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Abstract

With risk neutral traders and zero transactions costs, the expected value of the
difference between the current forward price and the spot price of a commodity at the
delivery date of the forward contract should be zero. Accounting for the transactions
costs associated with trading in these two markets invalidates this result. We develop
statistical tests of the null hypothesis that profitable trading strategies exploiting sys-
tematic differences between spot and forward market prices exist in the presence of
trading costs. We implement these tests using the day-ahead forward and real-time
locational marginal prices from California’s wholesale electricity market and use them
to construct an estimate of the variable cost of trading in this market. During our
sample period, we observe the introduction of convergence bidding, which was aimed
at reducing the costs associated with exploiting differences between forward and spot
prices. Our measures of trading costs are significantly smaller after the introduction of
convergence bidding. Estimated trading costs are lower for generation nodes relative
to non-generation nodes before explicit virtual bidding and trading costs fell more for
non-generation nodes after explicit virtual bidding, eliminating any difference in trad-
ing costs across the two types of nodes. We also present evidence that the introduction
of convergence bidding reduced the total amount of input fossil fuel energy required
to generate the thermal-based electricity produced in California and the total variable
of costs of producing this electrical energy. Taken together, these results demonstrate
that purely financial forward market trading can improve the operating efficiency of
short-term commodity markets.
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1 Introduction

Many commodities are traded in both forward and spot markets. With risk neutral arbi-
trageurs and zero transactions costs, market efficiency implies that the forward price at time
t for delivery k periods in the future, Ft+k, is equal to the expected value of the spot price
k periods in the future conditional on the information available to market participants at
time t, Et[Pt+k]. After accounting for transactions costs, the existence of a profitable trading
strategy implies the ∣Et(Ft+k − Pt+k)∣ > c, where c is the dollar per unit cost associated
with transacting in both the forward and spot markets. Specifically, the expected profits
from exploiting the difference between the forward and spot price is greater than the trading
costs. This paper develops tests of the null hypothesis that profitable trading opportunities
exist in a commodity market with transaction costs, and applies this testing framework to
data from the California wholesale electricity market to derive an estimate of the per unit
trading cost, c.

Wholesale electricity markets with a day-ahead forward market and real-time market
are ideally suited to test for the existence of profitable trading strategies because the same
products—electrical energy delivered during each hour the following day—is sold in the day-
ahead and real-time markets and the time lag between the purchase or sale in the forward
market and subsequent sale or purchase in the real-time market is less than one day. Our
tests of this hypothesis are complicated by the fact that each day there are 24 hourly trading
opportunities between the day-ahead price and real-time price. Therefore, we derive tests of
the null hypothesis of the existence of a profitable trading strategy with transactions costs
for different portfolios of the 24 hourly price differences.

This analysis also has implications for the design of wholesale electricity markets because
of the controversial role that purely financial traders play in these markets. Regulators have
been reluctant to allow explicit financial transactions in day-ahead and real-time energy mar-
kets in spite of the fact that it is impossible to determine if the reason a market participant
sells or buys more or less energy in the day-ahead market than their real-time production
or consumption is because of new information about real-time demand or supply conditions
after the close of the day-ahead market or because the market participant is attempting
to profit from anticipated differences between prices in the day-ahead and real-time mar-
kets.

Exploiting anticipated differences between day-ahead and real-time prices typically in-
volves costly actions by generation unit owners and load-serving entities that can have ad-
verse system reliability consequently. For example, if a generation unit owner expects the
real-time market price to be higher than the day-ahead price, the unit owner is likely to
delay selling its output until the real-time market. If enough generation unit owners share
these expectations, the system operator will find that the day-ahead market clears at a level
of demand below expected real-time demand. The independent system operator (ISO) must
therefore purchase a substantial amount of energy in the real-time market to meet actual
demand, which can be extremely challenging for the ISO to manage and can increase the
total cost of serving final demand. These concerns were ultimately realized in a number
of United States (US) wholesale markets, which led to the introduction of convergence or
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virtual bidding—a purely financial product that is designed to allow market participants to
profit from expected price differences between the day-ahead and real-time markets without
these reliability consequences or potential production cost increases.

Convergence bidding was implemented on February 1, 2011 in the California wholesale
electricity market. It allows market participants to take purely financial positions in the day-
ahead market that must be closed out in the real-time market. A trader that sells energy in
the day-ahead market using an incremental or INC convergence bid has an obligation to buy
back the same amount of energy as a price-taker in the real-time market. The net payoff
from this transaction is the difference between the day-ahead and real-time prices for that
hour times the number of megawatt-hours (MWhs) sold in the day-ahead market. Buying
energy in the day-ahead market using a decremental or DEC convergence bid implies an
obligation to sell that same amount of energy in the real-time market as a price-taker. This
transaction has a net profit of the difference between the real-time price and the day-ahead
price for that hour times the number of MWhs purchased.

Convergence bidding was introduced for two major reasons: (1) to reduce the cost to
market participants of exploiting price differences between the day-ahead and real-time mar-
kets, and (2) reduce the total cost of serving demand at all locations in the transmission
network in real time. We present evidence that convergence bidding achieved both of these
goals. Specifically, our measures of the implied per unit cost of trading day-ahead versus
real-time price differences fell for the three major pricing zones and at virtually all of the
more than 4,000 nodes in the California ISO control area after the introduction of explicit
virtual bidding. We also find that the total hourly input fossil fuel energy consumed fell
by 2.8 percent and the total hourly variable cost of producing fossil fuel-fired electricity in
California each fell by 2.6 percent after the introduction of convergence bidding. We also find
that the variance of the difference between day-ahead and real-time prices declined and the
variance of the real-time price declined after the introduction of convergence bidding.

The remainder of the paper proceeds as follows. The next section describes the mecha-
nism used to set locational marginal prices and determine dispatch levels in the day-ahead
and real-time markets in California and all other bid-based markets in the United States.
This section also describes how the actions of generation unit owners and load serving enti-
ties influence locational marginal prices in the absence of convergence bidding as well as how
convergence bids influence locational marginal prices in the day-ahead and real-time markets.
Section 3 describes the data used to perform our hypothesis test and presents descriptive
statistics on the behavior of the average hourly differences in the day-ahead and real-time
price for the 24 hours of the day before versus after the implementation of convergence bid-
ding. Section 4 derives our test of the null hypothesis of the existence of a profitable trading
strategy with transactions costs. This is followed by a presentation of the distributions of
the pre- and post-convergence bidding implied trading costs for our hypothesis test. This
section also discuss our tests for a reduction in the variance of day-ahead minus real-time
price difference and the variance of real-time prices pre- versus post-convergence bidding.
Section 5 presents our analysis of the market efficiency consequences of implementing con-
vergence bidding. Section 6 closes with a discussion of the implications of our results for the
design of wholesale electricity markets.
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2 Locational Marginal Pricing and Convergence Bid-

ding in the California Market

This section first describes the important features of multi-settlement locational marginal
pricing wholesale electricity markets that currently exist throughout the United States. In
the process we describe how a market participant’s actions are used to determine the prices
received by generation unit owners and paid by load serving entities in the day-ahead and
real-time markets. We then describe how suppliers and load-serving entities exploited ex-
pected price differences between the day-ahead and real-time markets before the introduction
of explicit convergence bidding. We then explain the mechanics of convergence bidding, in-
cluding how these purely financial transactions influence day-ahead and real-time locational
marginal prices. Finally, the transactions costs associated with exploiting expected differ-
ences between day-ahead and real-time prices with and without convergence bidding are
discussed.

2.1 Locational Marginal Pricing in Multi-Settlement Markets

Short-term wholesale electricity markets differ from markets for other products because the
electricity produced by a generation unit at one location and sold to a customer at another
location is not actually delivered to that location in the same sense that an automobile pro-
duced in Detroit is delivered to the customer that purchased it in San Francisco. Energy
injected into the transmission network flows according to Kirchhoff’s laws, rather than from
the seller to the buyer of the energy. The capacity of the transmission network often limits
the amount that generation units at certain locations can inject and the amount that con-
sumers at certain locations can withdraw. This circumstance is referred to as transmission
congestion and it can cause a wholesale electricity market to become segmented, meaning
that some generation units cannot compete to sell energy at certain locations in the trans-
mission network because the configuration of the transmission network, the locations and
outputs of other generation units, and the locations and levels of final demand do not allow
it. Under these circumstances, a market mechanism that assumes that all generation units in
the geographic region covered by the wholesale market can compete to sell energy anywhere
in that geographic region will likely produce an infeasible dispatch of the available gener-
ation units, because capacity constraints in the transmission network and other operating
constraints prevent the suppliers that offer the lowest prices for their output from selling all
of their available energy.

