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Abstract

I show that the ratio of gold to platinum prices (GP) reveals variation in risk and
proxies for an important economic state variable. GP predicts future stock returns in
the time-series and explains variation in average stock returns in the cross-section. GP
outperforms existing predictors and similar patterns are found in international markets.
Contrary to conventional views of gold as a hedge, gold prices fall in recessions, albeit
by less than platinum prices. GP is persistent and significantly correlated with option-
implied tail risk measures. An equilibrium model featuring recursive preferences, time-
varying tail risk, and shocks to preferences for gold and platinum can quantitatively
account for the asset pricing dynamics of equity, gold, and platinum markets, rationalize
the return predictability, and explain why gold prices fall in bad times.
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1 Introduction

“As gold’s unquenchable beauty shines like the sun, people have turned
to it to protect themselves against the darkness ahead.”

— Bernstein (2012), The Power of Gold: The History of an Obsession

Gold is one of the most important assets in financial markets and the global economy.
As the author Peter Bernstein summarizes above, gold is viewed as two things: it is a
consumption good (mostly jewellery) and it is also seen as something valuable in times of
severe distress. Platinum, on the other hand, is a precious metal with similar uses as gold
in consumption. Therefore, the ratio of gold to platinum prices should be largely insulated
from shocks to consumption and jewelry demand, and should instead reveal variation in
risk and proxy for an important economic state variable. In this paper, I examine this
hypothesis by investigating three main questions.

First, I ask whether the ratio of gold to platinum prices (GP) predicts future stock returns
in the time-series and explains variation in average stock returns in the cross-section. I
show empirically that GP is a strong predictor of future stock returns. A one standard
deviation increase in GP predicts a 6.4% increase in U.S. stock market excess returns over
the following year. GP outperforms nearly all existing return predictors, and is robust to
various econometric inference concerns highlighted in the literature. Gold and platinum are
actively traded around the world, and similar patterns of stock return predictability are
found in international markets. GP risk is priced in the cross-section of stock returns and
commands a negative market price of risk.

After discussing the main empirical results, examining the mechanism which drives the
results leads to my second question: Is gold a hedge? More specifically, do gold prices go
up in bad times?1 The answer - contrary to conventional wisdom - is no. Figure 1 plots
real gold (top panel) and platinum (bottom panel) prices alongside stock market valuations
and NBER recession indicators from 1975 - 2013.2 We see in the data that gold prices fall
in recessions, albeit by less than platinum prices. For example, in the 1981 - 1982 recession,
real gold prices fell 32% peak to trough, and in the recent 2008 - 2009 financial crisis real
gold prices fell 22%. Unlike index put options or VIX futures, gold futures would not have
helped investors hedge downside risks during the crises. Not by coincidence, the real price
of platinum fell by 39% and 59% over the same periods, respectively.

To the extent that some investors view shocks to gold prices as short-lived, flight-to-liquidity
phenomena, I find that this is not the case. Shocks to GP do not correlate with shocks to
transient measures of liquidity risk such as the Pastor and Stambaugh (2003) factor, and
instead have a much longer half-life. Furthermore, GP is significantly related to measures

1See e.g., Erb and Harvey (2013), Barro and Misra (2013).
2I focus exclusively on the post-gold standard era, where gold prices vary freely by a market mechanism.

While the “Nixon shock” of 1971 temporarily suspended convertibility of U.S. dollars into gold at $35 per
oz, a new peg was later put in place at $38 per troy oz, followed by $42.22. Gold convertibility was only
completely abolished by November 1973 (Lannoye (2011)). Executive Order 6102, put in place by President
Franklin Roosevelt in 1933, banned gold trading within the United States. This act was repealed by President
Gerald Ford in 1974 and took effect on December 31st, 1974. See Public Law 93-373.

1



of economic tail risk including the slope of the implied volatility curve for S&P500 index
options, and the Bakshi, Kapadia, and Madan (2003) model-free risk-neutral skewness.3

These findings lead to my final question, which is whether an extension of the time-varying
disaster risk model (Wachter (2013)), which features recursive preferences and stochastic
disaster probabilities, can quantitatively explain the time variation and return predictability
of GP while simultaneously accounting for the asset pricing dynamics of equity, gold, and
platinum markets. The model is motivated by the fact that, under no arbitrage, investors
are indifferent between buying gold or leasing gold in perpetuity (Barro and Misra (2013)).

I adopt a three-good model where agents derive utility from nondurable consumption as
well as service flows from gold and platinum, which are non-depreciating durable goods
with negligible outlays relative to nondurable consumption. In normal times, service flows
from gold and platinum (which can be thought of as jewellery) complement nondurable
consumption and are highly procyclical. However, when the probability of a consumption
disaster is high, agents display an increased preference for gold relative to platinum. This
is motivated by both historical and institutional reasons, since gold is viewed as financial
collateral and is formally recognized as such by the Basel Accords.4

The countercyclical benefits to physical ownership of gold and platinum are modeled in
reduced-form, using a pair of stochastic processes which are proportional to the probabil-
ity of a consumption disaster; gold is calibrated to have greater countercyclical benefits
than platinum, which is both consistent with the historical and institutional facts and also
allows the model to rationalize the low gold lease rate and risk premium observed in the
data.5 In the model, GP is insulated from shocks to consumption since they affect gold
and platinum prices equally. Increases in disaster probabilities raise risk premia, leading to
higher discount rates and lower stock prices. Gold and platinum prices fall as well because
of strong discount rate effects, although gold prices fall by less than platinum prices due to
the higher countercyclical component of its service flow. As a result, GP is high when stock
prices are low and the equity risk premium is high, giving GP the power to predict future
stock market excess returns. The model quantitatively captures the key moments of gold
and platinum returns, while remaining consistent with standard asset pricing moments such
as the equity premium and risk-free rate. This is achieved by linking gold and platinum
valuations to state variables in the time-varying disaster risk model, which suggests that
gold and platinum prices can largely be explained by the same risk factors affecting stocks
and bonds.

Barro and Misra (2013) study gold returns in a Lucas (1978) endowment economy with
rare consumption disasters. The authors match the low gold risk premium using a high
elasticity of substitution between gold service flow and nondurable consumption. This
assumption is can be improved for two reasons. First, viewing gold as jewellery suggests a
complementary rather than substitutable relationship (one cannot wear jewellery in place of

3Tail risk is also known as jump risk or disaster risk depending on the literature.
4See e.g., Basel I (1988), Basel II (2004), and Basel III (2012). Gold is also accepted as collateral by

major derivatives exchanges and clearinghouses such as the CME and ICE Clear Europe, as well as large
broker dealers such as JP Morgan.

5Platinum is not eligible collateral under the Basel Accords, central banks are not known to hold platinum
reserves, and major financial institutions do not accept platinum as collateral.
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consuming food, but jewellery is highly valued when food is plentiful). Second, optimality
conditions reveal that the elasticity of substitution is inversely proportional to the degree of
consumption leverage. Following analysis similar to Wachter (2013), substitutability results
in the counterfactual prediction that gold lease rates fall (gold prices rise) when disaster
probabilities increase.

