.S. between 2009 and 2014, with corresponding increases in damages. These patterns are

particularly noteworthy in light of recent trends in U.S. tight oil production, particularly from the

Bakken play (which was the source of the crude on the train that derailed in Quebec).

Figure 1 offers a feel for recent trends in incidents related to rail shipments of crude oil. In

this diagram, I focus on incidents termed “serious” by the Pipeline and Hazardous Materials Safety

Administration, the US governmental authority responsible for regulating rail shipments of crude

oil. The volume of crude oil released in a serious incident, in thousands of barrels, is indicate as a

circle. The dollar cost associated with a serious incident, in millions of US dollars, is indicated by a

diamond. The figure displays these variates for each major incident between 2009 and 2014. Three

points are germane. First, serious incidents were relatively rare before the second half of 2011, and

became far more between the latter part of 2011 and the end of 2014. Second, there are a handful of



very costly incidents. Because total costs include material costs, capital costs and response costs,

an incident that involves a derailment with little or no oil released could still be extremely costly,

as with two incidents in 2014. That noted, a major incident that involves the release of a substantial

amount of oil will generally be quite costly. This important trend, combined with the relative lack

of pipeline capacity to ship oil from the Bakken play, strongly suggest an expanding role for rail

in transporting American crude oil going forward.

Indeed, in response to the apparent heightened risk of shipping oil by rail, the US Depart-

ment of Transportation (DOT) adopted a new rule governing rail shipments of oil; this rule took

effect in July 2015. Trains with a continuous block of at least 20 cars loaded with a flammable

liquid, or trains with at least 35 such cars, are defined as “high-hazard flammable trains” (HHFT).

The new rule requires any tank cars constructed after September 2015 that are used in HHFTs to

meet the DOT 117 design standard: that the car includes a 9/16 inch tank shell, 11 gauge jacket,

1/2 inch full-height head shield, thermal protection, and improved pressure relief valves and bot-

tom outlet valves. Trains with 70 or more cars carrying flammable liquids are required to have in

a functioning two-way end-of-train device or a distributed power braking system. In addition, a

maximum speed of 50 miles per hour is now imposed on all HHFT; if such a train includes any

cars that fail to meet the 117 standard, the speed limit is 40 miles per hour. The above observations,

as well as the policy response they engendered, point to the importance of understanding the risks

associated with rail shipments.

In this paper I provide a careful empirical assessment of the risks associated with shipping

a given amount of crude by rail. Using data from the department of Transportation, I construct an

empirical model that links rail incidents to the quantity of oil shipped by rail. This data includes

monthly observations on the number of carloads of crude oil shipped between January 1, 2009 and

December 31, 2014, as well as information on safety incidents associated with these shipments. I

find a statistically important link between the number of cars containing crude oil shipped by rail in

a given month and the distribution of incidents; in particular, increases in shipments are associated

with a rightward-sift in the distribution. I find similar effects relating shipments to the volume of
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oil spilled as well as the dollar damages from spills. These effects are noticeably more important

in states where recent increases in oil production – mainly associated with the deployment of

unconventional techniques – has been most pronounced.

The remainder of the paper is organized as follows. In section 2, I discuss the data used

in my analysis. I describe my empirical strategy in section 3. In section 4, I discuss the results. I

offer concluding remarks in Section 5.

2 DATA

The data I use in this endeavor comes from two divisions in the Department of Transportation

(DOT). Information on rail incidents are drawn from the Pipeline and Hazardous Material Safety

Administration (PHMSA) website. These data list the date, location and shipping source of each

incident, along with information on the amount of materials released and total costs associated

with the incident, for all shipments over the selected time frame. I use information on incidents oc-

curring between 1 January 2009 and 31 December 2014. Incidents can reflect minor occurrences,

such as small leaks, or major events such as train derailments. In addition to the information de-

scribed above, there is an indicator variable that identifies “serious incidents.”1 From this database,

I extracted all records of incidents involving crude oil shipments.