For this reason, spatial pricing mechanisms that explicitly account for the configuration
of the transmission network and operating constraints on the transmission network and
generation units have become the de facto standard in the United States. All wholesale
markets currently operating in the United States—in New England, New York, the PJM
Interconnection (in Pennsylvania, New Jersey, Maryland and a number other eastern states),
the Midwest, Texas, and California—use variants of the locational marginal pricing (LMP)
algorithm described by Bohn, Caramanis and Schweppe (1984). This pricing mechanism
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sets potentially different prices at all locations or nodes in the transmission network. To
compute these prices in the day-ahead market, suppliers submit generation unit-level offer
curves giving their willingness to supply energy as a function of the price from each generation
unit they own. These willingness-to-supply schedules have two parts: a start-up cost offer
and energy supply curve. The start-up cost offer is a fixed dollar payment that must be
paid to the generation unit owner if it is off-line at the start of the following day and the
unit is accepted to produce a positive output during that day. The energy offer curve is a
non-decreasing step function giving the willingness of the generation unit owner to supply
additional energy as a function of the price it is paid for energy. All US markets allow
generation units owners to submit multiple price and quantity pairs for each generation unit
each hour of the day. For example, a supplier might be permitted to submit ten price and
quantity pairs for each generation unit, with the offer price giving the minimum price at
which the unit’s owner is willing to supply the output in the quantity offer associated with
that offer price. The sum of the quantity increments is restricted to be less than the capacity
of the generation unit and offer prices are typically required to be greater than a price floor
(which could be negative) and less than a price ceiling, both which are approved by the
Federal Energy Regulatory Commission (FERC), the US wholesale market regulator. In
the day-ahead market, load-serving entities (LSEs) submit location-specific willingness-to-
purchase functions that are decreasing functions of the price at that location. The functions
are composed of price-quantity pairs ordered from highest to lowest price where each quantity
increment gives the amount the LSE is willing increase its demand if the price is at or below
that price level.

All US markets simultaneously operate ancillary services markets along with the en-
ergy market. Generation unit owners and submit non-decreasing step functions giving their
willingness-to-supply each ancillary service. These offer curves are generation unit-specific
and unit owners are only allowed to submit offers to supply an ancillary service from their
generation unit that the ISO has certified that their unit is able to provide. All US ISOs op-
erate markets for spinning reserve, non-spinning reserves and regulation reserve (automatic
generation control). In the day-ahead market, the amounts of each operating reserve ac-
cepted from each generation unit and the price paid for that operating reserve is determined
simultaneously with the generation schedules and LMPs for energy.

To compute the locational marginal prices or LMPs at each node in the transmission
network and prices for each ancillary service for every hour of the following day, the indepen-
dent system operator (ISO) minimizes the as-offered total cost (based on the generation-unit
level hourly offer curves and location-specific hourly demand curves submitted for each hour
of the following day) of serving the demand for energy and ancillary services at all locations
in the transmission network during all 24 hours of the following day subject to all relevant
transmission network and other relevant operating constraints. Although the locational de-
mands for energy are determined by the offer curves submitted by the LSEs, the locational
demand for each ancillary service is determined by the ISO. The network constraints used
to solve for the day-ahead hourly market outcomes are the ISO’s best estimate of real-time
configuration of the transmission network during each hour of the following day. The so-
lution to this as-bid cost minimization problem determines firm financial commitments for
generation unit owners and load-serving entities for all 24 hours of the following day. The
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day-ahead generation unit and locational load schedules and ancillary service schedules that
solve this optimization problem are forward market sales and purchases for each hour of the
following day.

For example, if a generation unit owner sells 50 MWh in the day-ahead market at a
price of $40/MWh during one hour of the following day, then this supplier is guaranteed
to be paid, $2,000 = 50 MWh x $40/MWh, regardless of the actual production of energy
from its generation unit during that hour of following day. Similarly, if a load-serving entity
purchases 100 MWh in the day-ahead market during an hour of the following day at a
price of $75/MWh, then this entity must pay $7,500 = 100 MWh x $75/MWh, regardless
of how much energy it withdraws from the network during that hour. The LMP at each
node in the transmission network is equal to the increase in the minimized value of the
objective function from this optimization problem as a result of increasing the amount of
energy withdrawn at that location by 1 MWh. This property of the LMPs gives them
their name. For ancillary services, the locational marginal price is also the increase in the
minimized value of the objective function associated with increasing the locational demand
for that ancillary service by 1 MW. These LMPs and anncillary services prices for all 24
hours of the following day are computed during the afternoon of the day before the energy
is scheduled to be delivered. All market participants are notified of these prices and their
day-ahead generation unit-level energy and ancillary services schedules and location-specific
load schedules in the afternoon of the day-ahead before they are valid.

Starting with midnight the following day, a real-time market determines the actual out-
put of all generation units necessary to serve demand at all nodes in the transmission network.
The real-time generation output and load-serving entity withdrawal levels are determined by
minimizing the as-offered cost of serving the actual demand for energy and ancillary services
at all locations in the transmission network subject to all relevant constraints in the trans-
mission network and on generation units in the real-time market. Suppliers are allowed to
change their hourly generation unit-level offer curves between the day-ahead and real-time
markets.

In all US ISOs, the real-time market is run every 5 minutes to determine the level of
output of all generation units in the control area necessary to serve demand at all nodes
in the transmission network. The solution to this optimization problem produces real-time
locational marginal prices for each 5-minute interval within the hour. Hourly real-time prices
are determined as the time average of the twelve 5-minute real-time prices during that hour.
Generation unit owners that do not receive dispatch instructions within the hour receive
this hourly real-time price for energy produced beyond their day-ahead forward market sales
during that hour. Alternatively, they must purchase any energy sold in the day-ahead market
during that hour that their unit does not produce at the hourly real-time price. Load-serving
entities also only purchase or sell real-time deviations from their day-ahead schedules at the
real-time price at their node in the transmission network. This combination of a day-ahead
forward market and real-time spot market is called a multi-settlement market because of the
property that only hourly real-time deviations from hourly day-ahead schedules are settled
at the hourly real-time price.

Returning to the above example of the generator that sold 50 MWhs of energy in the
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day-ahead market at a price $40/MWhs, if that generation unit only produced 40 MWhs
of energy, the owner would have to purchase the remaining 10 MWhs at the real-time price
to meet it forward market commitment. If the unit owner produced 55 MWhs, then the
additional 5 MWhs beyond the unit’s 50 MWhs day-ahead schedule is sold at the real-time
price.

2.2 Implicit Virtual Bidding in Multi-Settlement Markets

A supplier or load serving entity that expects the real-time LMP at their node to be different
from the day-ahead LMP at their node could exploit this price difference by selling or buying
more or less energy than it expected to produce or consume in real-time. For example,
suppose that a generation unit owner expected to ultimately produce 100 MWhs of energy
from its unit and forecast a $60/MWh real-time price that it expected to be higher than the
day-ahead price. The unit owner would simply submit price offers into the day-ahead market
at or above $60/MWh, which could cause it to sell no energy in the day-ahead market. The
supplier could then offer 100 MWhs of energy into the real-time market as a price taker to
ensure that it produces its expected output of 100 MWh. This is accomplished by offering
to supply this energy into the real-time market at an offer price equal to the offer price
floor.

These actions by the generation unit owner are likely cause the day-ahead price to rise
because less supply at or below the price of $60/MWh has been offered into this market and
the real-time price is likely to fall because more supply has been offered into this market.
The net impact of the supplier’s actions is to increase the likelihood that the day-ahead and
real-time prices are closer together than would be the case if the supplier did not submit
a high offer price into the day-ahead market. For this reason, these actions by generation
unit owners have been called ”implicit convergence or virtual bidding” because the supplier
is using forward market sales from its generation unit as mechanism for exploiting expected
price differences between the day-ahead and real-time markets.

Load-serving entities can also engage in implicit convergence bidding. Suppose that a
load serving entity with a 100 MWh real-time demand expects the day-ahead price to be
higher than the real-time price, which it expects to be $100/MWh. This load-serving entity
would then submit a demand bid into the day-ahead market with zero quantity demanded at
prices above $100/MWh. The load-serving entity would very likely not make any purchase in
the day-ahead market and instead its demand would be entered as a price-taker in the real-
time market. These actions by the load-serving entity would reduce the difference between
the day-ahead and real-time price, because demand is lower in the day-ahead market and
higher in the real-time market as a result of these actions.

Implicit convergence bidding can have severe system reliability consequences and increase
the cost of serving system demand. The combination of the example of a supplier that
submits high offer prices in the day-ahead market because of a desire to sell at a higher price
in the real-time market and the desire of a load-serving entity to purchase at a lower price in
the real-time market can result in aggregate day-ahead forward market generation and load
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schedules that are below actual real-time demand levels. This can make it necessary for the
system operator to have to find large amounts of additional energy between the close of the
day-ahead market to ensure that actual demand is met. Wolak (2003) notes that during the
summer of 2000 in the California electricity market this is precisely what happened in part
because the offer cap on the day-ahead market was substantially higher than the offer cap
on the real-time market. Load-serving entities submitted demand bids into the day-ahead
with zero quantity demanded at offer prices above the offer cap on the real-time market.
Suppliers submitted offer prices into the day-ahead market at or above the offer cap on
the real-time market for much of their anticipated real-time output, which resulted in the
day-ahead market clearing at quantity far below the anticipated real-time demand. This left
the California ISO scrambling to find additional energy, often over 1/4 of the anticipated
real-time demand, to ensure that real-time system demand would be met.

Besides the reliability consequences of implicit virtual bidding, there are also total vari-
able cost consequences of these actions. All wholesale electricity markets have generation
units that take a number of hours to start, but once started they are able to produce at a low
variable cost. The implicit virtual bidding by both generation unit owners and load-serving
entities can result in long-start, low-operating-cost units to be excluded from producing.
Although it may be unilateral profit-maximizing for the owner of a portfolio of long-start,
low-cost units and short-start, high-cost units to allow implicit virtual demand bids to cause
some of these low-cost units not to operate, these actions increase the total cost of serving
system demand.