This paper contributes to the literature on return predictability by demonstrating that GP,
a model-free measure available in real-time, is robust to, and in most cases outperforms,
existing forecasting variables including equity valuation ratios (in various forms), the de-
fault spread, term spread, inflation, implied cost of capital, consumption-wealth ratio, and
variance premium.6 The predictive power of GP is stable both out-of-sample and over
sub-samples, which alleviates concerns raised by studies such as Goyal and Welch (2008),
who show that many predictors such as valuation ratios have low forecasting performance
out-of-sample and unstable forecasting ability over sub-samples.

This paper extends the growing literature on gold and gold lease rates. To my knowledge,
Barro and Misra (2013) is the only other paper to value gold in an equilibrium model. Fama
and French (1988) analyze the behavior of metals prices over the business cycle based on
the Brennan (1958) theory of storage. While base metals such as aluminum and copper
behave as the theory of storage predicts, precious metals such as gold seem unresponsive;
Fama and French hypothesize that this is due to low storage costs for precious metals.
Tufano (1996) studies risk management practices in the gold mining industry. Schwartz
(1997), Casassus and Collin-Dufresne (2005), and Le and Zhu (2013) study gold lease rates
(known as “convenience yields” in the commodities literature) using dynamic term structure
models. Erb and Harvey (2013) examine various theories regarding gold returns, including
whether gold prices appreciate when stock prices fall. The authors find that many of the
largest S&P500 declines were associated with falling gold prices.

Finally, this paper draws on the literature examining the impact of heavy-tailed shocks
to economic state variables on asset prices. Examples from the option pricing literature
include Bates (2000), Duffie, Pan, and Singleton (2000), Pan (2002), and Broadie, Chernov,
and Johannes (2007). Jurek (2014) discusses the impact of crash risk on currency carry
trade returns. Examples from the general equilibrium literature include the rare disasters
framework (Rietz (1988), Barro (2006), Gabaix (2012), Gourio (2012), Wachter (2013),
Nowotny (2011), Seo and Wachter (2014)), as well as extensions of the Bansal and Yaron
(2004) long-run risks framework incorporating jumps in economic fundamentals (Eraker
and Shaliastovich (2008), Bansal and Shaliastovich (2011), Benzoni, Collin-Dufresne, and
Goldstein (2011), Drechsler and Yaron (2011)).

The paper proceeds as follows; data sources are discussed as the relevant sections are pre-
sented. Section 2 presents the empirical results on stock return predictability, the cross-

6Valuation ratios include the price-dividend ratio, price-earnings ratio, and net payout yield. References
include Campbell and Shiller (1988), Hodrick (1992), and Boudoukh, Michaely, Richardson, and Roberts
(2007). References for predictability using business cycle variables include Lintner (1975), Campbell (1987),
and Fama and French (1989). The implied cost of capital is studied by Pastor, Sinha, and Swaminathan
(2008) and Li, Ng, and Swaminathan (2013). The consumption-wealth ratio (CAY) is from Lettau and
Ludvigson (2001). References for variance premium predictability include Bollerslev, Tauchen, and Zhou
(2009) and Drechsler and Yaron (2011).
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sectional evidence, and the relationship between GP and tail risk measures. Section 3
discusses key aspects of gold and platinum markets, focusing on sources of demand for each
metal, the leasing markets, and return dynamics. Section 4 presents the model. Section 5
discusses the model calibration and simulation results. Section 6 concludes.

2 Empirical Results

2.1 Data Description

Gold and platinum prices are the monthly average of daily fixing prices from the London
Bullion Market Association (LBMA) and London Platinum and Palladium Market (LPPM),
respectively, from 1975 to 2013.7 Platinum fixing prices are available from April 1990; prior
to this, I use dealer prices from the U.S. Geological Survey.8 The log GP ratio is calculated
as the natural logarithm of the ratio of gold to platinum prices.9 My measure of U.S. stock
returns is the CRSP value-weighted index. The risk-free rate is the 1-month U.S. Treasury
bill rate. I compare the performance of GP to various forecasting variables proposed in the
literature.

• Price-Dividend Ratio (logPD) is the log ratio of aggregate stock market price divided
by the sum of the past twelve months of dividends. Dividends are computed from
the difference between the CRSP value-weighted index return including and exluding
dividends.

• Price-Earnings Ratio (logPE) is the cyclically-adjusted log ratio of aggregate stock
market price divided by past earnings, obtained from Robert Shiller’s website.

• Net Payout Ratio (logPNY ) is the log ratio of total market capitalization divided
by the sum of dividends, repurchases, and share issuance, as described in Boudoukh
et al. (2007) and obtained from Michael Roberts’s website. The series is available
until December 2010.

• Implied Cost of Capital (ICC) is rate of return which solves the long horizon dividend
discount model, constructed from I/B/E/S analyst earnings per share forecasts, as
described in Li et al. (2013). The series starts from January 1977.

• Default Spread (DFSP ) is the percentage difference in yield between Moody’s Baa
and Aaa rated corporate bonds and obtained from the Federal Reserve Bank of St.
Louis (FRED) website.

• Term Spread (TMSP ) is the percentage difference in yield between 10 year U.S.
government bonds and 3 month U.S. Treasury bills and obtained from FRED.

7I use prices from the a.m. fixing, which is conducted at 9:45 a.m. GMT (for platinum) and 10:30 a.m.
GMT (for gold).

8The results are nearly unchanged using platinum prices directly obtained from Platts, which is a large
data vendor for the metals markets.

9I use the terms “GP” and “log GP” interchangeably unless otherwise noted.
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• Inflation (INFL) is the log growth rate of the Consumer Price Index (All Urban
Consumers: All Items), in percentages, from FRED.

• Consumption-Wealth Ratio (CAY ) is the Lettau and Ludvigson (2001) measure of
the consumption-wealth ratio, obtained from Martin Lettau’s website. Monthly ob-
servations are computed by interpolating the quarterly observations. The series is
available until March 2013.

• Variance Premium (V RP ) is the difference between model-free implied variance com-
puted from S&P500 option prices (V IX2) and realized variance computed from 5-
minute tick data over the past 30 days. The data for the VIX is obtained from the
CBOE website, and the data for realized variance is from Hao Zhou’s website. The
series starts from January 1990.

Figure 2 plots the time-series of GP (solid line) along with the price-dividend ratio (dashed
line). The average level of GP is below zero; gold trades at a 20% discount to platinum on
average, consistent with platinum being a much scarcer metal. GP is strongly countercycli-
cal and peaks during times of economic and financial distress including all NBER recessions
between 1975 - 2013, as well as the October 1987 stock market crash, 1998 Russian default
and LTCM crisis, and 2011 U.S. debt ceiling crisis. Table 1 presents summary statistics
for all the predictors. With the exception of the variance premium and inflation, all other
predictors are quite persistent. The AR(1) coefficient for GP is 0.98, which is inside the
unit circle. Formally, a Dickey and Fuller (1979) stationarity test rejects the null of a unit
root for logGP at the 5% level.10 The high persistence of GP is in contrast to the view
that shocks to gold prices reflect transient phenomena. Innovations in GP are uncorrelated
with Pastor and Stambaugh (2003) liquidity factor innovations.

