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Abstract

This paper examines the effects of the U.S. shale oil boom in a two-country DSGE

model where countries produce crude oil, refined oil products, and a non-oil good. The

model incorporates different types of crude oil that are imperfect substitutes for each

other as inputs into the refining sector. The model is calibrated to match oil market

and macroeconomic data for the U.S. and the rest of the world (ROW). We investigate

the implications of a significant increase in U.S. light crude oil production similar to the

shale oil boom. Consistent with the data, our model predicts that light oil prices decline,

U.S. imports of light oil fall dramatically, and light oil crowds out the use of medium

crude by U.S. refiners. In addition, fuel prices fall and U.S. GDP rises modestly. We

then use our model to examine the potential implications of the former U.S. crude oil

export ban. The model predicts that the ban was a binding constraint from 2013 to

2015. We find that the distortions introduced by the policy are greatest in the refining

sector. Light oil prices become artificially low in the U.S., and U.S. refineries produce

inefficiently high amount of refined products, but the impact on refined product prices

and GDP are negligible.
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1 Introduction

One of the more dramatic events in oil markets has been the recent boom in U.S. crude

oil production. Often referred to as the shale boom, the large increase in oil production

brought about by the application of horizontal drilling and hydraulic fracturing has

changed the nation’s energy landscape and global oil markets in a very short time. U.S.

crude oil production increased 4 million barrels per day (mb/d) from 2010 to 2015, a

72 percent increase, and imports of crude oil fell 1.9 mb/d, a 20 percent decline.

An important facet of the shale boom is that the crude oil produced from shale

plays tends to be of a very specific type. To the general observer, oil is a homogenous

commodity. In reality, oils produced in different parts of the world can have very

different characteristics. For example, some oils are very dense while others are not.

The former are referred to as heavy crudes, the latter as light oils and everything in

between as medium crudes. The oil produced from shale areas is predominantly light

crude oil.

Oil can be processed into refined petroleum products independent of type but the

different oils are imperfect substitutes for each other as inputs in the refining process.

There is also specialization of refinery capacity across countries. In particular, the U.S.

refining sector processes a relatively large amount of heavy crude oil as a proportion of

total refining capacity vis-a-vis the rest of the world. As a result, the large, unexpected

increase in U.S. light oil production generated a significant discussion over how or

whether the oil could be processed by U.S. refiners given the mis-match of increased

light crude inputs versus heavier refining capacity. This issue was particularly relevant

until the end of 2015 because of the U.S. export ban on crude oil, a policy that had

been put in place after the 1973 oil embargo.

With these issues in mind, we investigate the impact of the shale oil boom on

the upstream and downstream energy industry and the broader economy using a dy-

namic stochastic general equilibrium (DSGE) model. In our model, the world economy

consists of two countries, the U.S. and the rest of the world (ROW). Both countries

produce oil, a non-oil good and refined petroleum products. Oil comes in three types,

light, medium and heavy, and they are imperfect substitutes as inputs into the refining
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process. We calibrate our model to match a variety of macroeconomic and oil market

data, and take into account important differences in the refining sectors of the U.S.

and the rest of the world.

We model the U.S. shale oil boom as a series of positive productivity shocks that

increase U.S. light crude oil production, and then illustrate the general equilibrium

repercussions. Our model predicts that the production boom causes light oil prices

and fuel prices to fall, and backs out a significant portion of imported light crude oil.

U.S. refiners process more light oil at the expense of other types. These features are

consistent with the data. We also find that the light oil supply increase has a modest

impact on U.S. GDP.

We then use our model to investigate the distortionary effects of the U.S. crude oil

export ban. We find that the ban binds from 2013 to 2015. When the ban binds, we

find that the policy primarily distorts the price of crude oil in the U.S. and refining

sectors in both the U.S. and the rest of the world. The price of light oil becomes

artificially low in the U.S., which provides a cost advantage to the U.S. refining sector.

As a result, the U.S. processes more light oil than it would otherwise, and gains market

share at the expense of the rest of the world. We find that the impact on refined fuel

prices is negligible, as there was no ban on refined petroleum products trade. The

impact on U.S. GDP is slight, due in part to the upstream and downstream sectors

being relatively minor components of U.S. GDP.

Then, we examine the data to see if there is evidence that the export ban may have

been binding at some point in time, using two different approaches. First, we look to

see if the model’s predictions about the export ban’s effects appear in the data. We do

find some evidence in line with these predictions. For example, the domestic price of

light crude oil in the U.S. was unusually low compared to the international benchmark

starting in late 2013. Data also show that U.S. crude oil exports continued increasing

in 2016, despite lower production levels. Finally, we explore to what extent certain

loopholes in the export ban policy were used to circumvent the ban. The data show

that one such loophole, the ability to export to Canada, was used in 2014 and 2015 to

a much larger extent than before. We conclude that the export ban was likely binding

to some degree in 2014 and 2015.

3



Our model fits into the DSGE literature focused on oil, which includes works such as

Backus and Crucini (2000) [1], Leduc and Sill (2007) [28], Bodenstein et. al. (2011) [8],

Nakov and Nuno (2013) [32], and Plante (2014) [33]. Our work also has connections

with the international real business cycle literature, see for example Backus et al.

(1992) [2], Backus et al. (1994) [3], Crucini and Kahn (1996) [13]. To the best of

our knowledge, we contribute to this literature by being the first to model the refining

sector in a DSGE model, the first to introduce a distinction between different types of

oil and the first to explore the U.S. crude oil export ban in this modeling framework.

There are several recent papers analyzing the U.S. shale oil boom and its effects

on global oil prices, the global economy and the energy industry. Manescu and Nuno

(2015) [29], in a general equilibrium model of OPEC and a competitive fringe, show

that the price decline due to increased supply was already incorporated into market

prices for crude oil, and resulted in an additional increase of 0.2 percent of GDP for

oil importers. Using a VAR model, Mohaddes and Raissi (2016) [31] show that the

oil supply shock increased global GDP by 0.16 to 0.37 percentage points. Walls and

Zheng (2016) [39] show that the shale boom has made refiners sensitive to oil price

changes and that their profitability rises 3 percent in response to a 1 percent fall in oil

prices. A study by Kang et. al. (2016) [23] finds that positive U.S. oil supply shock

had a positive effect on stock returns. Kilian (2016, 2017) ( [24], [25]) argues that the

U.S. shale oil boom had an insignificant effect on the global oil market, and increased

U.S. GDP by a miniscule 0.1 percentage points.

There are a number of recent non-academic studies by national and international

organizations discussing the impact of free trade policy relating to U.S. crude oil.1

A Congressional Research Service report by Brown et al. (2014) [11] has a good

background analysis of the oil export ban. Bordoff and Houser (2015) [9] summarize

several other reports on the issue. A somewhat more academic analysis can be found in

1Ebinger and Greenley (2014) [15], EIA (2014) [35], Vidas et.al. (2014) [38], IHS (2014) [21], IHS

(2015) [22], etc. These studies are typically qualitative in nature or rely on simple models in order to

evaluate the impact. Overall, they argue that free trade would increase the price of domestic crude

oil, hence could result in higher production and lower price of gasoline, benefiting consumers. The

estimated decline in domestic gasoline prices change from 1.5 cents to 13 cents in these studies.
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and Brown et al. (2014) [10] and Medlock (2015) [30]. Langer et al. (2016) [27] analyze

the lifting of the export ban with a numerical, partial equilibrium model. They find

that U.S. sweet crude exports expand significantly and the sweet oil-importing ROW

gains from not having to invest in refinery capacity.

Farrokhi (2016) [18] studies how local changes in oil markets affect oil prices and

trade flows across the world. After presenting a detailed model of refinery costs, in-

cluding various types of oil inputs, transport costs, and differing refinery technology,

he embeds the estimated model of refinery sourcing into a multi-country general equi-

librium model which also incorporates refinery product demand. There is global trade

in oil and refined products, and the model is calibrated using data from 110 refiners

across 33 countries. With some counterfactual experiments, he shows that if the crude

oil export ban had been lifted during the shale boom, U.S. crude oil prices would have

risen by 4.7 percent, U.S. refinery profits would have fallen by 6.6 percent, and refined

product prices would have risen by 0.1 percent. He also finds that the gains from trade

for the U.S. are much larger than in the standard trade models of manufactured goods

trade.