2.3 Explicit Convergence Bidding versus Implicit Convergence
Bidding

The two major motivations for introducing explicit convergence bidding are: (1) to eliminate
the adverse reliability consequences of market participants attempting to exploit expected
price differences between the day-ahead and real-time markets and (2) to reduce the total
cost of serving final demand because market participants have lower cost options besides
withholding long-start, low variable cost generation units to exploit differences between day-
ahead and real-time prices. Convergence bidding introduces a purely financial instrument
that allows generation unit owners, load-serving entities and energy traders to exploit LMP
differences between the day-ahead and real-time markets so that generation unit owners and
load-serving entities do not need to distort their bidding and offer behavior in the day-ahead
market in ways that increase their costs and potentially harm system reliability.

Convergence or virtual bids are classified as either decremental (DEC) or incremental
(INC) bids and are explicitly identified as such to the system operator. Market participants
can submit either type of bid at any node in the transmission network. An INC bid at a
node is treated just like a generation bid at the node. It is a step-function offer curve to
supply additional energy in the day-ahead market. The only difference between an accepted
convergence bid and an accepted bid from a generation unit owner is that the ISO knows
that the energy sold in the day-ahead market from a convergence bid will be purchased in
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the real-time market as a price-taker. A DEC convergence bid is treated just like a physical
demand bid in the day-ahead market. It is a step function bid curve to purchase additional
energy in the day-ahead market. An accepted DEC convergence bid implies an obligation
to sell this energy in the real-time market as a price-taker.

As should be clear from the above description, an INC convergence bid has a revenue
stream equal to the difference between the day-ahead and real-time LMPs at that node
times the amount of MWhs sold in the day-ahead market and a DEC convergence bid has a
revenue stream equal to the difference between the real-time and day-ahead LMPs at that
node times the amount of MWhs purchased in the day-ahead market. An INC convergence
bid earns positive revenues if the day-ahead price is higher than the real-time price, but the
actions of INC convergence bidders made earning these profits less likely because the supply
is higher in the day-ahead market and demand is higher in the real-time market as a result of
the INC bids. A DEC convergence bid earns positive revenues if the real-time price is higher
than the day-ahead price. The actions of DEC convergence bidders make this outcome less
likely because demand in the day-ahead market is higher and supply in the real-time market
is higher as a result of the DEC bids.

There are a number of reasons to believe that the introduction of explicit convergence
bidding will lead to smaller realized nodal price differences between the day-ahead and real-
time markets. First, submitting a convergence bid is a lower cost way for a market participant
to take a financial position designed to profit from expected price differences between the
day-ahead and real-time markets. By submitting an INC convergence bid with an offer
price below the price it expects in the real-time market, a market participant can earn the
difference between day-ahead and real-time market prices. The availability of this financial
instrument makes it unnecessary for a supplier or load-serving entity to employ more costly
distortions in their day-ahead energy purchases or sales in order to exploit expected day-
ahead versus real-time price differences. Instead the supplier can offer their generation unit
into the day-ahead market at its variable cost and submit decremental convergence bids with
offer prices equal to the generation unit owner’s expected real-time market price. In this way,
the generation unit owner does not distort its offer prices for its generation units in order to
exploit expected price differences between the day-ahead and real-time markets.

A second reason that nodal-level day-ahead versus real-time price differences are likely
to be smaller is because of the introduction of explicit convergence bidding gives market
participants greater flexibility to exploit locational price differences. A generation unit owner
can only implicitly convergence bid total MWhs less than or equal to the capacity of their
generation unit at a given node. An implicit convergence bidding supplier has no recourse if
withholding this generation unit from the day-ahead market cannot increase the day-ahead
price enough to cause it to equal the expected real-time price at that location. However,
with (explicit) convergence bidding, the supplier can submit an almost unlimited quantity
of DEC bids at that location to raise the price at that node in the day-ahead market. The
same logic goes for a load-serving entity engaging in implicit virtual bidding. The actual
demand of a load-serving entity limits the amount of demand it can bid into the day-ahead
market. For example, without explicit convergence bidding, if bidding no demand into the
day-ahead market still does not reduce the LMP at that node to the level the load-serving
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entity expects in the real-time market, that supplier has no other way to reduce the day-
ahead price at that node. However, with a sufficient volume of INC bids, the load-serving
entity can reduce the price at that node to any level it expects to prevail in the real-time
market.

Before nodal-level convergence bidding was introduced in California, the opportunities to
implicit virtual bid at the nodal level was limited to locations with generation units. Implicit
virtual bidding at nodes with no generation units was not possible. The California market
requires the three large load-serving entities—Southern California Edison (SCE), Pacific Gas
and Electric (PG&E), and San Diego Gas and Electric (SDG&E)—to bid their service area-
level demand into the day-ahead market and the California ISO allocates this demand to
all nodes in the load-serving entity’s service territory using load-distribution factors (LDFs)
that the ISO produces. For example, if a load-serving entity has 100 MWhs of load and the
ISO computes equal LDFs for the ten nodes in its service area, then the load-serving entity’s
LDFs are equal to 1/10 for each node. This implies that it is very costly for a load-serving
entity to implicitly virtual bid 1 MWh at one node, because this would effectively require
1 MWh of implicit virtual bids at all nodes. With the introduction of explicit nodal-level
virtual bidding, load-serving entities and generation unit owners can exploit day-ahead and
real-time price differences at any node, even those with no generation units, by submitting
a virtual bid at that node.

A final market efficiency benefit of introducing explicit virtual bidding is that it makes
it much easier for market monitors and regulatory authorities to identify implicit virtual
bidding. Before the introduction of explicit virtual bidding a generation unit owner or
load-serving entity could always claim that the reason their day-ahead sales or purchases
was substantially less than their real-time production or consumption is because of the
expectation of more favorable prices in the real-time versus day-ahead market. With the
introduction of explicit virtual bidding, regulators can argue that suppliers and load-serving
entities should sell and purchase their best estimate of their expected real-time production
and consumption in the day-ahead market, because they can use convergence bidding to
exploit any expected differences between day-ahead and real-time prices. The existence of
this additional product to exploit expected price differences allows the regulator to be tougher
on actions that might be unilaterally profit-maximizing for suppliers and load-serving entities
but also reduce system reliability and overall market efficiency.

3 Descriptive Statistics for California Market

This section summarizes our evidence on hourly price convergence between the day-ahead
and real-time markets for the three large load-serving entities in California before and after
the implementation of convergence bidding. We also present the results of a test of the null
hypothesis that the mean price difference vector for the 24 day-ahead and real-time hourly
prices is equal to zero for these three load-serving entities and find that we overwhelmingly
reject this null hypothesis in all cases. However, these naive tests do not account for the
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transactions costs associated trading to exploit these mean price differences, motivating the
development of our testing procedure, which does account for transactions costs.

These hypothesis tests are implemented using price data from April 1, 2009 when nodal
pricing was implemented in California, to December 31, 2012 for the 24 hourly real time
and day-ahead wholesale electricity prices. These prices are set at the node level and there
are over 5,000 nodes, all with potentially different prices. However, each of the three large
load-serving entities faces a single load aggregation point (LAP) price each hour of the day
which is computed as a nodal quantity-weighted average price for that load-serving entity
summed over all nodes in the load-serving entity’s service area with positive amount of energy
withdrawn from the transmission network during that hour. Each of the three large load-
serving entities has its own day-ahead and real-time LAP price determined by the California
ISO. For each of these LAPs, we compute the hour-of-day average price difference for all
hours of the day.

Figure 1 presents a comparison by hour of day of the average difference between the
day-ahead and real-time prices for the PG&E, SCE, and SDG&E LAPs both before and
after the introduction of convergence bidding. This figure provides descriptive evidence that
the day-ahead/real-time price spread is more pronounced prior to the introduction of virtual
bidding than afterwards for each of the load-serving entities. For example, for PG&E, the
average day-ahead price is much lower than the average real-time price during the hours
of 8PM–12AM. These results immediately raise the question of whether these mean price
differences reflect the existence of profitable trading strategies or are simply due to the
existence of non-zero trading costs that allow non-zero mean price differences.

[Figure 1 about here.]

To further motivate our subsequent analysis, we present a zero transaction cost version
of an arbitrage test for the PG&E, SCE, and SDG&E LAPs after the introduction of explicit
virtual bidding in Figure 2. Namely, we plot the average day-ahead/real-time spread along
with pointwise 95% confidence intervals around these means. For all three load-serving
entities for some hours of the day, we can reject at a 5% significance level that the price
spread is zero. Along these same lines, we can also simply perform a joint test that the daily
mean of the vector of day-ahead and real-time price differences is zero for all hours of the day.
We use the Newey and West (1987) autocorrelation consistent asymptotic covariance matrix

estimate, Σ̂ = Λ̂0 +
∑m

j=1w(j,m)[Λ̂j + Λ̂j
′
], where Λ̂j =

∑T
t=j+1(Xt − X)(Xt−j − X)′/T ,

X =
∑T

t=1Xt/T , w(j,m) = 1 − [j/(m + 1)] for m = 14 to construct the chi-squared test
statistics. These test statistics are presented for each LAP before and after the introduction
of explicit virtual bidding in Table 1. Note that these test statistics are quite large. We
would reject the null hypothesis that the mean of the price difference vector is zero in all
cases.1 However, these two tests fail to account for the potentially sizable transaction costs
present in nearly every commodities market. In the next section, we present a hypothesis
test for the existence of the profitable trading strategy that accounts for the fact that the
day-ahead/real-time price spread can differ from zero simply due to positive transaction
costs.

