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Abstract

We examine the role of learning in accounting for the movements in oil price fu-
tures during the 2000s, a period during which the oil market experienced important
changes. We show that a simple unobserved component model in which investors
must form beliefs about whether the source of oil price movements is transitory
or permanent accounts remarkably well for the fluctuations in oil price futures.
Our simple framework notably accounts for the relatively slow increase in futures
prices at the beginning of the past decade and their unprecedented run-up between
2004 and 2008. Even during the first half of 2008, a period during which oil prices
reached historic highs, the model predicts a level of futures prices that is broadly in
line with the data. Our estimates suggest that, through learning, investors revised
up the contribution of permanent shocks to the variance of oil prices throughout
this period. Using a DSGE model in which oil is storable and used in production,
we then show that this learning process may have significantly muted the effects of
oil shocks on the economy during that period.

∗The views in this paper are solely the responsibility of the authors and should not be interpreted as

reflecting the views of the Board of Governors of the Federal Reserve System, any other person associated

with the Federal Reserve System.
†Comments and suggestions can be directed to robert.j.vigfusson@frb.gov.
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1 Introduction

The large fluctuations in the price of oil over the past 15 years have renewed interest in

the usefulness of futures markets in anticipating these movements. Overall, the futures

market failed to predict that events during the past decade, from the growing importance

of China in the world economy to onset of the financial crisis, would radically change the

outlook for oil prices. These developments led many to call into question the usefulness of

oil-price futures as predictors of future oil price movements.1 Whereas many commenta-

tors have attributed the associated forecasts errors to speculation or market inefficiency,

this paper provides an explanation of the movements in oil-price futures based on learn-

ing and show through a DSGE model that this learning process can significantly alter

the quantitative effects of oil shocks on the economy.

In particular, our analysis indicates that the developments in the oil futures markets

during the 2000s are consistent with investors learning about whether underlying shocks

are transitory or permanent. We first provide evidence using the Kalman filter to infer

the permanent and transitory components of shocks to spot oil prices, and show that

this simple form of learning can explain remarkably well the observed behavior of futures

prices. Our simple framework accounts for the relatively slow increase in oil-price futures

at the beginning of the past decade and their unprecedented run-up between 2004 and

2008. Even during the first half of 2008, a period during which oil prices reached historic

highs, the model predicts a level of futures prices that is broadly in line with the data.

Our estimates suggest a significant and steady increase in the variance of the permanent

component of shocks to spot oil prices from 2002 to 2008, accompanied by a similarly

steady decline in the variance of the temporary component. In turn, this translates into

a growing contribution of permanent shocks to the variance of oil prices over this period.

Although the Kalman filter has the advantage of being a straightforward approach to

model learning, it is also somewhat restrictive in that it assumes that the parameters of

the model are constant for a given data sample. As a result, we also assess our benchmark

1See, for instance, Alquist and Kilian (2010) and Alquist, Kilian, and Vigfusson (2012).
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results by allowing for a more general, nonlinear, learning process with time-varying

parameters. In particular, we consider a variant of the unobserved components model

with stochastic volatility of Stock and Watson (2007), with the unobserved components

estimated via the particle filter. An additional advantage of using this richer framework

is that we can also examine the presence of a time-varying risk premium as an additional

source of fluctuations in futures prices (see, among others, the recent analyses of Hamilton

and Wu (2012), Singleton (2014), and Baumeister and Kilian (2015)).

We find that our baseline results derived using the Kalman filter are little changed

under the unobserved components model with stochastic volatility and continue to indi-

cate a growing importance of permanent shocks to oil prices from the early 2000s to the

onset of the financial crisis. As with the Kalman filter, this more general framework fits

the movements in the futures price of oil very well. Moreover, we find that variations in

the risk premium appear to play little role in accounting for the movements in oil-price

futures, a conclusion in line with the findings of Hamilton and Wu (2012).

Finally, we contrast our baseline results to those obtained under a constant-gain

learning process under which recent developments are weighted more heavily than earlier

data. We show that this specification significantly worsens the fit of the model, predicting

much larger upward movements in futures prices during the 2003-2005 period than those

actually observed. These results indicate that participants in the oil markets continued

to place substantial weight on developments in the 1980s and early 1990s when forming

their expectations of future oil prices during the past decade.

Our findings have important implications regarding the impact of oil shocks on the

macroeconomy. Using a DSGE model in which oil is storable and used in production, we

show that agents’ learning of the form suggested by our empirical results can substantially

cushion the recessionary effects of oil shocks. Consistent with our empirical results,

we calibrate two scenarios that capture market participants’ perceptions regarding the

perisistence of oil prices in 2003, when changes in oil prices were largely thought to be

transitory, and 2007, when oil price changes were expected to be much more persistent.
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Compared to a framework with full information, we show that the recessionary effects

of oil-price increases are roughly halved in the year following the rise in the price of oil

under the 2003 scenario. A similar dampening effect occurs under our 2007 scenario,

though it tends to be more short lived. We show that part of this dampening effect is

due to an interaction between learning and storage. For instance, a misperception that

oil shocks are transitory leads agents to draw down inventories, which mutes the rise in

oil prices and the associated fall in economic activity.

The more muted effects of oil shocks under learning and storage may partly explain

the relatively weak impact that the runnup in oil prices in the mid-2000s had on growth.

As such, our results complements Kilian’s (2008) emphasis on the importance of the

source of oil shocks in understanding their effects on GDP. In particular, Kilian finds

that the run-up in oil prices starting in 2003 was largely driven by an increase in world

aggregate demand and thus had a mitigated effect on U.S. GDP. Our results would add

that the effects on growth were also muted because market participants initially failed to

correctly assess the persistence of the increase in oil prices. Similarly, the output effect of

the increase in oil prices in the Spring of 2008 may have been heightened because market

participants anticipated the rise to be nearly permament.2

1.1 Related Literature

A growing literature interested in understanding the large movements in the spot price

of oil and its changing relationship with the futures market has recently emerged. In

particular, our paper relates to some of the recent work on the role of financial mar-

kets in driving oil prices.3 For instance, Hamilton and Wu (2012) argue that increased

participation by index-fund investing has reduced oil futures premia since 2005, account-

ing for the smaller gap between spot and futures prices observed in the data between

2005 and 2008. Similarly, Buyuksahin et al. (2008) argue that increased market activity

2Hamilton (2009) analyses the contribution of the oil shock of 2007-2008 to the Great Recession.
3This literature is large and growing. Some of the many papers discussing this issue include Singleton

(2012), Irwin and Scott (2012) and Fattouh, Kilian and Mahadeva (2012), Kilian and Murphy, Alquist
and Gervais (2012).
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by commodity swap dealers, hedge funds, and other financial traders, has helped link

crude oil futures prices at different maturities. Acharya et al. (2013) emphasize limits

to arbitrage and their effects on spot and futures prices in commodity markets. In their

environment, speculators face capital constraints in commodity markets, which limits

commodity producers’ ability to hedge risk and is reflected in commodity prices. As

such, these papers attribute developments in the futures markets to the increased finan-

cialization of commodity markets or to speculators’ risk appetite, while we show that

part of these movements can be attributed to learning.

