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Abstract

This paper constructs a macro-finance model for commodity futures. Model esti-

mates suggest a feedback relationship between crude oil prices and U.S. real activity.

Moreover, the channel from real activity to oil prices is unspanned – meaning not iden-

tified in current futures prices – consistent with oil futures as a hedge asset against

supply shocks. Relative to a benchmark spanned-risk model, incorporating unspanned

real activity raises the volatility of the estimated oil risk premium tenfold and raises

the value of real options by 35 to 400%.
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1 Introduction

Commodity futures are claims on direct inputs into production and consumption and are

among the most active markets in the world.1 Affine pricing models accurately fit the

dynamics of many commodity futures markets. Although they do not explicitly consider

the interaction of commodity prices with the macroeconomy, these models impose strong

assumptions on those interactions. This paper empirically tests those assumptions, finds

that they are rejected by the data, and proposes an alternative.

I construct an affine model with both pricing and macroeconomic factors. The approach

is tractable and includes benchmark futures pricing models as special cases. It can be applied

to any commodity and any set of economic data. I concentrate on oil because it is the single

most important commodity to the U.S. and world economy as reflected in its trading volume,

media coverage and academic and industry attention.

I find that real economic activity is an important unspanned risk factor in oil futures.

Benchmark models assume that all relevant risks are spanned by futures on that commodity,

which imposes strong restrictions on the joint behavior of macroeconomic variables and

futures prices. In particular, it implies that conditional on current futures prices no other

information can forecast futures prices or returns. I find that this restriction is strongly

rejected by the data. Real activity forecasts oil prices and futures returns, over and above

the information in the current futures curve. Equivalently, the spot risk premium in oil

futures has an unspanned procyclical component. This pattern aligns with recent evidence

(e.g. Ludvigson and Ng (2009); Duffee (2011); Joslin, Priebsch and Singleton (2014)) of

unspanned countercyclical risk premia in Treasury bonds, but in the opposite direction. I
1In October 2014 the average trading volume across the two benchmark crude oil futures, WTI and Brent,

was $120 billion per day compared to $129 billion per day across all NYSE and NASDAQ stocks.
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argue that the pattern is consistent with oil futures as a hedge asset against oil supply shocks.

Estimates of spanned-risk models like those employed by Casassus and Collin-Dufresne

(2005) and Hamilton and Wu (2014) imply that the spot risk premium in oil is slow mov-

ing and does not covary with the business cycle. This is a consequence of the spanning

assumption plus the fact that the correlation of oil prices with real activity is low. Adding

unspanned real activity produces an estimated oil risk premium that is ten times as volatile

and covaries strongly with the business cycle, which suggests that spanned-risk models may

miss the majority of variation in the oil risk premium.

By construction unspanned macro risks cannot affect the prices of financial options or

other derivatives, but they can affect the valuation and exercise of real options. In a cali-

brated example I find that adding real activity as an unspanned macro factor increases the

value of a hypothetical oil well over the nested spanned-risk model by 35% to 400% depending

on the well’s current cost of extraction. There are two channels by which unspanned macro

risks raise real option values: their dynamics with futures prices and their risk premiums.

In the example the dynamics effect dominates, while the effect of the risk premium of real

activity on real option value is much smaller.

The approach lets us use the full panel of futures price data in a simple and consistent way

and delivers other insights that are not available from a VAR using macroeconomic factors

and the spot price of oil. In particular the estimates suggest a dynamic feedback relationship

between oil prices and real activity. A high oil price forecasts lower real activity consistent

with the evidence from VARs that oil shocks forecast recessions. I find that this relationship

is conditional on the market’s forecast of how long the oil shock will last: the more persistent

the market forecasts a given spot price hocks to be, the stronger and longer-lasting is its

effect on real activity. Conversely, a high level of real activity forecasts higher oil prices. I
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find that although shocks to real activity dissipate in less than a year, the market forecasts

that their effect on oil prices will persist for decades, perhaps because oil is a nonrenewable

resource.

1.1 Related Literature

There are two strands of the literature in commodity futures that this paper builds upon. In

the first, commodity futures prices are modeled as affine functions of latent state variables.

Classic examples are Gibson and Schwartz (1990), Schwartz (1997), and Casassus and Collin-

Dufresne (2005). More recent examples include Casassus, Liu and Tang (2013) and Hamilton

and Wu (2014). Studies of this type do not incorporate explicit macroeconomic data. More

subtly, they implicitly assume that all relevant information in the economy is spanned by

futures prices and no other information can contribute incremental forecasting power. I find

that real economic activity has material effects on risk premiums and forecasts of oil prices

that are unspanned in the oil futures curve.

The second strand uses VARs to explore the time series relations of oil prices with the

real economy; examples include Hamilton (1983); Hamilton (2003); Kilian (2009); Alquist

and Kilian (2010); Kilian and Vega (2011). These studies include a single state variable

based on the spot price of oil or a short-dated futures price. A limitation of this approach

is that it does not incorporate the full panel of futures prices of different maturities. The

model in this paper imposes the additional assumption that risk premiums are “essentially

affine” in the state variables which lets us bring the full futures curve to bear on returns,

price forecasts, and the spanning of macroeconomic risks.

Fama and French (1987), Bessembinder and Chan (1992), Singleton (2013) and Hamilton

and Wu (Forthcoming) run return forecasting regressions for individual futures returns;
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Szymanowska et al. (2013) decompose individual futures returns into a spot premium and

a term premium. The model in this paper contributes to this literature as well, as it offers

a simple and internally consistent way to make use of the full panel of futures price data.

The approach also allows us to distinguish between forecastability that is spanned versus

unspanned by commodity derivatives markets.

Chiang et al. (forthcoming) extract spanned factors from oil futures and a volatility factor

from oil options, and find that exposure to these factors is priced in equity markets. They

establish that “...oil is an important determinant of cross-sectional asset prices.” By contrast,

I examine the interaction of macroeconomic data with risk premia and price forecasts in

futures markets. I document that 1) the business cycle is an important yet unspanned

determinant of oil risk premia and price forecasts and 2) the market’s forecast of the oil

price is an important determinant of real activity.

2 Data and Forecasting Regressions

In this section I describe the data, which consist of futures prices and time series data, and

investigate to what extent the macroeconomic time series are spanned by futures prices. The

distinction between spanned and unspanned risks drives the modelling strategy. I conclude

that, first, two linear factors suffice to summarize the oil futures curve, and second, the

macro factors (in particular real activity) contain relevant information that is unspanned by

the oil futures curve.
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2.1 Futures Price Data

I use closing prices for West Texas Intermediate (WTI) oil futures with maturities of one to

twelve months, on the last business day of each month from January 1986 to July 2013. The

futures price data is denoted

f jt = log(F j
t ), j = 1...J, t = 1...T

ft =
[
f 1
t f 2

t ... fJt

]′
where F j

t is the closing price at end of month t of the future that expires in month t+ j,

t = 1 corresponds to 1/1986, T = 331 corresponds to 7/2013, and J = 12. The maximum

futures maturity of twelve months is because longer dated futures were seldom traded in the

early years of the sample. The results do not change significantly if I extend J to, e.g., 24

months maturity.

2.2 Macro Factors

I use the Chicago Fed National Activity Index, hereafter labelled GRO, as the first macro

factor. The index is released toward the end of each month and is a weighted combination of

74 U.S. economic indicators, similar in spirit to the real economic activity indexes of Stock

and Watson (1999) and Ludvigson and Ng (2009). The index is intended as a forward-looking

indicator of U.S. economic activity and is used in macro-finance models of bond yields (cf.

Joslin, Priebsch and Singleton (2014)). From January 2001 onward I use the real-time values

of the index; results using the revised values are very similar. I use the Conference Board’s

Leading Economic Index (LEI) as an alternative index of real activity and obtain similar
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Figure 1: The figure plots the time series of log futures prices for Nymex crude oil f 1−12
t ,

the Chicago Fed National Activity Index GRO, and the log of the EIA’s monthly U.S. oil
inventory INV .

results.

The second macro factor is the inventory, or quantity in readily available storage. I

use the log of the Energy Information Administration (EIA)’s “Total Stocks of Commercial

Crude Oil excluding the Strategic Petroleum Reserve” as a measure of the readily available

U.S. inventory of crude oil, hereafter labelled INV . The EIA’s storage report is released

weekly, and I use the most recent data as of the last business day of each month. The macro

factors are thus Mt = [GROt, INVt]′. Figure 1 plots the time series of log oil futures prices

and the macro factors GRO and INV .
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2.3 Evidence for Unspanned Macro Risks

Previous futures pricing models assume complete spanning of the state variables and are

estimated using financial data only. As Duffee (2011) and Joslin, Le and Singleton (2013)

observe in the context of bond yields, this assumption has strong implications for the joint

behavior of futures prices and the economy. First, it implies that the state vector can be

rotated so that the state variables equal the prices of arbitrary linearly independent portfolios

of futures contracts. Second, it implies that those portfolios explain log futures prices up to

idiosyncratic pricing errors. Third, it implies that all relevant information is fully summarized

by those portfolios’ prices and no other information can contribute incremental forecasting

power.

I first document that the first two principal components, level and slope, account for

more than 99% of the variation in levels and changes of log oil futures prices. There are

more than two sources of aggregate uncertainty in the world, so the natural hypothesis is

that some relevant economic state variables may be unspanned by oil futures.