1The upper � = 0.05 critical value for the �2(24) distribution is 36.415.
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[Figure 2 about here.]

[Table 1 about here.]

4 Tests for the Existence of a Profitable Trading Strat-

egy

4.1 Introduction

In this section, we first develop our test of the null hypothesis that a profitable trading
strategy exists. For simplicity, we restrict attention to trading strategies that only condition
on the value of the (24x1) vector of hour-of-day day-ahead minus real-time mean price dif-
ferences. Our null hypothesis is that a profitable trading strategy exists. Rejection of this
null hypothesis implies that the data provides evidence against the existence of a profitable
trading strategy based on, �, the unconditional mean of the (24 x 1) vector of daily price
differences. We then present empirical evidence that strategies that condition on past re-
alizations of the vector of daily price differences are unlikely to be of practical importance,
because we find no evidence against the null hypothesis that all autocorrelations in the daily
price differences vector beyond the first lag are jointly zero. The timing of the day-ahead and
real-time markets precludes trading strategies that condition of the first lag of the price dif-
ference vector because the all real-time prices for the current day are not known when market
participants submit their offers into the day-ahead market for the following day.2

It is often the case when analyzing the performance of a new drug relative to an existing
drug that the researcher would like to conclude the two drugs are bioequivalent in terms
of their efficacy. In this general case, the researcher formulates the null hypothesis as some
nonlinear function g(�) of the parameter vector of interest lies outside of the set (a,b), versus
the alternative that it lies in the set (a,b). If the interval (a,b) contains zero, then rejection
of the null hypothesis implies the two drug are bioequivalent, because the difference in their
efficacy does not lie outside the interval (a,b). For this reason, this class of hypotheses are
called equivalence hypotheses. See Romano (2005) for a discussion of optimal equivalence
tests.3 Note than the typical approach to testing market efficiency as the null hypothesis
is to find no evidence against market efficiency by failing to reject the null hypothesis. By
formulating the test as an equivalence hypothesis, failing to reject the null hypothesis says
that we have no evidence against the null hypothesis that a profitable trading strategy
exists. On the other hand, rejection of the hypothesis implies that the data is inconsistent
with the existence of a profitable trading strategy based on the unconditional mean of the
price differences.

2Offers to the day-ahead market must be submitted by noon the day before actual system operation, so
it is not possible to base a daily trading strategy on knowledge of the first-order autocorrelation of the price
differences vector.

3Testing equivalence hypotheses has a rich tradition in the statistics literature. See Berger and Hsu
(1996), Perlman and Wu (1999), and Munk and Pflüger (1999).
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We motivate our statistical test by considering the problem facing a market participant
attempting to maximize expected profits from exploiting day-ahead versus real-time price
differences. The hypothesis test is derived from expected profit-maximizing trading strategy
involving a portfolio of the 24 (one for each hour of the day) price differences. Because
the explicit costs of buying and selling these assets is only one component of the cost of
exploiting these price differences, we use the hypothesis tests to recover an implied trading
cost and a distribution of this implied trading cost. We do this both at the LAP and
nodal level, for before and after the introduction of convergence bidding. Using a hypothesis
testing procedure for directionally differentiable functions of a regular parameter estimate
developed by Fang and Santos (2014), we apply a bootstrap procedure developed by Hong
and Li (2015) to compute an estimate of the distribution of the trading cost estimate.
Comparing these estimated trading cost distributions before versus after the introduction of
convergence bidding allows us to assess whether the point estimates of our implied trading
costs are statistically significantly different before versus after the introduction of convergence
bidding. We also perform a test of the null hypothesis that the profits traders expected to
earn from buying and selling differences between the 24 day-ahead and real-time prices fell
after the implementation of convergence bidding using the multivariate inequality constraints
testing procedure of Wolak (1989).

4.2 The Trader’s Problem

Consider a trader with access to 24 assets, where asset Xℎ for ℎ ∈ {1, ..., 24} is equal the
difference between the day-ahead and real-time price for hour h of the day. This implies
Xℎ = PDA

ℎ − PRT
ℎ , where PDA

ℎ is the day-ahead price for hour h and PRT
ℎ is the real-time

price for hour h. Purchasing this security requires the trader to sell 1 MWh more energy
in the day-ahead market than it produces in real-time. Selling this security requires that
the trader buy 1 MWh more energy in the day-ahead market than it consumes in real-time.
Let �ℎ = E(Xℎ) = E(PDA

ℎ ) − E(PRT
ℎ ) for ℎ = 1, 2., ..., 24. Define � as the 24 x 1 vector

composed of (�1, �2, ..., �24)′ and Xd equal the 24 x 1 vector composed of (X1d, X2d, ..., X24d)
′

for day d. Let Λ0 equal the 24 x 24 contemporaneous covariance matrix of Xd. Suppose the
per-unit trading cost of buying or selling this security is c. The expected profit-maximization
problem of a trader holding the portfolio with weights vector, a = (a1, a2, ..., a24)′, where
each ai can be positive or negative, and paying a per unit trading cost c is:

max

a ∈ R24
a′�− c

24∑
i=1

∣ai∣ subject to

24∑
i=1

∣ai∣ = 1. (1)

Our null hypothesis is that this optimization problem results in a sufficiently positive ex-
pected profit for the vector-valued function of �, a(�)∗ ∈ R24, that solves this problem. Our
equivalence null hypothesis is that a(�)∗′� − c > 0. Note the trader pays the same dollar per
MWh charge for sales and purchases of the hourly price difference, which is why the trading
charge is assessed on the sum of the absolute values of the individual portfolio weights, ai,
which satisfy the constraint

∑24
i=1 ∣ai∣ = 1. The optimized value of the objective function
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reduces to
a(�)∗′� =

max

i ∈ {1, ..., 24}
∣�i∣ (2)

Our procedure fits the framework developed by Fang and Santos (2014) for testing hypotheses
involving directionally differentiable functions of a regular parameter estimate. The function
�(�) ≡ a(�)∗′� is a directionally differentiable function of the parameter vector, �, and
X = 1

N

∑N
d=1Xd where N is the number of days in the sample. Because

√
N(X − �)

possesses an asymptotic normal distribution, the sample mean of the Xd is regular estimate
of �.

4.3 Test for the Existence of a Profitable Trading Strategy

To implement the hypothesis test, we compute �(X), which also equals the element of X that
is the largest in absolute value. The difference between �(X) and c, the trading cost is our
test statistic. Fang and Santos (2014) present a modified bootstrap procedure for computing
an estimate of the asymptotic distribution of a directionally differentiable function of X, this
case
√
N(�(X) − �(�)). Hong and Li (2015) develop a numerical derivative-based procedure

for simulating the distribution of �(X) that proceeds as follows. Compute a moving blocks

bootstrap re-sample of X, say X
b
, with block size equal to the largest integer less than or

equal to N1/3. Using these two magnitudes compute:

Zb =
�(X +

√
N(X

b − X)�) − �(X)

�
, (3)

for b = 1, 2, ..., B. Hong and Li (2015) demonstrate that the asymptotic distribution of√
N(�(X)−�(�)) can be approximated by the bootstrap distribution of Zb as T go to infinity

and � tends to zero sufficiently slow so that �
√
T tends to infinity. We use � = T−1/3, the

value recommended by Hong and Li (2015).

Although we can compute the cost of purchasing or selling elements of Xd in the Cal-
ifornia ISO market, this is just one component of the trading cost. Setting the trading
cost, c, equal to this magnitude and performing our hypothesis test implies that there is no
opportunity cost of the time of the individual undertaking the trades, no up-front costs of
participating in the ISO markets, and no other cost associated with preparing or updating
a strategy for trading day-ahead and real-time price differences. For this reason, we use our
hypothesis testing results to compute implied trading costs. These implied trading costs can
be compared to the actual cost of purchasing and selling the 24 elements of X in the ISO
market, including conservative estimates of other transactions costs.

We use the bootstrap distribution of Zb to compute an estimate of the distribution of
�(X). We compute each bootstrap re-sample of �(X) as:

�(X)b = �(X) +
Zb

√
T
. (4)

We then use this distribution to compute two values of c: (1) the smallest value of c that
causes rejection of the � = 0.05 size test of null hypothesis a(�)∗′�−c > 0 and (2) the largest
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value of c that causes rejection of the � = 0.05 test of the null hypothesis a(�)∗′�− c < 0.
The first value of c is the smallest value of the dollar per MWh trading cost that would cause
rejection of the null hypothesis that a profitable trading strategy exists. It is computed as
the lower 5tℎ percentile of the distribution of �(X). For this reason, we denote it clower. The
second value of c is the largest value of the trading charge that causes rejection of the null
hypothesis that no profitable trading charge exists. It is computed as the 95tℎ percentile of
the distribution of �(X). For this reason, we denote it cupper.