Our paper also complements the work of Alquist and Kilian (2010) on the role of a

convenience yield associated with oil inventories in accounting for the large and persistent

fluctuations in the oil futures spread. Using a theoretical model, they argue that, under

greater uncertainty about future oil supplies, the presence of a convenient yield may

explain the excess variability of oil futures prices relative to that of the spot price, which

underlies the poor predictive performance of oil-price futures. We add to this literature

by highlighting the interaction between learning and oil storage.

Our approach also shares with Milani (2009) the emphasis on learning. In a DSGE

model in which oil is used in production, Milani (2009) studies the effect of learning on the

changing relationship between oil prices and the macroeconomy since the 1970s, assuming

that agents in the model learn about the parameters of the model and the underlying

shocks through constant-gain learning. He shows that learning is important to account

for the changing effects of oil shocks on output and inflation over time. In comparison, we

show that a simple model of learning about the persistence of underlying shocks to spot

prices acounts for the evolution of oil futures prices since the late 1990s strikingly well,

and that this type of learning can also result in more muted effects on the macroeconomy.

Lastly, our work relates to Singleton (2012) who emphasizes informational frictions and

learning about economic fundamentals as important factors behind the boom and bust

cycle of oil prices in the previous decade.

The rest of the paper is organized as follows. After describing in more detail develop-
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ments in oil prices, we layout our empirical framework, estimating a time series model of

permanent and temporary shocks to oil prices. Given our assumptions regarding learning

and using only spot price data, we estimate that the predicted permanent component of

spot prices matches very well the observed developments in futures markets. We then

develop a theoretical framework to examine the impact of learning about the persistence

of oil market developments on the economy, calibrating the learning process to match

our empirical findings in 2003 and 2007. After describing our theoretical findings, we

conclude in the last section.

2 Oil Prices During the 1990s and 2000s

We start our analysis by presenting some evidence of the oil market’s evolving views on

the persistence of the underlying shocks hitting the world economy. To do so, consider

the movements in the spot and futures prices of oil since the early 1990s depicted in

Figures 1 and 2. In each figure, the solid line shows the evolution of spot prices, while

the dotted lines depict the futures prices path at a given point in time. During the 1990s

(Figure 1), the spot price of oil tended to gyrate around fairly steady oil-price futures,

suggesting that market participants viewed economic developments impacting the oil

market as mainly temporary. Underlying shocks would tend to move the spot price of

oil, at times substantially, but the spot price would rapidly return to roughly $18 per

barrel, about the average price during that period. Clearly, whatever the disturbances

affecting the world economy, market participants did not view them as persistent enough

to substantially alter their view of oil prices in the future.

However, Figure 2 suggests that the relationship between spot and futures price

changed during the early 2000s. Between 2000 and 2008, the spot price of oil rose

steadily, from roughly $27 per barrel to more than $135 per barrel. In contrast, oil-price

futures remained initially low, consistently fluctuating below $20 per barrel until 2003.

Then, oil-price futures started a gradual rise, bringing them to roughly $50 per barrel by

the mid-2000s. Spot and futures prices then tended to move in lockstep between 2005
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and 2008.

One possible interpretation of this pattern is that, between 2000-2003, market par-

ticipants thought that movements in spot prices would likely be temporary, as indeed

was the case throughout the 1990s. However, after being consistently surprised by the

persistence of the rise in spot prices, market participants reassessed their views, placing

more weight on the possibility that the increase in oil prices was persistent rather than

transitory.

According to this interpretation, by the time the oil-market reached its peak in the

spring of 2008, market participants largely anticipated the movements in spot prices to

be highly persistent, remaining about $135 per barrel over the next 5 years, as indicated

in Figure 2. In this paper, we argue that changes in the perceived persistence of oil prices

between 2000 and 2008 may help explain the more muted impact of rising oil prices

on economic activity in the early part of that decade compared to the effects in 2008,

which have been singled out as an important contributing factor to the Great Recession

(Hamilton (2009)).

Figure 2 also suggests that the collapse in economic activity in the United States

and many other countries during the fall of 2008 led to a reassessment of the long-run

equilibrium price of oil. In addition, as in the 1990s, market participants now appear to

view most of the fluctuations in the spot price of oil as being largely transitory. That is,

the long-run futures price between the end of the Great Recession through 2012 remained

fairly stable despite significant movements in the spot price.4

3 Empirical framework

In this section, we develop a simple unobserved components model to account for the role

of permanent and temporary shocks in determining oil-price futures. We postulate that

spot oil prices are the result of movements in a permanent and a transitory components

4We stop our analysis in 2012 because, by then, the large increases in North American oil production
had resulted in the price of WTI no longer being indicative of global demand.
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and that market participants use the Kalman filter to assess the relative importance of

these two components over time. In addition, under our baseline model, we allow the

model parameters to evolve with the data sample. Below, we also assess the robustness

of our baseline model by using of a more general framework that explicitly allows for

time-varying parameters.

3.1 A simple model

Consider the following linear process relating the spot price of oil st (expressed in logs)

to a permanent component, ePt , and a stationary one, eτt ,

st = ePt + eτt . (1)

The permanent component is modeled as a random walk with drift

ePt = µ+ ePt−1 + vt, (2)

where vt is an independently and identically normally distributed disturbance with mean

zero and constant variance σ2
p. The temporary component is assumed to follow an AR(1)

process

eτt = φτe
τ
t−1 + εt (3)

where εt is an homoskedastic, Gaussian error term: εt ∼ N(0, σ2
τ ) and with |φτ | < 1.