A) Oil futures prices display a low dimensional factor structure

Figure 2 plots the loadings of the first three principal components (PCs) of log oil futures

prices. The figure also displays the fraction of the variance that is accounted for by the PCs.

The first two PCs – level and slope – account for 99.9% of the variation in log price levels

and 99.2% of variation in log price changes.

Second, I find that the macro factors Mt, in particular GRO, are not well summarized

by futures prices.
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Figure 2: Loadings of the first three principal components of the levels (panel A) and changes
(panel B) of log oil futures prices, monthly from 1/1986 - 7/2013. The legend displays the
fraction of total variance explained by each of the principal components.

B) Mt is mostly unspanned by oil futures

I project Mt on the time series of the first two principal components of log oil futures prices,

and label the residual UMt:

Mt = α + γ1,2PC
1,2
t + UMt

The R2 of the projections for [GRO, INV ] are [6.4%, 27.5%] . Projected on the first five

PCs the R2 are [14.5%, 30.0%]; projected on the log prices of all 12 futures maturities the

R2 are [18.9%, 30.9%]. Thus, much of the variation in Mt is unspanned by variation in oil

futures prices. The AR(1) coefficients of the projection residuals are 62% for GRO and 89%

for INV , so much of the unspanned variation in Mt is persistent.

However, Mt might be measured with error or some subcomponent of Mt may be irrel-

evant to the oil market. The main test of whether Mt is unspanned is not the projection

R2 but whether Mt is economically meaningful over and above the information in futures
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prices. I find that Mt contributes incremental forecasting power for oil prices and returns.

C) Mt forecasts returns over and above information in the futures curve

Table 1 Panel A shows the results of forecasting log returns to oil futures contracts, using

information from the current futures curve and then adding the macro variablesMt. The re-

sults show that Mt contributes additional forecasting power, over and above the information

in the futures curve, for returns to the first nearby contract and average returns to all traded

futures that month (Panel A) and for changes in the level factor in oil futures prices (Panel

B). The adjusted R2s increase significantly in every case. The coefficients on f 1−12 have

different signs on adjacent maturities, clear evidence of overfitting, yet Mt still contributes

substantial forecasting power.

The magnitudes are economically large. A one percent increase in GRO – about two

standard deviations – forecasts a return to the second nearby oil future that is 2.6% higher

over the next month. The results are not driven by the huge swing in 2008-2009: Appendix

F Table 8 shows they are slightly stronger when estimated on a subsample that ends in 2007.

Thus, real activity appears to be a first-order determinant of the oil price forecast.

Kilian and Vega (2011) generally find that macroeconomic news does not forecast changes

in the spot price of crude oil at a monthly horizon and conclude that relevant information

is more or less immediately reflected in the price. Kilian and Vega examine a variety of

macroeconomic data that are mostly backward looking; they do not examine the Chicago

Fed National Activity Index. For the most closely related forward-looking time series that

they examine – the Conference Board’s Leading Economic Index – they find that it does in

fact forecast oil price changes at a monthly horizon (p < 0.01) and I replicate that finding

in unreported results.
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Table 1: Panel A shows the results of forecasting returns to oil futures: r2
t+1 is the log excess

return to the second nearby oil futures contract. rt+1 is the average log excess return to
all active futures contracts with maturities up to 12 months. Panel B shows the results of
forecasting changes in the level factor PC1 in oil futures. The forecasting variables are 1)
three sets of ’reduced-form’ state variables Pt based on oil futures prices and 2) the Chicago
Fed National Activity Index GROt and log U.S. oil inventory INVt. The data are monthly
from from 1/1986 to 7/2013. Newey-West standard errors with six lags are in parentheses.

Panel A: Forecasting Futures Returns

rt+1 = α + βGRO,INVMt + βPPt + εt+1

r2
t+1 rt+1

GROt 0.0263∗∗ 0.0247∗∗ 0.0220∗ 0.0186∗∗ 0.0187∗∗ 0.0167∗
(0.0110) (0.0114) (0.0117) (0.0091) (0.0091) (0.0093)

INVt 0.033 0.028 0.025 0.018 0.008 0.004
(0.095) (0.096) (0.095) (0.078) (0.077) (0.076)

Spanned Factors Pt : PC1,2 PC1−5 f1−12 PC1,2 PC1−5 f1−12

Adjusted R2(Pt) 0.4% 0.7% 4.5% 0.1% 0.0% 3.7%
Adj. R2(Pt + UMt) 3.3% 3.0% 6.1% 2.2% 1.9% 5.1%

F -ratio 5.9∗∗∗ 4.8∗∗ 3.7∗∗ 4.5∗∗ 4.1∗∗ 3.2∗∗

Panel B: Forecasting the Level Factor

∆PCt+1 = α + βGRO,INVMt + βPPt + εt+1

∆PC1 (Change in Level)
GROt 0.067∗∗ 0.068∗∗ 0.061∗

(0.032) (0.033) (0.034)
INVt 0.073 0.040 0.026

(0.264) (0.263) (0.265)

Spanned Factors Pt : PC1,2 PC1−5 f1−12

Adjusted R2(Pt) -0.5% -0.6% 2.9%
Adj. R2(Pt + UMt) 2.0% 1.7% 4.5%

F -ratio 5.1∗∗∗ 4.7∗∗ 3.8∗∗
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3 Model

Motivated by the facts in Section 2, in this section I develop a macro-finance model for

commodity futures that admits unspanned macroeconomic risks. Let Xt denote a vector

of N state variables that summarize the economy. Xt includes macroeconomic risk factors

such as expected economic growth, and factors specific to the commodity such as hedging

pressure, inventories, and expectations of supply and demand. The stochastic discount factor

is given by

eΛ′tεt+1 = e(Λ0+Λ1Xt)′εt+1 (1)

The state vector follows a Gaussian VAR,

Xt+1 = KP
0X +KP

1XXt + ΣXε
P
t+1 (2)

where εPt+1 ∼ N(0, 1N).

Previous models such as Gibson and Schwartz (1990); Schwartz (1997); Casassus and

Collin-Dufresne (2005) assume that Xt is spanned i.e. fully reflected in contemporaneous

futures prices. As is well known for bond yields (Duffie and Kan (1996)), Appendix B shows

that the spanning assumption implies that Xt can be replaced by an arbitrary set of linear

combinations of log futures prices:

PNt = Wft

where W is any full rank real valued N × J matrix. This assumption has the following

implications:

1. Futures prices are described up to idiosyncratic errors by the N factors PNt .

2. The projection of Xt on PNt has R2 of one.
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3. Conditional on PNt , no other information forecasts Xt or futures prices or returns.

I instead assume that a subspace of Xt is spanned, while its complement is unspanned but

observed by the econometrician. Suppose that contemporaneous futures prices are deter-

mined by a set of linear combinations Lt = V ft where V is a real valued NL× J matrix and

NL < N . That is, the spot price and its evolution under the risk neutral measure are:

st = δ0 + δ′1Lt (3)

Lt+1 = KQ
0L +KQ

1LLt + ΣLε
Q
t+1 (4)

where εQt+1 ∼ N(0, 1NL) and ΣL = V ΣX . The spanned components Lt may be observed

or latent.

Finally, I assume that the unspanned components L⊥t of Xt are observed by the econome-

trician. There are NM = N −NL of these factors. Label them UMt = L⊥t – the unspanned

components of observed macroeconomic information – and rewrite

 Lt

UMt

 = KP
0 +KP

1

 Lt

UMt

+ ΣεPt+1

By construction, the factors UMt are not spanned by contemporaneous futures prices:

this specification is in the class of macro-finance models explored by Diebold, Rudebusch

and Aruoba (2006); Duffee (2011); Joslin, Priebsch and Singleton (2014) for bonds. By the

same rationale as before, we can replace Lt with NL linear combinations of log prices,

PLt = WLft
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where WL is any full rank NL × J real valued matrix. In contrast to the spanned-risk

formulation, this model has the implications:

1. Futures prices are described up to idiosyncratic errors by NL < N factors.

2. The projection of Xt on PLt has R2 less than one.

3. Conditional on PLt , other information may forecast Xt or futures prices or returns.

Motivated by the variance decomposition in the previous section, I assume the number of

spanned state variables NL = 2. Appendix B describes the parametrization and estimation of

the model. After estimating, I rotate and translate so that the state variables are the model

implied spot price and cost of carry (st, ct) and the macroeconomic seriesMt = SMt+UMt.2

The model can then be described in just two equations:

1) the law of motion for the state variables:


st+1

ct+1

Mt+1

 =

 KP
0sc

KP
0M

+

 KP
sc,sc KP

sc,M

KP
M,sc KP

MM



st

ct

Mt

+ ΣεPt+1 (5)

2) the dynamics of (st, ct) under the risk neutral measure:

 st+1

ct+1

 = KQ
0 +KQ

1

 st

ct

+ Σscε
Q
t+1 (6)

where

• st is the spot price and ct is the one-period cost of carry
2Appendix A.2 presents the definitions of st and ct.
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• Mt are the macro state variables

• KP
0sc, K

P
0M are 2× 1 and NM × 1 real valued matrices

• KP
sc,sc, K

P
sc,M , K

P
M,sc, K

P
MM are 2 × 2 , 2 × NM , NM × 2 and NM × NM real valued

matrices

• KQ
0 , K

Q
1 are 2× 1 and 2× 2 real valued matrices

• Σ is NM + 2×NM + 2, lower triangular, and Σsc is the upper left 2×2 submatrix of Σ.