The rest of the paper is organized as follows. We present the background informa-

tion and data in Section 2. Our general model framework is presented in Section 3.

Section 4 provides the calibration, and results are discussed in Section 5. We intro-

duce crude oil export ban and examine its implications in Section 6, and conclude in

Section 7.

2 Data

Our goal in this section is to review some key data to gauge how the shale boom has

affected the oil market. To this end, we introduce data on crude oil production by

type, U.S. imports and exports of crude oil and refiner use of different types of oil.

Using this data, we show the breakdown of production in the U.S. and the rest of the

world, characterize the extent to which refiners in the U.S. are specialized in processing

different types of oil and document how the data have changed in general since the

onset of the shale boom.
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2.1 Introduction to crude oil quality

Although crude oil is generally viewed as a homogenous commodity, crude oils vary

across a number of dimensions. These include density, sulfur content, and contamina-

tion with other elements, such as certain metals.

The density of a crude oil is one of the more important measures used to distinguish

between different types of oil. The American Petroleum Institute gravity (API gravity)

is a commonly used measure of a crude oil’s density. A higher API gravity indicates

less density and gravity values range from 10 to 70. Oils with higher API gravities are

known as light oils, those with low API gravities are known as heavy. Light oils tend

to be preferred by refiners as they require less processing to produce larger amounts

of gasoline and diesel. As a result, light oils often sell at a premium to medium and

heavy crudes.

Sulfur content is another important characteristic that distinguishes crude oils. Oils

with high sulfur content are referred to as sour while those with low sulfur content are

sweet. The latter require less processing and are therefore preferred to sour oils. There

is a correlation between a crude’s API gravity and the amount of sulfur present in the

oil. Although not always the case, lighter oils often have lower sulfur content, especially

when compared to heavy crudes.

Figure 2.1 shows how some important crude oil benchmarks vary in terms of their

API gravity and sulfur content. West Texas Intermediate, the benchmark crude oil

for the U.S., is an important example of a light crude oil, with an API near 40 and

a relatively low sulfur content. Other examples of light oils include Louisiana Light

Sweet (LLS) and Brent, which is an important benchmark outside the U.S. Maya crude,

produced in Mexico, is an example of a heavy crude, a dense oil with a low API near

20 and a very high sulfur content relative to other crude oils. Mars is a medium crude

produced in the U.S. Gulf of Mexico, and has an API and sulfur content in between

the lights and Maya.

Prices of similar quality oils tend to remain fairly close to each other.2 As quality

differences become more pronounced, so do the price differences between the oils. For

2Factors such as transportation bottlenecks can cause prices of similar quality oils to deviate

substantially from each other. An example of this in recent years is the price of WTI.
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Figure 2.1: Characteristics of various crude oils

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

20 25 30 35 40

Sulfur content (percentage)

API gravity (a measure of crude oil density)

sour

sweet

heavy light

Maya

Mars

Brent

LLS WTI

SOURCES: Bloomberg; Platts.

example, if we consider the price of light, medium and heavy crude in the U.S. Gulf

Coast we see that the price of LLS has, on average, been about 12 percent higher than

Mars crude oil since 1997, when data became available for Mars, and 27 percent more

expensive than Maya.

We have also found that the relative prices of different oils tend to be more volatile as

the quality differences become more pronounced. Using the Gulf Coast as an example

again, we constructed a monthly time series for the price ratios of LLS to Brent, LLS

to Mars and LLS to Maya. The data run from 1997 to 2016. Figure 2.2 plots the

standard deviation of the relative oil prices as a function of how different each pair is

in terms of API gravity. While this chart only considers three relative prices, a similar

pattern emerges when looking at other crude oils.3

2.2 Crude production data

We rely on production data from the 2016 version of Eni’s World Oil and Gas Review

[16]. It provides a breakdown of crude oil production into several different types. The

3For example, a similar pattern is found if one uses the Asian benchmarks Tapis, Dubai and Duri

crudes instead of LLS, Mars and Maya.
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Figure 2.2: Volatility of relative oil prices
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Note: Data is monthly and the sample was from 1997 to 2010.

breakdown covers world output and production in a number of countries, including the

U.S. The data are available for a select number of years, including 2000, 2005 and from

2010 to 2015. Although this is a limited time series, it covers years when oil production

in the U.S. boomed due to horizontal drilling and hydraulic fracking and does provide

a snapshot of U.S. production before the boom.

Other sources of data on crude production by type are available but, unfortunately,

they either have a limited time series or limited coverage. For example, the Energy

Information Administration has recently started releasing monthly production data by

API gravity for the U.S. but the data only start in 2015. EIA (2015) [36] provides

annual data but only for 2010 - 2013. We also constructed a longer time series for

U.S. production using data from DrillingInfo and several other sources. However, this

method produces a time series that often leaves a large portion of production unclas-

sified because of limited API gravity information. Neither source provides information

for countries outside the U.S. As a result, we did not use these data for this paper.

We define different categories of crude oil using API gravity as our metric. We

would have preferred to further expand the categorization to include sulfur content
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but could not because of data limitations. Following Eni, we define heavy crude oil as

oil with an API less than 26, medium from 26 up to 35, and light crude oil with an

API of 35 and above. Using these definitions, it is possible to construct a series for the

U.S. and the rest of the world (ROW) for oil production by type.4

Table 2.1 shows the production data in millions of barrels per day (mb/d). One

feature of the shale boom is that new production is primarily light oil. By 2015, light

production had increased by more than 4 mb/d in the U.S. Outside the U.S., increased

production was from medium and heavy crudes, with declines in light crude production.

The table also provides some information on the relative importance of the different

crude oil types. In 2010, more than half of the world’s crude oil was medium. Another

30 percent was light and the remainder was heavy crude oil.

Table 2.1: Crude oil production by type, mb/d

U.S. Rest of the world Total world

Light Medium Heavy Light Medium Heavy Light Medium Heavy

2000 2.1 2.9 0.8 20.0 34.9 7.6 22.1 37.8 8.4

2005 1.7 2.8 0.7 19.8 40.2 9.4 21.5 43.0 10.1

2010 2.1 2.7 0.6 20.6 39.2 9.8 22.8 41.9 10.4

2011 2.6 2.5 0.6 19.7 40.9 9.8 22.3 43.4 10.4

2012 3.5 2.4 0.6 20.1 41.4 9.6 23.6 43.8 10.2

2013 4.6 2.3 0.6 19.6 40.9 9.7 24.2 43.2 10.3

2014 5.7 2.4 0.6 19.0 41.5 9.9 24.7 44.0 10.5

2015 6.3 2.5 0.6 19.1 42.1 10.8 25.4 44.6 11.4

2.3 U.S. crude imports and exports

The EIA provides disaggregated data on U.S. crude imports by API gravity, which

allows us to categorize imports into light, medium or heavy. Annual data go back until

4A small amount of world crude oil production, less than 1 percent of the total for most years, was

unclassified by Eni. We distribute the unclassified amount equally between light, medium and heavy

crude oil.
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1978. An extensive time series is available for annual crude exports but the EIA does

not provide a breakdown by type. Given our interest in the shale boom, we focus on

the more recent data available for both imports and exports.

The left portion of Table 2.2 shows the import data by type for 2000, 2005 and

2010 to 2016. We note that the U.S. has been and continues to be a major importer of

crude oil. However, there have been some dramatic shifts in the quantity and types of

oil being imported. Since the shale boom, imports of light oil have fallen substantially

and imports of medium have declined. Imports of heavy crude have increased about

10 percent since 2010 and are up substantially since 2000. We note that imports of

light oil picked up again in 2016, concurrent with the decline in U.S. crude production

that year.