Assuming full information at time t about the temporary and permanent components

underlying oil prices, the k-period ahead futures price at time t, ft,k, is given by the

following expression

ft,k = Etst+k = kµ+ ePt + φkτe
τ
t . (4)

In contrast, absent full information on the current levels of ePt and eτt , the futures price

will be based on the best forecasts given past values of st

ft,k = Et
(
st+k| {st−i}1

i=t

)
= Et

(
kµ+ ePt + φkτe

τ
t | {st−i}

1
i=t

)
. (5)
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In the next section, we propose that market participants use the Kalman filter to assess

the importance of permanent and transitory shocks when forming expectations about

future oil prices. To determine the relative importance of permanent shocks, a simple

statistic can be derived from the expression for the change in the spot price of oil

4st = µ+ vt + (φτ − 1) eτt−1 + εt,

which implies that the variance of 4st can be expressed as

var (4st) = σ2
p + σ2

τ +
(1− φτ )2

1− φτ
σ2
τ .

Therefore, the fraction of the growth rate’s variance that is due to permanent shocks can

be calculated as
σ2
p

σ2
p + σ2

τ + (1−φτ )2

1−φτ σ2
τ

.

3.2 Learning

We assume that market participants use the Kalman filter to form expectations of future

oil prices. In particular, define ξt as the unobserved state vector of the model above,

comprising the trend, µ, as well as the permanent and temporary components: ξt =(
µ ePt eτt

)′
. Given values of the model’s parameters, Γ = [ σ2

p, σ
2
τ , µ, φτ ], the Kalman

filtering equation relates how the observed variables yt (such as spot oil prices) respond

to the changes in the unobserved state vector ξt.

The equations for the dynamics of the observed variables yt are given by the following

system

yt = Hξt (6)

ξt = Fξt−1 + εt

where F and H are vectors of parameters. In turn, the unobserved state vector evolves

according to the following standard equation
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ξt|t = ξt|t−1 + Pt|t−1H(H ′Pt|t−1H)−1
(
yt −H ′ξt|t−1

)
(7)

given initial estimates of ξt|t−1 and Pt|t−1, where the forecast error
(
yt −H ′ξt|t−1

)
is used

to update the estimates of the size of the permanent and transitory components via the

term Pt|t−1H(H ′Pt|t−1H)−1
(
yt −H ′ξt|t−1

)
. Thus, the value of Pt|t−1 governs whether a

given surprise is assumed to be part of the permanent or the transitory component, which

is influenced by the values of σ2
p and σ2

τ .

Whether movements in the spot price of oil are perceived to be permanent or tem-

porary will have an important impact of futures prices as well. If a one percent increase

in the spot price of oil is interpreted as purely transitory, then the futures price k pe-

riod ahead, Et
(
st+k| {st−i}1

i=t

)
, only increases by φkτ , as indicated by equation (5) above.

In contrast, if the same increase is interpreted as purely permanent, then the value of

Et
(
st+k| {st−i}1

i=t

)
increases by value of the permanent component, ePt . If a shock is

actually permanent but mistaken to be temporary, then the value of the futures price

will include this error.

So far our discussion assumed that the parameter values were known with certainty,

but in practice we will need to estimate the model parameters Γ = [ σ2
p, σ

2
τ , µ, φτ ],

to derive forecasts of future oil prices. To do so, we follow two approaches. First, we

assume that market participants use all available information and estimate the model’s

parameters using the standard likelihood function

LLT = −
T∑
t=1

(
1

2
ln 2π + 0.5 log ‖Vt‖+ (st − Est)V −1

t (st − Est)
)

(8)

where Vt = H ′Pt|t−1H is the variance of the prediction errors. Alternatively, we assume

that market participants put more weight on recent observations than on more distant

ones, possibly because of concerns about structural breaks and time-variations in the

model parameters (in the learning literature, this approach is referred to as constant

gain learning). In the spirit of the recursive least squares algorithm in Cho, Williams
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and Sargent (2002), we therefore modify the likelihood function as follows

LLT = (1− χT )LLT−1 − χT
(

1

2
ln 2π + 0.5 log ‖Ft‖+ (st − Est)V −1

t (st − Est)
)

(9)

If χt = 1
t

then all observations have the same weight, equivalent to the standard likeli-

hood function described above. In contrast, if χt is a constant, then recent observations

are more important than lagged observations. In particular, for a dataset of T observa-

tions, the first observation contributes
T∏
t=1

(1− χt)χ1,whereas the most recent observation

(observed at time T ) has a much greater weight of χT .

4 Baseline Results

In this section, we present our model’s predictions for futures prices assuming that mar-

ket participants form expectations about the permanent and temporary components of

oil prices through the Kalman filter. We estimate our model assuming that market par-

ticipants form their beliefs using univariate methods, i.e., using only data on the spot

price of oil. Although extracting information about the components of oil prices only

looking at previous spot prices may be suboptimal, our emphasis on univariate methods

has the benefit of simplicity and share similarities with the learning algorithm used in

the monetary policy literature (see, for instance, Orphanides and Van Norden (2001) and

Primiceri (2006)). Using the average monthly price of West Texas Intermediate oil at the

end of each quarter from 1980Q1 to 2009Q4, we construct the model-implied estimates of

the one-year and two-year ahead futures prices and compare them to the actual futures

price data.5

We are particularly interested in the behavior of futures prices from the late 1990s until

2010. As such, we first estimate the model from 1980Q1 to 1998Q4 and start calculating

futures prices from this period hence, using an expanding window of data. Thus, the

futures prices at the beginning of 2000Q1 are calculated using the model estimated over

5As described earlier, we stop the estimation sample in 2012 given that WTI is no longer the global
benchmark. We begin the sample in 1980 when U.S. oil production was deregulated. .
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the period from 1980Q1 to 1999Q4. Similarly, the sample 1980Q1-2004Q3 would be used

to estimate the model and compute forecast of futures prices in 2004Q4.

To compute the k-period ahead futures prices we apply the following three-step pro-

cedure. First, we use spot oil prices observed up to time t − 1 and estimate the model

parameters Γ = [ σ2
p, σ

2
τ , µ, φkτ ] using the standard (or modified) likelihood function.

Second, we apply the Kalman filter using the estimated model parameters and observed

prices through time t to get estimates of the unobserved permanent and temporary com-

ponents ePt and eτt . In the third step, we use the estimated ePt and eτt and Γ, to construct

ft,k.