The model is a canonical form, that is, any affine model with two spanned state variables

and NM ≥ 0 macroeconomic variables can be written in the form above. Extending the

model to more than two spanned state variables is straightforward.

3.1 Constant Volatility

The Gaussian assumption in the model is a strong one, because the volatility of commodity

futures markets varies over time (Trolle and Schwartz (2009)). Time varying volatility affects

futures prices directly via the convexity term and could affect price forecasts or expected

returns. If these effects are present, in general they will be reflected in the reduced-form

(pricing) factors because the model identifies the spanned state variables directly from futures

prices in an agnostic way. Thus, spanned effects of stochastic volatility are compatible with

the model estimates and do not confound the findings.

Unspanned stochastic volatility does not appear to drive the association between real

activity and oil futures. Appendix F Table 10 shows the results of forecasting regressions

that include the real activity index GRO and indexes of crude oil futures volatility. All three

volatility indexes are insignificant and more importantly they do not subsume the forecasting

15



power of GRO. This is also consistent with the finding of Chiang et al. (forthcoming) that

exposure to crude oil volatility has a risk premium attached to it in equity returns but not

in returns to oil futures or options.

4 Model Estimates

This section presents the estimates of the macro-finance model with two spanned factors and

two macroeconomic factors: the monthly Chicago Fed National Activity Index (GRO) and

log U.S. oil inventories (INV ).

Figure 3 Panel A plots the spanned and unspanned components of GRO as well as the

log spot price. We see that essentially all of the monthly and yearly variation in GRO

appears in the unspanned component. Figure 3 Panel B plots the spanned and unspanned

components of log oil inventories INV . Compared to GRO, much more of the monthly and

yearly variation in INV is spanned by futures prices. The spanned component of inventory

loads exclusively and strongly on the cost of carry ct.

Table 2 presents the maximum likelihood estimate of the model using the monthly data

from January 1986 to July 2013.

4.1 Model Fit

The risk neutral parameters KQ
0 , K

Q
1 are estimated relatively precisely for two reasons. First,

they use the entire futures curve data; on each date, the set of futures prices represents

a “snapshot” of risk-neutral expectations. Second, a linear factor model holds closely in

the futures curve: our two affine factors fit the futures curve closely, so the pricing errors

relative to the fitted model are small and idiosyncratic. By contrast, the historical measure
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Figure 3: Panel A plots the components of the monthly Chicago Fed National Activity Index
that are spanned (SGRO) and unspanned (UGRO) by oil futures prices. Panel B plots the
components of monthly log U.S. oil inventories that are spanned (SINV ) and unspanned
(UINV ) by oil futures prices.
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Table 2: Maximum likelihood (ML) estimate of the macro-finance model for Nymex crude
oil futures. s, c are the spot price and annualized cost of carry respectively. GRO is the
monthly Chicago Fed National Activity Index. INV is the log of the private U.S. crude oil
inventory as reported by the EIA. The coefficients are over a monthly horizon, and the state
variables are de-meaned. ML standard errors are in parentheses. Coefficients in bold are
significant at the 5% level.

Historical (P) Measure
KP

0 KP
1

st ct GROt INVt
st+1 0.008 0.994 0.061 0.025 0.038

(0.006) (0.009) (0.033) (0.008) (0.082)
ct+1 -0.007 0.016 0.874 -0.015 -0.045

(0.005) (0.008) (0.031) (0.008) (0.078)
GROt+1 0.001 -0.115 0.051 0.618 -0.194

(0.030) (0.046) (0.171) (0.043) (0.433)
INVt+1 0.002 0.000 0.032 -0.002 0.888

(0.002) (0.002) (0.009) (0.002) (0.023)

Risk Neutral (Q) Measure
KQ

0 KQ
1

st ct
st+1 -0.004 1.000 0.083

(0.008) (0.004) (0.011)
ct+1 0.001 -0.004 0.892

(0.012) (0.010) (0.029)

Shock Volatilities
[off-diagonal = % correlations]
s c GRO INV

s 0.103
c -81% 0.057

GRO 5% -2% 0.530
INV -22% 27% 4% 0.028
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parameters KP
0 , K

P
1 , Σ are estimated less precisely, from the time series of the state variables.

Risk prices Λ = KP −KQ inherit the lower precision of KP
0 , K

P
1 .

The two spanned (pricing) factors do a good job of summarizing oil futures prices3. The

model’s fitted values explain 99.97% of variation in futures prices and the residuals (pricing

errors) explain 0.03%. The root mean squared pricing error (RMSE) is 54 basis points

corresponding to a typical pricing error of 54 cents on a futures contract worth $100.00.

Another test of the model’s validity is to examine the forecasting power of the pricing

errors. The pricing errors – regardless of their true time-series or cross sectional structure –

should be purely observation errors. If meaningful spanned information is omitted from the

model then the pricing errors should forecast Pt or Mt.4 When I regress ∆Pt and ∆Mt on

the lagged pricing errors, neither the individual coefficients nor the joint F -test reject the

null at the 10% level. Thus, the pricing errors do not appear to be economically important.

4.2 Historical Dynamics

The models of Schwartz (1997) and Schwartz and Smith (2000) impose that st is unit-

root. Without that restriction and using data from 1990 to 2003, Casassus and Collin-

Dufresne (2005) estimate that st has a long run mean to which it reverts with a halflife of

around two years, so the expected spot price of oil in ten years’ time is effectively constant.

Our unrestricted estimate which adds ten years of subsequent data is more consistent with

Schwartz (1997). The AR(1) coefficient for st of 0.994, which is close to the largest eigenvalue
3This does not contradict the conclusions of Schwartz (1997) and Casassus and Collin-Dufresne (2005)

that a three-factor model is necessary to summarize commodity futures prices. The three-factor models in
those papers have two latent factors – spot price and convenience yield – and a spanned interest rate that
is estimated separately. Interest rates are very slow moving compared to futures prices, so they contribute
almost no explanatory power.

4I am grateful to Peter Bossaerts for pointing this out.
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of KP
1 , is very close to unity.5

The cost of carry reverts to a slightly negative mean with a half-life of five months. Shocks

to the spot price and the cost of carry are strongly negatively correlated (ρ = −81%), so a

higher spot price is accompanied by a more downward sloping curve, but spot price shocks

are essentially permanent while the cost of carry shock decays within a few years. As a

result, about half of a typical move in the oil spot price disappears after two to three years,

while the other half is expected to persist effectively forever.

4.2.1 Oil Futures and Real Activity

Shocks to real activity are almost uncorrelated with shocks to the spot price and the cost

of carry. A one percent shock to real activity predicts a 2.5% higher spot oil price the next

month but only a 1.5% lower cost of carry. Thus, the effects of real activity on oil prices are

forecast by the market to be persistent – higher activity raises both the short run and the

expected long run price of oil.

A higher spot price of oil predicts lower real activity. A higher cost of carry – higher

expected prices in future – forecasts slightly higher real activity, but the effect is not signif-

icant, and ct also forecasts a higher spot price. The impulse response functions in section

4.2.3 make clear that the net effect of ct on GRO is negative. As a result, a shock to the

spot price of oil that the market expects to persist has a more negative effect on growth than

a shock that is expected to be transitory. These results are not driven by the big swings in

2008-2009: Appendix F shows the results are similar when I estimate on a subsample that

ends in 2007.
5The estimates all use nominal futures prices. Inflation was relatively constant over the period from 1986

to 2013, relative to the movement in oil prices, so it does not drive the high AR(1) coefficient of st. Using
futures prices deflated by the CPI or PPI does not materially change any of the results.
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Taken together, there is a negative feedback relationship between the spot price of oil

and growth. A positive growth shock forecasts persistent higher oil prices, while a positive

oil price shock forecasts lower real activity, and the effect is stronger for oil price shocks that

the market expects to persist.

4.2.2 Oil Futures and Inventories

Shocks to log inventories are negatively correlated with the spot price and positively corre-

lated with the cost of carry. Both of these observations are consistent with the Theory of

Storage – higher inventories signal that the market is moving up the supply-of-storage curve.

The correlation between shocks to inventory and the cost of carry (27%) is relatively modest;

in the frictionless storage model of Working (1949) and others, INVt and ct are collinear. A

higher cost of carry strongly predicts higher inventories the next month. This relationship

further suggests adjustment costs in physical storage: the futures curve adjusts to relevant

information first and inventories respond with a lag.

Looking down the last column of the transition matrix, unspanned crude oil inventory

does not forecast any of the other variables. In particular, periods of higher inventory do not

have much effect on the forecast of either the spot price or the cost of carry. This finding is

consistent with the fundamental drivers of oil inventory such as precautionary storage and

expected physical supply and demand being fully spanned by oil futures prices.

4.2.3 Impulse Response Functions

Figure 4 plots the impulse response functions (IRFs) to shocks to oil prices and economic ac-

tivity. The ordering of the variables for the impulse response functions is (GRO, st, ct, INV ).

GRO is first because innovations in the unspanned component, which dominates the varia-
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Figure 4: Panel A shows the impulse response functions (IRFs) of the four state variables to
a unit shock to the log spot price of oil st. Panel B shows the IRFs for a transient shock for
which the spot price of oil fully reverts to the baseline. Panel C shows the IRFs for a unit
shock to economic growth, GRO. The order of the variables is (GRO, st, ct, INV ).
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tion in GRO, can be thought of as exogenous to contemporaneous oil prices and inventories.