Table 2.2: U.S. imports and exports of crude oil, mb/d

U.S. crude imports U.S. crude exports

Light Medium Heavy Total

2000 2.2 4.6 2.3 0.05

2005 2.3 4.3 3.5 0.03

2010 2.1 3.3 3.8 0.04

2011 1.7 3.3 4.0 0.05

2012 1.4 3.1 4.0 0.07

2013 0.9 3.0 3.9 0.13

2014 0.6 2.7 4.1 0.35

2015 0.6 2.6 4.2 0.47

2016 0.9 2.6 4.4 0.52

The rightmost column of Table 2.2 shows the data for U.S. crude exports. From

2000 to 2013, the U.S. exported a trivial amount of crude oil, typically under 100 kb/d.

Exports picked up noticeably starting in 2014, however, and have continued increasing

every year since. The increase in exports in 2014 and 2015 might seem at odds with

the U.S. policy of prohibiting exports of crude oil that was in place at the time. A

short discussion on the policy will help provide some context for this.
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Until December 2015, there was a federal ban on crude oil exports whose motivation

dated back to the 1973 oil embargo. Although labeled a ban, exporting oil was possible

under certain circumstances. The most relevant exemption for recent export data was

the possibility to export crude oil to Canada.5 This could be done so long as the oil was

not re-exported from Canada. This exemption was used heavily in both 2014 and 2015,

with EIA export data showing that most U.S. exports of crude oil went to Canada.

This can be seen in figure 2.3.

Figure 2.3: U.S. crude oil exports
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2.4 Refiner inputs

We next construct an estimate of how much oil of each type is being processed by

refiners in the U.S. and ROW. Our estimate of U.S. refiner inputs by type is given by

the following,

Inputjt = Productionjt + Importsjt − Exportsjt ,

5Another exemption regarded exports of Alaskan crude oil. However, exports from Alaska have

been negligible since 2000. More details can be found in Bausell et al. (2001) [6], Kumins (2005) [26]

and Van Vactor (1995) [37].
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where each variable is for the U.S. and the types are indexed by j = l,m, h. The

production data comes from Eni, while the import and export data are from the EIA.

As mentioned previously, the EIA does not provide a breakdown of the export data

by type of oil. For most of the years considered, exports were relatively small and could

be ignored without significantly affecting our estimates. This is not true for 2014 and

2015, however. Data available from Canada, along with analysis from several other

sources, suggest that most, if not all, of the oil exported to Canada was of the light

variety. Given this, we assume that all U.S. exports of crude oil from 2010 to 2015 were

light. This has the effect of lowering our estimate for U.S. refiner use of light crude oil,

particularly in 2014 and 2015.

The estimate for ROW is then constructed by calculating the difference between

world oil production of type j and U.S. refiner use of type j. We note that it would

be preferable to account for crude oil inventory changes when making this calculation.

However, we are unaware of any data that would allow us to break inventory changes

into the respective types, even in the U.S. Outside of the U.S, data are also limited

regarding overall crude oil inventory changes. We do note, however, that changes

in crude oil inventories in the U.S. from year to be year, at least, tend to be very

small when compared to the other flow data we are interested in. For example, crude

inventories changed by +.02 mb/d, - .01 mb/d and + .1 mb/d in 2010, 2011 and 2012,

respectively. These are fairly small compared to the amount of oil being processed by

U.S. refiners each day.

Table 2.3 shows our estimates for refining inputs. As can be seen in the table, the

U.S. refinery sector is geared towards processing heavy crude oil relative to the rest of

the world. This can also be seen in Figure 2.4, where we plot 2010 data for illustrative

purposes. In that year, the U.S. alone processed more than 40 percent of the world’s

heavy crude oil. On the other hand, the U.S. processed 18.4 percent of the world’s

light crude, and only 14.6 percent of the world’s medium crude. This is consistent

with the refinery complexity ratio data. The higher the refinery complexity ratio, the

more efficient the sector is at processing heavier oils. The data show that the U.S.

complexity ratio is 69 compared to a 43 average for the rest of the world which is 43.6

6The complexity ratio for European refiners is 34, while the complexity ratio is 17 for Middle
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Table 2.3: Refiner inputs by type, U.S. and rest of the world, mb/d

U.S. refiner inputs ROW refiner inputs

Light Medium Heavy Light Medium Heavy

2000 4.3 7.5 3.1 17.8 30.4 5.3

2005 4.0 7.1 4.2 17.5 36.0 5.9

2010 4.2 6.1 4.4 18.6 35.9 6.0

2011 4.2 5.7 4.6 18.0 37.6 5.8

2012 4.9 5.5 4.5 18.7 38.3 5.7

2013 5.3 5.3 4.5 18.9 37.9 5.8

2014 5.9 5.1 4.7 18.8 38.8 5.9

2015 6.4 5.1 4.8 19.0 39.5 6.6

2.5 Changes since 2010

There have been some dramatic changes not only in U.S. oil production but also in

crude imports, exports and refining data since the start of the shale boom. We take

stock of these in Table 2.4 by comparing how select data for the U.S. has changed from

2010 to 2015.

The impact of the new technology on production is immediately obvious. Light

production increased by more than 4 mb/d over the 5 year period. Production of other

types was relatively flat, with production of medium crudes down slightly and heavy

crude production essentially unchanged.

Refiner use of light oil also increased substantially, with U.S. refiners processing an

additional 2.2 mb/d in 2015 vs. 2010. The increase was insufficient to absorb all new

U.S. light production. As a result, imports of light oil from other countries dropped

sharply. There was also an increase in exports, primarily to Canada, especially in 2015.

One feature of the data that does not receive much attention concerns imports and

refiners’ use of medium crude oil. U.S. refiners reduced their use of medium crudes by

1 mb/d, leading to a sharp drop in imports. One possibility is that light oil may have

Eastern refiners.
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Figure 2.4: Refining shares by type of oil, U.S. and the ROW
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crowded out medium oil. We will return to this point later when discussing results

from our theoretical model.

Finally, U.S. refiners have continued increasing their usage of heavy crude oil over

these years. Based on the Eni data, world production of heavy crude was about 1

mb/d higher in 2015 than in 2010. U.S. refiners processed about half of the increase,

with the crude being imported from other countries.

Table 2.4: Change in select data from 2010 to 2015, mb/d

Production Imports Exports Refiner inputs

Light 4.2 -1.5 0.4 2.2

Medium -0.2 -0.8 -1.0

Heavy 0.0 0.4 0.5

Total 4.0 -1.9 0.4 1.7
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3 Baseline Model

The world economy is represented by a dynamic stochastic general equilibrium model

that consists of two countries, the U.S. and the rest of the world (ROW).7 We refer

to the U.S. as country 1 and ROW as country 2. Both countries produce three goods:

crude oil, refined oil products, and a non-oil good. Their preferences and technologies

have the same functional forms. Crude oil is produced using the non-oil good as

an input. Production of refined products requires capital, labor, and a composite of

three types of crude oil. The household consumption bundle is a composite of refined

products and the non-oil good. Finally, the non-oil good is produced using capital,

labor, and refined products.

3.1 Households

The utility of a typical household in country i, i = 1, 2, is characterized by

E0

∞∑
t=0

βt
(cµii,tL

1−µi
i,t )γ

γ
, (3.1)

where ci,t and Li,t are aggregate consumption and leisure, respectively. The parameter

0 < β < 1 denotes the discount factor, µi governs the time spent in the workplace,

and γ governs the intertemporal elasticity of substitution. We assume that crude oil

is not directly consumed by households, but is used only in the production of refined

products (fuel). The variable c measures aggregate consumption and is a composite

of the non-oil good, good a, and refined products, good f , which are combined via an

Armington aggregator with weights wi and (1− wi) as follows

ci,t = [wi(c
a
i,t)
−ρ + (1− wi)(cfi,t)−ρ]

−1
ρ ,

where 1
1+ρ

is the elasticity of substitution between cai,t and cfi,t. The aggregator function

captures the idea that these goods are imperfect substitutes, and the weights reflect

how consumption expenditures are allocated across these goods.