We first present the behavior of the model’s parameter estimates over the expanding

estimation window in Figure 3. The solid black lines report the estimated coefficients,

while the grey intervals are two-standard-deviation confidence intervals. The results are

broadly in line with the narratives of Figures 1 and 2. The left panel of Figure 3 reports

the estimated value of µ. Using just the pre-2000 part of the sample, the point estimate of

µ is slightly below zero, implying a negative trend for the nominal oil price. However, as

the estimation sample includes more of the twenty-first century, the estimated trend first

turns positive and then begins to increase, though the uncertainty around the estimated

value is large. The maximum value of the trend occurs for the sample ending in the

second quarter of 2008, before starting to decline and stabilizing around 1.3 percent per

quarter or at an annual rate of just over 5 percent. In contrast to µ, the value of φτ ,

the autoregressive coefficient of the temporary component, is more stable, varying only

slightly around a value of 0.7.

Figure 4 reports the estimation results for the variance of the permanent and tempo-

rary components, σp and στ , respectively. These estimated coefficients do vary consid-

erably as the estimation sample period expands and are also more precisely estimated.

In particular, the estimated value of σp is notably zero for the initial sample ending in

1998Q4, implying that market participants perceived oil prices to be solely driven by

temporary factors. As more data from the 2000s are included in the estimation sample,
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the perceived contribution of the permanent component steadily increases, peaking in

the second quarter of 2008, before the financial meltdown and ensuing global recession.

In contrast, the estimated value of στ broadly follows the opposite pattern.

The evolution of these model parameters can also be viewed by considering the role

of permanent shocks in affecting the variance of 4st, which is reported in Figure 5. The

figure shows that the estimated contribution of permanent shocks only slowly increases

over time. In the early part of the sample, because the standard deviation of innovations

to the permanent component is extremely small, the permanent component’s contribution

to the variance of 4st is negligible, so that the temporary component is the main driver

of changes in the spot price. These results are very much in line with Figures 1 and

2, where the futures curves show transitory increases that ultimately return to a long-

term trend during the 1990s and early 2000s. However, the estimated contribution of

permanent shocks rises roughly steadily between 2002 and the first half of 2008, where

it accounted for more than 60 percent of the variance of 4st. Thereafter, the sharp fall

in oil prices in the last half of 2008 resulted in lower estimates of the role of permanent

shocks.

Given the estimates of the model’s parameters, we now construct forecasts of the

one- and two-year ahead futures prices, using the Kalman filtering formula (7) for each

quarter from 1999Q1 onward. Figure 6 illustrates the evolution of the estimated and

actual 2-year-ahead futures prices, as well as the spot price of oil.6 Comparing the actual

futures prices with the estimated value of the actual futures price, the figure shows

that our simple framework model does remarkably well.7 As the actual futures prices,

6For the actual futures prices, we use the two-year ahead futures price observed on the business
day closest to the beginning of the quarter, so that our futures price forecast is consistent with the
information available to market participants when the actual futures price was determined.

7The grey bands indicate the confidence interval which is defined as the following set{
Et

(
st+8| {st−i}1i=t , Γ̃t−1

)
|
(

Γt−1 − Γ̃t−1

)′
W (Γt−1)

−1
(

Γt−1 − Γ̃t−1

)
≤ 4.5

}
where Γt−1 is the maximum likelihood estimate estimate and W (Γt−1) is the corresponding estimated
variance covariance matrix. The critical value of 4.5 is chosen as the 66 percentile of the chi-squared
distribution with 4 degrees of freedom.
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our estimated futures prices are particularly well below the observed spot prices in the

early 2000s, suggesting again that market participants viewed the underlying factors

pushing spot prices up to be mostly transitory. By the mid-2000s, our estimated futures

price move closely together with the spot price. In line with the rising estimate of the

contribution of the permanent component to the variance in oil price changes in Figure 5,

changes in the spot price of oil by the mid 2000s are perceived as being mostly permanent

and are thus being reflected rapidly in futures prices. As the financial crisis intensified in

mid 2008, the spot price of oil fell rapidly, but this decline was much more pronounced

than the fall in the actual futures price, which is well captured by our estimated value.

From the perspective of our model, these movements partly reflect the fact that investors

perceived the effects of the crisis on oil prices to be somewhat temporary.

Overall, our results indicate that learning about the persistence of shocks to the spot

price of oil influenced market participants in forming expectations about future oil prices.

Although our model is simple and only use information from past movements in the spot

price of oil, it accounts remarkably well for the fluctuations in oil-price futures over the

past decade or so. In particular, it captures the more muted movements in futures prices

in the early 2000s and during the Great Recession compared to the fluctuations in the

spot price of oil during those periods. Our results suggest that informational frictions and

learning of the sort emphasized here may play an important role behind the perceived

shortcomings of the oil futures market in generating accurate price forecast.

4.1 Constant Gain Learning

Our baseline results highlight the importance of time-variations in the model’s parameter

estimates. This finding suggests that investors may be concerned with structural break

and may choose to weight recent observations relatively more than distant ones. As a

result, we now consider the sensitivity of our estimated futures prices assuming that mar-

ket participants’ use the modified likelihood function (9). In conducting this exercise, we

consider different constant values of χT in the weighted maximum likelihood estimation.
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As a starting point, we use information from the literature on learning and monetary

policy to parameterize the gain. We first set χT to 2 percent based on the value reported

by Orphanides and Williams (2005) who estimate the (constant) gain that best fits the

inflation forecasts from the Survey of Professional Forecasters. This value implies that

an observation 8 years in the past gets only half as much weight in the likelihood as

the current observation. Figure 7 compares our baseline results to the estimate of the

two-year ahead futures price when χT = 0.02.8 The figure shows that discounting past

observations at this rate generally leads to worse forecasts. Relative to our baseline

model, it significantly over predicts oil-price futures from 2004 onward, predicting a peak

of $180 per barrel in the second quarter of 2008, well above the actual peak value.

These results suggest that investors on average placed more weight on more distant

observations than the constant-gain value of 2 percent indicates. Therefore, as Figure 8

shows, investors perceived oil-price movements during this period as being less driven by

permanent factors compared to the case under constant-gain learning. The figure shows

that permanent shocks drive all of the variance of 4st under a 2 percent constant gain,

more than twice as much as under our baseline model.

Is there a value of χT such that the weighted maximum likelihood estimation results

in a better model fit? The value of χT that best matches the two-year ahead futures path

is 1.5 percent. Remarkably, this is also the value used by Primeceri (2005) in a model of

U.S. inflation in which policymakers learn about the natural rate of unemployment using

a constant gain algorithm. However, as shown in Figure 7, even with this optimized value,

the constant-gain estimation tends to over predict the run-up in futures prices between

2004 and 2008 relative to our baseline model, partly reflecting the large weight ascribed

to permanent shocks as source of oil price fluctuations during this period (Figure 8). A

similar pattern emerges since the end of the Great Recession.