We analyze st and ct simultaneously so their relative ordering is not important. Finally, it

is intuitive and also supported by the estimates and regressions that the oil futures curve

adjusts to new information faster than physical inventory does.

Panel A plots the response to a unit shock to the log spot price, which is correlated with

a negative shock to the cost of carry and a more downward-sloping curve. A unit shock to

st means a doubling of the spot price of oil. About half of the increase decays within two

years, while the other half is effectively permanent, and forecasts an economic activity index

that is 0.2% lower effectively forever. This effect is material: the index averaged -1.66% in

2009 during the depths of the financial crisis, while it averaged 0.02% in 2006. The higher

spot price and lower cost of carry also produce a fall in inventories.

Panel B plots the response to a joint shock to st and ct such that the spot price is expected

to fully revert to the pre-shock baseline. The response of economic activity is transient as

well, and in fact GRO recovers to the baseline faster than st does. Comparing to Panel

A, which only differs in the size of the shock to ct, makes clear that the net effect of ct on

expected growth is negative. Note that the fact that the forecast of the long-run spot price

is unchanged in Panel B does not mean that long maturity futures prices will be unchanged

– the two are equivalent only in the case that oil risk premiums are non time varying. Thus,

a VAR that includes a long-maturity futures price or spread will not in general recover the

correct dynamics of the state variables.

Panel C plots the response to a shock to economic activity. The index mean reverts

rapidly and the shock decays back to the baseline within a year. However, a transient shock

to GRO produces a near permanently higher spot price of oil – perhaps because oil is a

nonrenewable resource. The magnitude of the effect is large: a one-period shock to economic
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Table 3: Maximum Likelihood (ML) estimates of risk premiums in the macro-finance model
for U.S. crude oil futures. s, c are the spot price and annualized cost of carry respectively.
GRO and INV are the Chicago Fed National Activity Index and log U.S. crude oil inventory
respectively. The coefficients are standardized to reflect a one standard deviation change in
each variable over a monthly horizon, and the state variables are de-meaned. ML standard
errors are in parentheses. Coefficients in bold are significant at the 5% level.[

Λs

Λc

]
t

= Λ0 + Λ1
[
st ct Mt

]′
Λ0 Λ1

s c GRO INV
Λs 0.012 -0.001 -0.001 0.013 0.001

(0.014) (0.002) (0.003) (0.004) (0.002)
Λc -0.010 0.003 -0.001 -0.008 -0.001

(0.017) (0.002) (0.004) (0.004) (0.002)

activity of one percent produces a spot price of oil that is 5.1% higher than the baseline, ten

years later.

4.3 Risk Premiums

Table 3 displays the estimates of the parameters governing risk premiums. The unconditional

spot risk premium is positive, while the unconditional cost-of-carry risk premium is negative6.

Only one entry in the time-varying loadings of risk premiums Λ1 is statistically significant:

higher economic activity is associated with a higher spot risk premium in oil. Similar results

obtain using the LEI as an alternative proxy for growth, including longer maturity futures

prices, or estimating on a subsample that stops in 2007 and omits the wide swings of 2008-9.

The effect of economic activity on the estimated spot risk premium in oil futures is
6Szymanowska et al. (2013) decompose futures returns into a spot premium and a term premium. Ap-

pendix A describes the correspondence of their decomposition to the risk premiums in the model. Their spot
premium equals the risk premium attached to the spot price plus a small convexity term, while their term
premium equals the risk premium attached to the cost of carry minus the conditional expected cost of carry.
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Figure 5: The figure compares the model implied spot premium in oil futures for the model
with unspanned macro factors versus the nested model that enforces spanning. Also plotted
is the realized average return to oil futures with maturities from 1 to 24 months over the
following three months. NBER recessions are shaded in grey.

material. Figure 5 plots the implied spot premiums for the macro-finance model and the

two-factor nested model that enforces spanning7, as well as the average realized returns for

oil futures in the sample over the following three months. The model predictions differ

most noticeably during 1990-1991, 2001-2002 and 2008-2009: slumps in real activity forecast

slumps in the oil price. This unspanned procyclical component dominates the variation in

the estimated spot risk premium; the standard deviation of changes in Λs
t in the unspanned

macro model is 1.5% per month compared to 0.16% per month in the spanned-risk model,

an increase of nearly tenfold.

The forecast is attached to the unspanned component of real activity because it is not

reflected in the futures curve at the time. Per the estimates in Table 2, a fall in GRO is

weakly correlated with a rise, not a fall, in the cost of carry. In other words, in economic
7That is, the unrestricted two factor model with UMt = ∅.
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downturns the oil futures curve “fails” to forecast the subsequent fall in the spot price.

This observation aligns with the findings of unspanned countercyclical risk premia in

bonds by Ludvigson and Ng (2009), Duffee (2011) and Joslin, Priebsch and Singleton (2014),

but in the opposite direction. However, just as Duffee (2011) emphasizes in bond yields, it

is easy to tell a story consistent with the facts in oil futures. Conditional on news about

economic growth, higher oil prices reflect negative supply shocks (Kilian (2009)) and forecast

lower growth (Hamilton (1983); Hamilton (2003)). In an ICAPM where the state variables

are total wealth and the quantity of oil in the world, asset returns obey

E[rit+1] = βimktλ
mkt
t + βioilλ

oil
t

where λmktt , λoilt are the risk premiums for exposure to shocks to the wealth portfolio and

the supply of oil. We can replace shocks to the oil supply by inverse shocks to the spot price

of oil S:

E[rit+1] = βimktλ
mkt
t − βiSλSt

Oil futures of all maturities have a beta to the spot price that is near unity: a long position

in oil futures is a hedge against supply shocks. The magnitude of λSt is plausibly countercycli-

cal: in economic slumps when uncertainty is greater or the consumption-investment tradeoff

is steeper, investors have more demand for the oil hedge. As a result the expected return to

a long position in oil futures is procyclical. However, as oil futures have a positive beta with

the market portfolio the unconditional expected return may be positive or negative.

Both the regressions and model estimates suggest that innovations to growth are un-

spanned by oil futures prices. The existence of state variables that are material for yield

forecasts yet unspanned by current yields is an active question in the term structure liter-
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ature (Duffee (2011); Joslin, Priebsch and Singleton (2014)). In our setting, it corresponds

to the state variable having offsetting effects on oil risk premiums and the oil price forecast.

This is again consistent with futures as a hedge against oil supply shocks. A negative growth

shock raises risk premiums including λSt , which raises oil futures prices. At the same time, it

forecasts reduced demand and lower spot prices. If these effects are of comparable magnitude

and duration then the net effect on the futures curve could be small enough that we do not

detect it.

4.3.1 Positive vs Negative Growth Regimes

The effects of economic activity on the spot risk premium in oil appear to be concentrated

in economic downturns. To investigate this possibility I split GRO into two components:

GRO+ equals GRO in months when its value is positive and zero otherwise, while GRO−

equals GRO in months when its value is negative, and zero otherwise. This split lets the

coefficients of risk premiums GRO differ when the world is in a positive-growth regime versus

a negative-growth regime8.

Table (4) presents the estimated risk prices when GRO is split in this way. The size

of the coefficients on GRO+ and GRO− are not directly comparable to the previous table

because all of the coefficients are standardized to reflect a one standard deviation change,

and GRO+ and GRO− naturally have lower standard deviations than GRO. The message

of the table is that the response of the spot risk premium to growth shocks is symmetric

on the upside and the downside: the coefficient on GRO− is 0.008 per month compared to

0.007 per month for GRO+. Contrary to our impression from Figure 5, the effect of growth

on the oil price forecast is relatively symmetric in good times versus bad.
8As the unspanned macro factors do not enter the pricing relation they need not be Gaussian.
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Table 4: Estimates of risk premiums in the macro-finance model in which s, c are the spot
price and annualized cost of carry in oil futures and GRO+ and GRO− are the monthly
Chicago Fed National Activity Index in months when the index is positive and negative
respectively. The coefficients are standardized to reflect a one standard deviation change in
each variable over a monthly horizon, and the state variables are de-meaned. ML standard
errors are in parentheses. Coefficients in bold are significant at the 5% level.[

Λs

Λc

]
t

= Λ0 + Λ1
[
st ct Mt

]′
Λ0 Λ1

s c GRO+ GRO−

Λs 0.013 -0.001 -0.001 0.007 0.008
(0.017) (0.002) (0.002) (0.006) (0.004)

Λc -0.011 0.003 -0.002 -0.003 -0.005
(0.020) (0.002) (0.004) (0.006) (0.004)

5 Real Options Valuation

Firms’ capacity to adjust their investment or production ex post make up a substantial

part of firm value, and evaluating and managing these adjustments is a primary role of firm

management (Pindyck (1988); Berk, Green and Naik (2004)). Previous studies (Brennan

and Schwartz (1985); Schwartz (1997); Casassus and Collin-Dufresne (2005)) have explored

what commodity derivatives can tell us about the value of real options. These studies using

spanned-risk models make the strong assumption that the economy is spanned by commodity

futures. In Trolle and Schwartz (2009) and Chiang et al. (forthcoming), a latent volatility

factor is unspanned by futures but identified in the prices of oil options.