7See Backus and Crucini (2000) [1], Backus et al. (1992) [2], Backus et al. (1994) [3], Crucini and

Kahn (1996) [13], etc. for more details on this framework.
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The household faces a budget constraint in period t stating that the combined

expenditure on consumption and investment must equal income:

cai,t + pfi,tc
f
i,t + Iai,t + Ifi,t = W a

i,tn
a
i,t +W f

i,tn
f
i,t +Ra

i,tK
a
i,t +Rf

i,tK
f
i,t + Πa

i,t + Πf
i,t + Πo

i,t. (3.2)

We assume good a is the numeraire and pfi,t denotes the relative price of good f in

country i. Moreover, the relative price of the investment goods is equal to that of

the non-oil good. W j
i is the wage rate and Rj

i is the rental rate of capital in sector

j, j = a, f , in country i. Households own the firms operating in the economy, hence

receive profits from all sectors: Πa
i,t, Πf

i,t, and Πo
i,t, where Πo

i,t = ΠoL
i,t +ΠoM

i,t +ΠoH
i,t where

L (light), M (medium), H (heavy) denote the three types of crude oil.

Investment in physical capital augments the capital stock Kj
i,t+1, j = a, f , according

to the following laws of motion

Kf
i,t+1 = (1− δ)Kf

i,t + Ifi,t − Φ

(
Ifi,t

Kf
i,t

)
Kf
i,t (3.3)

Ka
i,t+1 = (1− δ)Ka

i,t + Iai,t − Φ

(
Iai,t
Ka
i,t

)
Ka
i,t, (3.4)

where Iji,t denotes investment in sector j = a, f , and δ is the depreciation rate. Physical

capital formation is subject to adjustment costs as in Baxter and Crucini (1995) [7]

and Christiano, Eichenbaum and Evans (2005) [12]. Costs are governed by a quadratic

investment adjustment cost function, Φ (·), which takes the following form

Φ

(
Iji,t

Kj
i,t

)
=

1

2δφi

(
Iji,t

Kj
i,t

− υ

)2

,

where j = a, f . φi > 0 governs the elasticity of investment-capital ratio with respect to

Tobin’s q, and υ denotes the steady state investment-capital ratio. Adjustment costs

are incorporated to slow investment responses to shocks.

Finally, household’s activities exhaust total hours available:

L̄i − Li,t − nai,t − n
f
i,t = 0, (3.5)

where L̄i is the total amount of time available for work and leisure in country i.

Each household earns labor income, capital income, and receives profits. In every

period t, the household maximizes the utility function 3.1 with respect to consump-

tion, labor supply, investment, and end-of-period capital stock subject to its budget
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constraint 3.2, the laws of motion for capital 3.3 and 3.4, and the time constraint 3.5.

In doing so, prices and wages are taken as given.

3.2 Firms and Production

Each country produces three goods, crude oil, refined products, and a non-oil good, by

perfectly competitive firms.

3.2.1 Crude Oil Production (Light, Medium, Heavy)

Each type of crude oil is produced by a representative profit-maximizing firm in country

i = 1, 2. Oil production costs are in terms of the non-oil good and are an increasing

function of oil production as in Balke, Plante, and Yucel (2015) [4]. In what follows,

we denote the types of oil by k = H, M or L.

The oil producing firm chooses its oil production to maximize profits:

Πok
i,t = poki,ty

ok
i,t − Ck

i,t,

where

Ck
i,t =

(
yoki,t
zoki,t

)1+ 1

ηk
i

1 + 1
ηki

denotes the production costs. These production costs can be considered as expenditures

on any non-oil good that can be used to produce oil, such as rigs. yoki,t is production

of oil type k and zoki,t represents a stochastic process for the evolution of productivity.

Marginal costs increase with production increases, reflecting the difficulty of producing

an additional unit of oil as oil production increases, and decreases with higher pro-

ductivity. The firm sells its output to refineries at a price of poki,t. Profit maximization

implies

poki,t = (zoki,t )
−1

(
yoki,t
zoki,t

) 1

ηk
i

,

where ηki is country i’s elasticity of supply for type k oil. This suggests that the higher

the elasticity of supply, the lower the marginal cost of producing a given amount of oil.
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3.2.2 Refined Products Production

For the refining sector, we work with a production function in five inputs and restrict

our attention to the class of constant elasticity of substitution production technologies.

This type of production function is relatively simple and parsimonious, and gives a

specification that allows for different elasticities of substitution across inputs.

We assume that the production function is a constant returns to scale Cobb-Douglas

function of a capital-labor composite, itself a Cobb-Douglas function, and a composite

of the three types of oil,

yfi,t = zfi

[
(nfi,t)

χfi (Kf
i,t)

1−χfi
]αfi

G(ofLi,t , o
f
Mi,t

, ofHi,t)
1−αfi (3.6)

where zfi represents productivity in the sector, and nfi,t, K
f
i,t denote labor and capital

inputs. The parameter αfi is the share of value-added in gross output in country i, and

χfi is the labor share in value-added in country i, with 0 < αfi , χ
f
i < 1. We allow for

the possibility that the cost-shares and productivity levels vary across countries.

The function G(·) is a constant returns to scale CES aggregate of the three types

of oil inputs, ofLi,t , o
f
Mi,t

, ofHi,t . Using a CES aggregator allows us to introduce the idea

that the oils are imperfect substitutes for each other in a relatively parsimonious way.

It also helps us capture differences in how much oil is being consumed by the refining

sector of each country.

We choose to work with the following nested-CES function:

G(ofLi,t , o
f
Mi,t

, ofHi,t) =

[
woi (o

f
Hi,t

)−ρ
oil
i + (1− woi )

(
ωoi (o

f
Li,t

)−η
oil
i + (1− ωoi )(o

f
Mi,t

)−η
oil
i

) ρoili
ηoil
i

] 1

−ρoil
i

,

(3.7)

where light and medium crudes form their own composite. The woi and ωoi terms are

distribution parameters that control the relative use of the different types of oil in the

sector. The elasticity of substitution between light oil (or medium oil) and heavy oil

is 1
1+ρoili

, and the elasticity of substitution between light oil and medium oil is 1
1+ηoili

.

The use of this composite allows us to take a stand on whether light and medium

crudes are more or less substitutable with each other than with heavy crude oil. This

is motivated by the discussion in section 2, where it was shown that the relative price

of light crude to medium is much less variable over time than the relative price of light

18



to heavy. As we show later, allowing the elasticity to be different between light and

medium vs. heavy will let us model this feature of the data.8

The representative producer of refined products in each country chooses nfi,t, K
f
i,t,

ofLi,t , o
f
Mi,t

, and ofHi,t to maximize profits

Πf
i,t = pfi,ty

f
i,t −W

f
i,tn

f
i,t −R

f
i,tK

f
i,t − poLi,t o

f
Li,t
− poMi,t o

f
Mi,t
− poHi,t o

f
Hi,t

subject to equations 3.6 and 3.7. In solving this problem, the producer takes as given

the wage W f
i,t, the rental price of capital Rf

i,t, and the prices of light, medium and

heavy oil poLi,t , p
oM
i,t , p

oH
i,t . The representative firm sells its output to households and

non-oil good producers at a price pfi,t.

3.2.3 Non-oil Good Production

Finally, a representative firm hires labor and rents capital from the household and

purchases refined products from refineries to produce non-oil good. In doing so, it uses

a constant returns to scale technology that combines a capital-labor composite with

refined products. The production function is

yai,t =
[
wai
(
zai,t(n

a
i,t)

χai (Ka
i,t)

1−χai
)−ρai + (1− wai )(m

f
i,t)
−ρai
] 1

−ρa
i (3.8)

where zai,t represents a stochastic process for the evolution of productivity, nai,t, K
a
i,t de-

note labor and capital inputs, and mf
i,t is the input of refined products. The parameter

χai controls the share of labor in non-oil sector’s value-added in country i, wai controls

the relative use of capital-labor composite and refined products in the sector, and 1
1+ρai

is the elasticity of substitution between capital-labor composite and refined products.

The firm chooses nai,t, K
a
i,t, and mf

i,t to maximize profits

Πa
i,t = yai,t −W a

i,tn
a
i,t −Ra

i,tK
a
i,t − p

f
i,tm

f
i,t,

subject to equation 3.8. The producer sells its output to households and oil producers.