GP is countercyclical and strongly negatively correlated with equity valuation ratios; GP is
high when stock prices are low. The strong positive correlation between GP and the default
spread suggests that GP is high when firms with low credit ratings are more likely to default,
which raises the required yield on their corporate bonds. GP is positively correlated with
ICC since the cost of capital for firms is high in adverse economic conditions. High values
of CAY are associated with high risk premia, and accordingly we see a positive correlation
between GP and CAY . GP is not correlated with INFL; this is expected, since inflation
equally affects both the numerator and denominator of the GP ratio and cancels out.

2.2 Stock Return Predictability

My measure of U.S. stock returns is the CRSP value-weighted index. The risk-free rate is the
1 month U.S. Treasury bill rate. I compare the performance of GP to various forecasting
variables proposed in the literature. Table 2 shows the main predictability result of the
paper. I run the regression:

12

h

h∑
i=1

logRt+i − logRft+i = β0 + β1 logGPt + εt+h. (1)

10The optimal number of lags is chosen based on the Ng and Perron (1995) sequential t-test.
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Long-horizon returns are constructed from overlapping monthly returns. The top panel
uses ordinary least squares regression with Newey and West (1987) HAC robust standard
errors.11 At the 1 month horizon, the degree of predictability is fairly low with an R2 just
above 1%; however, the estimated slope is statistically significant with a 2.82 t-statistic.
We see similar patterns of predictability up to the 1 year horizon, which has an R2 of
16.57%. The bottom panel uses the vector autoregression (VAR) framework as in Hodrick
(1992), which is potentially more conservative for overlapping returns, although it imposes
parametric assumptions. The point estimates are very similar, although the R2 is lower (yet
still very large at 10.89% for the 1 year horizon) using the VAR. For longer horizons of 2 to
5 years, the estimated coefficients are still significant although the magnitude is decreasing.
The estimated coefficient on logGP for the one year horizon is 0.243, the standard deviation
of logGP is 0.266, so a one standard deviation increase in logGP is associated with a 6.4%
increase in U.S. stock market excess returns over the following year. For all horizons from
1 month to 5 years, the estimated slopes are statistically significant.

Table 3 shows the results of univariate predictability regressions for each of the predictors.
For short horizon returns (1 and 3 months), only GP, and V RP are statistically signifi-
cant at conventional levels, with ICC significant at the 10% level. At the intermediate 1
year horizon, GP, ICC, and V RP are strongly significant, while TMSP and INFL are
marginally significant. At this frequency, GP has the highest R2 of all predictors. For
long horizon (e.g. 5 year) returns, GP is still significant, while valuation ratios, CAY , and
TMSP are also significant.

How does GP stack up against other predictors in a horse race? The regression is:

12

h

h∑
i=1

logRt+i − logRft+i = β0 + β1 logGPt + β2Xt + εt+h (2)

where Xt is another predictor. Table 4 shows the results for 1 and 3 month horizons.12 At
short horizons, V RP is known to be a strong predictor, as seen in Table 3. This supports
the findings of Bollerslev et al. (2009) and Drechsler and Yaron (2011) on more recent data.
However, in Table 4 we see that GP is still significant, even after controlling for V RP .
Similar results hold for the 3 month horizon. Table 5 shows the results for long horizon
returns. In most cases, GP drives out the significance of the other predictor, with the
exception of INFL at the 1 year horizon and ICC, TMSP , and CAY (marginally) at
the 5 year horizon. Including alternative predictors leaves the magnitude of the coefficient
on GP largely unchanged. The evidence suggests that GP is robust to and in most cases
outperforms other forecasting variables proposed in the literature.

Goyal and Welch (2008) argue that predictors such as the price-dividend ratio do not
perform well out-of-sample. I test out-of-sample robustness using Out-of-Sample R2. If

11I also conduct a robust check using Hodrick (1992) standard errors and confirm that the results are not
sensitive to the choice of standard errors.

12For bivariate regressions as well, the results using the Hodrick (1992) VAR methodology are similar.
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GP is a robust predictor, Out-of-Sample R2 should be significantly greater than zero and
similar to its in-sample counterparts. The statistic is given by:

R2
OS = 1−

T−m∑
k=1

(rem+k − r̂em+k)
2

T−m∑
k=1

(rem+k − rem+k)2

. (3)

We can calculate R2
OS using either an expanding window (use all data available from month

1 to month m, so the regression sample expands at each time step), or a rolling window of
length m (use only the past m months of data at each time step). In both cases, I estimate
equation (1) in the estimation period, compute the squared prediction error over the next
period and increment my time step. An expanding window uses more available data, while
a rolling window better accounts for potential time variation in the predictive relationship.
I consider windows of length 120 months and 180 months to estimate betas, and predict the
return in the next period. The p-values are from the Clark and West (2007) adjusted-MSPE
statistic:

ft+1 = (rt+1 − rt+1)2 −
[
(rt+1 − r̂t+1)2 − (rt+1 − r̂t+1)2

]
which is regressed against a constant and the test is a one-sided test of whether R2

OS > 0.

Table 6 shows the results from the out-of-sample analysis. With the exception of the
1 month horizon rolling 10 year window regressions, all other combinations of forecast
horizons and methods give large, positive, and significant out-of-sample R2 values. The
pattern of R2 as we increase the forecast horizon are similar between rolling and expanding
methods. Goyal and Welch (2008) find that for predictors such as the price-dividend ratio,
the predictive ability is diminished in out-of-sample tests. For GP, the out-of-sample R2

are significantly greater than zero and similar to the in-sample R2. Figure 3 shows the
estimated slopes and 95% error bands for both rolling and expanding methods with either
120 or 180 month windows for 2 year-ahead predictive regressions. We see that the estimates
are stable, never change signs, and are statistically significant in nearly all sub-samples. For
comparison, Figure 4 plots the same sub-sample betas for logPD. We see a lot of variation
in the estimated coefficients with numerous sign changes and weak statistical significance
in sub-samples (95% intervals straddle zero). The evidence suggests return predictability
by GP is robust both out-of-sample and over sub-samples.

In Appendix A1, I show that GP is robust to finite-sample bias (Stambaugh (1999)) and
size distortions (Torous, Valkanov, and Yan (2004)). In Appendix A2, I show that realized
utility gains are high for mean-variance investors using GP for portfolio allocation.

Gold and platinum are globally traded assets. This suggests that GP should also predict
future stock returns in international markets. I run the same predictive regressions as
in equation (1) using the MSCI World Index, which is a U.S. dollar denominated index
composed of stocks from 23 Developed Markets countries covering approximately 85% of
the free float-adjusted market capitalization in each country. Since the index is dollar
denominated, I use the U.S. Treasury bill rate as the risk-free rate. Table 7 shows that
the patterns of predictability are very similar to the U.S. results: high GP predicts high
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future excess returns, although the coefficients are somewhat smaller in magnitude than for
U.S. returns. Since there may be some concern that the world portfolio consists of a large
proportion of U.S. stocks, I also run the same predictability regressions for other developed
countries. Panel B of Table 7 reports the results for the U.K., Switzerland, Japan, and
Sweden. I use the MSCI country indices for each of these countries, denominated in the
local currency. The risk-free rate is the local currency treasury bill rate. The results for
the U.K., Switzerland, and Sweden are nearly the same as for the U.S., while Japan shows
significant predictability in terms of the magnitude of estimated slopes, albeit smaller t-
statistics (significant at the 10% level) and somewhat lower R2. The results suggest that
GP predicts future excess stock market returns for the U.S. market as well as international
markets, which also mitigates potential concerns about data snooping (Ang and Bekaert
(2007)).