By contrast, if a factor Mt is unspanned in the sense of this paper then it does not affect

any derivatives prices on the underlying commodity. Unspanned factors of this type are still

relevant to real options, however, if the option’s payoff depends on Mt. For example, an oil

well is often modeled as the right to pump oil out of the ground at a fixed cost per barrel,
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equivalent to a purely financial option. But for a real oil well the costs of extraction are

uncertain. Moel and Tufano (2002) find that for gold mines, changing extraction costs over

time are a significant predictor of mine openings and closings after controlling for factors

estimated from both futures and options on gold. More generally, commodity prices are only

one element of the firm’s decision process. For example, in an airline’s decision to purchase

more fuel efficient planes, the cost savings will vary with oil prices while revenues will vary

with aggregate economic activity. Pindyck (1993) makes this argument and points out that

all relevant risk factors will also affect real option valuation9.

To illustrate the effects of unspanned macroeconomic risks on real options valuation, I

model an oil well as a strip of European options on an oil field that produces 1000 barrels of

oil per month when open. The oil is extracted at lifting cost Lt and sold at the spot price st

each month that it is open. Thus, it is open whenever st > lt. In the model that is used to

generate the data, the log lifting cost lt has both spanned and unspanned components plus

idiosyncratic noise. The dynamics of the state variables (s, c, GRO) are a simplified version

of the estimates presented earlier. Appendix E describes the setting in detail.

Figure 6 plots the value of wells with different current lifting costs L0 using different

models. The lower two lines represent option values for spanned-risk models in which all

relevant risks are assumed to be spanned by oil futures. This means lt must be a linear

combination of st and ct plus an error term (Joslin, Le and Singleton (2013)). Whether the

error term is modelled as an i.i.d. or AR(1) process is essentially irrelevant to option value.

The upper two lines represent option values from models with unspanned macro risk.

We see that the spanned-risk models miss a large component of option value. To emphasize,
9“... this effect [of uncertainty on option value and exercise] is magnified when fluctuations in construction

costs are correlated with the economy, or, in the context of the Capital Asset Pricing Model, when the ‘beta’
of cost is high... [A] higher beta raises the discount rate applied to expected future costs, which raises the
value of the investment opportunity as well as the benefit from waiting rather than investing now.”
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Figure 6: Examples of real options valuation with unspanned risks. An oil well is modelled
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the monthly volatility of shocks to lt in the spanned-risk models is the same as it is in the

unspanned-risk models. The difference is that lt’s dependence on GRO adds persistent time

variation in lifting costs that covaries with the spot price and cost of carry. This addition

has a large effect on option valuation: Adding the unpriced (λ = 0) unspanned macro risk

raises the real option value by 35% for an ’in the money’ well with current lifting cost =

$20 per barrel and 405% for an ’out of the money’ well with current lifting cost of $150 per

barrel.

The risk premium (Pindyck) effect is that the option value is higher when GRO, and

hence Lt, carries a positive risk premium (λ > 0). This effect on valuation is present but

minor in the example, increasing the well’s value by only 0.99% for the ’in the money’ well

with L0 = 20 and by 1.27% for the ’out of the money’ well with L0 = 150.

6 The Cost of Carry

6.1 Comparison with the Basis

The model estimates say that st and ct are precisely pinned down by the data. Empirical

studies usually proxy for these quantities with futures prices and spreads. Fama and French

(1987); Gorton, Hayashi and Rouwenhorst (2013); Singleton (2013) and others use some

version of the log spread or “basis”, f 2
t − f 1

t , as a proxy for the cost of carry.10

By definition, ct equals the difference between the model implied values of f 1
t and st.

The model fits an AR(1) process to (st, ct) using the full futures curve at each date. The

basis does not model the behavior or number of state variables but instead assumes that the
10Fama and French (1987) and others subtract a short term Treasury bill rate from the spread. The short

rate is slow moving relative to the spread, and defining the basis as
(
f2

t − f1
t

)
− rf

t gives the same results.
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errors on f 1
t and f 2

t are zero and that f 2
t − f 1

t is closely correlated with ct.

The normalization and estimation in this paper, based on the recent advances of Joslin,

Singleton and Zhu (2011) in term structure modelling, are exceedingly stable and tractable:

estimates converge in a few seconds. Thus it is practical to use the model estimated ct

instead of the basis. There are several reasons why fitting the model could yield more

accurate estimates of the cost of carry. First, producers and consumers plan and hedge

their activities more than two months in advance, in which case longer dated futures prices

will contain relevant information. Second, market microstructure issues like congestion at

delivery points or financial order flows could add noise to individual prices. Third, because

the cost of carry is mean reverting, when the futures curve slopes in either direction f 2
t − f 1

t

is biased toward the mean as a proxy for f 1
t − st.

Figure 7 Panel A plots the model implied log spot price st against the one month futures

log price f 1
t in the sample. The two are almost collinear with a correlation in levels (monthly

changes) of 0.999 (0.995). Thus, the one month futures prices is a close proxy for the spot

price although they occasionally differ by as much as 5%.

Figure 7 Panel B plots the model implied cost of carry ct against the annualized basis.

The two series have similar unconditional averages but their correlation in levels (monthly

changes) is 0.79 (0.60) and their values differ significantly throughout the sample. In partic-

ular, ct is much more slow moving. Monthly innovations in ct have a standard deviation of

10.0% compared to 16.9% for the basis. The AR(1) coefficient of ct+1 on ct is 0.88 (half-life

of 5.5 months) compared to 0.74 (half-life of 2.3 months) for the basis, and the differences in

variances and AR(1) coefficients are significant at the 1% and 5% level respectively. Thus, ct

implies that the net convenience yield for oil varies less and returns to its mean more slowly

than the basis implies.
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Figure 7: Panel A plots the model implied log spot price of oil st and the one-month log
futures price f 1

t . Panel B plots the model implied cost of carry ct and the annualized basis
12× (f 2

t − f 1
t ).

33



Table 5: Comparison between the model implied cost of carry ct and the basis 12× (f 2
t −f 1

t )
as predictors of log U.S. inventories of crude oil INV . The standard errors are Newey-West
with six lags. ∗ : p < 0.10, ∗∗ : p < 0.05, ∗∗∗ : p < 0.01.

Panel A: Cost of Carry from WTI Futures, 1/1986-7/2013

∆INVt+1
ct 0.031∗∗∗ 0.038∗∗∗

(0.008) (0.010)
basist 0.016∗ -0.009

(0.009) (0.012)
INVt −0.112∗∗∗ −0.088∗∗∗ −0.112∗∗∗

(0.022) (0.023) (0.022)
adj.R2 6.4% 3.9% 6.2%
T 330 330 330

Panel B: Cost of Carry from Brent Futures, 1/1990-7/2013

∆INVt+1
cBRENTt 0.039∗∗∗ -0.027 0.035∗∗

(0.011) (0.037) (0.015)
ct 0.062∗∗

(0.030)
basist 0.004

(0.013)
INVt −0.105∗∗∗ −0.127∗∗∗ −0.107∗∗∗

(0.026) (0.023) (0.028)
adj.R2 6.3% 7.4% 6.0%
T 281 281 281
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Whether ct or the basis is a better measure of the cost of carry is answered by linking them

with the inventory data. In models of storage without adjustment costs, the cost of carry and

the quantity stored are perfectly correlated. ct is modestly more correlated with contempo-

raneous inventories INVt than the basis is: corr(ct, INVt) is 0.52 while corr(basist, INVt)

is 0.42, and the difference in correlations is significant at the 10% level. Table 5 Panel A

presents a horse race regressing the change in inventories on ct, the basis, and the current

inventory level. We see that ct is a stronger predictor of future inventories, and in the joint

regression ct drives out the basis entirely. Thus, ct is more tightly linked to both present and

future storage decisions than the basis is. Similar results obtain if I winsorize the basis at

the 1% or 5% level in both tails, indicating that the stronger performance of ct is not driven

by a few extreme observations in the basis.

To further investigate the validity of the model implied cost of carry, I estimate the model

using the prices of Brent crude oil futures from one to twelve months maturity, from January

1990 to July 2013. The WTI contract delivers oil in Cushing, Oklahoma, while the Brent

contract delivers oil on shipboard in the North Sea approximately 4,500 miles away. The

two markets are naturally linked, but can diverge materially. The correlation of the WTI

basis with the Brent basis is 77.8%, while the correlation of ct with cBRENTt is 95.2%. Thus,

there is considerable market-specific variation in the basis, while the slopes of the futures

curves are more closely linked. The question is whether the market-specific variation in the

basis is economically meaningful in relation to storage. Table (5) Panel B, Column 1 shows

that cBRENTt is a strong predictor of future U.S. inventories. Column 2 shows that cBRENTt

is driven out entirely by ct computed from U.S. oil futures, so some variation between the

markets is relevant to storage. But Column 3 shows that cBRENTt completely drives out the

U.S. futures basis as a predictor of U.S. inventories. These results suggest, first, that the
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model’s estimation of ct picks up as much or more of the market-specific variation in the

cost of carry than the basis does, and second, that the additional market-specific variation

in the basis is not related to storage.

7 Conclusion

This paper develops an affine macro-finance model for futures that admits unspanned macroe-

conomic variables. The model includes benchmark futures pricing models as special cases,

and is a bridge between vector autoregressions (VARs) on the one hand and affine latent-

factor models on the other. The framework can be applied to any commodity futures market

and any set of macro factors.