Table 1 provides a summary overview of this data. The table is split into two parts. Part A,

the top panel, summarizes the data on serious incidents involving crude oil shipments, while part

B, the bottom panel, summarizes the data on minor incidents involving crude oil shipments. For

each part, I show the fraction of weeks between 2009 and 2015 in which an event was observed;

minor events were about 7 times as common – happening in half the weeks, while serious incidents

occurred in about 7% of the weeks. For serious incidents, I present information on the period of
1 PHMSA defines a serious incident as involving “a fatality or major injury caused by the release of a hazardous

material, the evacuation of 25 or more persons as a result of release of a hazardous material or exposure to fire, a
release or exposure to fire which results in the closure of a major transportation artery, the alteration of an aircraft
flight plan or operation, the release of radioactive materials from Type B packaging, the release of over 11.9 gallons
or 88.2 pounds of a severe marine pollutant, or the release of a bulk quantity (over 119 gallons or 882 pounds) of a
hazardous material.” See http://www.phmsa.dot.gov/resources/glossary#S.
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time between events; as minor incidents were substantially more common I focus on the number

of events in those weeks were an incident did occur. For each panel, I show the average value, the

standard deviation of that value, the median value, and the skewness of the sample. On average,

there were just over 13 weeks between serious incidents. This data is sharply asymmetric, with

a large standard deviation and a skewness value well above 0 (the level associated with a sym-

metrically distributed sample). The median time between serious incidents is much smaller than

the mean value, again indicating a distribution skewed towards larger values. For minor incidents,

the data are a bit less skewed, and with a median value that is much closer to the mean. In those

weeks where an incident occurred, there were typically about two incidents. Combined with the

information on the frequency of weeks with events, this indicates the number of minor incidents

was similar to the number of weeks in the sample.

A visualization of the incident data is conveyed in Figure 2. The left panel of the figure

depicts major incidents involving crude oil shipments; here I plot the week in which the incident

occurred against the number of weeks between major incidents (shown on the y-axis). The take-

away message here is that major incidents became more common over time thru the first half of

2014, with the time between such incidents falling from several months to less than one month. In

the right panel, I plot the number of minor incidents per week. Here too, the frequency of incidents

also rose thru the middle of 2014. Put together, this graphic points towards a negative relation

between the number of minor incidents and the time between serious incidents.

Information on rail shipments is taken from DOT “waybill” data. Information on any rail

shipment is conveyed through a waybill, which lists nearly 200 pieces of information. Included

in this list are the following: state, FIPS and zip code of shipment source and destination; ship-

ment contents (listed as a commodity, identified both by name and numeric code); number of cars

containing the commodity; date of shipment; and the waybill number. I have data on all rail ship-

ments in the US between 1 January 2009 and 31 December 2014.2 Out of this very large dataset I

2 This data is confidential and proprietary; it was provided to the NBER working group on oil infrastruc-
ture. A non-confidential subset of the waybill records is available from the Surface Transportation Board (see
https://www.stb.gov/STB/industry/econ waybill.html); this subset comprises roughly 2% of all waybills.
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extracted all records involving crude oil shipments.

Most crude oil shipments originate in “PADD 2”, which includes North Dakota and Okla-

homa.3 These are large oil producing states where important basins of production are located in

remote areas, and hence are poorly served by existing pipeline infrastructure. Figure 3 highlights

the relative isolation of these oil fields. It is apparent that several oil producing areas (indicated as

cross-hatched areas) are not proximate to the existing pipeline infrastructure. By contrast, these

regions are reasonably close to a number of rail lines. This observation underscores the emerging

significance of the rail mode of transportation for crude oil.

Table 2 provides summary information on crude oil shipments by rail from this sample pe-

riod. Evidently the role of rail as a mode for transporting oil increased dramatically in importance

during the sample period, with the number of annual shipments increasing by a factor of roughly

15 between 2009 and 2014. At the same time, the number of rail cars carrying crude oil increased

by a factor of roughly 20. Combined, these observations imply the typical rail shipment entailed

an increasing number of cars.

3 EMPIRICAL STRATEGY

My empirical approach is to trace out a connection between rail shipments and incidents. Because

there are relatively few major incidents, I undertake this analysis in two steps. In the first step,

I tie the occurrence of serious incidents to the preponderance of lesser incidents that precede the

major event. In the second step, I connect the number of rail cars shipped to the number of minor

incidents.

I use two approaches in the first part of the analysis. The first of these approaches uses

survival analysis, which makes use of “time to failure” model. Here, I focus on the number of

weeks between serious incidents, regarding the occurrence of such an incident as the “failure.”