8Another signal that the two are more substitutable is that the prices of light and medium are

typically much closer to each other than they are to heavy crude oil. The processing of heavy crude oil

also generally requires some very specific pieces of machinery, such as cokers, which are not required

to process light crude oils.
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3.3 Market Clearing

A competitive equilibrium for the world economy requires market clearing for all the

goods, i.e. that production of each good must equal the total use of that good,

yoL1,t + yoL2,t = ofL1,t
+ ofL2,t

, (3.9)

yoM1,t + yoM2,t = ofM1,t
+ ofM2,t

, (3.10)

yoH1,t + yoH2,t = ofH1,t
+ ofH2,t

, (3.11)

yf1,t + yf2,t = cf1,t + cf2,t +mf
1,t +mf

2,t, (3.12)

ya1,t+ya2,t = ca1,t+ca2,t+Ia1,t+Ia2,t+If1,t+If2,t+CL
1,t+CL

2,t+CM
1,t+CM

2,t+CH
1,t+CH

2,t. (3.13)

All the goods can be traded freely and no trade costs are assumed, so purchasing

power parity (PPP) holds:

poL1,t = poL2,t,

poM1,t = poM2,t ,

poH1,t = poH2,t ,

pf1,t = pf2,t.

4 Calibration and solution method

4.1 Calibration

We solve the model numerically, as it is impossible to solve analytically due to its

complexity. This in turn requires us to calibrate the model. The model is calibrated

at an annual frequency. We choose our parameter values such that the deterministic

steady state for the endogenous variables replicates certain time series averages of the

actual economy.

Our main data sources are the U.S. Energy Information Administration, Oil and

Gas Journal, the International Energy Agency, the Bureau of Labor Statistics, the

Bureau of Economic Analysis, the International Monetary Fund, the United Nations,

Bloomberg, World Input Output Database (WIOD), and Eni’s 2016 World Oil and
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Table 4.1: Preference parameter values

Description Symbol Parameter value

Discount factor β 0.96

Intertemporal substitution 1/(1− γ) 0.50

Elasticity of substitution ca, cf 1/(1 + ρ) 0.20

Gas Review. In our calibration, country 1 represents the U.S. and country 2 represents

the rest of the world. Where possible we have the model match data from 2010. The

year 2010 is chosen because it is before oil production in the U.S. started booming in

2011.

Several preference parameters are calibrated to be equal across countries, Table 4.1.

The discount factor β is 0.96. The elasticity of substitution between products and non-

oil goods (good f and good a), 1
1+ρ

, is set at 0.20, pinning down the price elasticity

of demand for refined products on the household side. This value is within the range

of the literature for short-run price elasticities of demand for refined products.9 The

curvature parameter determining the household’s coefficient relative risk aversion, γ, is

set at −1, as in Backus and Crucini (2000) [1] or Backus, Kehoe and Kydland (1994) [3].

We assume an average time allocation of 2
3

to leisure. Without loss of generality, we

can normalize U.S. GDP in the deterministic steady state to unity, GDP1 = 1, which

allows us to calibrate several variables in terms of GDP-ratios. The price of fuel is also

normalized to 1, pf1 = 1. We set cf1 equal to 2.2 percent of GDP, based on data from

the BEA for household spending on gasoline and heating oil in 2010. Based on 2010

data from the BEA and the EIA, we also set the the share of non-household petroleum

spending to nominal GDP, mf
1 , to 2.2 percent.

The average ratio of refined products production to refined products consumption

in the U.S. for 2010, 0.965, helps us pin down the steady state value for refined products

production, yf1 . Then, using the average ratio of total crude oil production to total

refined products production in the U.S., 0.35, we can obtain the steady state value of

total crude oil production. The steady state values of light, medium, and heavy oil

9See the discussion in Baumeister and Hamilton (2016) [5], for example.
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production are set to match the shares of each type of oil in total production, based

on Eni data. The total volume of crude oil processed by U.S. refiners is set using EIA

data which shows that the ratio of total U.S. crude oil inputs to refineries and crude

oil production in 2010 was 2.675. To determine the shares of each type of oil processed

in the U.S. refineries, we use the estimates presented in subsection 2.4.

As a proxy for light, medium and heavy oil prices, we consider LLS, Dubai and Maya

prices, respectively. We construct annual averages for relative oil prices using monthly

data from Bloomberg, and set the steady state price ratios to their 2010 averages.

We match the average cost share of crude oil in gasoline and diesel prices in 2010,

77.4 percent, to obtain the share of crude oil in gross output of the refined products

sector, (1− αf1).

For the labor share of value-added in the refining sector, we rely on data from the

World Input Output Database.10 This database provides annual data on labor com-

pensation and value-added in the petroleum and coal products sector for 38 countries

(including the U.S.). The time series run from 1995 to 2011 for most of the countries.

We use these data to generate a time series for the labor share of value-added for each

country. Then, for each country we obtain the average labor share over 2000 − 2009.

The value for the U.S. is obtained as 0.164, representing the parameter χf1 . To get the

labor share of value-added in the refining sector for the ROW, i.e. χf2 , we also use data

from the Oil&Gas Journal on refining capacity in 2010 to account for the different size

of the refining sector across countries. The countries included in the WIOD data cover

about 75 percent of global refining capacity. We first find the share of refining capacity

in each country out of the total excluding the U.S., and use these shares to weight each

country’s labor-share. We then sum across these countries to get our estimate for the

ROW. We set an annual depreciation rate of 10 percent, and obtain the steady state

value of kf1 using the FOC for capital stock. Then, investment in refining at the steady

state would be δkf1 .

For the refining sector, we also need to calibrate the distribution parameters for

the oil aggregator, which requires elasticities of substitution across different oil inputs.

Calibrating the elasticities is somewhat involved. As we do not have a long time

10See Timmer et al. (2015) [34] for details.
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series on refiner crude inputs by oil type, we can not use a standard procedure of

estimating the elasticities using regressions based on FOCs. Instead, we turn to a

common procedure used in the Real Business Cycle literature, where we pin down the

values of ηoil1 and ρoil1 so that simulated data from the model matches up with some

of the features of real world data. Specifically, we focus on two moments: the ratio of

the volatility of the relative price of light crude to medium over the volatility of (real)

light oil prices, and a similar ratio calculated using the volatility of the relative price

of light crude oil to heavy.

To do this, we use annual price data on LLS, Dubai and Maya crude oils. Dubai is

chosen as a benchmark for medium crude oil as Mars only became available in 1997,

which is a very limited sample when using annual data. We de-trend the series using a

one-sided HP filter and then calculate the volatilities of the relative prices along with

the inflation-adjusted series for LLS. We then simulate the model and set the elasticities

so that the model-simulated data matches the moments from the actual data. This

exercise sets the elasticity between light and medium (ηoil) at 5.35 and the elasticity

between heavy and composite (ρoil) at 3.23.11

Given the elasticities and the FOCs for oil inputs, the relative oil prices and the oil

inputs at the steady state help us determine the share of light oil, ωo1, and the share

of heavy oil, wo1, in producing refined products. Then, heavy, medium and light oil

prices at the steady state can be found using the FOCs and the steady state relative

oil prices.

The elasticity of supply for crude oil is set to 0.20. This ensures that supply of all

types of all is fairly inelastic in response to price changes, a key feature of the data.

The elasticity of substitution between the capital-labor composite and refined prod-

ucts in the non-oil sector is set equal to the price elasticity of demand for refined prod-

ucts on the household side, 1
1+ρai

= 1
1+ρ

, i = 1, 2, in both countries. The value of ya1 then

can be obtained using the resource constraint for country 1, which helps us determine

wa1 . Finally, we need to calibrate the parameter that controls the share of labor in

non-oil sector’s value-added, χa1. We again rely on data from the World Input Output

11We also find that ηoil is greater than ρoil when using annual data for Mars instead of Dubai, and

also if we use quarterly price data to provide the moments.
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Database, which provides annual data on labor compensation and total value-added

for 40 countries (including the U.S.), with the time series running from 1995 to 2011

for most of the countries. First, we use this data to generate a time series for the labor

share of total value-added in each country. Then, for each country we get the average

labor share over 2000− 2009. The value for the U.S. is obtained as χa1 = 0.60. To get

the labor share of total value-added for the ROW, i.e. χa2, we also use data from the

IMF on GDP in 2010 to account for different size of GDP across countries. We first

find the share of GDP in each country out of the global GDP excluding the U.S., and

use these shares to weight each country’s labor-share. We then sum the weighted labor

shares to get our estimate for the ROW, χa2 = 0.55.