8We concentrate on the two-year-ahead futures prices, the results for the one-year-ahead futures
prices being very similar.
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4.2 Particle Filter and the Risk Premium

The three-step procedures that we used to derive our baseline results has the benefit

of simplicity, but it also presents some potentially important limitations. It assumes

that for a given sample period the model’s parameters, Γ, are constant. As a result,

while the procedure allows investors to learn about the importance of temporary and

permanent shocks to the spot price of oil, it restricts the evolution of the parameter

values by requiring the parameter values to fit the entire sample rather than just recent

observations. Second, our procedure abstracts from the presence of a time-varying risk

premium, which could be an alternative source of movements in oil futures prices, as

recently emphasized, for instance, by Hamilton and Wu (2012), Singleton (2014), and

Baumeister and Kilian (2015)

In this section, we address these two limitations by assessing the robustness of our

baseline results by extending our analysis to a more general learning process. In partic-

ular, we consider a variant of Stock and Watson’s (2007) unobserved component model

with stochastic volatility, in which we introduce an additional temporary shock to the

level of oil prices. Although the model is similar to our baseline framework, it differs by

allowing for time variation in Γ. Therefore, as before, the model for the spot price of oil

is

st = ePt + eτt , (10)

where we continue to assume that the permanent component follows a random walk with

drift

ePt = µt + ePt−1 + vt. (11)

However, in contrast to our baseline framework, we allow for time-variation in µt and as-

sume that the disturbance vt is Gaussian with time-varying variance σ2
p,t: vt ∼ N(0, σ2

p,t).

Moreover, we postulate that the drift parameter, µt, follows a random walk

µt = µt−1 + ξµ,t (12)

and that σ2
p,t evolve according to
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lnσ2
p,t = lnσ2

p,t−1 + ξP,t (13)

where ξµ,t and ξP,t are Gaussian disturbances with zero mean and constant variance σ2
ξµ

and σ2
ξP

, respectively.

As before, the temporary component follows an AR(1) process

eτt = φτ,te
τ
t−1 + ετt (14)

where φτ,t is allowed to vary through time and ετt ∼ N(0, σ2
τ,t). Again, we assume that

lnσ2
τ,t = lnσ2

τ,t−1 + ξτ,t, (15)

where ξτ,t is an homoskedastic, Gaussian error term with zero mean and constant variance

σ2
ξτ
.

In addition, we depart from our baseline model by letting the k-period ahead futures

prices to also be influenced by movements in a time-varying risk premium, Φt,

fkt = Ept+k + Φt. (16)

As for the temporary component, we assume that the risk premium follows an AR(1)

process

Φt = ρΦt−1 + ξΦ,t, (17)

with the random disturbance ξΦ,t is assumed to be independently and identically normally

distributed with zero mean and time-varying variance σ2
Φ,t, which evolves according to

lnσ2
Φ,t = lnσ2

Φ,t−1 + ξΦ,t, (18)

where ξΦ,t ∼ N(0, σ2
ξΦ

)

To bring our model to the data, we use the following set of equations consisting of

the growth rate of the spot price of oil

4st =
[
µt + εPt + (φτ − 1) ett−1

]
+ ετt , (19)
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the expression for the spread between the k-period ahead futures price and the spot price

fkt − st =
[
kµt + ρΦt−1 +

(
φk − 1

)
φeτt−1

]
+ φkετt + ξΦ,t, (20)

as well as (11), (14), (12), (13), (15), and (18). Given the presence of a risk premium

shock, we complement the use of the price of West Texas Intermediate oil used for

estimating our baseline model with the one-year-ahead futures price. We then use the

model’s estimates to forecast two-year-ahead futures prices. As before our estimation

period covers 1980Q1 to 2009Q4. The estimation is done using the particle filter as

described in Creal (2012).9

Figure 9 compares the expected futures prices using the Kalman filter model to those

from the particle filter. The figure shows that, overall, both models have very similar

predictions, especially in the 2002-05 period. In 2006 and 2007, the particle-filter-implied

futures estimates are slightly higher, but the differences are relatively slight.

Figure 10 reports the estimated risk premium Φ. In order to provide a quantitative

scale, we also report the future-spot spread fkt − st, the black line. The estimated

risk-premium explains relatively little of the variation of the spread.

4.3 2010 and Beyond

We have shown that unobserved component models capture well the fluctuations in oil-

price futures during the 2000s, a decade with important changes in the oil market that

witnessed an unprecedented run-up in oil prices and their collapse during the Great

Recession. We now examine the performance of our models since 2010. In Figure 11, we

extend our sample to include the most current available data. In particular, the sample

now also includes the rapid decline in oil prices that began in the summer of 2014.

The figure shows that our models continue to track the movements in futures prices

very well through 2012. However, our baseline model misses the nearly flat trajectory of

futures prices during 2013 and the first half of 2014 that is combined with higher spot

prices, predicting a steady rise in oil-price futures instead.

9See Appendix A for details.
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The pattern of rising spot prices coupled with relatively constant futures prices ob-

served between 2013 and mid-2014 is reminiscent of the early 2000s. Our model could

account for this pattern during the earlier episode since movements in the spot price of

oil were the perceived to be largely transitory. Our model’s misses during the more re-

cent period reflects the fact that, by 2012, our framework ascribes a relatively important

weight to permanent shocks as drivers of the spot price of oil. Therefore, our estimates of

futures prices rose through that period, pushed by the perception that higher spot prices

were relatively permanent. Our estimated futures prices then rapidly declined since then,

in line with the plunge in the spot price of oil, bringing our estimates more in line with

actual futures prices.

In contrast, our estimates derived using the particle filter continue to track the 2-

year-ahead futures prices well post 2010, but this largely reflects the use of information

embedded in the one-year-ahead futures price.