3 The acronym PADD stands for “Petroleum Administration for Defense District”; its use originated during
World War II. The US Energy Information Administration provides data on oil movements by various modes from
each PADD; see https://www.eia.gov/dnav/pet/PET_MOVE_RAIL_A_EPC0_RAIL_MBBL_M.htm.
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The explanatory variable in this model is the accumulated number of minor incidents during the

period between the preceding serious event and the current serious event. Analysis of failure times

proceeds by modeling the hazard rate as a function of a set of explanatory variables.

Survival models are comprised of two parts: a baseline hazard function λ0(t), which de-

scribes the way the risk an event occurs within a particular period of time (given baseline levels

of the relevant covariates), and the effect of the covariates upon the hazard.4 In the application at

hand, the “event” corresponds to a serious incident, and the covariate of interest is the number of

minor incidents that have occurred since the last event took place. Two alternative approaches to

analyze failure times have commonly been utilized.

The first uses the Cox semi-parametric proportional hazards model. In this model, the

probability that the number of periods between serious incidents equals some value t equals:

F(t) = 1− exp
(
−
∫ t

0
λ0(s)eβxdu

)
,

where x is the accumulated number of minor incidents and β is the parameter of interest. The

second approach assumed functional form for the baseline hazard function. I discuss two such

models below: the Weibull proportional hazards model and the exponential proportional hazards

model. Under the first, the distribution of failure times follows a Weibull density function, which

implies the hazard rate changes monotonically over time. Under the second, the hazard rate is

constant. This restriction may be tested by comparing the shape parameter p, discussed below,

with 1.

An alternative approach is to treat each shipment as an independent observation, where

there is a risk of a major incident occurring. Here I model the risk using a Logit framework, where

I conjecture that the risk of a serious incident is related to the accumulation of minor incidents in

the recent past. I investigate four notions of “recent past”, corresponding to three-month periods

(i.e., the past 3 months, the past 6 months, the past 9 months and the past 12 months).

The goal in the second step of my analysis is to explain the number of minor events as-

4 For a discussion of survival time models, see Lawless (2003).
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sociated with a particular combination of originating and terminating states, during a particular

month. The key explanatory variable here is the number of rail car shipments originating in that

state pair in that month. Because there are likely to be geographically idiosyncratic features at play

(in particular, since the potential pathways for shipments are exogenously fixed in advance of the

sample period), I use a fixed effects approach, where the state pairs form the basis for these fixed

effects.

The left-side variable in this step is strongly skewed, which suggests that ordinary least

squares is ill-advised. Accordingly, I base this part of the analysis on models emanating from

the literature on count data; in particular, I employ a negative binomial regression (Cameron and

Trivedi, 2005).

Related to this line of inquiry, I also explore the relation between the number of rail cars

shipped between a given pair of states in a given month and two variables that measure the magni-

tude of harm arising from an event: the volume of oil released, and the dollar harm associated with

the event.5

This second line of investigation requires combining the two datasources. To this end, the

data was first aggregated by month, for each originating state. I then merged information over

space and time. Thus, an individual observation represents for each month and originating state:

the number of cars in which oil is shipped, the number of incidents that occurred, the amount of

oil spilled in any incidents that occurred, and the dollar damages associated with any incidents.

For many months in the sample, oil is shipped with out incident (so that the last three variables are

identically equal to zero). Because not all states are associated with oil shipments in any particular

month, the panel is unbalanced; addressing this imbalance is an important motivation for including

state-level fixed effects.
5 This harm can come from four sources: the value of spilled oil, the cost associated with damaged capital (such

as rail cars), the damages borne by property owners near the event location, and opportunity costs associated with any
emergency responders or foreclosed major arteries.

7



4 RESULTS

I now turn to a discussion of the results.

4.1 Serious Incidents

The first part of my analysis evaluates the link between minor incidents and serious incidents.

The hypothesis of interest is that the accumulation of minor incidents can explain the tendency

for serious incidents to occur, as measured by the time that elapses between serious incidents. I

evaluate this possibility by using three time to failure models.