In line with Christiano, Eichenbaum and Evans (2005), we set φ1 = 4. The values

for the rest of the parameters and the steady state values for the rest of the U.S. vari-

ables are obtained from the steady state model. Parameters for the U.S. are presented

in the top panel of Table 4.2.

Taking the calibration of the U.S. economy as given, we continue calibrating the

ROW. First, based on Eni data for 2010 we set the U.S. share in global oil production

as 0.073. We also obtain the shares of light, medium, and heavy oil production in total

ROW oil production for 2010. They help us determine the steady state values of light,

medium, and heavy oil supply in the ROW. Crude oil inputs to refiners in the ROW

are then obtained from the oil market clearing condition.

We calculate yf2 by making use of data on refinery gains from the EIA and IEA.

Given total crude oil inputs data for the ROW, we assume refined production in the

ROW is a sum of total crude oil inputs in the ROW and refinery gains in the ROW.

Then, we calculate
of2
yf2

, which is 0.983 for 2010. At the steady state, we set yf2 =

ofL2
+ofM2

+ofH2

0.983
. Continuing with the parameters of the refining sector, the elasticities

of substitution across different oil inputs are set equal to the elasticities in the U.S.

refining sector. As PPP holds, prices of all the goods are equal across countries at the

steady state. Then, we can determine the share of light oil, ωo2, the share of heavy oil,

wo2, and the share of oil composite, (1− αf2), in producing refined products.

The share of global GDP due to the U.S. was 17 percent in 2010 and the U.S.

population share was 4.5 percent, based on UN data, allowing us to obtain GDP
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Table 4.2: Baseline Calibration

Calibration for the U.S.

Description Symbol Parameter value

Depreciation rate of capital δ 0.10

Labor and capital’s share in refining production αf1 (1− 0.774)

Labor’s share in refining value-added χf1 0.164

Elasticity of substitution between L and M ηoil1 5.35

Elasticity of substitution between H and M(orL) ρoil1 3.23

Share of L in refining production ωo1 0.497

Share of H in refining production wo1 0.294

Elasticity of k = L,M,H supply ηk1 0.20

Elasticity of substitution in non-oil production 1/(1 + ρa1) 0.20

Labor’s share in non-oil production χa1 0.60

Refined product’s share in non-oil production (1− wa1) 5.1050e− 09

Elasticity of investment-capital ratio w.r.to Tobin’s q φ1 4

Non-oil consumption intensity in c1 w1 3.1632e− 08

Share of time spent in the workplace µ1 0.378

Calibration for the ROW

Labor and capital’s share in refining production αf2 0.1697

Labor’s share in refining value-added χf2 0.297

Elasticity of substitution between L and M ηoil2 ηoil1

Elasticity of substitution between H and M(orL) ρoil2 ρoil1

Share of L in refining production ωo2 0.484

Share of H in refining production wo2 0.216

Elasticity of k = L,M,H supply ηk2 ηk1

Elasticity of substitution in non-oil production 1/(1 + ρa2) 1/(1 + ρa1)

Labor’s share in non-oil production χa2 0.55

Refined product’s share in non-oil production (1− wa2) 6.0810e− 09

Elasticity of investment-capital ratio w.r.to Tobin’s q φ2 φ1

Non-oil consumption intensity in c1 w2 1.2534e− 09

Share of time spent in the workplace µ2 0.3926
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and time available for work and leisure in ROW. The household and firm petroleum

consumption ratio for 2010 is obtained using data from several sources. WIOD provides

data on “coke and refined petroleum products” by firms as an intermediate input and

also final consumption of the good by households for 40 countries. The EIA provides

data on world consumption of petroleum and other liquids by region and end-use

sector. Finally, Exxon 2016 Energy Outlook [17] provides data on world oil use by

end-use sector. Based on our calculations using different sources, we assume a ratio

of 0.50 for the ratio of household use of petroleum to firm use for 2010, allowing us

to pin down steady state values of household use and firm use of refined products for

the ROW. Elasticities of oil supply are equal to the U.S. elasticities. The value of ya2

then follows from the resource constraint for country 2, which helps us determine wa2 .

Moreover, we assume φ2 = φ1. The rest of the parameters are calibrated using the

remaining of the equilibrium conditions at the steady state.

4.2 Calibrating the shocks

The parameters governing the autoregressive processes for the productivity shocks are

not determined by the deterministic steady state. We use simulated method of mo-

ments, a standard technique in the business cycle literature, to match several moments

in the data and calibrate these parameters.

We use data on U.S. and ROW real GDP as well as U.S. and ROW crude oil

production for the moment matching exercise. The ROW GDP series is an index

of the trade-weighted average of GDP series for 40 countries from the Database of

Global Economic Indicators.12 Data on U.S. and ROW oil production are based on

the EIA World Crude Oil Production Including Lease Condensate series. We would

have preferred to use time series data on oil production by type but we do not have a

sufficiently long time series available, even for the U.S. We average the monthly and

quarterly observations for oil production and GDP, respectively, to produce an annual

time series and then take the log of the annual series.

As we do not explicitly model trends in economic variables, oil or otherwise, we

12See Grossman et al. (2014) [19] for more details.
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de-trend the data using a one-sided HP filter. For the oil production series we filter

the entire sample from 1973 to 2016. For the GDP series, we start the filter in 1981,

as this is the first year for which we have an annual average for ROW GDP.

The left and right panels of Figure 4.1 plot the de-trended data series for GDP and

oil production, respectively. The gray bars in the GDP figure denote NBER recessions.

We note that the GDP series picks up the Great Recession, U.S. recessions in the early

1990s and early 2000s, and the above trend growth in the ROW GDP in the mid-2000s

due to the BRICs. The de-trended oil production series clearly show the impact of the

shale boom and subsequent production decline in the U.S., as well as the long period

from 2005 to 2013 where production outside the U.S. remained range-bound between

about 68 to 70 million barrels per day.

Figure 4.1: De-trended GDP and oil production, U.S. vs. the ROW
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In our calibration exercise, we constrain the autocorrelations and volatilities of the

productivity shocks for different oil types to be equal, although they can differ between

the U.S. and ROW. Ideally, we would prefer to allow these to be different across types

within countries but we do not have a sufficiently long time series to do this. This

leaves a total of 8 parameters that need to be calibrated for the shocks.

27



Table 4.3: Calibration of shock parameters

Shock AR(1) coefficient Volatility

Technology (U.S.) .613 .0086

Technology (ROW) .367 .0075

Oil supply (U.S.) .696 .0258

Oil supply (ROW) .731 .0324

Table 4.4: Properties of key variables, Data vs Model

Data Model

Variable Autocorrelation Volatility Autocorrelation Volatility

U.S. oil production (total) 0.698 0.03 0.698 0.03

ROW oil production (total) 0.737 0.024 0.735 0.024

U.S. GDP 0.714 0.016 0.713 0.016

ROW GDP 0.495 0.011 0.496 0.011

We choose 8 moments from the de-trended data for our purposes: the first-order

autocorrelations and the volatilities. Our goal in the exercise is to calibrate the shock

parameters so as to have the model simulated data match these moments in the data.

We trim the sample to run from 1986 to 2010. We remove data after 2010 to remove

the influence of the shale boom, as we want to treat that as the “shock” in our DSGE

model. We start in 1986 to start our oil production series following the collapse of

OPEC production cuts around that time.

Table 4.3 shows the calibration of the shock parameters as a result of our moment

matching exercise. Table 4.4 compares the properties of the data to those of the

simulated data from the model. In addition to the four variables we purposely try to

match, the table provides information on refiner runs (total oil inputs into the U.S.

refining sector) and the price of light oil. We see the model is able to successfully match

the moments we have targeted, both for GDP and the oil production series.
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5 Results

We model the shale oil boom as an exogenous shock that lowers the cost of producing

light oil in the U.S., i.e. a positive shock to zoL1,t . In order to generate a path for the

shocks, we conduct the following exercise. We have data on the percent change in U.S.

light oil production from 2010 onwards. We numerically solve for the values of the

productivity shocks in the model that would generate the same percentage changes

in U.S. light oil production as seen in the data. We do this to match the data in

2011 − 2014.13 We then feed these shocks into the model and analyze how various

variables respond to the increased light oil production.