5 A DSGE Model with Learning

We showed that investors’ perception of the persistence of oil prices clearly changed

during the past decade and that these changes are captured well by a learning process

about the role of transitory and persistent factors in the economy. We now assess the

importance of this learning process for the impact of oil shocks on economic activity,

using a DSGE model in which agents learn about the persistence of oil-price movements

via the Kalman filter.10 One novel aspect of our approach is the use of a storage model

to examine the effects of learning about the persistence of oil shocks. This framework is

a priori appealing for this purpose, since oil prices are directly linked to expectations of

future oil prices. The model consists of households that supply labor and rent capital to

firms and save over time by holding one-period, pure discount bonds and by accumulating

capital. We follow Arseneau and Leduc (2013) and assume that households directly hold

10We use the Kalman filter both for simplicity and because our empirical results with the particle
filter were broadly consistent with those using the Kalman filter.
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oil inventories. As is typical in the rational expectations storage literature, speculation

in inventory holdings allows the household to smooth volatility in the oil market. The

production side of the model is composed of firms producing a consumption good using

labor, capital, and oil.

To assess the role of agents’ perceptions about the oil market and learning, we use

two parameterizations of the model based on our empirical results. First, we assume

that agents in our economy perceive shocks to oil prices as being mostly transitory, as

was the case in the early 2000s. We refer to this case as the 2003 scenario. Second,

we calibrate the economy such that agents’ perceptions is that oil-price movements are

mostly permanent, in line with investors’ actual perceptions on the eve of the Great

Recession. We label this case the 2007 scenario. We then simulate the impact of an

oil demand shock on economic activity under both calibrations and contrast the results

to capture the effect of agents’ perceptions of oil-price persistence. We focus on an oil

demand shock, since it was highlighted as an important source of the run-up in oil prices

during the past decade (see, Kilian (2008)). However, the gist of our results does not

depend on the source of oil price fluctuations and generalizes, for instance, to a model

in which oil prices are exogenous and subject to random fluctuations as in Kim and

Loungani (1992) or Leduc and Sill (2004).

5.1 Households

The representative household’s utility function is defined over consumption of a final

good, ct, and hours worked, nt

Ut =
∞∑
t=0

βt
[
cθt (1− nt)θ

]1−σ
1− σ

(21)

where β ∈ (0, 1) denotes the subjective discount factor, the parameter θ controls the

relative weigh of consumption and leisure, (1−nt), in the utility function, and σ represents

the coefficient of relative risk aversion.

We assume that households can purchase a one-period real discount bond, denoted
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bt+1, and can also purchase st units of the commodity to hold as storage until the next

period. Because households cannot borrow oil from the future, inventories must be non-

negative. However, to simplify the numerical analysis below, we assume that the economy

fluctuates around a steady state characterized by inventory holdings sufficiently large

that the non-negativity constraint is never binding (see, Williams and Wright (1991) and

Arseneau and Leduc (2013) for partial and general equilibrium analyses directly tackling

the nonnegativity constraints on inventories). We verify that this condition is met in our

simulations below. Holding inventories entails a per-unit cost φ(st), with φ′(st) > 0 in

terms of oil. Households also received a fixed endowment of oil each period, e, which

they can sell to firms on the spot market for oil.

The household also accumulates capital, kt, which evolves according to the following

law of motion

kt+1 = it + (1− δ)kt,

where it denotes investment and δ represents the depreciation rate of capital. The house-

hold supplies labor and capital to the firm and derives labor income, wtnt, and capital

income, rtkt, with the real wage and rental rate denoted by wt and rt, respectively.

The household chooses sequences of ct, nt, kt+1, st+1, and bt+1 to maximize (21) subject

to an infinite sequence of flow budget constraints given by:

ct+pb,t+1bt+1 +kt+1 +ptst+1 +ptφ(st+1)st+1 = wtnt+rtkt+bt+ptst+(1−δ)kt+pte, (22)

where pb,t+1 is the price of the real discount bond; κ is the cost of storage valued in units

of the aggregate consumption good; pt is the relative price of oil.

The optimal demand for oil inventories is characterized by the following efficiency

condition

pt(1 + φ(st+1) + φ′(st+1)st+1) = βEt

[
λt+1

λt
pt+1

]
, (23)

where λt denotes the marginal utility of wealth.11 This expression states that the house-

11The complete set of equilibrium conditions are derived in Appendix A.
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hold will accumulate oil inventories up until the marginal cost of holding one additional

unit, inclusive of the cost of storage, is equal to the expected gain from holding the com-

modity for one period and than selling it at tomorrow’s expected future spot price. If

the spot price of oil today is higher than the discounted futures price net of the cost of

storage, it is optimal to sell oil stocks today. Alternatively, if the spot price is lower than

the discounted futures price net of the cost of storage, the household will accumulate

inventories with the goal of selling oil in the future at the higher price. The house-

hold accumulates/decumulates inventories up until the point at which the intertemporal

arbitrage condition holds.

Finally, we define the rational futures price of the commodity as ft+1|t ≡ βEt

[
λt+1

λt
pt+1

]
,

or the expected future spot price of the commodity discounted back to today.

5.2 Production

The final good is produced using three inputs into production: labor, capital, and oil

according to the following production function

yt = znγt ((1− ωt) kαt + ωtq
α
t )

1−γ
α (24)

where z denotes total factor productivity, qt is the firm’s usage of oil, and ωt is a shock

to the demand for oil, similar to that in Bodenstein and Guerrieri (2010). We assume

that the oil demand shocks evolves according to the following AR(1) process

ωt = ωεω,t

εω,t = εPω,t + ετω,t

where εω,t denotes an innovation composed of a permanent component, εPt , and a tran-

sitory one,ετt . For simplicity, the permanent component is modeled as a near-random

walk

εPω,t = ρPω ε
P
ω,t−1 + uPω,t, (25)
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where we set ρP arbitrarily close to, but slightly below, 1 and where uPω,t is a Gaussian er-

ror term with mean zero and standard deviation σPω . Similarly, the temporary component

is assumed to follow an AR(1) process

ετω,t = ρτωε
τ
ω,t−1 + uτω,t,

where ρτ denotes the persistence of the process and uτt is a Gaussian disturbance with

mean zero and standard deviation στω. Importantly, agents do not directly observe the

permanent and transitory shocks to oil prices. Consistent with empirical results above, we

assume that agents use the Kalman filter to learn about the source of oil-price movements.

The production function dictates that labor hours and capital services have a unit

elasticity given by the Cobb-Douglas function, but that the capital stock and oil used are

combined according to a CES function. The flexibility of the CES function will allow us

to calibrate the elasticity of substitution between capital and oil to be in line with the

empirical evidence of low substitutability between these two inputs.