The results from the time-to-failure analysis are collected in Table 3. The second column

presents results based on the Cox proportional hazard model, the third column lists results from the

exponential hazard model, and the fourth column gives results from the Weibull model. In each

case, a negative estimated coefficient indicates that increases in the number of minor incidents

shifts the hazard function governing the probability a serious incident will occur in the current

period to the left (i.e., it raises the probability of a serious incident in the near future). For each

of the three survival time models, the estimated coefficient on the accumulated number of minor

incidents is negative;this effect is significant at the 10% level for the two parametric models and at

the 1% level in the Cox semi-parametric model.6

The results from the Logit analysis are collected in Table 4. I report results from four

regressions, based on the various interpretations of “recent past”. Regression (1), reported in

the second column, includes all four candidates for recent past; regression (2) includes the three

notions associated with the past 3, 6 and 9 months; regression (3) the two most proximate periods

(3 and 6 months), and regression four the immediate past three months. For each of these notions,

I tabulated the number of minor incidents during the period in question for each state pair, and

used that variate as a regressor. The left-side variable is an indicator taking the value 1 if a serious

incident is observed in the particular state pair in the particular month, and zero otherwise. The

6 As I noted above, the empirical validity of the exponential model can be assessed by comparing the shape
parameter p to 1 in the Weibull regression; here, the estimated parameter is 0.905, and not statistically different from
1.
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results consistently point to the most recent period as having explanatory value: increases in the

number of minor incidents in the preceding three months exert a statistically important effect on

the probability of a serious incident; in ballpark terms, each extra 3 minor incidents doubles the

chance of a serious incident. None of the other time frames appear to matter.

Based on these results, I conclude there is empirical evidence that minor events can predict

the potential for serious incidents.

4.2 The Role of Rail Traffic

I now turn to an appraisal of the impact of the volume of rail traffic upon incident occurrence and

consequence. I discuss three sets of regression results, each detailing the effect of crude oil rail

traffic upon a measure of adverse impact. The first batch of results relates to the impact on the

frequency of minor incidents, which the results from the preceding sub-section suggest is a marker

for increased risk of serious incidents, while the second and third describe the impact on more

direct measures of adverse impact.

Table 5 lists results from four regressions tying the volume of rail traffic in crude oil ship-

ments to minor incidents. These results are based on two models of count data – the Poisson

model and the Negative Binomial model. For each model, I present results from two regressions

that allow for originating and terminating state-pair fixed effects. The second regression for each

model also allows for monthly fixed effects; here the idea is to control for possible weather-related

effects.7 In each regression, the key parameter of interest is the coefficient on the measure of rail

traffic, here the number of cars carrying crude oil from a particular state in a particular month,

measured in thousands of cars. I note that the estimated coefficient on this variable is positive

and statistically significant in each of the four regressions, with magnitudes ranging from 0.226 to

0.333. Moreover, allowing for temporal fixed effects has little effect upon the estimated role of rail

traffic; more important is the probabilistic model: In general, the negative binomial model points

7 Explanatory variables relating to the fixed effect for month n is denoted as Dmn, where n = 1 refers to January,
n = 2 refers to February, and so on.
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to a more substantial effect associated with rail traffic.8

In the results reported in this Table, the estimates indicate that an additional serious incident

is likely to occur for each additional 3-4,000 rail cars shipping oil between a particular pair of states

in a particular month. Referring back to Table 2, the number of rail cars carrying oil increased by

roughly 40,000 between 2013 and 2014, which suggests this estimated impact is non-trivial.

Before proceeding to a discussion of the second and third sets of regression results, I pause

briefly to consider the fixed effects. Upon retrieving the estimated residuals from a regression from

Table 5, it is straightforward to back out the state-pair fixed effects. Doing so, one finds that the

largest five fixed effects are all associated with crude oil shipments out of North Dakota. In light

of the importance of this state as a source of rail shipments of crude oil, this result suggests an

intriguing possibility: that increased rail traffic might accelerate depreciation of certain rail routes,

increasing the risk of worrisome incidents.