2.3 Dividend Growth Predictability

I have argued that stock return predictability by GP is driven by time variation in risk
premia and not from news about future dividend growth rates. Some may argue that
platinum has a characteristic not shared by gold: it is demanded by the automotive industry
for catalytic converters.13 Is it possible that it is actually bad news about the future cash
flows of car makers (GP is low when platinum is expensive, which is bad news for future
cash flows of car makers) that drives the predictability through a cash-flow channel? I run
standard dividend growth predictive regressions similar to Cochrane (2008) on real dividend
growth rates (∆dt) and real earnings growth rates (∆et):

12

h

h∑
i=1

∆dt+i = β0 + β1 logGPt + εt+h

12

h

h∑
i=1

∆et+i = β0 + β1 logGPt + εt+h.

(4)

The results in Table 8 show no evidence of dividend growth predictability by GP.14 For
dividend growth, none of the estimated slopes from 1 year to 5 year horizons are statistically
different from 0, and the R2 are all nearly zero. For earnings growth, the R2 are slightly
higher but the t-statistics suggest the slopes are not significantly different from zero. This
is evidence that the predictability I document arises because of variation in risk premia
rather than dividend growth.

2.4 GP and the Cross-Section of Stock Returns

I examine the implications of GP risk for the cross-section of stock returns. As seen earlier,
GP is countercylical and increases in times of economic distress. Stocks with high, positive
covariation with GP innovations are therefore a good hedge against adverse states of high
economic risk and low asset valuations, which suggests that GP should command a negative

13I discuss autocatalyst demand of platinum in Section 3.
14The earnings data is from Robert Shiller’s website.
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market price of risk in the cross-section. I estimate the risk exposures (betas) for each asset
i = 1, ..., N from time-series regressions

Rei,t+1 = ci + βi,∆gp∆ logGPt+1 + εi,t+1 (5)

where Rei,t+1 is the excess return for portfolio i and ∆ logGPt+1 = logGPt+1 − Et [logGPt]

is the innovation in GP from an AR(1) model.15 The slope coefficient βi,∆gp represents the
portfolio exposure of asset i to GP risk. In order to estimate the cross-sectional market
price of risk associated with GP, I run a cross-sectional regression of time-series average
excess returns on the risk exposures

E
[
Rei,t+1

]
= cons + βi,∆gpλ∆gp + υi (6)

which yields estimates of the market price of risk λ∆gp. I use the standard cross-section of
ten portfolios sorted on the book-to-market ratio and ten portfolios sorted on size as my test
assets. The data is monthly from 1975 - 2013. Recall that GP is constructed without any
information from equity markets, which rules out any mechanical relationship between GP
risk and the cross-section of stock returns. Furthermore, the parsimonious one-factor model
avoids many statistical issues present in asset pricing tests that can mechanically produce
high explanatory power. Panel A of the Table 9 shows that the market price of GP risk
is significantly negative. Panel B of the Table further shows that the portfolio returns are
all significantly and negatively exposed to GP risk; equity prices fall contemporaneously
when GP increases. The one-factor model featuring only GP risk can explain over 60%
of the cross-sectional variation in average returns. Figure 5 graphically depicts the strong
negative relationship between average excess returns and risk exposures (Panel A), and
correspondingly the fit between realized and model-predicted excess returns (Panel B). The
cross-sectional results suggest that investors are willing to pay a premium for assets which
hedge against increases in GP; in other words, the high-risk states which investors dislike
are those associated with high GP.

2.5 GP and Tail Risk

The evidence so far suggests that 1) GP is countercyclical and increases in times of eco-
nomic distress, 2) GP positively predicts future stock market excess returns, 3) GP risk is
negatively priced in the cross-section, and 4) GP is high when the default spread is high,
which is when firms with low credit ratings have higher probability of default. A plausible
interpretation consistent with these results is that GP captures tail risk in the economy.
This is broadly consistent with the findings of Manela and Moreira (2014), who use ma-
chine learning techniques to quantify tail risk (disaster concerns) from newspaper headlines:
“gold” is one of the top words which explains variation in investors’ tail risk concerns. GP
is persistent, which is consistent with the evidence of persistent tail risk in Kelly and Jiang
(2014). Options are an ideal way to measure tail risk because their convex payoff structures
contain rich information about the tail distribution of returns. I extract tail risk measures
from options markets and investigate the association between GP and tail risk.

15The results using first differences are nearly identical.
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Out-of-the-money (OTM) index put options protect against stock market crashes. The
slope of the implied volatility curve, defined as the implied volatility of an OTM put minus
the implied volatility of an at-the-money (ATM) put with the same maturity, is a measure
of tail risk in the economy (Pan (2002)). In the data, the implied volatility curve slopes
upward to the left since OTM puts are relatively more expensive (Rubinstein (1994)). I
take the implied volatility curve from OptionMetrics and define SLOPE∆

t as the implied
volatility for an OTM put option between 20∆ to 40∆, which I subtract from the implied
volatility of an ATM put (50∆).16 The encompassing regression is:

SLOPE∆
t︸ ︷︷ ︸

σOTM,∆t,IV −σATMt,IV

= β0 + β1 logGPt + β2σ
ATM
t,IV + εt.

(7)

To control for potential dependence of the slope on the level of implied volatility, I also
control for σATMt,IV on the right hand side of (7). Panel A of Table 10 shows the results. We
see that GP is significant for all definitions of the implied volatility slope, both by itself and
after controlling for the level of ATM implied volatility. The magnitude of the coefficients
as well as the t-statistics and R2 increase as the OTM put is further out-of-the-money
(more tail risk). An alternative measure of tail risk is the Bakshi et al. (2003) model-free
risk-neutral skewness. Bakshi and Kapadia (2003) and Jurek (2014) use this measure as
a proxy for crash risk; more negative skewness is associated with more crash risk. The
results in Panel B of Table 10 are similar to the results in Panel A: high GP is associated
with more negative risk-neutral skewness and GP is significant even after controlling for the
risk-neutral variance.

3 Gold and Platinum Markets

I examine key aspects of gold and platinum markets, including sources of demand for each
metal, the leasing markets, and return dynamics. Understanding the leasing markets is
important because no-arbitrage implies that investors are indifferent between buying gold
(platinum) or leasing gold (platinum) in perpetuity. Understanding the variation in rental
income will be important for the economic model and to compute gold and platinum returns.

3.1 Sources of Demand

Figure 6 shows the annual percentage demand for gold (top panel) and platinum (bottom
panel) for each of its major uses.17 From 1990 - 2013, approximately 70% of gold demand
was for jewellery, 15% for uses in technology (semiconductors, electronics), and 15% for
investments (coins, bars, ETF inventory building). Over the same period, approximately
40% of platinum demand was for jewellery, 15% for technology, while only a small fraction
(less than 5%) was demanded for investment purposes. Quite conspicuously, the biggest
difference between the two metals comes from the 40% of platinum demand used by the
automotive industry as catalytic converters to reduce emissions in automobiles (autocat-

16∆ can be interpreted as the risk-neutral probability of expiring in-the-money. Lower ∆ options are
further out of the money.