Given the large number of variables in the model, we choose to focus on a subset of

the results of particular interest and importance. Figures 5.1 - 5.3 plot the responses

of those variables. We note that units are percentage deviations of each variable from

its starting point. These are calibrated in most cases to line up with 2010 data.

Figure 5.1 focuses on a number of oil market variables. We discuss the results

moving from left to right, top to bottom. The top left panel shows the path of U.S.

light oil production, which by default lines up with the data. Overall, total U.S.

production rises by more than 60 percent by 2014, slightly higher than the actual data.

Oil production outside the U.S. falls by a small amount, and total oil production rises

by more than 2 percent.

Turning to prices, we find that the increased supply is enough to push down the

price of light oil by more than 10 percent by 2014. The price of light oil outside the

U.S. falls by the same amount, as there is free trade. The bottom two panels show

that the relative price of light crude to other grades of crude declines, i.e. the price of

light crude falls by more than medium and heavy. This is in line with the fact that

the different types of crude oil are imperfect substitutes for each other, and that the

supply increase is solely in light crude oil.

Figure 5.2 plots imports of light and medium crude oil, as well as refiner inputs

132014 is the end date as the sharp decline in the price of oil late in 2014 significantly reduced

drilling for oil in the U.S., affecting production levels in 2015. Therefore, some of the production

change that year is arguably not exogenous.
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by type of oil for the U.S. and ROW. The model predicts that the supply increase

is large enough to make the U.S. a net exporter of light crude oil by 2014. Imports

of medium crude also decline. As the price of light oil relative to other grades has

declined, refiners in both the U.S. and the ROW process more light crude oil. We note

that the increase in use of light oil by U.S. refiners is not enough to fully make use of

all the new production; hence we see a sharp decline in imports of light crude.

The top panel of figure 5.3 plots two other variables related to the refining sector.

We find that production of refined petroleum products in the U.S. rises by about a

percentage point by the peak of the shock. The top right panel plots the relative price

of fuel to light oil prices. We find that this rises by several percentage points, providing

an economic incentive for refiners to process more light oil to produce fuel.

The bottom panel plots the response of the U.S. GDP and fuel prices. We find

that the increase in light oil production boosts U.S. GDP by 0.8 percent in 2014 vs

2010 levels. This may seem small in light of the 60 percent increase in total U.S.

crude oil production entailed by the shock. However, the oil sector in the U.S. is small

compared to the broader economy. We find that fuel prices drop by 8 percent by 2014.

As the decline in fuel prices is less than the decrease in light oil prices, the crack spread

increases.
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Figure 5.1: Impulse responses from the model

Note: Units are percent deviations from the steady state.
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Figure 5.2: Impulse responses from the model

Note: Units are percent deviations from the steady state.
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Figure 5.3: Impulse responses from the model

Note: Units are percent deviations from the steady state.
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6 The Impact of Crude Oil Export Ban

In our general framework presented in Section 3, there are no restrictions on trade

and purchasing power parity holds for all goods. We now extend the baseline model to

incorporate the U.S. crude oil export ban. The export ban is modeled as an exogenously

given constraint that prevents (net) imports of all types of crude oil in the U.S. from

becoming negative, i.e. exports are impossible. At its most basic level, this means

having inequality constraints in the model, one for each type of oil. These constraints

are given by

ofk1,t − y
ok
1,t ≥ 0 (6.1)

for k = H,M,L. Further mathematical details about setting up the export ban can be

found in the Appendix A.

We point out several important facets of this constraint. We use the case of light

oil as an example but these facets apply equally to other types of crude oil. First,

if the constraint binds, then part of the oil market in the U.S. becomes segmented

from the rest of the world. This generates a wedge between domestic light oil prices

and foreign light oil prices. Second, the constraint itself is endogenous, in the sense

that both refiner use of light oil and production of light oil are endogenous variables.

Therefore, the ability of refiners to substitute away from other oils towards light oil has

implications for when the constraint might bind and what kind of price differentials it

is likely to generate.

To solve the model with inequality constraints, we use the Guerrieri and Iacoviello

(2015) [20] OccBin toolkit for Dynare, allowing us to examine the possibility that the

export ban could bind for some period of time. The length of the time is endogenously

determined by the shocks that hit the economy and the structure of the economy.

Our goal is to investigate the effects of higher U.S. light oil production on the oil

markets and the broader economy under the U.S. oil export ban. Our experiment is

as follows. We start from the initial steady state and feed in a series of positive light

oil supply shocks in the U.S. country 1 over 4 years. The shocks exactly replicate the

path of U.S. light oil production from 2011 to 2014.

Figures 6.1 to 6.3 compare the impulse responses for the free trade scenario to the
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case where the export ban is taken into account. The blue lines are the free trade base

case, and the dashed-red lines are with the ban in place.

We first turn to the most basic question: was the ban binding? Our model says

yes, primarily in 2014 but also to a very small extent in 2013 and 2015. This can be

seen in the top left panel of figure 6.2. We find that the ban distorts a number of

economic outcomes, although these are primarily concentrated in the oil and refining

sectors. The price of light crude oil in the U.S. becomes artificially cheap, relative

not only to light oil outside the U.S. but also to other grades of crude oil. This price

discount boosts the crack spread for refiners in the U.S. compared to those outside of

the country. This price differential leads to a significantly higher jump in the use of

light oil by U.S. refiners, and to a jump in the amount of refined petroleum products

produced by the U.S.

While the distortions in the refining sector appear large, the spillovers to the other

parts of the economy appear fairly small. The price discount in light crude oil that

appears is not sufficiently large enough to distort oil production by an extreme amount.

And, since refined petroleum products are not subject to any ban, the increased pro-

duction by U.S. refiners primarily comes at the expense of refiners in ROW, who get

crowded out of the market. As a result, the impact on fuel prices is negligible and so

is the impact on U.S. GDP.
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Figure 6.1: Impulse responses from the model

Note: Units are percent deviations from the steady state. Blue lines: free trade (no ban),

dashed-red: with the export ban.
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Figure 6.2: Impulse responses from the model

Note: Units are percent deviations from the steady state. Blue lines: free trade (no ban),

dashed-red: with the export ban.
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Figure 6.3: Impulse responses from the model

Note: Units are percent deviations from the steady state. Blue lines: free trade (no ban),

dashed-red: with the export ban.
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Was the ban binding in reality?

According to our model, the export ban on crude oil was a binding constraint from

2013 to 2015. We now try to review the evidence from the data to see whether the

model prediction is consistent with the data itself.14

We approach this question in two ways. First, we consider several predictions from

the model that can be checked in the data. We focus primarily on variables that are

very closely connected to the market for light crude oil. Second, we take advantage

of the fact that the U.S. crude oil export ban had several loopholes. These loopholes

could act as release valves for pressure that might arise in the market if the ban became

a binding constraint.

We focus on three predictions our model makes about what we should see in the

data if the export ban was binding at some point in time. First, the model predicts

that imports of light oil should become zero. Second, and related to the first, if the

ban is a binding constraint, it could actually prevent exports of light crude oil. Finally,

an unusually large spread should develop between light oil in the U.S. and outside the

U.S.

A review of table 2.2 suggests that the first prediction of the model does not appear

to hold in the data. At no point in time did exports of “light” crude oil become zero,

or even approach anything close to zero. However, we can take a deeper look at the

data. The EIA import data allows us to consider more disaggregated slices of the crude

import data for light oil, which are shown in figure 6.4. When we look at the import

data for crude oil with API gravity higher than 40, we see that these imports did,

indeed, fall to near zero for several years.

We point out here that our modeling decision to define “light” oil as API gravity 35

and above is driven due to data constraints for the production data. It is known from

other analysis that most U.S. shale oil actually has API of 40 and above.15. When

viewed from this context, it seems natural that the first crude oils that would get

crowded out are those of relatively high API gravity. And indeed, we see that imports

14Çakır Melek (2017) [14] analyzes oil market data for the same time period and argues that the

ban distorted oil flows during the shale boom.
15EIA (2015) [36]

39



of very light crude approach zero first followed by those slightly below.