4.4 Test for Difference in Absolute Value of Means Before and
After Virtual Bidding

We also test whether expected trading profits fell after the introduction of convergence
bidding using a multivariate inequality constraints test. If we let the trading costs prior
to explicit virtual bidding be cpre and the trading costs after explicit virtual bidding be
cpost, then a test of the null hypothesis that trading profits fell after the introduction of
explicit virtual bidding can be formulated as ∣�pre∣ − 1cpre > ∣�post∣ − 1cpost, where ∣�J ∣ is
the vector composed of the absolute value of the individual elements of the vector �J for
J = pre, post, and 1 is 24 x 1 vector of 1’s. The difference ∣�pre∣ − 1cpre is the expected
profits associated with buying one unit of �ℎ if it is positive and selling one unit �ℎ if it is
negative for ℎ = 1, 2, ..., 24. Consequently, re-arranging this inequality we see that it implies
∣�pre∣ − ∣�post∣ > 1(cpre − cpost). If we assume that cpre > cpost, which is consistent with
the results presented in Section 5, then the null hypothesis that expected trading profits
fell after the introduction of convergence bidding is that ∣�pre∣ − ∣�post∣ > 0. Therefore,
testing ∣�pre∣ − ∣�post∣ > 0 is a test of that null hypothesis. Conversely, by rejecting the null
hypothesis ∣�post∣ > ∣�pre∣, we can conclude that the null hypothesis that trading profits were
higher after the introduction of convergence bidding can be rejected. If we fail to reject the
null hypothesis that ∣�pre∣ > ∣�post∣ but reject the null hypothesis that ∣�post∣ > ∣�pre∣, then
we have evidence that trading profits fell after the introduction of convergence bidding.

We implement these two multivariate nonlinear inequality constraints tests using the
methodology derived in Wolak (1989). We present the procedure for ∣�pre∣ > ∣�post∣ be-
low:

Proposition 1 Direct Test of Null Hypothesis that ∣�pre∣ > ∣�post∣
Let V̂ = diag[SIGN(X

pre
)]′ Σ̂

pre

Nprediag[SIGN(X
pre

)]+diag[SIGN(X
post

)]′ Σ̂
post

Npostdiag[SIGN(X
post

)]
and calculate the test statistic:

TS =
min

� ≥ 0
(∣Xpre∣ − ∣Xpost∣ − �)′V̂ −1(∣Xpre∣ − ∣Xpost∣ − �)

We reject the Null hypothesis that ∣�pre∣ > ∣�post∣ if and only if
∑24

ℎ=1w(24, 24−ℎ, V̂ )Pr[�2
(ℎ) >

TS] < �, where �2
ℎ is a chi-squared random variable with h degrees of freedom and w(24, 24−

ℎ, V̂ ) are the weights defined in Wolak (1989) and � ia the size of the hypothesis test.

Cataloging notation, the diag[Z] operator takes a vector Z, and returns a diagonal
matrix with elements of Z on the diagonal. Σ̂pre is the estimated autocorrelation consistent
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asymptotic covariance matrix with m = 14 lags of the vector of hour-of-day price difference
means prior to the introduction of explicit virtual bidding and Npre is the number of days in
the sample prior to the start of explicit virtual bidding. Σ̂post is the estimated autocorrelation
consistent covariance matrix with m = 14 of the vector of means after to the introduction of
explicit virtual bidding and Npost is the number of days in the sample after explicit virtual
bidding. These are the same estimates used in the prior subsection describing the trading
costs-based approach. Note that we calculate w(24, 24− ℎ, V̂ ) using the simulation method
described in Wolak (1989).

4.5 Test for Difference Between Variance Matrices Before versus
After Virtual Bidding

We also expect that the introduction of explicit virtual bidding to reduce the day-ahead
uncertainty about real time prices. We would therefore expect that the variance of the
day-ahead/real-time price difference and the variance of real-time prices to fall after the
introduction of explicit convergence bidding.

With nodal-level convergence bidding, market participants can profit from their ability to
forecast real-time system conditions at any location in the transmission network. A market
participant that believes the real-time price will be higher than the day-ahead price because
of a higher real-time demand for energy at a location will submit a DEC bid to purchase
energy in the day-ahead market that is subsequently sold at the real-time price. If this
market participant is correct, she will be rewarded with positive trading profits. However,
these actions will also cause the day-ahead price to rise (because of the higher day-ahead
demand implicit in the DEC bid) and the real-time price to fall (because of the higher real-
time demand due to the sale of the accepted DEC bid in the real-time market), which will
reduce this market participant’s trading profits. These profits will not go to zero unless the
total (across all market participants) amount of day-ahead DEC bids at that location is is
large enough to close this price gap. Conversely, market participants that incorrectly believe
the real-time price will be lower than the day-ahead price because they believe the real-time
demand at that location will be lower will submit INC bids and subsequently purchase the
energy sold in the day-ahead market from the real-time market. They will lose money from
these actions.

These market outcomes for the two types of convergence bidders create the incentive
for final day-ahead generation schedules to be closer to the real-time output of these gen-
eration units, leading to the prediction that we should see a decrease in the volatility in
day-ahead/real-time price spread as well as the volatility in real-time prices themselves after
the introduction of convergence bidding. In short, the actions of expected profit-maximizing
convergence bidder causes day-ahead generation schedules to resemble more closely real-time
electricity production. This should lead to less volatility in real-time prices and the difference
between day-ahead and real-time LMPs because the ISO will be less likely to have to make
substantial purchases or sales in the real-time market at any location in the transmission
network.
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Formally, we consider the Null hypothesis that H1 : Λpre − Λpost is a positive semi-
definite matrix, where ΛJ is the 24 x 24 contemporaneous covariance matrix for time period
J ∈ {pre EV B, post EV B}. In order to implement this test, we find the eigenvalues !̂j
j = 1, 2, ..., 24 of Ω̂ ≡ Λ̂pre − Λ̂post and test the joint null hypothesis that all of these
eigenvalues are greater than or equal to zero. We use the multivariate inequality constraints
test employed in the previous section, where we obtain the covariance matrix for our esti-
mated eigenvalues !̂j j = 1, 2, ..., 24 using a moving-block bootstrap procedure. Briefly, this
moving block procedure accounts for fact that the variable of interest (Xd) may be autocor-
related across days. Let Λ̂c equal the (24x1) vector of eigenvalues of ˆOmega. We employ a
moving-blocks bootstrap to compute an estimate of asmptotic covariance matrix Λ̂c. First
we re-sample contiguous blocks of length B = N1/3 (where N is the sample size) from the
time series of daily price difference vectors. We repeat this process L times and to yield a Λ̂cb

for each re-sample b ∈ {1, 2, ..., L}. We then take the sample covariance of these Λ̂b
c over L

re-samples in order to get an estimate of the covariance matrix of Λ̂c, which we call V ar(Λ̂b).
Our statistic TS = minz ≥ 0N(Λ̂c − z)′[V ar(Λ̂c)]

−1(Λ̂c − z) is asymptotically distributed
as the weighted sum of chi-squared random variables given in the previous section under the
null hypothesis.

We can also perform this test for H2 : Λpost − Λpre is a positive semi-definite matrix.
Failing to reject H1 and rejecting H2 (for both the vector of price differences and the vector
of real time prices) would give us strong evidence consistent with our prediction that the
introduction of convergence bidding reduced the variance in the day-ahead/ real-time price
spread and the variance of real-time prices.

4.6 Why not condition on past values of Xd?

Because all of the values of the (24 x 1) vector real-time prices for day d − 1 are not
known before offers are submitted to the day-ahead market for day d, there can be first-
order autocorrelation between realizations of Xd that cannot be exploited through a feasible
trading strategy. Specifically, any trading strategies involving portfolios of the (24 x 1) price
differences that condition on Xd−k, for k > 0, would have to condition on values from at
least k = 2 days ago, because those are the only realizations of Xd−k that are known when
a market participant submits bids or offers into the day-ahead market for day d. This logic
implies that Xd following a vector MA(1) process is consistent with the lack of a profitable
trading strategy that conditions on past values of Xd. To investigate this hypothesis, we
would like to estimate a vector MA(1) process for Xd and then test null hypothesis that the
errors from this model are multivariate white noise. However, estimating the (24 x 1) vector
MA(1) model necessary to test this hypothesis has proven extremely difficult to compute in
finite time.

As a result, we formulate a different approach that does not rely on estimate a vector
MA(1) model for the daily price difference vector. Consider the following 24 x 24 autocor-
relation matrix: Γ(�) = E(Xt − �)(Xt−� − �)′ � tℎ. Based on the above discussion,
the lack of a profitable trading strategy that conditions on past values of Xd corresponds
to Xt having a non-zero value of Γ(1), but Γ(�) = 0 for all � > 1. We consider the Null
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hypothesis:
H : Γ(2) = 0,Γ(3) = 0, ...,Γ(R) = 0

for a fixed value of R. For our application, we test using R = 10. This hypothesis test
is implemented by first defining � ≡ vec(Γ(2),Γ(3), ...,Γ(L)), where the vec(.) operator
takes a (24 x 24) matrix and stacks it columnwise to create a (576 x 1) vector. Therefore,
� has 5760 = 576 * 10 elements, which all must equal zero under the Null hypothesis. We
create a simple Wald Statistic, using the moving block bootstrap (described more fully in
the previous subsection) in order to estimate the 5760 x 5760 covariance matrix associated
with �̂. Our Wald statistic N�̂′Σ̂−1

�,boot�̂ is asymptotically distributed as a chi-squared with
242 ∗ (R− 1) degrees of freedom under the null hypothesis.