17The data for gold is from Thomson-Reuters GFMS, and the data for platinum is from Johnson Matthey.
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alysts).18 Demand for platinum as autocatalysts was spurred by clean air legislation in
the 1970s - securing sufficient supplies of platinum at stable prices became essential for
car makers. Black (2000) (Chapter 6) describes the long-term arrangements made between
platinum producers and car makers:

“With the introduction of autocatalysts...producers entered into long term
supply contracts with the auto manufacturers. Prices were negotiated on con-
tracts lasting up to five years”.

The private sale of platinum directly from producers to car makers means the amount of
platinum used in auto production does not enter the market. Therefore, net autocatalyst
demand (in excess of salvage) acts as a negative platinum supply shock since it reduces the
supply of platinum available for other uses. Under this view, the major source of demand
for gold and platinum comes from the jewellery industry.19

3.2 Lease Rates

Not surprisingly, jewellers are among the most active borrowers of gold and platinum. The
LBMA and LPPM describe the leasing market:

“The inventory loan is the basic financial tool of the precious metals fab-
ricating [industry]. For example, jewellery manufacturers can finance the raw
material in their production process by leasing gold...The same kind of strategy
would, for example, be adopted in platinum”.

Leasing is a convenient form of inventory financing widely practiced in both gold and plat-
inum fabrication industries (LBMA and LPPM (2008)). Le and Zhu (2013) find that over
the 1991 - 2007 sample, which purposely excludes the 2008 financial crisis to focus on normal
time dynamics, gold lease rates are increasing in stock market returns. This is consistent
with Aı̈t-Sahalia, Parker, and Yogo (2004) who document strong positive covariation be-
tween stock returns and demand for luxury goods. In normal times, gold lease rates are
procyclical: as stock returns go up, jewellers have increased need for raw materials to meet
high demand for finished products and increase their gold borrowing, which drives up gold
lease rates.

The picture is different in times of economic distress. Figure 7 plots annualized gold lease
rates from 2007 - 2009. While gold lease rates are about 1% on average, the cost of borrowing
gold during the financial crisis jumped up threefold and high gold lease rates persisted
throughout the crisis. This is much greater than the observed decline in gold prices during
this period, which implies the rental income (economic value of holding gold) must have been
very high during the crisis. Several factors lead to countercyclical behavior of lease rates in
bad times. In severe economic conditions, lenders fear default by borrowers and decrease
the supply of loans, which increases the cost of leasing precious metals (LBMA (2009)).
Furthermore, to the extent that there are greater benefits to service flows from holding

18While beyond the scope of this paper, Black (2000) (Chapter 5) provides an overview of the process by
which platinum group metals catalyse the oxidation of hydrocarbons and carbon monoxide from internal
combustion engines.

19I use the term “jeweller” to refer to gold and platinum fabricators.
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gold relative to platinum in bad times (for historical and institutional reasons discussed in
the introduction), gold lease rates will increase by more than platinum. In bad times, risk
premia are high, which raises discount rates and lowers stock market valuations. Gold and
platinum prices both fall due to strong discount rate effects, although gold prices fall by
less than platinum prices since the fall in gold prices is cushioned by higher expected rental
income. In fact, this reinforces why I use GP as a measure of risk in the economy, since
it isolates the demand for gold as a safe asset, which is particularly important in times of
high economic stress.

3.3 Gold and Platinum Returns

Previous studies of gold returns (see e.g., Erb and Harvey (2013), Barro and Misra (2013))
focus only on the price appreciation of gold and do not include the rental income over the
ownership period. While Barro and Misra (2013) are correct in stating that gold dividends
(rental income) are not directly observable given spot prices alone, we can compute and
monetize rental income through the futures market.

Gold and platinum futures data comes from the commodities division (COMEX) of the CME
(formerly NYMEX).20 As is standard in the literature, I ignore mark-to-market of futures,
and also the delivery options embedded in futures with physical settlement. I assume that
futures contracts will roll in the first week of the expiration month; it is estimated that only
1% to 2% of commodities futures contracts are actually delivered, so this approach should
not result in too much measurement error (Hirschey and Nofsinger (2008), Chapter 19). I
examine the resulting contract maturities and verify similar to Schwartz (1997) that the
maturities are relatively constant. The lease rate is given by:

Lease rate = Libor rate - Futures premium. (8)

Table 11 provides a table of cash flows analysis of the above from the perspective of a
jeweller, who is a typical borrower in the leasing market. For my analysis, I use futures
contracts closest to 3 months to maturity, and match it with the 3 month Libor rate to
calculate the lease rate, which I then annualize.21 I choose 3 month maturities to get a
contract with high liquidity, short time-to-maturity, yet not too short so that the physical
delivery option does not affect prices too much. I use average daily futures prices as the
monthly futures price, to be consistent with my measure of spot prices. Real gold and
platinum returns (inclusive of rental income) are calculated in the standard way:

Rreal, goldt+1 =

(
P gt+1

CPIt+1
+

Dgt+1

CPIt+1

)
(

P gt
CPIt

)
Rreal, platinumt+1 =

(
Pxt+1

CPIt+1
+

Dxt+1

CPIt+1

)
(

Pxt
CPIt

)
(9)

20The data is obtained from the Commodities Research Bureau (CRB) and are daily settlement prices
direct from the exchange.

21Prior to 1986, I use Eurodollar deposit rates.
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where P gt is the gold price, P xt is the platinum price, Dg
t is the gold rental income at time

t, and Dx
t is the platinum rental income at time t, and CPIt is the consumer price index.22

The returns to gold and platinum can be interpreted from the perspective of an investor who
owns gold or platinum, and continuously leases the metal out, earning the rental income
and any price appreciation. The results are summarized in Table 12. Average gold excess
returns are 2.40% per year, real gold return volatility is 16.76%, implying a Sharpe ratio of
0.14. Average platinum excess returns are 6.51% per year, real platinum return volatility is
22.18%, implying a Sharpe ratio of 0.29. For comparison, over the same period, the average
excess return for U.S. equities is 7.53% per year, real equity return volatility is 15.11%. The
gold risk premium is substantially lower than the equity risk premium. The risk premium
for platinum is slightly lower than equities as well, although the volatility is higher. Gold
lease rates are 1% per year on average. For comparison, Casassus and Collin-Dufresne
(2005) estimate the gold lease rate to be 0.9% per year, while Le and Zhu (2013) find an
average lease rate of about 1%. My estimate of the average platinum lease rate is 3.47%
per year.

The economic model must match the low risk premium, high volatility, and low lease rate
of gold. At the same time, the model must also capture the relatively high risk premium,
high volatility, and high lease rate of platinum, while fitting the asset pricing dynamics of
equity markets, the risk-free rate, and quantitatively accounting for the time variation and
stock return predictability of GP observed in the data.