I now turn to an evaluation of the relation between rail traffic and the consequences of

spills. Table 6 contains the relevant results. Here, I list results from four regressions, organized

by left-side variable. The first two of these regressions are fixed effects regressions of the relation

between rail traffic and the quantity of oil spilled in an incident; as above, I provide information

from a Poisson regression and from a Negative Binomial regression. The second pair of results

describe the relation between rail traffic and the economic damages resulting from an incident. As

above, the key parameter of interest is the coefficient on the number of cars carrying crude oil from

a particular state in a particular month, measured in thousands of cars. Again, this coefficient is

positive and statistically significant in each of the four regressions, indicating that increased rail

traffic shifts the distributions governing quantity of oil spilled and resultant damages to the right –

thereby increasing expected harm.9

These results can be used to infer the expected impact of a one unit increase in rail traffic.

8 A test of the appropriateness of the Poisson model is available in a version of the negative binomial model
without fixed effects. For these data, such a test points strongly to the preferability of the negative binomial model.

9 I note that the sample included a small number of observations for which there was no information relating
to dollar damages. Accordingly, these observations were dropped from the two regressions for economic damages,
resulting in a slightly smaller sample. I also considered the potential role for monthly fixed effects; these results were
not substantially different from those reported in Table 6.
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For example, the expected value of total economic damages is

E(D) = exp(β̂ x),

where E(D) is expectations operator applied to total economic damages, x is average rail traffic,

and β̂ is the estimated coefficient on rail traffic. Thus, a one-unit increase in average rail traffic

will raise expected damages by βE(D). In the sub-sample used for the second batch of results in

Table 6 the average value of dollar damages is $3,375; accordingly, the predicted marginal impact

of an increase in rail traffic, starting from the average value, is $1,731.

5 CONCLUSION

My goal in this paper was to assess the relation between crude oil shipments by rail and safety

incidents related to those shipments. Using a two-step procedure, I first confirm a link between

the accumulation of minor incidents and the frequency of serious incidents, with a greater number

of accumulated minor incidents associated with a shorter time between serious incidents; I then

confirm a positive relation between increased rail shipments of crude oil and the occurrence of

minor incidents. The preferred specification in the second step allows for state-level fixed effects;

in this context, I find that the largest fixed effects are associated with states that represent the

greatest source of tight oil production in the lower 48.

These results offer some support for the perception that increased rail deliveries of crude

oil, particularly from locations often associated with the fracking boom, carry an increased risk

of accidents. Indeed, my analysis reveals a positive relation between increased rail deliveries

and economic damages associated with safety incidents. My results imply an expected marginal

impact of around 1700, which can be interpreted as a blend of private costs and some external

costs.10 These costs do not include the social costs associated with environmental damages from

10 The values for reported damages in the dataset reflect the damages from lost product and damaged capital, both
of which are private costs, along with response costs and the costs from closure of main transportation arteries, which
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oil spills, property damages from major incidents (e.g., resulting from spill-induced fires) and any

loss of life. These aspects arguably comprise the most important external costs associated with any

rail incidents.

Whether the increase in safety related external costs arising form increased rail traffic is

sufficient to rationalize the extra costs associated with building rail cars to a more exacting safety

standard is a separate issue. For that matter, it is not clear that the extra external costs associ-

ated with increased rail transport exceed the extra costs associated with other forms of delivery.11

Indeed, the risk associated with pipeline delivery was a prominent feature of the recent protests

against the Dakota Access Pipeline, which would offer an alternative means of transporting crude

oil from the Bakken play. Determining the optimal role of rail transport within the portfolio of

crude oil transportation options remains an important focus for future research.

are social costs.
11 As Molinski (2015) articulates, there are risks associated with any form of delivery.

12



REFERENCES

Brown, S. P., Mason, C. F., Krupnick, A. and Mares, J. (2014). Crude behavior: How lifting the
export ban reduces gasoline prices in the united states. RFF Discussion paper 14-03-REV.

Cameron, A. C. and Trivedi, P. (2005). Microeconometrics, Cambridge University Press, Cam-
bridge, UK.

Lawless, J. F. (2003). Statistical models and methods for lifetime data, J. Wiley, New York.

Molinski, D. (2015). How to transport oil more safely, Wall Street Journal p. R.1. September 14.