5 Empirical Results

This section presents our estimation of clower and cupper and our tests that expected trading
profits fell after the introduction explicit virtual bidding. Before we present these results,
we provide some evidence that more complex trading strategies based on lagged values of
price differences may not yield significant profit improvements relative to a strategy that
just conditions on the elements of �.

5.1 Is there autocorrelation in daily price differences beyond the
first lag?

We now describe our test of the null hypothesis that the second through tenth autocorrelation
matrices for Xd are zero: Γ(2) = Γ(3) = ... = Γ(10) = 0. We test separately for each LAP,
both before and after the introduction of explicit virtual bidding. The test statistics are
recorded in Table 2. The upper � = 0.05 critical value for these test statistics is �2(5184) =
5352.6.

[Table 2 about here.]

For this critical value, we fail to reject the null hypothesis that the second through tenth
autocorrelation matrices are zero for any LAP, either before or after the introduction of
convergence bidding. This lends strong evidence in favor of our assertion that daily price
differences follow an MA(1) process. As traders cannot condition on the previous day’s price
realizations when submitting into the day-ahead market, we only consider trading strategies
that depend on, �, the unconditional mean of Xd.

We repeated these same autocorrelation tests at the nodal level and found that before
the implementation of convergence bidding, particularly at non-generation nodes, the null
hypothesis that Γ(2) = Γ(3) = ... = Γ(10) = 0 could be rejected at approximately 70 percent
of the nodes. However, after the implementation of convergence bidding this null hypothesis
was rejected at approximately five percent of the generation and non-generation nodes which
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is consistent with this null hypothesis being true for all nodes after the implementation of
convergence bidding, because the size of each individual nodal-level test was � = 0.05.

5.2 Results from Trading Costs Hypothesis Tests

We first implement our trading cost hypothesis tests at the load aggregation point (LAP)
level. These results are presented in Table 3. For each LAP we report the value of clower and
cupper both before and after the introduction of explicit convergence bidding. Recall that
clower is the smallest value of c such that the null hypothesis of the existence of an expected
profit-maximizing trading strategy can be rejected and that cupper is the largest value of
c such that the null hypothesis that no profitable trading strategy exists can be rejected.
First note from Table 3 that for all LAPs, the values of both clower and cupper fall after the
introduction of explicit virtual bidding. This is consistent with logic outlined in Section
2 that the costs of trading day-ahead versus real-time price differences decreases after the
introduction of explicit virtual bidding. Figure 3 plot the bootstrap distributions of �(X)
for the pre-EVB and post-EVB sample period for each of the three LAPs. The solid vertical
lines on each graph are the values of clower and cupper for the pre-EVB sample period and
the dotted vertical lines on each graph are the values of clower and cupper for the post-EVB
sample.

[Figure 3 about here.]

[Table 3 about here.]

To obtain a more formal comparison of the implied trading costs before versus after
the introduction of explicit virtual bidding, we compute the bootstrap distribution of the
difference in implied trading costs for each LAP before versus after the implementation of
explicit virtual bidding. Figure 5 plots the bootstrap distribution of the difference in trading
costs for each of the three LAPs. The lower vertical line on the graph is the 5tℎ percentile
of the distribution of cpre − cpost and the upper vertical line is the 95tℎ percentile of this
distribution. If 5tℎ percentile of the distribution of cpre − cpost is greater than zero, then this
implies that the � = 0.05 test of the the null hypothesis that ctruepre ≤ ctruepost can be rejected.
If 95tℎ percentile of the distribution of cpre− cpost is less than zero, then this implies that the
� = 0.05 test of the the null hypothesis that cpre ≥ cpost can be rejected. For both SCE and
SDG&E the null hypothesis that the difference in trading costs pre- versus post-EVB is less
than or equal to zero can be rejected and the null hypothesis that the trading charges pre-
versus post-EVB is greater than zero cannot be rejected. For PG&E the null hypotheses
cannot be rejected for both tests.

We can also compute the values of clower and cupper for each node in the California ISO
control area. Figure 4 plots the values of clower and cupper for each node before and after the
introduction of EVB.4 We plot the across-node distributions of clower and cupper separately

4Note that the box portion of box and whiskers plot corresponds to the 25% through 75% of the distri-
bution of trading costs over nodes. The upper (lower) whisker corresponds to data points within 1.5(IQR)
of the 75% (25%) quantile point, where IQR is the inter-quartile range defined by the distance between the
25% and 75% quartiles. Finally, the remaining points are outliers outside of the aforementioned range.
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for nodes associated with generation units and nodes not associated with generation units.
Note that the inter-quartile range of the distribution these two measures of implied trading
costs across nodes markedly decreases when we calculate it using data after the introduc-
tion of explicit virtual bidding. Recall that we reject the null hypothesis that a profitable
trading strategy exists for actual trading costs larger than than the values plotted for clower.
Therefore, for any value of actual trading costs, we would reject our null hypothesis of the
existence of a profitable trading strategy at more nodes after the introduction of explicit
virtual bidding.

We repeat the bootstrap estimation of the distribution of cpre− cpost for each of the more
than 4,000 nodes in the California ISO control area. The first line of Table 4 reports the
fraction of nodes that the null hypothesis that ctruepre ≤ ctruepost can be rejected for generation
nodes (Gen Node) and for non-generation nodes (Non-Gen Node). The second line of Table
4 reports fraction of nodes that the null hypothesis that ctruepre ≥ ctruepost can be rejected for
generation nodes (Gen Node) and for non-generation nodes (Non-Gen Node). For more that
70 percent of the nodes the null hypothesis that the implicit trading charge increased after
the introduction of EVB can be rejected. The percentage of rejections at non-generation
nodes is slightly higher than at generation nodes. For less than 5 percent of the nodes, the
null hypothesis that the trading charge fell after the introduction of EVB can be rejected.
This rejection frequency is consistent with this null hypothesis being true for all nodes,
because of the size of each hypothesis test is 0.05.

[Table 4 about here.]

[Figure 4 about here.]

From the logic discussed in sections 2.2 and 2.3, we expect the following two relationships
to hold between the true values of the implied trading costs across generation versus non-
generation nodes before versus after the introduction explicit convergence bidding. First,
because suppliers can implicitly convergence bid at the nodal level before the implementa-
tion of the explicit convergence bidding through how they operate their generation units and
load-serving entities can only bid in at the LAP level before explicit convergence bidding,
we expect the implied trading costs to be higher at non-generation nodes before the im-
plementation of explicit convergence bidding. Second, because the introduction of explicit
convergence bidding allows, for the first time, convergence bidding at non-generation nodes,
we expect the the mean reduction in implied trading costs for non-generation nodes to be
larger than for generation nodes. To test these two hypotheses, we regressed the value of
clower and cupper at each node both before and after explicit convergence bidding on a con-
stant, an indicator variable for whether the node was a generation node, an indicator variable
for whether the implied trading cost was from the post-explicit convergence bidding period,
and an indicator variable for whether the observation was from a generation node during the
post-explicit convergence bidding period (the interaction term between “generation node”
and “post explicit virtual bidding”).

Table 5 reports the results of estimating these difference-in-differences style regressions
for clower and cupper. For both percentiles of the distribution of nodal-level implicit trading
costs, we find strong evidence consistent with both of our hypotheses. The best linear
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prediction of both clower and cupper before the introduction of explicit virtual bidding is
significantly lower for generation nodes and this difference is essentially eliminated after
the introduction of virtual bidding. Specifically, for both clower and cupper, we find that
the null hypothesis that the sum of the coefficient on ”Generation Node Indicator” and
the coefficient on ”Interaction Between Generation Node and Post EVB Indicator” is zero
cannot be rejected. Combining this result with the very large predicted reduction in implied
trading costs for all nodes after the introduction of explicit virtual bidding, implies that the
difference in implied trading cost before versus after explicit virtual bidding fell more for
non-generation nodes than for generation nodes.

[Figure 5 about here.]

Figure 6 contains monthly average hourly virtual supply offered and cleared and virtual
demand offered and cleared for October 2011 to December 2012 taken from the California
ISO Department of Market Monitoring’s Q4 Report on Market Issues and Performance of
February 13, 2013. This graph shows that slightly less than 1,000 MWh of virtual supply
clears each hour and approximately the same level of virtual demand clears each hour, with
roughly half of the virtual supply and virtual demand offers clearing each hour. Because
there are over 4,000 nodes in the ISO system and minimum convergence bid offer is 1 MWh,
there are many nodes each hour that do not receive node-level convergence bids. Figure 7
shows the average offer and cleared virtual demand and supply virtual bids by hour of the
day for October to December of 2012. Particularly, for demand bids, there are significantly
higher levels of offered and cleared bids during the peak demand hours of the day, whereas
for virtual supply bids the pattern of offers and cleared bids is fairly constant throughout
the day.