4 Economic Model

4.1 Economic Environment

I analyze whether a general equilibrium model featuring time-varying disaster risk (Wachter
(2013)) and shocks to preferences for gold and platinum can jointly explain the empirical
facts documented in the previous sections. I assume an endowment economy with com-
plete markets and an infinitely-lived representative investor with Duffie and Epstein (1992)
stochastic differential utility, which is the continuous-time analog of Kreps and Porteus
(1978) and Epstein and Zin (1989) recursive preferences. Recursive preferences allow for
a separation between risk aversion and the intertemporal elasticity of substitution (IES).23

I focus on the case of unit IES, which is done both for tractability, and consistent with
evidence in Vissing-Jørgensen (2002) and Hansen, Heaton, Lee, and Roussanov (2007).

Aggregate consumption growth is given by

d logCt = ḡcdt+ σcdW
c
t + Jct dN

c
t (10)

22I use superscript g to refer to gold, and superscript x to refer to platinum.
23A number of studies such as Bansal and Yaron (2004) argue that the IES should be greater than one.

Others, such as Hall (1988) estimate IES to be significantly less than one, although time-varying consumption
volatility can lead to large downward biases in the estimates of IES using the methodology employed in Hall
(1988).

13



where W c
t is a standard Brownian motion and N c

t is a Poisson process whose intensity λt
is given by a Cox, Ingersoll, and Ross (1985) square root process

dλt = κλ(ξt − λt)dt+ σλ
√
λtdW

λ
t + Jλt dN

λ
t (11)

where W λ
t a standard Brownian motion and Nλ

t is a Poisson process whose intensity is
given by λλt = λt.

24 Drechsler and Yaron (2011) use a similar framework to model jumps in
expected consumption growth and volatility.25 Allowing λt to jump allows stock prices and
volatility in the model to jump as well.26 I solve for the stationary mean of λt in Appendix
A3. λt can be approximately interpreted as the probability of a consumption disaster.27 In
the model, market volatility is endogenously determined, and evidence from the volatility
estimation literature argues in favor of multiple time scales in volatility allowing for both
long and short run components.28 Also, as Seo and Wachter (2014) demonstrate, a one-
factor model without time-variation in the long-run mean of λt generates the counterfactual
prediction that the slope of the implied volatility curve decreases as the disaster intensity
increases. This arises because stock return volatility is endogenously determined and is
driven by λt itself. To relieve this tension, and consistent with the evidence from the
volatility estimation literature, I follow Seo and Wachter and allow the long-run mean of λt
to be a stochastic process ξt, which itself follows a square root process

dξt = κξ(ξ̄ − ξt)dt+ σξ
√
ξtdW

ξ
t (12)

where W ξ
t is a standard Brownian motion. All Brownian motions and Poisson processes are

assumed to be independent.

The size of the consumption jump, Jct is drawn from the multinomial disaster distribution
of Barro and Ursua (2008), using data obtained from Robert Barro’s website. The size of
the jump in λt is given by Jλt , which follows an exponential distribution with mean µλ.
Equity is modeled as a leveraged claim on aggregate consumption following Abel (1999).

The aggregate dividend at time t is Dt = Cφt , for leverage parameter φ, which implies that
dividend growth dynamics are given by

d logDt = φḡcdt+ φσcdW
c
t + φJct dN

c
t . (13)

4.2 Gold and Platinum Supply

Gold and platinum do not depreciate, and consumption of the service flow from the stock
of gold and platinum today does not render it less capable of providing the same service
flow tomorrow. I model gold and platinum as non-depreciating durable goods. This means

24Nowotny (2011) considers the implications of self-exciting intensity processes to model persistent disaster
states. My setup differs since realized jumps in consumption do not trigger increases in λt.

25For parsimony, I do not distinguish explicitly between Xt− and Xt in my notation, as it should be clear
from the context.

26This is consistent with the evidence in Duffie et al. (2000), Broadie et al. (2007), Eraker and Shaliastovich
(2008), and Tauchen and Todorov (2011).

27The probability of k jumps over an interval of time ∆t ≈ eλt∆t (λt∆t)k

k!
.

28See e.g., Alizadeh, Brandt, and Diebold (2002) and Chernov, Gallant, Ghysels, and Tauchen (2003).
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that the time t aggregate stock of gold and platinum increase one-to-one with the time t
increment (accumulation) to the stock (Cuoco and Liu (2000)). In Appendix A4, I use data
from world gold and platinum mine production to establish the properties of the gold and
platinum endowment processes. The key stylized facts are: 1) the log growth rates of the
aggregate per-capita gold and platinum stocks are smooth with no evidence of disasters,
and 2) the aggregate per-capita gold and platinum stocks are cointegrated.29 Given these
facts, I model logGt (the aggregate stock of gold) using a simple geometric Brownian
motion which is not subject to disasters. Consistent with the empirical evidence, logGt
and logXt (the aggregate stock of platinum) are modeled as cointegrated processes so that
logXt − logGt = logZt is a stationary process which itself follows an Ornstein-Uhlenbeck
process with long-run mean µz and reversion parameter θz:

d logGt = µgdt+ σgdW
g
t

d logZt = θz (µz − logZt) dt+ σzdW
z
t

logXt = logGt + logZt.

(14)

All parameters for the gold and platinum supply dynamics are directly estimated from the
data.

4.3 Preferences

The representative investor’s utility function is defined recursively as

Vt = Et
[∫ ∞

t
f(Ωs, Vs)ds

]
for f(Ω, V ) = δ(1− γ)V

[
log Ω− 1

1− γ
log (1− γ)V

]
and Ωt =

[
C

1− 1
ε

t + αtG
1− 1

ε
t + βtX

1− 1
ε

t

] 1

1− 1
ε

(15)

where f(Ω, V ) describes the trade-off between current consumption Ωt and the continuation
utility Vt. The subjective time preference parameter is δ, and γ is commonly interpreted as
the coefficient of relative risk aversion.

The consumption aggregator Ωt is a constant elasticity of substitution (CES) aggregator
over nondurable consumption Ct, the gold stock Gt, and the platinum stock Xt.

30 The
intratemporal elasticity of substitution is ε.31

29Barro and Misra (2013) also find no evidence of disasters in the per-capita gold stock, using data since
1836.

30The agent derives utility from gold and platinum service flows in direct proportion to its stock. This is
a standard way to model preference for multiple types of goods, which has been used in the durable goods
literature by Ogaki and Reinhart (1998) and Yogo (2006).