I apply the framework to crude oil futures prices to investigate their interaction with

real economic activity and oil inventories. There is a negative feedback relationship between

oil prices and real activity. Higher real activity forecasts higher oil prices, and this effect is

unspanned in contemporaneous futures prices. At the same time, higher oil prices forecast

lower real activity, especially when the price increase is forecast by the market to be per-

sistent. Thus, there is a negative feedback relationship between oil prices and the economy.

The implied spot risk premium in the estimate differs particularly in recessions from the

spot risk premium in a model that assumes perfect risk spanning.

The estimates highlight the importance of using information beyond that contained in

the futures curve when studying futures returns and price forecasts. The main conclusion is

that standard futures pricing models extract information exclusively from the cross-section

of futures prices, and this limitation seems to miss much of the variation in futures risk

premia.
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The estimates also have implications for the valuation of real options. By construction,

unspanned macro factors do not affect the prices of commodity derivatives. However, when

the payoff of a real option such as an oil well depends on macroeconomic factors beyond the

oil price then unspanned macro factors can have a large effect on option value and exercise.

In a calibrated example I show that both the dynamics and the risk premiums of unspanned

macro risks raise the values of a hypothetical real option drastically relative to a benchmark

spanned-risk model.

The model estimates further imply that the spot price and cost of carry in the oil market

are precisely pinned down by futures prices. The model cost of carry differs significantly

from the basis, which is commonly used as a proxy for the cost of carry. In particular, the

model cost of carry is 40% less volatile month-to-month, and reverts to its mean more than

twice as slowly as the basis does. The model cost of carry is more strongly related to both

current and future oil inventories than the basis, and the cost of carry based on North Sea

futures is more connected to U.S. inventories than the U.S. basis. Thus, the model estimates

imply that the convenience yield is much less volatile than the basis is, and we obtain a

better measure by fitting a pricing model to the full futures curve than we do from a single

calendar spread.
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A Model Specification and Risk Premiums

Consider a Gaussian model where the log spot price st of a commodity is a function of

NL spanned state variables Lt, which may be latent or observed, and NM unspanned state

variables Mt that are observed:

 Lt+1

Mt+1

 = KP
0X +KP

1XXt + ΣXε
P
t+1

Lt+1 = KQ
0L +KQ

1LLt + ΣLε
Q
t+1

st = δ0 + δ′1Lt

(7)

where

• P denotes dynamics under the historical or data generating measure

• Q denotes dynamics under the risk neutral measure

• εQL,t+1 ∼ N(0, INL), εPt+1 ∼ N(0, IN)

• ΣL is the top left NL ×NL block of ΣX ; ΣL, ΣX are lower triangular

(7) is equivalent to specifying the equation for st and the P-dynamics plus a lognormal affine

discount factor with ’essentially affine’ prices of risk as in Duffee (2002). For NM = 0 the

framework includes models such as Gibson and Schwartz (1990); Schwartz (1997); Schwartz

and Smith (2000) as special cases (see Appendix D). Standard recursions show that (7)

implies affine log prices for futures,

ft = A+BXt (8)

ft =
[
f 1
t f 2

t ... fJt

]′
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where f jt is the price of a j period future and J is the number of futures with different

maturities.

Estimating the model as written presents difficulties; with two latent factors and two

macro factors there are 40 free parameters. Different sets of parameter values are observa-

tionally equivalent due to rotational indeterminacy of the latent factors. Discussing models

of the form (7) for bond yields, Hamilton and Wu (2012) refer to “tremendous numerical

challenges in estimating the necessary parameters from the data due to highly nonlinear and

badly behaved likelihood surfaces.” In general, affine models for futures identify the model

by specifying dynamics that are less general than (7).

Joslin, Priebsch and Singleton (2014) note that if NL linear combinations of bond yields

are measured without error, then any model of yields of the form (7) implies a model with

observable factors in place of the latent factors. They construct a minimal parametrization

where no sets of parameters are redundant - models in the “JPS form” are unique. Thus

the likelihood surface is well behaved and contains a single global maximum. Their results

hold to a very close approximation if the linear combinations of yields are observed with

relatively small and idiosyncratic errors.

Section B demonstrates the same result for futures pricing: if NL linear combinations of

log futures prices are measured without error,

Pt = W ft (9)

for any full rank NL × J matrix W , then any model of the form (7) is observationally

equivalent to a unique model of the form
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 ∆Pt+1

∆UMt+1

 = ∆Zt+1 = KP
0 +KP

1Zt + ΣZε
P
t+1

∆Pt+1 = KQ
0 +KQ

1 Pt + ΣPεQt+1

st = ρ0 + ρ1Pt

(10)

parametrized by θ = (λQ, p∞, ΣZ , K
P
0 , K

P
1 ), where

• λQ are the NL ordered eigenvalues of KQ
1

• p∞ is a scalar intercept

• ΣZ is the lower triangular Cholesky decomposition of the covariance matrix of innova-

tions in the state variables

• ΣPΣ′P = [ΣZΣ′Z ]NL , the top left NL ×NL block of ΣZΣ′Z

A.1 Pt Measured Without Error

In this paper I assume that while each of the log futures maturities is observed with iid

measurement error, the pricing factors P1
t and P2

t are measured without error.

f jt = Aj +BjPt + νjt , ν
j
t ∼ N(0, ζ2

j )

The use of the first two PCs of log price levels is not important: in unreported results I find

that all estimates and results are effectively identical using other alternatives such as the
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first two PCs of log price changes or of returns, or a priori weights such as

W =

 1 ... 1

0 ... 12



The identifying assumption that NL linear combinations of yields are measured without

error is common in the bond yields literature beginning with Chen and Scott (1993). Given

the model parameters, values of the latent factors at each date are then extracted by inverting

the relation (8). The same assumption is used to identify previous latent factor models for

commodity futures (see Gibson and Schwartz (1990); Casassus and Collin-Dufresne (2005);

Hamilton and Wu (2014)). In unreported results I find that all estimates and results are

effectively identical if the pricing factors are estimated via the Kalman filter.

A.2 Rotating to st and ct

Once the model is estimated in the JPS form, I rotate (P1
t ,P2

t ) to be the model implied log

spot price and instantaneous cost of carry, (st, ct). For st this is immediate:

st = ρ0 + ρ1Pt

For ct the definition is as follows. Any agent with access to a storage technology can buy

the spot commodity, sell a one month future, store for one month and make delivery. Add

up all the costs and benefits of doing so (including interest, costs of storage, and convenience

yield) and express them as quantity ct where the total cost in dollar terms = St(ect − 1).
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Then in the absence of arbitrage it must be the case that

F 1
t = Ste

ct

f 1
t = st + ct = EQ [st+1] + 1

2σ
2
s

ct = EQ [∆st+1] + 1
2σ

2
s

= ρ1[KQ
0 +KQ

1 Pt] + 1
2σ

2
s

A.3 Risk premiums and st, ct:

Szymanowska et al. (2013) define the per-period log basis ynt ≡ fnt − st, and define two risk

premiums based on different futures trading strategies; the spot premium πs,t and the term

premium πny,t.

The spot premium is defined as

πs,t ≡ Et [st+1 − st]− y1
t

= Et [st+1]− f 1
t = EP

t [st+1]− EQ
t [st+1]− 1

2σ
2
s

⇒ πs,t = Λst −
1
2σ

2
s

The term premium is defined as

πny,t ≡ y1
t + (n− 1)Et

[
yn−1
t+1

]
− nynt

= f 1
t + (n− 1)Et

[
fn−1
t+1

]
− nfnt
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The one month term premium is always zero, because storing for one month is riskless.

π
(1)
y,t = f 1

t + 0− f 1
t = 0

π
(2)
y,t = ct + EP

t [ct+1]− 2EQ
t [st+2 − st+1 + st+1 − st]

= EP
t [ct+1]− EQ

t [ct+1]− EQ
t [st+2 − st+1]− ct

⇒ π
(2)
y,t = Λct −

(
ct + EQ

t [ct+1]
)

Thus the spot premium and term premium of Szymanowska et al. (2013) each have a

natural expression in our affine framework. The spot premium is exactly the risk premium

attached to shocks to the log spot price st plus a small constant. The term premium is the

risk premium attached to shocks to the cost of carry minus the (risk-neutral) total expected

cost of carry.
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B JPS Parametrization

I assume that NL linear combinations of log futures prices are measured without error,

PLt = Wft

for any full-rank real valued NL × J matrix W , and show that any model of the form

 ∆Lt+1

∆Mt+1

 = ∆Xt+1 = KP
0X +KP

1XXt + ΣXε
P
t+1

∆Lt+1 = KQ
0L +KQ

1LXt + ΣLε
Q
L,t+1

st = δ0 + δ′1Xt

(11)

is observationally equivalent to a unique model of the form

 ∆PLt+1

∆Mt+1

 = ∆Zt+1 = KP
0 +KP

1Zt + ΣZε
P
Z,t+1

∆PLt+1 = KQ
0 +KQ

1 Zt + ΣPεQt+1

st = ρ0 + ρ′1Zt

(12)

which is parametrized by θ = (λQ, p∞, ΣZ , K
P
0 , K

P
1 ).

The proof that follows is essentially the same as that of Joslin, Priebsch and Singleton

(2014). Joslin, Singleton and Zhu (2011) demonstrates the result for all cases including zero,

repeated and complex eigenvalues.