13



Figure 1: Major Incidents: Quantity of Oil Spilled and Economic Damages

0
50

10
0

15
0

M
illi

on
s 

of
 U

S 
D

ol
la

rs

0
50

00
10

00
0

15
00

0
Th

ou
sa

nd
s 

of
 B

ar
re

ls

2009m1 2010m1 2011m1 2012m1 2013m1 2014m1 2015m1
month

amount of crude oil released in major incidents
total economic damages in major incidents

14



Figure 2: Minor Incidents and Time Between Major Incidents
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Figure 3: Rail and pipeline location, in relation to major oil producing areas
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Figure 4: Minor Rail Incidents vs. Number of Railcars Shipping Oil, 2009-2014
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Table 1: Crude Oil Rail Incidents

A. Serious Incidents

Fraction of weeks Number of weeks between events
with an event Mean Std. Dev. Median Skewness

0.07 13.23 20.34 6.50 3.18

B. Minor Incidents

Fraction of weeks Number of events per week
with an event Mean Std. Dev. Median Skewness

0.50 2.27 1.72 2.00 2.08

18



Table 2: Annual Crude Oil Shipments

rail cars
year oil shipments carrying oil per shipment
2009 167 942 5.6
2010 294 9554 32.5
2011 665 15818 23.8
2012 1762 74525 42.3
2013 2508 147940 59
2014 2508 186954 74.5
Total 7904 435708 55.1
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Table 3: Regression Analysis of Time Between Serious Incidents

Regression model

regressor Cox Exponential Weibull
Cumulative number -0.025∗∗∗ -0.019∗ -0.019∗

of minor incidents (0.009) (0.011) (0.010)

constant -2.255∗∗∗ -1.956∗∗∗

(0.504) (0.272)
p 0.905

(0.146)

χ2 statistic 7.644∗∗∗ 3.101∗ 3.599∗

Standard errors in parentheses
*: significant at 10%; **: significant at 5%; ***: significant at 1%
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Table 4: Logit Analysis of Serious Incidents
(1) (2) (3) (4)

# minor incidents, past 3 mos. 0.363** 0.363** 0.305* 0.310***
(0.168) (0.165) (0.166) (0.052)

# minor incidents, past 6 mos. -0.218 -0.219 0.003
(0.197) (0.192) (0.092)

# minor incidents, past 9 mos. 0.134 0.141
(0.204) (0.104)

# minor incidents, past 12 mos. 0.005
(0.133)

constant -4.190*** -4.190*** -4.117*** -4.116***
(0.318) (0.314) (0.296) (0.296)

χ2 37.390 36.512 35.834 35.731
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Table 5: Regression Analysis of Relation Between Rail Car Shipments and Minor Incidents

Poisson Negative Binomial
(1) (2) (3) (4)

Thousand cars 0.226*** 0.226*** 0.333*** 0.319***
(0.048) (0.055) (0.095) (0.095)

Dm1 0.186 -1.085**
(0.519) (0.426)

Dm2 -0.053 -0.968**
(0.418) (0.443)

Dm3 0.169 -1.000**
(0.386) (0.459)

Dm4 0.495 -0.540
(0.394) (0.387)

Dm5 0.544 -0.483
(0.334) (0.377)

Dm6 0.739*** -0.383
(0.284) (0.380)

Dm7 0.075 -0.895**
(0.461) (0.395)

Dm8 0.018 -0.859**
(0.407) (0.389)

Dm9 0.278 -0.686*
(0.375) (0.378)

Dm10 0.247 -0.810**
(0.285) (0.397)

Dm11 0.482 -0.453
(0.325) (0.361)

Dm12 -0.905**
(0.386)

constant -0.783***
(0.272)

N 872 872 872 872
χ2 22.416 80.720 12.233 22.121

All regressions include fixed effects for origination-destination state pairs
Standard errors in parentheses
*: significant at 10%; **: significant at 5%; ***: significant at 1%
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Table 6: Relation Between Rail Car Shipments and (a) Oil Spilled, (b) Total Damages

Dep. Vbl.: (a) Quantity of Oil Spilled (b) Total Economic Damages

Poisson Negative Binomial Poisson Negative Binomial
(1) (2) (3) (4)

Thousand cars -0.145*** 0.412*** 0.183*** 0.513***
(0.056) (0.074) (0.056) (0.085)

constant -2.876*** -4.830***
(0.134) (0.137)

N 872 872 863 863
χ2 6.641 31.026 10.744 36.538
Standard errors in parentheses
*: significant at 10%; **: significant at 5%; ***: significant at 1%
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