The firm chooses hours and the amount of capital and oil to maximize per-period

profits given by

ΠF
t = (yt − wtnt − rtkt − ptqt) . (26)

5.3 Equilibrium

Taking as given the exogenous shocks ωt, the equilibrium of the model is a sequence of {yt,

ct, nt, kt, qt, st, wt, pt, rt} that satisfy: the household optimally conditions; the optimality

conditions of the final goods producing firm; the bond market clearing condition, the oil

market clearing conditions (1 + φ(st+1))st+1 − st + qt = e; and the resource constraint

ct + it = yt.

5.4 Calibration

We calibrate the structural parameters to match several steady-state observations. For

those structural parameters that do not affect the model’s steady state, we calibrate their
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values to be consistent with other empirical studies in the literature. The structural

parameters to be calibrated include β, the subjective discount factor; θ, the weigh on

consumption in the utility function; δ, the depreciation rate of capital; γ, the elasticity

of substitution between labor and capital services in the production of the final good;

α, the parameter governing the elasticity of substitution between capital and oil; ω the

parameter governing the share of oil in output; and φ(s), the storage cost function. In

addition, we need to calibrate the parameters of the shock process, ρτω, σPω and στω (ρPω is

set arbitrarily close to 1, by assumption).

We set β = 0.99, so that the model implies a steady-state real interest rate of 4

percent per year and calibrate θ such that the household spends one third of his time

working in steady state. We let capital depreciate 2.5 percent per quarter, while we set

γ, which determines the labor share of income, to 64 percent. We choose ω such that

the share of oil in output is 5 percent. We set α such that the elasticity of substitution

between capital and oil is roughly 0.2.

We assume that the storage cost function has the following form: φ(s) = φ
2
s. We

follow Unalmis et al (2012) and set φ such that oil stocks contribute 10 percent of oil

absorption in steady state.

The relative importance of permanent and transitory shocks to oil demand, which is

determined by parameters of the shock processes, is key for determining agents’ inference

about the persistence of oil-price movements. We consider two calibrations, which we

label the 2003 and 2007 scenarios, based on our empirical findings. In a nutshell, we

calibrate σPω , στω, and ρτω so that the agents perceive oil-price movements as being largely

transitory under the 2003 scenario and largely permanent under the 2007 scenario.

More precisely, we use our empirical estimates for the standard deviations and per-

sistence of the permanent and transitory components to oil prices in 2003 and 2007 to

calibrate the parameters of our oil-demand shocks. In particular, we set σPω , στω, and ρτω

so that, in response to oil demand shocks, our model with complete information can re-

produce the magnitude and persistence that permanent and transitory innovations have
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on oil prices in the data.

For instance, for the 2003 scenario, Figure 4 shows that our 2003 estimates of σp and

στ is 0.06 and 0.14, respectively. Similarly, the 2003 estimate of φ, the persistence of the

transitory shock in equation (3), is 0.75, as shown in Figure 3. These coefficient estimates

imply that oil prices increase by 0.09 following a one standard-deviation transitory shock

to the demand for oil, with a half life of 1.6 months.12 Using our model with complete

information, we set στω, and ρτω to be in line with this evidence. Similarly, we use our

model to set σPω (again with ρPω being set arbitrarily close to 1) such that oil prices

increase by 0.06 following a one-standard deviation permanent shock to oil demand. We

follow a similar strategy to calibrate our 2007 scenario. Since our empirical estimates

suggest that by 2007 σPω had significantly increased while στω had decreased, the 2007

scenario will naturally reflect an environment where permanent shocks are perceived to

be a much more important source of fluctuations.

6 Macro effects of learning

We now examine the response of the economy to a near-permanent increase in oil prices,

comparing the effect of the shocks between the 2003 and 2007 episodes. We linearize

the model’s equilibrium conditions around the economy’s steady state and examine the

effects of a one percent increase in the price of oil. Agents observe the increase in the price

of oil, but must infer its persistence based on their perception of the relative importance

of permanent and transitory shocks. Over time, as the economy evolves, agents reassess

their views regarding the persistence of the oil-price increase using the Kalman filter.13

To better understand the model mechanism, we first contrast the transmission of a

permanent increase in the price of oil to a transitory one, assuming that agents have

complete information about the source of the shock underlying the rise in the price of oil.

Figure 12 compares the responses, with the solid line denoting the economy’s response

12The half-life of a transitory shock is k periods, where k = − ln(2 ∗ φτ ).
13We solve the model with learning via the Kalman filter using the methodology proposed in Andolfatto

et al. (2008).
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following a permanent shock and the dotted line representing the response following a

transitory oil-price increase. Intuitively, the figure shows that the transitory shocks has

a substantially more muted impact on output than a permanent shock, partly reflecting

the decrease in oil inventories. When the price of oil is temporarily higher, inventory

demand declines sharply, helping mitigate the reduction in oil supply and the associated

reduction in output. In contrast, inventories decline much less following a permanent

increase in oil prices, so that the rise in the price of oil and the associated decline in oil

supply leads to a larger decline in output, due to the larger contraction in oil usage.

We now examine the effect of the perceptions of oil shock persistence and their inter-

action with storage. In the following exercises, we look at the response of the economy

to a permanent oil demand shock under our two alternative scenarios. We first inves-

tigate the effect of the permanent demand shock when the shock is misperceived to be

temporary, as parameterized under our 2003 scenario, and then contrast the result to the

2007 scenario in which agents expect the shock to be nearly permanent. In both cases,

we compare the economy with learning to one with complete information.

Figure 13 reports the results under the 2003 scenario. It shows that when agents

misperceived the shock as being largely transitory the decline in GDP is roughly one

third of that when agents have complete information, partly reflecting the greater decline

in inventories and thus the associated smaller rise in the price of oil. With incomplete

information, the price of oil rises persistently above the one-year-ahead futures price and

is associated with persistent realized expectation errors.

Even when agents expects the shock to be fairly persistent, as under the 2007 scenario,

the near-term decline in activity continues to be substantially smaller relative to an

economy with complete information, as shown in Figure 14. However, agents learn more

rapidly about the persistence of the shock, so that the impact on the economy more

rapidly resemble that of an economy with complete information. Under the 2007 scenario,

spot prices do not rise as much above futures prices and the magnitude and persistence

of the realized expectational errors are less acute.
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Overall, the empirical learning process in the futures market that we document during

the 2000s has a meaningful effect on the transmission of oil shocks on the economy. In

particular, our empirical evidence imply that the negative effect of oil-demand shocks on

output is only about one-third of its effect compared to an economy with full information.