Assume the model (11) under consideration is nonredundant, that is, there is no observa-

tionally equivalent model with fewer than N state variables. If there is such a model, switch

to it and proceed.
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B.1 Observational Equivalence

Given any model of the form (11), the J × 1 vector of log futures prices ft is affine in Lt,

ft = AL +BLLt

Hence the set of NL linear combinations of futures prices, PLt , is as well:

PLt = WLft = WLAL +WLBLLt

Assume that the NL ordered elements of λQ, the eigenvalues of KQ
1L, are real, distinct

and nonzero. There exists a matrix C such that KQ
1L = Cdiag(λQ)C−1. Define D =

Cdiag(δ1)C−1, D−1 = Cdiag(δ1)−1C−1 and

Yt = D[Lt +
(
KQ

1L

)−1
KQ

0L]

⇒ Lt = D−1Yt −
(
KQ

1L

)−1
KQ

0L

Then

∆Yt+1 = D∆Lt+1

= D[KQ
0L +KQ

1L(D−1Yt −
(
KQ

1L

)−1
KQ

0L) + ΣLε
Q
L,t+1]

= diag(λQ)Yt +DΣLε
Q
L,t+1

50



and

 ∆Yt+1

∆Mt+1

 =

 D 0

0 IM

 [KP
0X +KP

1X(

 D−1 0

0 IM


 Yt

Mt

−

(
KQ

1L

)−1
KQ

0L

0

)+ΣXε
P
t+1]

= KP
0Y +KP

1Y

 Yt

Mt

+

 D 0

0 IM

ΣXε
P
t+1

and

pt = δ0 + δ′1Lt = δ0 + δ′1D
−1Yt − δ′1

(
KQ

1L

)−1
KQ

0L = p∞ + ι · Yt

where ι is a row of NL ones.

ft = AY +BY Yt

PLt = Wft = WAY +WBY Yt

The model is nonredundant ⇒ WBY is invertible:

Yt = (WBY )−1PLt − (WBY )−1WAY

·PLt+1 = WBY ∆Yt+1 = WBY diag(λQ)[(WBY )−1PLt − (WBY )−1WAY ] +WBYDΣLε
Q
L,t+1

= KQ
0 +KQ

1 PLt + ΣPεQt+1
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Further,

∆Zt+1 =

 ·PLt+1

∆Mt+1

 =

 WBY 0

0 IM


 ∆Yt+1

∆Mt+1



=

 WBY 0

0 IM


KP

0Y +KP
1Y

 Yt

Mt

+

 D 0

0 IM

ΣXε
P
t+1


= KP

0 +KP
1Zt + ΣZε

P
t+1

pt = p∞ + ι · Yt = p∞ + ι · (WBY )−1PLt − ι · (WBY )−1WAY = ρ0 + ρ′1PLt

QED. Collecting the formulas: given any model of the form (7), there is an observationally

equivalent model of the form (10), parametrized by θ = (λQ, p∞, ΣZ , K
P
0 , K

P
1 ), where

• D = Cdiag(δ1)−1C−1

• ΣZ =

 WBYD 0

0 IM

ΣX , ΣP = [ΣZ ]LL

• BY =


ι′[IL+M + diag(λQ)]

...

ι′[IL+M + diag(λQ)]J



• AY =


p∞ + 1

2ι
′ΣPΣ′Pι
...

AY,J−1 + 1
2BY,J−1ΣPΣ′PB′Y,J−1


• KQ

1 = WBY diag(λQ)(WBY )−1, KQ
0 = −KQ

1 WAY

• ρ0 = p∞ − ι · (WBY )−1WAY , ρ
′
1 = ι · (WBY )−1

In estimation I adopt the alternate form
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• ∆Yt+1 =

 p∞

0

+ diag(λQ)Yt +DΣXε
Q
t+1

• pt = ι · Yt

• AY =



p∞ + 1
2ι
′ΣPΣ′Pι
...

AY,J−1 +BY,J−1

 p∞

0

+ 1
2BY,J−1ΣPΣ′PB′Y,J−1



• KQ
1 = WBY diag(λQ)(WBY )−1, KQ

0 = WBY

 p∞

0

−KQ
1 WAY

• ρ0 = −ι · (WBY )−1WAY , ρ
′
1 = ι · (WBY )−1

which is numerically stable when λQ(1)→ 0. See the online supplement to JSZ 2011.

B.2 Uniqueness

We consider two models of the form (10) with parameters θ and θ̂ = (λ̂Q, p̂∞, Σ̂Z , K̂
P
0 , K̂

P
1 )

that are observationally equivalent and show that this implies θ = θ̂.

Since Zt =

 PLt
Mt

 are all observed, {ΣZ , K
P
0 , K

P
1 } = {Σ̂Z , K̂

P
0 , K̂

P
1 }.

Since ft = A+BZt are observed, A(θ) = A(θ̂), B(θ) = B(θ̂).

Suppose λQ 6= λ̂Q. Then by the uniqueness of the ordered eigenvalue decomposition,

Bj
Y (λ) 6= Bj

Y (λ̂)∀j

⇒ WBY (λ) 6= WBY (λ̂) ⇒ (WBY (λ))−1 6= (WBY (λ̂))−1
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⇒ ρ1(λ) 6= ρ1(λ̂) ⇒ B(λ) 6= B(λ̂)

, a contradiction. Hence λQ = λ̂Q. Then A(λQ, p∞) = A(λ̂Q, p̂∞) ⇒ p∞ = p̂∞.

C Estimation

Given the futures prices and macroeconomic time series {ft, Mt}t=1,...,T and the set of port-

folio weights W that define the pricing factors:

Pt = Wft

we need to estimate the minimal parameters θ = (λQ, p∞, ΣZ , K
P
0 , K

P
1 ) in the JPS form.

The estimation is carried out by maximum likelihood (ML). If no restrictions are imposed

(i.e. we are estimating the canonical model (11)), then KP
0 , K

P
1 do not affect futures pricing

and are estimated consistently via OLS. Otherwise KP
0 , K

P
1 are obtained by GLS taking

the restrictions into account. The OLS estimate of ΣZ is used as a starting value, and the

starting value for p∞ is the unconditional average of the nearest-maturity log futures price.

Both were always close to their ML value. Finally I search over a range of values for the

eigenvalues λQ.

After the ML estimate of the model in the JPS form is found, I rotate and translate the

spanned factors from P1
t , P2

t to st, ct as described in A.2. I rotate and translate UMt to Mt,

so that the estimate reflects the behavior of the time series Mt:


st

ct

Mt

 =


ρ0

1
2σ

2
s + ρ1K

Q
0

αMP

+


ρ1 01×NM

ρ1K
Q
1 01×NM

0NM×1 βMP


 Pt

UMt


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where

Mt = αMP + βMPPt + UMt
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D Comparison with other Futures Models

The model (7) is a canonical affine Gaussian model, so any affine Gaussian model is a special

case. For example, discretized, the Gibson and Schwartz (1990); Schwartz (1997); Schwartz

and Smith (2000) two factor model can be written

 ∆st+1

∆δt+1

 =

 µ

κα

+

 0 −1

0 −κ

 st

δt

+

 σ1 0

0 σ2

 1 ρ

ρ 1

1/2

εPt+1 (13)

 ∆st+1

∆δt+1

 =

 r

κα− λ

+

 0 −1

0 −κ

 st

δt

+

 σ1 0

0 σ2

 1 ρ

ρ 1

1/2

εQt+1 (14)

which is clearly a special case of (7).

The Casassus and Collin-Dufresne (2005) model, discretized, is:


∆Xt+1

∆δ̂t+1

∆rt+1

 =


κPXθ

P
X + κPXrθ

P
r + κP

Xδ̂
θP
δ̂

κP
δ̂
θP
δ̂

κPr θ
P
r

+


−κPX −κP

Xδ̂
−κPXr

0 −κP
δ̂

0

0 0 −κPr




Xt

δ̂t

rt

+


σX 0 0

0 σδ̂ 0

0 0 σr




1

ρXδ 1

ρXr ρδr 1


1/2

εPt+1

(15)


∆Xt+1

∆δ̂t+1

∆rt+1

 =


αXθ

Q
X + (αr − 1)θQr + θQ

δ̂

κQ
δ̂
θQ
δ̂

κQr θ
Q
r

+


−αX −1 1− αr

0 −κQ
δ̂

0

0 0 −κQr




Xt

δ̂t

rt

+


σX 0 0

0 σδ̂ 0

0 0 σr




1

ρXδ 1

ρXr ρδr 1


1/2

εQt+1

(16)

(see their formulas 7, 12, 13 and 27, 28, 30) which is the Schwartz three factor model

with more flexible risk premiums.
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Table 6: Parameters of the calibration for computing real option values

KP
0 KP

1
st ct GROt

st+1 0.00 1.00 0.083 0.03
ct+1 0.00 0.00 0.90 0.00

GROt+1 0.00 -0.10 0.00 0.60

KQ
0 KQ

1
st ct GROt

st+1 0.00 1.00 0.08 0.00
ct+1 0.00 0.00 0.90 0.00

GROt+1 −λ -0.10 0.00 0.60

Σ
s c GRO

s 0.10
c -0.08 0.06

GRO 0 0 0.50

E Real Option Valuation

The lifting cost is

lt = κl + 0.1st + 0.01GROt + εlt, ε
l
t ∼ N(0, σl)

, that is, lt varies with both st and GROt as well as having an i.i.d idiosyncratic compo-

nent. The other parameters in the simulated data are in Table 6. Notice the third row of KQ
1 ,

which was not present in the actual estimates. When we consider assets with payoffs that

depend on Mt the risk neutral dynamics of Mt are material although Mt is still constrained

not to affect the drifts of st and ct. In principle one could estimate the dynamics with a

tracking portfolio for GRO (e.g. Lamont 2001), but here I simply assume that exposure to

GRO carries a fixed risk premium λ.