[Figure 6 about here.]

[Figure 7 about here.]

[Table 5 about here.]

5.3 Results from Test for a Fall in Trading Profits

In this section, we implement the direct tests that ∣�pre∣ > ∣�post∣ and ∣�post∣ > ∣�pre∣. If we
assume that cpre > cpost as appears to be the case from the implied trading cost results
presented in the previous section, then ∣�pre∣ > ∣�post∣ is a test of the null hypothesis that
expected trading profits declined as result of the introduction of convergence bidding. The
p-values corresponding to these tests for each LAP are presented below in Table 6:

[Table 6 about here.]

We cannot reject the null hypothesis that ∣�pre∣ > ∣�post∣ for any of the three LAPs,
while we can reject the null hypothesis that ∣�post∣ > ∣�pre∣ at the 5% level for two of the
three LAPs. If cpre > cpost, as is implied by the results in Figure3 and Table3, these
hypothesis testing results provide evidence in favor of the view that trading profits fell after
the introduction of explicit virtual bidding.
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5.4 Results from Test for a Fall in Volatility

As outlined in Section 4.6, we expect that the introduction of explicit virtual bidding re-
sults in a fall in the volatility in the day-ahead/real-time price difference, as well as in the
real-time price. Formally, we compare the covariance matrices associated with the price dif-
ferences (and real-time price) prior to versus after explicit virtual bidding, testing whether
the difference between the covariance matrices is a positive semi-definite matrix. Formally,
this is a (24x1) multivariate nonlinear inequality constraints test on the eigenvalues of the
difference between the two covariance matrices. These results are documented in Table 7
where we report the probability of obtaining a value from the distribution of the test statistic
under the null hypothesis greater than the actual statistic. We reject a size � = 0.05 test
if this probability is less than 0.05. We fail to reject the null hypothesis if it is greater than
0.05.

[Table 7 about here.]

We fail to reject the null hypothesis that the daily price differences and real time prices
prior to explicit convergence bidding are more volatile relative to the differences and real-time
prices after explicit convergence bidding. Moreover,we reject the opposite null hypothesis
corresponding to volatility before versus after explicit convergence bidding for all cases but
the real-time price results for SDG&E. These results are consistent with the claim that
explicit convergence bidding resulted in the day-ahead market producing generation and
load schedules closer to actual physical conditions in the real-time market, leading to less
“residual” deviations between day-ahead schedules and real-time market outcomes. This
result is consistent with generation unit owners and load-serving entities taking costly actions
to attempt to profit from differences between the day-ahead and real-time prices leading to
a more frequent need for the ISO to make significant adjustments to day-ahead generation
schedules to meet real-time demand at all locations in the transmission network before the
introduction of explicit virtual bidding. Therefore, prior to explicit convergence bidding,
large differences between day-ahead and real-time prices reflected both genuine shocks to
the electricity production process as well as financially motivated distortions in bid and offer
behavior motivated by divergent expectations over day-ahead versus real-time prices. The
logic underlying the cause of these variance reduction results is consistent with the market
efficiency results presented in the next section.

6 Measuring Market Efficiency Implications of Con-

vergence Bidding

This section describes the data used and analysis performed to assess the market efficiency
consequences of the introduction of explicit convergence bidding. The three market outcome
measures we compare before versus after the introduction of convergence bidding are: (1)
the total millions of British Thermal Units (MMBTUs) of natural gas used each hour to
produce the fossil fuel electricity generated during that hour, (2) the total variable cost of
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producing the fossil fuel electricity generated during that hour, and (3) the total number
of generation units started during that hour. We use a sample period that starts one year
before convergence bidding was implemented on February 1, 2011 until one year after it
was implemented on January 31, 2012. We nonparametrically control for differences across
hours of the day and days of our sample period for differences in the level output of thermal
generation units in California, the level of output of intermittent renewable resources (wind
and solar resources) and daily wholesale prices of natural gas delivered to both northern
and to southern California. To control for the hourly differences in these observable factors
as flexibly as possible in computing the difference in the mean values of each performance
measure before and after the implementation of convergence bidding, we employ the Robin-
son (1988) partially linear model to estimate the conditional mean function for each market
performance measure.

Constructing the total hourly MMBTUs of energy consumed by all natural gas-fired
generation units proceeds as follows. First, the hourly metered output of each natural
gas-fired generation unit is obtained from the California ISO’s settlement system. This
information is combined with the generation unit-level heat rate curve that all natural gas-
fired generation unit owners are required to submit as part of the California ISO’s local
market power mitigation mechanism. This curve is a piecewise linear function that can
have ten heat rate level and output quantity pairs up to the full capacity of the generation
unit. The vertical axis gives the heat rate denominated in millions of British Thermal Units
(MMBTUs) of natural gas burned to produce each additional MWh for the level of output
from that generation unit on the horizontal axis. The heat rate value on this piecewise linear
curve times the generation unit’s metered output for that hour is the first component of the
total MMBTUs of energy consumed by that generation unit during the hour.

The total amount of heat necessary to start up any generation units that began operating
during that hour is also included in the total amount of MMBTUs consumed in an hour.
Natural gas-fired generation unit owners are also required to file information on the total
amount of MMBTUs required to start each generation unit with the California ISO as part
of its local market power mitigation mechanism. A unit is defined as starting in hour t
if its output in hour t-1 is zero and its output in hour t is greater than zero. Summing
the MMBTUs of energy consumed to produce each unit’s metered output in that hour and
the MMBTU of energy consumed in that hour to start all units that started during that
hour yields, TOTAL ENERGY (t), the total amount of energy consumed in hour t by the
228 natural gas-fired generation units in the California ISO control area during our sample
period.

The total number of generation units started in an hour t, STARTS(t), is the total
number of units in hour t that have zero metered output in hour t-1 and positive output in
hour t. The final market performance measure, TOTAL V C(t), is the total variable cost of
all natural gas-fired generation units in hour t. The marginal cost for each generation unit
is computed by multiplying the heat rate associated the unit’s metered output for that hour
(computed from the piecewise linear heat-rate curve) times the daily price of natural gas for
that unit plus the variable operating and maintenance cost that the unit’s owner submits to
the California ISO for its local market power mitigation mechanism. The total variable cost
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for the unit is computed as the product of the marginal cost for the unit times its metered
output for the hour. For units that start up in hour t, the total energy to start the unit is
converted to a cost by multiplying the MMBTUs of energy consumed to start the unit by
the daily price of natural gas. Summing these volume variable costs over all generation units
operating in hour t and the start-up costs for all units starting in hour t, yields the value of
TOTAL V C(t).

We specify semiparametric functions for each of the three market performance measures
in order to estimate the difference in the mean of each of the three hourly market performance
measures before versus after the implementation of convergence bidding. All of the hour-
of-sample conditional mean functions can be written as yt = W ′

t� + X ′t� + �(Zt) + �t ,
with E(�t∣Xt,Wt, Zt) = 0, where yt is one of our three market performance measures. The
function �(Z) is an unknown function of the vector Z, W is a (24x1) vector of hour-of-
day dummy variables, and � and � are unknown parameter vectors. For all three overall
conditional mean functions, Xt is a single dummy variable that takes on the value 1 for
all hours after midnight January 31, 2011 and zero otherwise, and Zt is four dimensional
vector composed of the total output in MWhs of all natural gas-fired generation units in
California during hour t, the total output in MWhs of all wind and solar generation units
in California during hour t, the price of natural gas in northern California (the Pacific Gas
and Electric Citygate delivery point) during hour t, and the price of natural gas in Southern
California (the Southern California Gas Citygate delivery point) during hour t. For the total
starts conditional mean function, yt equals STARTS(t), for the total energy conditional
mean function, yt equals the natural logarithm of TOTAL ENERGY (t), and for the total
variable cost conditional mean function, yt equals the natural logarithm of TOTAL V C(t).
We also estimate models that allow separate mean differences in each market performance
measure by hour of the day. In this case Xt is a (24x1) vector with ktℎ element Xtk, which
equals one during hour-of-the-day k for all days from February 1, 2011 until the end of the
sample period.

Controlling for both the hourly output of thermal generation units and the hourly output
of wind and solar generation unit is necessary because the share of energy produced by re-
newable resources has grown in significantly over our sample period as a result of California’s
renewables portfolio standard (RPS), which requires all California load-serving entities to
procure 33 percent of their energy from qualified renewable sources by 2020. Figure 8 plots
the average hourly output of in-state thermal generation resources and in-state renewable
generation resources during the year before virtual bidding and year after virtual bidding.
Each point on each curve Figure 8(a) is the average over all days during the year before
or year after virtual bidding was implemented of the output of all thermal generation units
during that hour of the day. Each point on each curve of Figure 8(b) is computed in the same
manner using solar and wind generation units. Figure 8 demonstrates that average hourly
output of thermal generation units falls substantially, and much of that fall is taken up by
the increase in wind and solar energy produced in California. Figure 9 plots the standard
deviations of the hourly output for each hour of the day across days in the sample before and
after the implementation of convergence bidding. The standard deviation of both thermal
and wind and solar output for all hours of the day are higher after virtual bidding. This is
particularly the case for wind and solar output. The intermittency of the these resources
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implies that more thermal resources must be held as operating reserves and stand ready to
supply additional energy if the wind or solar resources disappear suddenly. Consequently,
failing to control for both the hourly output of wind and thermal generation units before
versus after the implementation of explicit virtual bidding would not account for the signif-
icant increase in average wind and solar energy and increased volatility in thermal output
and renewable energy output after the implementation of explicit virtual bidding.