Turning to the second prediction, we are actually able to make firm statements

about whether the ban constrained exports because the ban was removed at the end

of 2015 and we now have export data for 2016. We plot this data in figure 2.3. The

black line shows total crude exports, and it shows that U.S. crude exports increased in

2016 compared to 2015, despite the fact that U.S. crude production actually declined

that year.

The export ban policy had a loophole in it that allowed for exports of crude oil to

Canada, so long as the crude oil was to be processed in Canada and the fuels used for

domestic consumption therein. In other words, if the desire to export crude oil was

large enough, it was possible to try and use this loophole to export crude to Canada

and indirectly back out Canadian imports of oil from another country. The dashed red

line shows those numbers. We see that exports of crude to Canada did indeed start

increasing in 2013 through 2015. Since this loophole was not heavily used at any point

before this time, this is very suggestive that the ban had become binding in some sense.

Finally, we turn towards the prediction that light crude oil in the U.S. should

sell at a discount to light oil outside the U.S. if the ban binds.16 Using West Texas

Intermediate crude prices may be problematic as the interior of the U.S. faced some

logistical constraints that affected prices of WTI relative to other benchmarks. Given

this, we instead use Louisiana Light Sweet (LLS) as our light oil price. This is a light

crude oil similar in nature to WTI but is priced in the Gulf Coast of the U.S. We use

Brent crude for our measures of foreign light oil prices.

Figure 6.5 plots the relative price of LLS to Brent. Starting in late 2013, we see

that the relative price of LLS to Brent declined to unusually low levels compared to

where it was in previous years. This continued through much of 2015. After the ban

was removed, the relative price has generally remained close to levels seen in the years

before 2013, and has never fallen to the abnormal levels seen in late 2013 and early

16We do not consider the predictions regarding the price of light relative to medium and heavy

as there were changes in the supply of both those types of crude outside the U.S. that would have

impacted their prices. Since we have not modeled those changes in supply, we feel it is best to focus

on light crude oil.
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2014.

Overall, we believe the evidence presented here is very suggestive that the crude oil

export ban became a binding constraint sometime in 2013 and remained a constraint

through 2015.

Figure 6.4: U.S. imports of light crude oil by API gravity.
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Figure 6.5: Relative price of Louisiana Light Sweet to Brent crude oil.
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7 Conclusion

In this paper we introduce a two-country DSGE model that incorporates a refining

sector and different types of crude oil. The model is used to consider the impacts

of the shale oil boom and the U.S. crude oil export ban on both the oil and refining

sectors, as well as the broader economy. The introduction of different types of crude

oil, which are modeled as imperfect substitutes as inputs to the refining process, allows

us to take into account the fact that oil produced from shale plays is primarily light

crude oil and that refining sectors in the U.S. and the rest of the world specialize in

processing different types of oil.

Under a free trade scenario, we find that a light oil boom of the same magnitude as

the shale boom in the U.S. reduces light oil prices by more than 10 percent, increases

U.S.’ use of light crude at the expense of other types, and makes the U.S. a net exporter

of light crude oil. It also lowers fuel prices by about 8 percent and modestly increases

GDP.

Taking the export ban into account, our model predicts that the ban was binding

in 2013 through 2015. The impact of the ban was primarily concentrated in the energy

sector, especially the refining sector. Light oil prices were artificially low in the U.S.

relative to the rest of the world, and refiners in the U.S. processed more light oil

than they would have otherwise. The impact of the ban on GDP and fuel prices was

negligible.
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APPENDIX

A Modeling the export ban

We address the U.S. oil export ban in the model as follows. We assume that crude

oil is distributed by perfectly competitive firms, called distributors of crude oil. A

distributor’s problem is a tool for us to model an export ban on crude oil, which will

be introduced into the distributor’s problem as an inequality constraint. Moreover, we

assume that there are iceberg trade costs for shipping crude oil. Adding trade costs

allows the model to generate a small, positive spread between crude oil prices in the

U.S. and the ROW. This is a feature of the data due to the costs of importing the

marginal barrel of oil into the U.S. To match this feature of the data we work with a

simple form of iceberg trade costs. If country 1 imports om1,t units of crude oil, then

τo2o
m
1,t units will be lost in transit, where τo2 > 0 is the iceberg cost of moving crude oil

from country 2 to country 1. We assume there is no cost of moving crude oil within

country 1 or country 2. This form of trade costs implies that crude oil imports are

given by om1,t =
of1,t−yo1,t
1−τo2 .

A.1 Distributors of crude oil

A perfectly competitive distributor purchases crude oil in domestic spot market or

imports it, and then re-sells it to refined products producers (refineries) costlessly. In

country 1, crude oil of type k can be purchased in the domestic spot market at price

pok11,t or imported from country 2 at pok2,t. The oil distributor chooses output and imports

of type k crude oil to maximize the present discounted value of cash flow

E0

∞∑
t=0

βtλ1,t

{
pok1,to

f
k1,t
− pok11,tyok1,t − pok2 omk1,t

}
subject to

ofk1,t = yok1,t + (1− τo2) omk1,t

omk1,t ≥ 0
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where omk1,t is the import of type k crude oil, ofk1,t is type k crude oil demand by the

refineries, and τo2 is the parameter determining the cost of importing crude oil from

country 2.17

So, the crude oil export ban in country 1 (U.S.) is modeled as an inequality con-

straint that prevents (net) imports of all types of crude oil, k = L,M,H, in country 1

from becoming negative, i.e. crude oil exports are impossible. For instance, consider

the case of light oil, then the constraint would translate into
ofL1,t

−yoL1,t
(1−τo2) ≥ 0. As both

refiner use of light oil and production of light oil are chosen by the distributor, the

constraint is endogenous. Therefore, the ability of refiners to substitute away from

other types of oils towards light oil has implications for how strongly the constraint

will bind and what kind of price differentials it is likely to generate.

Let ψkt be the multiplier on the inequality constraint for tyke k crude oil. The first

order conditions for the distributor’s optimization problem are then given by

pok1,t = pok11,t

implying the spot price and the retail price of type k crude oil are the same, and

pok2,t = (1− τo2) pok1,t +
ψkt
λ1,t

,

and

ψkt o
m
k1,t

= 0.

In the case where the ban does not bind, ψkt equals zero and the price of type k oil

in the U.S., pok1,t, will be equal to the cost of importing the marginal barrel of type k oil

from country 2. Due to shipping costs, there is a small, positive gap between type k

crude prices in the U.S. and ROW. Moreover, the type k oil market clearing condition

in this case will be given by

yok1,t + yok2,t − τo2omk1,t = ofk1,t + ofk2,t .

However, when the ban binds, a gap is introduced between domestic and foreign

type k crude prices, and type k crude oil market becomes segmented from the rest of

17Note that λi,t is the lagrange multiplier on the household’s budget constraint in country i.
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the world, implying that ofk1,t = yok1,t and ofk2,t = yok2,t.

The distributor’s problem in country 2 is simply to choose output of type k crude

oil to maximize

E0

∞∑
t=0

βtλ2,t

{
pok2,to

f
k2,t
− pok22,t

(
yok2,t − omk1,t

)}
subject to

ofk2,t = yok2,t − omk1,t .

The first order condition for the distributor’s optimization problem is given by

pok2,t = pok22,t.

In our benchmark simulations of the model with the export ban, we assumed τo2 = 0.

Solution method

It is useful to briefly map our model conditions into the notation used in Guerrieri

and Iacoviello (2015) [20]. In our model, country 1’s crude oil exports are subject to an

occasionally binding constraint, omk1,t ≥ 0 for k = L,M,H. The complementary slack-

ness condition implies that ψkt = 0 when the constraint is slack. When the constraint

binds, omk1,t = 0. The conditions in the reference regime, M1, encompass ψkt = 0, and

the function g captures omk1,t ≥ 0. The conditions in alternative regime, M2, encompass

the case when omk1,t = 0 and the function h captures ψkt > 0.
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