31I use a CES aggregator with the same elasticity of substitution across all pairs of goods for parsimony
and tractability relative to a specification with nested CES aggregators and separate elasticities.
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The processes αt and βt capture in reduced-form time-varying preferences for gold and
platinum:

αt = exp(a1 + a2λt)

βt = exp(b1 + b2λt).
(16)

Specifically, αt and βt represent the relative importance of gold and platinum service flows
in the intratemporal consumption aggregator. Preference for precious metals responds to
changes in λt but not directly to ξt, since λt is the probability of a consumption disaster.
While the processes αt and βt gives me some additional flexibility, they depend completely
on existing state variables and no new state variables are being added. The parameter a2

(and b2) cannot be arbitrarily set. We want a relatively high value of a2 to generate enough
countercyclical dynamics to match the low observed gold risk premium. However, when
a2 is too big, gold return volatility becomes too low, and gold lease rates will also be too
low. Additionally, existence of solutions for gold and platinum price-dividend ratios places
restrictions on the maximum a2 and b2 allowed, and this bound jointly depends on model
parameters such as the volatility and persistence of state variables, the severity of jumps,
and risk aversion. Changing these parameters to allow for high a2 will affect equity market
and risk-free rate dynamics as well.32

4.4 Asset Pricing

Duffie and Skiadas (1994) show that

πt = exp

(∫ ∞
0

fV (Ωs, Vs)d

)
fΩ(Ωt, Vt)

can serve as the state-price density in this economy. Following Barro and Misra (2013), I
assume that outlays on gold and platinum are negligible relative to nondurable consumption,
which implies that Ωt ≈ Ct. Under this assumption, the equilibrium relationship between
Vt and the state variables is given by

Vt =
C1−γ
t

1− γ
ea+bλλt+bξξt .

where η = −δ(a + 1) and a, bλ, bξ are the solutions to a system of equations given in
Appendix A5. The state price density is then given by

πt ≈ exp(ηt− δbλ
∫ t

0
λsds− δbξ

∫ t

0
ξsds) δ C

−γ
t ea+bλλt+bξξt . (17)

I make the assumption of negligible outlays both for tractability and for economic reasons.
The levels of αt and βt are small because per-capita expenditures on gold and platinum

32I have solved a version of the model based on the long-run risks (LRR) framework pioneered by Bansal
and Yaron (2004) featuring jumps to uncertainty as in Eraker and Shaliastovich (2008) and Drechsler and
Yaron (2011). The model is also able to deliver many similar results if the countercyclical components αt and
βt are allowed to load on all state variables. The LRR framework delivers dividend growth predictability by
GP, which is not seen in the data. I have opted for a stochastic disaster risk framework mostly for parsimony
and to avoid these issues.

16



are small compared to expenditures on nondurable goods and services. When the CES
aggregator is over multiple sources of consumption with large expenditure shares, such as
nondurable and durable consumption or housing, this approximation will become wildly
inaccurate; for example, Gomes, Kogan, and Yogo (2009) estimate the expenditure share
of durable goods to be 50%, in which case this assumption would not be innocuous. In
economic terms, the assumption implies that shocks to the supply of gold and platinum are
unpriced. A mine shutdown in South Africa, for example, would affect gold and platinum
prices, but would conceivably not affect aggregate stock market risk premia, which seems
economically plausible. Going forward, I will assume that the approximation is accurate
and describe dynamics of the stochastic discount factor in (17) with an equality sign.

The instantaneous risk-free rate is given by

rft = δ + (ḡc +
1

2
σ2
c )− γσ2

c + λtEv
[
e(1−γ)Jct − e−γJct

]
.

I follow Barro (2006) and Wachter (2013) and suppose that if a disaster occurs, the gov-
ernment will default on debt obligations with probability q, leading to a loss in the same
proportion as the consumption loss in the disaster.

The user costs (rental income) of gold and platinum are determined in equilibrium by the
intratemporal optimality conditions:

Qg,t =
ΩG

ΩC
= αt ×

(
Ct
Gt

) 1
ε

︸ ︷︷ ︸
countercyclical × procyclical

Qx,t =
ΩX

ΩC
= βt ×

(
Ct
Xt

) 1
ε

︸ ︷︷ ︸
countercyclical × procyclical

(18)

where Qg,t is the user cost of gold and Qx,t is the user cost of platinum. Notice from equation
(18) that the intratemporal elasticity of substitution ε behaves like the inverse of the leverage
parameter φ, since shocks to gold and platinum supply are small and unpriced. When 1

ε < φ,
gold and platinum will be safer than levered equity and command a lower risk premium,
while the opposite will be true if 1

ε > φ. Lower values of ε lead to higher risk premia and
volatility for gold and platinum returns, and also imply greater complementarity between
nondurable consumption, gold, and platinum. Barro and Misra (2013) set ε > 1, which
makes gold less risky than unlevered equity. The authors use this mechanism to generate a
low gold risk premium. However, as Wachter (2013) points out, under recursive preferences,
when φ < 1 (in this case, ε > 1) the price-dividend ratio is increasing λt. The same result
holds in my model since gold and platinum supply shocks are unpriced. This means that
under the Barro and Misra (2013) assumption that ε > 1, the model would predict that
gold lease rates fall (gold prices rise) when the probability of a disaster increases, which is
counterfactual in light of Figures 1 and 7. Intuition suggests ε < 1 is more reasonable if we
view gold and platinum as jewellery, since jewellery complements nondurable consumption
but does not substitute for it. Furthermore, ε > 1 results in gold return volatility being too
low because in this case gold becomes a deleveraged consumption claim. In my calibration,
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I fix ε = 1
φ so that all the countercyclical properties of gold and platinum arise through αt

and βt.

Let Pt be the price of a claim to the stream of dividends Dt, and P t+τt be the price of the
asset which pays the single risky dividend Dt+τ and nothing else. No arbitrage implies that
πtP

t+τ
t is a martingale, which implies that the equity price-dividend ratio is given by

Pt
Dt

=

∫ ∞
0

eaφ(τ)+bφ(τ)λt+cφ(τ)ξtdτ = G(λt, ξt). (19)

Similar arguments hold for Pg,t and Px,t, which are the claims to gold and platinum, re-
spectively:

Pg,t
Qg,t

=

∫ ∞
0

eag(τ)+bg(τ)λt+cg(τ)ξtdτ = Gg(λt, ξt)

Px,t
Qx,t

=

∫ ∞
0

eax(τ)+bx(τ)λt+cx(τ)ξt+dx(τ) logZtdτ = Gx(λt, ξt, logZt).

(20)

The equity functions aφ(τ), bφ(τ), cφ(τ), gold functions ag(τ), bg(τ), cg(τ), and plat-
inum functions ax(τ), bx(τ), cx(τ), dx(τ) are given by the solution to systems of ordinary
differential equations described in Appendix A5.

4.5 GP in the Model

While I use the exact log GP ratio in my model simulations, a log-linearization conveys the
economic intuition more clearly.33

In Appendix A6, I show that we can write log-linearized gold (Pg,t) and platinum (Px,t)
prices as

logPg,t = Ag +
1

ε
logCt −

1

ε
logGt + (a2 + b∗g,λ)︸ ︷︷ ︸

<0

λt + b∗g,ξ︸︷︷︸
<0

ξt

logPx,t = Ax +
1

ε
logCt −

1

ε
logGt + (b2 + b∗x,λ)︸ ︷︷ ︸

<0

λt + b∗x,ξ︸︷︷︸
<0

ξt + (b∗x,Z −
1

ε
)︸ ︷︷ ︸

<0

logZt

(21)

where Ag, Ax, b
∗
g,λ, b

∗
g,ξ, b

∗
x,λ, b

∗
x,ξ, b

∗
x,Z are constants described in Appendix A6. Positive

shocks to logCt imply higher service flows and raise gold and platinum prices. The increase
is greater than the increase in consumption itself because of complementarity between non-
durable consumption and gold and platinum service flows (1

ε > 1). High logGt lowers gold
prices since the quantity of gold becomes less scarce, and also lowers platinum prices due

33The exact log GP ratio is given by

logGPt = log
Pg,t
Px,t

= log
Gg(λt, ξt)

Gx(λt, ξt, logZt)

Qg,t
Qx,t

= (a1 − b1) + log
Gg(λt, ξt)

Gx(λt, ξt, logZt)
+ (a2 − b2)λt +

1

ε
logZt.
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to cointegration. Higher logZt means that (all else equal) the quantity of platinum is less
scarce, which also lowers platinum prices. Under my model calibration, strong discount rate
effects imply that, despite a2, b2 > 0, the overall response of gold and platinum to increases
in λt and ξt are negative, so that gold and platinum prices fall as disaster risks increase.