[Figure 8 about here.]

[Figure 9 about here.]

We employ a two-step estimation procedure that recognizes that �(Zt) = E(yt −W ′
t�+

X ′t�∣Zt) and estimates it using �̂(Zt, ℎ) =
∑T

t=1(yt−W ′
t�−X′

t�)K((z−Zt)/ℎ)∑T
t=1K((z−Zt)/ℎ)

to estimate both � and

�. The first step finds the values of h, �, and � that minimize
∑T

j=1[yj −W ′
j� − X ′j� −

�̂−j(Zj, ℎ)]2 , where �̂−j(Zj, ℎ) has the same form as �̂(z, ℎ) evaluated at z = Zj except that∑T
t=1 in the numerator and denominator is replaced with

∑T
t=1,t∕=j . The second step is a

least squares regression of [yt − �̂(Zt, ℎ∗)] on Wt and Xt, where ℎ∗ is the optimized value of

h from the first step. Robinson (1988) demonstrates that
√
T (
[
�̂ �̂

]′− [ � �
]′

), where

�̂ and �̂ are the second-stage estimates of � and �, has an asymptotic normal distribution.
Standard error estimates are constructed using the expression for the estimated asymptotic
covariance matrix given in Robinson (1988).

6.1 Empirical Results

Table 8 reports the results of estimating the conditional mean function, yt = W ′
t� + X ′t� +

�(Zt) + �t, for each measure of market performance for the case that Xt is a single dummy
variable that takes on the value 1 for all hours after midnight on January 31, 2011 and zero
otherwise. These estimates imply that the conditional mean of total hourly energy (control-
ling for the total hourly output from all natural gas-fired units, the total hourly output of
wind and solar resources, the prices of natural gas in northern and southern California and
the hour of the day) is 2.8 percent lower after January 31, 2011. The conditional mean of
total hourly starts (controlling for the same variables) is 0.63 starts higher after January 31,
2011. The conditional mean of total variable costs is 2.6 percent lower after January 31,
2011.

[Table 8 about here.]

Figures 10 plots the estimates of hour-of-the-day change in the conditional mean of the
three hourly market performance measures after the implementation of convergence bidding
along with the pointwise upper and lower 95% confidence intervals for each hour-of-the-day
estimate. For the case of total hourly energy, the largest in absolute value reduction occurs
in the early morning hours beginning at 12 am and ending at 3 am. The hourly mean
reductions are the smallest in absolute value during the hours beginning 5 am and ending
at 8 am, with the remaining hours of the day slightly higher in absolute value. For total
starts, the largest increase is during the hour starting at 3 pm and ending at 5 pm. Starts
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also increase after the implementation of convergence bidding in hours beginning with 4
am and ending at 7 am. For total variable costs, the pattern of the absolute values of the
hour-of-the-day reductions is similar to that for total hourly energy. The largest in absolute
value reductions occur in morning hours from 12 am to 3 am.

Although the percent hourly total energy and cost reductions are small, on an annual
basis the implied cost savings and carbon dioxide emissions reductions can be substantial.
The annual total cost of fossil fuel energy is $2.8 billion the year before convergence bidding
and $2.2 billion the year after convergence bidding. Applying the 2.6 percent reduction
to these figures implies an annual cost savings for the variable cost of fossil fuel energy
of roughly 70 million dollars per year. Applying the total MMBTU figures, implies that
the introduction of convergence bidding reduced the greenhouse gas emissions from fossil
fuel generation in California by 2.8 percent. The average heat rate of fossil fuel units in
California is approximately 9 MMBTU/MWh and the typical natural gas-fired generation
unit produces approximately a half of a ton of carbon dioxide per MWh of energy produced.
In the year before explicit virtual bidding, 585 million MMBTUs were consumed to produce
electricity and the year after 484 milliion MMBTUs were consumed. Applying our 2.8 percent
reduction figure to these two numbers implies that the introduction of explicit virtual bidding
reduced carbon dioxide emissions by between 650,000 and 537,000 tons annually. Both of
these results point to sizable economic and environmental benefits from the introduction of
explicit virtual bidding in California.

[Figure 10 about here.]

7 Implications of Results for Design of Electricity Mar-

kets

The results in the previous sections provide evidence that the introduction of explicit virtual
bidding significantly reduced the transactions costs associated with attempting to profit
from differences between the day-ahead and real-time market prices at the same location in
the transmission network. In addition, these results demonstrate economically significant
economic and global environmental benefits associated with the introduction of convergence
bidding. Although it was possible to implicit virtual bid before the introduction of explicit
virtual bidding, the evidence from our analysis is that the introduction of this product
significantly improved the degree of price convergence between the day-ahead and real-time
markets and reduced the cost of serving load in the California ISO control area.

These results emphasize an important role for forward financial markets in improving the
performance of short-term commodity markets. The financial commitments that producers
and consumers make in forward markets can provide important information and feedback to
market participants that improves the subsequent performance of short-term physical mar-
kets. Although convergence bids are purely financial transactions, they reduce the incentive
of both generation unit owners and load-serving entities to take forward market positions
designed to raise prices in the short-term market. These results argue in favor of recognizing
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the fundamentally financial nature of day-ahead wholesale electricity markets. If explicitly
financial products are not available, markets participants will still attempt to engage in prof-
itable financial transactions, even though these transactions may require costly deviations
from what the generation unit owner would do if explicit virtual bidding was possible. This
appears to be the case before virtual bidding was implemented in the California market.
Therefore, rather than resisting the desire of many market participants to allow purely fi-
nancial transactions, these actions should be allowed and encouraged through explicit virtual
bidding as a way to improve the performance of the wholesale electricity market.
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Figure 1: Hourly Graphs of Day-Ahead/Real-Time Price Differences: Before and After EVB
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Figure 2: Hourly Graphs of Price Differences with 95% C.I: Before and After EVB
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Figure 3: Bootstrap Distribution of �(X) with 95% C.I: Before and After EVB
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Figure 4: Nodal-Level Distribution of Confidence Intervals: Before and After EVB
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Figure 5: Bootstrap Distribution of the Difference in Trading Costs
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Figure 6: Average Hourly MW Virtual Supply and Demand Offered and Cleared: Monthly
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Figure 7: Average Hourly MW Virtual Supply and Demand Offered and Cleared: Hourly
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Figure 8: Average Total Output By Type of Resource: By Hour of Day
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Figure 9: Standard Deviation of Total Output By Type of Resource: By Hour of Day
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Figure 10: Hour-of-the-Day Percent Change Estimates from Semi-Parametric Regressions
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Table 1: Test Statistics for Joint Test of Zero Mean Price Differences

Before EVB After EVB
PG&E 141.738 88.158
SCE 140.140 105.127
SDG&E 157.742 86.084
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Table 2: Test Statistics for Autocorrelation (1 < L ≤ 10) in Daily Price Differences

Before EVB After EVB
PG&E 2862.2 2767.0
SCE 2789.2 2842.6
SDG&E 3082.1 2700.7
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Table 3: LAP level Implied Trading Costs–clower and cupper

Before EVB After EVB
PG&E 8.591 7.531

Lower 5% C.I SCE 12.112 7.845
SDG&E 16.453 8.393
PG&E 14.385 11.684

Upper 95% C.I SCE 20.185 13.209
SDG&E 32.391 13.825
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Table 4: Proportion of Nodes that Reject the Two Null Hypotheses

Total 1(Gen Node) 1(Non-Gen Node)
1(5% Lower Bound¿0) 0.707 0.659 0.711
1(95% Upper Bound¡0) 0.042 0.076 0.039
Number of Observations 4316 355 3961
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Table 5: Regression Results Associated with Implied Trading Costs–clower and cupper

(1) (2)
VARIABLES 5% Lower Bound 95% Lower Bound

1(Post EVB)*1(Gen Node) 0.532 1.421
(0.174) (0.431)

1(Post EVB) -3.527 -5.404
(0.0752) (0.193)

1(Gen Node) -0.654 -1.765
(0.119) (0.250)

Constant 10.72 19.16
(0.0538) (0.118)

Observations 9,791 9,791
R-squared 0.202 0.080

Robust standard errors in parentheses
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Table 6: P-values associated with the Absolute Difference Tests

∣�pre∣ > ∣�post∣ ∣�post∣ > ∣�pre∣
PG&E 0.705 0.144
SCE 0.908 0.006
SDG&E 0.687 0.040
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Table 7: P-values associated with Volatility Tests

LAP Price Difference Real-Time Price
PGE 0.284 0.516

Pre - Post SCE 0.509 0.697
SDGE 0.476 0.647
PGE 0.001 0.016

Post - Pre SCE 0.001 0.034
SDGE 0.028 0.165
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Table 8: Semiparametric Coefficient Results

Dependent variable ln(TOTAL ENERGY (t)) STARTS(t) ln(TOTAL V C(t))
� -0.0284 0.6328 -0.0257
Standard error 0.0015 0.0496 0.0015
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