I compute option values for different starting values of L0 = exp(l0), with S0 = exp(s0)

equal to $80 per barrel and c0 = 0. This is meant to mimic an oil firm evaluating wells that

differ in their current cost of extraction, conditional on a spot price of $80 and a flat futures

curve.
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F Robustness Checks

Upon inspecting Figure 1 a natural question is whether the findings in this paper are driven

by the huge swings in oil prices and real activity during 2008-2009. Table 7 presents the

model estimate on a subsample from January 1986 to December 2007. Overall the subsample

estimate is very similar to the full-sample estimate, and the key coefficients of GROt+1 on st,

st+1 on GRO, and INVt+1 on ct are virtually unchanged and remain statistically significant

at the 5% level. The most notable differences relative to the full sample results are that in

the subsample, ct and INVt appear to have significant forecasting power for future values of

GRO.

Table 8 shows that the forecasting regressions are also very similar, and indeed the

incremental forecasting power of GRO is slightly stronger, when we omit the financial crisis.

F.1 Time Varying Volatility

This section examines the results of the forecasting regressions in Table 1 when I add three

indexes of time-varying volatility in crude oil prices. garchvolt is the conditional volatility

of ∆f 1
t+1 estimated as a GARCH(1,1) process. optvolt is the implied volatility based on the

prices of at-the-money options on one month futures. sqchgt is the squared change (∆f 1
t )2

of the front-month futures contract last month. Table 9 shows that the crude oil volatility

indexes are all negatively correlated with GRO – oil price volatility is higher when real

activity is lower. If higher volatility means a greater hedge premium and a lower expected

return to oil futures, then oil price volatility might be an omitted factor that explains the

positive association between real activity and the oil price forecast.

This possibility is not borne out in the data, however. Table 10 shows that one of the
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Table 7: Maximum likelihood (ML) estimate of the macro-finance model for Nymex crude
oil futures, using data from 1/1986 to 12/2007. s, c are the spot price and annualized cost
of carry respectively. GRO is the monthly Chicago Fed National Activity Index. INV is
the log of the private U.S. crude oil inventory as reported by the EIA. The coefficients are
over a monthly horizon, and the state variables are de-meaned. ML standard errors are in
parentheses. Coefficients in bold are significant at the 5% level.

Historical (P) Measure
KP

0 KP
1

st ct GROt INVt
st+1 0.011 0.996 0.058 0.029 -0.006

(0.007) (0.014) (0.036) (0.011) (0.107)
ct+1 -0.013 0.026 0.864 -0.012 0.031

(0.007) (0.015) (0.037) (0.011) (0.111)
GROt+1 0.056 -0.171 0.633 0.427 -1.571

(0.035) (0.070) (0.178) (0.054) (0.533)
INVt+1 0.002 -0.008 0.031 -0.003 0.855

(0.002) (0.004) (0.010) (0.003) (0.031)

Risk Neutral (Q) Measure
KQ

0 KQ
1

st ct
st+1 -0.003 1.000 0.083

(0.007) (0.005) (0.011)
ct+1 0.000 -0.008 0.885

(0.012) (0.013) (0.031)

Shock Volatilities
[off-diagonal = % correlations]
s c GRO INV

s 0.102
c -85% 0.057

GRO 7% 0% 0.500
INV -23% 31% 4% 0.028
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Table 8: The table shows the results of forecasting returns to U.S. oil futures. The data
are monthly from from 1/1986 to 12/2007. The forecasting variables are 1) three sets of
’reduced-form’ state variables Pt that are based on oil futures prices and 2) the Chicago Fed
National Activity Index GROt and log U.S. oil inventory INVt.

Panel A: Forecasting Futures Returns

rt+1 = α + βGRO,INVUMt + βPPt + εt+1

r2
t+1 rt+1

βGRO 0.030∗∗∗ 0.029∗∗∗ 0.023∗∗ 0.022∗∗∗ 0.021∗∗∗ 0.017∗∗∗
(0.009) (0.009) (0.009) (0.006) (0.006) (0.006)

βINV -0.043 0.007 -0.007 0.009 0.026 0.036
(0.118) (0.125) (0.131) (0.076) (0.078) (0.084)

Spanned Factors Pt : PC1,2 PC1−5 f1−12 PC1,2 PC1−5 f1−12

Adjusted R2(Pt) -0.5% 0.2% 5.8% -0.1% -0.3% 6.8%
Adj. R2(Pt +Mt) 2.2% 2.4% 7.0% 2.8% 2.5% 8.3%

F -ratio 4.6∗∗ 4.0∗∗ 2.7∗ 4.8∗∗∗ 4.6∗∗ 3.0∗
Robust standard errors are in parentheses.∗ : p < 0.10, ∗∗ : p < 0.05, ∗∗∗ : p < 0.01

Panel B: Forecasting the Level Factor

∆PCt+1 = α + βGRO,INVUMt + βPPt + εt+1

∆PC1 (Change in Level)
βGRO 0.107∗∗∗ 0.106∗∗∗ 0.087∗∗∗

(0.028) (0.028) (0.028)
βINV 0.047 0.107 0.123

(0.335) (0.353) (0.391)

Spanned Factors Pt : PC1,2 PC1−5 f1−12

Adjusted R2(Pt) -0.5% -1.1% 4.1%
Adj. R2(Pt +Mt) 3.0% 2.2% 6.1%

F -ratio 5.7∗∗∗ 5.4∗∗∗ 3.7∗∗
Robust standard errors are in parentheses.
∗ : p < 0.10, ∗∗ : p < 0.05, ∗∗∗ : p < 0.01
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Table 9: The table shows the correlations of the monthly real activity index GRO and three
indexes of time varying volatility in crude oil prices. The data are monthly from 1/1989 to
7/2013. garchvolt is the conditional volatility of ∆f 1

t+1 estimated as a GARCH(1,1) process.
optvolt is the implied volatility based on the prices of at-the-money options on one month
futures. sqchgt is the squared change (∆f 1

t )2 of the front-month futures contract last month.

GROt sqchgt optvolt garchvolt
GROt 1
sqchgt -24.8% 1
optvolt -54.9% 50.7% 1
garchvolt -51.8% 27.6% 68.7% 1

volatility factors is significant in the forecasting regressions, none of them significantly raises

the adjusted R2, and their inclusion does not alter the forecasting power of GRO.
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Table 10: The table shows the results of forecasting returns to oil futures. The data are
monthly from 1/1986 to 7/2013, except optvol which is monthly from 1/1989 to 7/2013.
r2
t+1 is the log excess return to the second nearby oil futures contract. rt+1 is the average log
excess return to all active futures contracts with maturities up to 12 months. The forecasting
variables are the Chicago Fed National Activity Index GROt, the first two PCs of log oil
futures prices, and three indexes of crude oil volatility. garchvolt is the conditional volatility
of ∆f 1

t+1 estimated as a GARCH(1,1) process. optvolt is the implied volatility based on the
prices of at-the-money options on one month futures. sqchgt is the lagged squared change
(∆f 1

t )2 of the first nearby futures contract. The standard errors are Newey-West with six
lags.

rt+1 = α + βGROMt + βPPC
1,2
t + βV OLV OLt + εt+1

r2
t+1 rt+1

GROt 0.023∗∗ 0.028∗∗∗ 0.029∗∗∗ 0.018∗∗ 0.019∗∗ 0.022∗∗

(0.011) (0.011) (0.012) (0.009) (0.009) (0.009)
optvolt -0.009 0.000

(0.018) (0.014)
sqchgt -0.166 -0.159

(0.422) (0.309)
garchvolt 0.001 0.004

(0.008) (0.006)
Adjusted R2(Pt +GROt) 4.1% 4.5% 4.5% 2.9% 3.1% 3.1%

Adj. R2(Pt +GROt + V OLt) 3.9% 4.4% 4.3% 2.6% 3.0% 3.0%
F -ratio 0.4 0.4 0.0 0.0 0.5 0.5

Robust standard errors are in parentheses.∗ : p < 0.10, ∗∗ : p < 0.05, ∗∗∗ : p < 0.01

62


	Introduction
	Related Literature

	Data and Forecasting Regressions
	Futures Price Data
	Macro Factors
	Evidence for Unspanned Macro Risks

	Model
	Constant Volatility

	Model Estimates
	Model Fit
	Historical Dynamics
	Oil Futures and Real Activity
	Oil Futures and Inventories
	Impulse Response Functions

	Risk Premiums
	Positive vs Negative Growth Regimes


	Real Options Valuation
	The Cost of Carry
	Comparison with the Basis

	Conclusion
	Model Specification and Risk Premiums
	Pt Measured Without Error
	Rotating to st and ct 
	Risk premiums and st, ct:

	JPS Parametrization
	Observational Equivalence
	Uniqueness

	Estimation
	Comparison with other Futures Models
	Real Option Valuation
	Robustness Checks
	Time Varying Volatility