The fact that agents expected movements in oil prices to be somewhat transitory may

account for the more muted effects of oil shocks on the macroeconomy during the 2000s

than during previous decades.

7 Conclusions

The futures market failed to predict that the developments at the start of the 21st

century would radically change the outlook for oil prices. Whereas many commentators

have attributed the associated forecasts errors to speculation or market inefficiency, this

paper provides an empirical and a theoretical explanation of the movements in oil prices

based on learning. We showed that a simple unobserved component model in which

investors must form beliefs about whether the persistence of changes in oil prices accounts

remarkably well for the fluctuations in oil-price futures. Our simple framework captures

the relatively slow increase in futures prices at the beginning of the past decade and

their unprecedented run-up between 2004 and 2008. Even during the first half of 2008, a

period during which oil prices reached historic highs, the model predicts a level of futures

prices that is broadly in line with the data. Our estimates suggest that through learning

investors revised up the contribution of permanent shocks to the variance of oil prices

over this period.

We then quantified the effect of this learning process for the response of the economy

to oil shocks. Using a DSGE model in which oil is storable and used in production, we

show that agents’ learning of the form suggested by our empirical results substantially

cushions the recessionary effects of oil shocks. Consistent with our empirical results,

we calibrate two scenarios that capture market participants’ perceptions regarding the

perisistence of oil prices in 2003, when changes in oil prices were largely thought to be
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transitory, and 2007, when oil price changes were expected to be much more persistent.

Compared to a framework with full information, we show that the recessionary effects

of oil-price increases are roughly halved in the year following the rise in the price of oil

under learning.

The more muted effects of oil shocks under learning may partly explain the relatively

weak impact that the run-up in oil prices in the mid-2000s had on economic activity,

complementing the role of demand factors, changes in monetary policy, and a smaller

dependence on oil compared to previous decades.
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Appendix I. The Particle Filter

This appendix briefly describes our use of the particle-filter, which draws on the

survey by Creal (2012). For a more thorough and advanced treatment, we encourage the

readers to consult Creal (2012).

Given the observed data yt

yt =
(

∆ ln pt ln ft − ln pt

)
and the model structure, our goal is to infer the distribution of the unobserved state

variables

xt =
(

lnσ2
τ,t lnσ2

τ,t µt εPt ett−1 Φt−1

)
To construct estimates of xt, we will attempt to draw out the distribution. We begin

with a set of model parameters

θ =
(
σ2
τ σ2

p σ2
rp σ2

µ φ ρ
)

(As we describe below, we have chosen values of θ that maximize the log likelihood of

the observed data, however for now just assume that we have a set of model parameters.)

We start with a set of initial particles xi0 where i = 1 to N . that are drawn randomly

from a distribution conditional on θ. For the stationary variables, we draw from the

unconditional distribution. For the non-stationary variables, we choose random variables

that are reasonable approximations.

µi0 = µ0 + εµt where εµt ˜N(0, σ2
µ)

lnσ2
τ,t = vτt where vτt ˜N(0, σ2

τ )

lnσ2
p,t = vpt where vpt ˜N(0, σ2

p)

For each i, we then draw xi1 from the distribution p (xi1|xi0; θ)

xi1˜p
(
xi1|xi0; θ

)
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where the p (xi1|xi0; θ) is specified by the model. For example, we draw vi1 from a normal

distribution with variance σ2
τ and combine this with lnσ2,i

τ,0 to generate lnσ2,i
τ,1

lnσ2,i
τ,t = lnσ2,i

τ,t−1 + vit

For each particle we then compute the likelihood of the observed data,

P
(
yt
∣∣xit; θ))

yt =

 4pt
fkt − pt


where, it is assumed that yt is randomly distribution, with the conditional mean given

above., The variance covariance matrix is also model driven.

N(

 4pt −
[
µt + εPt + (φτ − 1) ett−1

]
fkt − pt −

[
kµt + ρΦt−1 +

(
φk − 1

)
φeτt−1

]
 ,

 σ2
τ,t φkσ2

τ,t

φkσ2
τ,t φ2kσ2

τ,t + σ2
rp


We define

wit = wit−1P
(
yt
∣∣xit; θ))

note that given the model structure these weights wit are more simple the general expres-

sion for wit given in Creal. We normalize the weights

ŵit =
wit
wit

We then report filtered values of variable of interest like µt and σ2
τ,t, which are calcu-

lated as weighted averages of the particles.

µ̄t = ŵitµ
i
t

σ2
τ,t = ŵitσ

2,j
τ,t
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Confidence intervals can be constructed as [insert description]

Each time that we resample, we draw the particles from the distribution with prob-

ability ŵit. In line with the discussion in Creal (2012), we follow Liu and Chinn and

resample only when the importance weights are unstable. Since excessive resampling

should be avoided to minimze Monte Carlo error, we use the effective sample size (ESS)

to decide when to resample.

ESS =
1

(ŵit)
2 .

If the ESS is less than thecritical value 0.5N , then we resample. For the resample

particles, we then set

wit =
1

N
.

We then move on to the next observation.
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Figure 1: Oil Spot and Futures Prices During the 1990s
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Figure 2: Oil Spot and Futures Prices Since 2000
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Figure 3: Estimates of Oil Price Trend and Persistence of Transitory Shocks
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Figure 4: Estimated Standard Deviations of Permanent of Transitory Shocks
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Figure 5: The Relative Importance of permanent Shocks
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Figure 6: Predicting Futures Prices
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Figure 7: Constant Gain Learning and Oil Futures Prices
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Figure 8: The Importance of Permanent Shocks Under Constant Gain Learning

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Fraction of Variance Due to Permanent Shocks

 

 
Baseline Estimate
χ = 0.02
χ = 0.015

42



Figure 9: Oil Price Futures Under the Particle Filter
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Figure 10: Estimated Risk Premium in Oil Market
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Figure 11: Estimated Futures Prices Since 2010

2000 2002 2004 2006 2008 2010 2012 2014
0

20

40

60

80

100

120

140

160

180

200

 

Spot Price
2−year Ahead Futures Prices 
Es

t+8

Es
t+8

 Particle Filter

D
ol

la
rs

 p
er

 b
ar

re
l

45



Figure 12: Impact of Transitory and Permanent Oil Demand Shocks Under Complete
Information
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Figure 13: Impact of a Permanent Oil Demand Shock: 2003 Scenario Information
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Figure 14: Impact of a Permanent Oil Demand Shock: 2007 Scenario Information
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