The log GP ratio is the difference between the log gold and platinum prices and is given by

logGPt = log
Pg,t
Px,t

= cons + (
1

ε
− b∗x,Z)︸ ︷︷ ︸
>0

logZt + (a2 − b2 + b∗g,λ − b∗x,λ)︸ ︷︷ ︸
>0

λt + (b∗g,ξ − b∗x,ξ)︸ ︷︷ ︸
>0

ξt.
(22)

Shocks to logCt (which can be thought of as shocks to jewellery demand) affect gold and
platinum prices equally, leaving GP insulated from consumption shocks. Likewise, shocks
to logGt alone also cancel out and only the relative difference in supply logZt matters for
GP. Platinum is more expensive than gold on average because logXt < logGt on average
(platinum is more scarce). When logZt goes up, gold becomes scarce relative to platinum,
which increases GP. In the model, GP is increasing in both λt and ξt.

34 High disaster
probabilities imply high risk premia, which leads to high discount rates and low equity
prices. Since a2 and b2 are positive, the service flows from gold and platinum increase when
disaster probabilities increase, which partially offsets the higher discount rates and cushions
the fall in prices. This works similar to a cash flow effect, where the cash flow represents
gold and platinum rental income. Furthermore, a2 > b2 implies that the higher service
flow is greater for gold relative to platinum, which not only affects the immediate service
flow but also expected future service flow (rental income) through persistence in disaster
probabilities. This means that gold and platinum prices both fall as disaster probabilities
increase, but gold prices fall by less relative to platinum and GP is increasing in the disaster
probabilities. The fact that GP increases in λt and ξt allows the model to generate the
observed return predictability at both long and short horizons.

The logZt term is not priced by the stochastic discount factor but does affect the volatility
and persistence of GP. Stationarity of GP in the model is assured because logZt is stationary,
or in other words, because logGt and logXt are cointegrated. Interestingly, while shocks
to logZt affect GP, they do not affect return predictability, which suggests that controlling
for logZt in the data can potentially lead to even stronger return predictability by GP. I
verify that this indeed holds in the data and discuss the results in the following section.

5 Calibration and Model Simulation Results

My parameter choices are given in Table 13. I have opted for smaller average jump sizes with
an average disaster size of 15%. Barro (2006) uses the dataset of Madison (2003) and found
the average disaster size to be 29%. Barro and Ursua (2008) update Madison (2003) and find
that the average disaster size is about 22%; this disaster distribution is also used in Wachter

34That the GP ratio increases in both λt and ξt is dependent on the calibration. This holds under the
model parameters I use for this model.
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(2013).35 I opt for smaller average disaster sizes in line with evidence from Nakamura,
Steinsson, Barro, and Ursua (2013), who estimate the average permanent impact of disasters
to be about 15%. While the actual probability of these smaller disasters is 5.85%, I opt for
a more conservative calibration of 4%, which is achieved using a ξ̄ = 0.0355 as in Wachter
(2013) along with an average jump size of µλ = 0.03 in the event of a jump in λt. Figure
8 compares my multinomial jump size distribution with smaller average jump sizes to the
distribution used in Barro and Ursua (2008) and Wachter (2013). An important challenge
in calibrating representative investor models is to match the high observed volatility of the
price-dividend ratio. The model places an upper bound on the amount of volatility in the
state variables that can be allowed for solutions to exist (this is clearly seen in the equations
for the Epstein-Zin discount factor in Appendix A5). I fix σξ such that the discriminant in
the solution to bξ is zero, which helps match the high volatility of the price-dividend ratio
and also reduces the number of free parameters. The λt process is calibrated to be less
persistent than ξt.

Table 14 describes the fit of the model to the data. State variables are simulated at a
monthly frequency and aggregated to an annual frequency. The data moments are from
1975-2013. The model matches the low gold risk premium, relatively high gold return
volatility, low Sharpe ratio, and low lease rate. The model-implied gold lease rate is 0.93%,
which compares well to the 1% lease rate in the data. Lease rates in the model are the
convenience yield, which corresponds to the dividend yield. For comparison, I also present
the model 90% confidence intervals for simulation paths in which no disaster occurred.
While these no-disaster intervals are more appropriate to compare against stock and bond
moments (since no disasters have occurred in the recent U.S. data, on which the stock
and bond returns are based), for gold and platinum returns it is more natural to compare
against population moments, since there have been numerous economic disasters from 1975
- 2006 in international markets (using my disaster cutoff) based on the Barro and Ursua
(2008) dataset (including several OECD countries), which can conceivably affect gold and
platinum returns and volatilities. The model explains the expected returns, volatilities and
lease rates for platinum as well, including the high lease rate and high volatility. The model
also accounts for time variation in GP, with the volatility and persistence of GP falling
inside the 90% confidence intervals. The median persistence for all simulations matches
the data estimate nearly perfectly. Following this, I run the below return predictability
regressions using model excess stock returns and GP:

1

h

h∑
i=1

log(Ret+i)− log(Rbt+i) = β0 + β1 log(GPt) + εt+h.

The left hand side is the annualized excess return for one year up through five years ahead,
while the right hand side is the model GP. The results are shown in the top panel of Table 15.
The data estimates fall right in the model confidence intervals, with the data R2 estimates
very close to the median values.36 Thus, the model can explain the observed predictability

35The cutoff in Barro (2006) for a disaster was a 15% peak-to-trough decline in GDP per capita, while
Barro and Ursua (2008) used a cut-off of 10%. To achieve an average disaster size of 15%, my cutoff is 6%.

36It is difficult to decide which, all simulations or no disasters, is most appropriate for the predictability
exercise, since U.S. stock returns were not affected by domestic disasters, while the GP ratio is potentially
affected by international disasters. For completeness, I include both sets of results.
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of returns by GP. Similar to the data, the model delivers very low to negligible dividend
growth predictability, similar to (Wachter (2013)). The model can also account for the
observed relationship between GP and the slope of the implied volatility curve for index
options, as detailed in Appendix A7.

How well have I captured the effect of gold and platinum supply dynamics on GP? Is
there predictability coming from the supply effects (including autocatalyst demand)? The
second panel of Table 15 investigates this issue. I regress GP on logZt inside the model,
and we see that the data estimate falls right inside the 90% interval.37 Since the leading
coefficient on logZt in the model depends on 1

ε , this serves as a further check on the
assumed complementarity (ε < 1) between jewellery (gold and platinum) and nondurable
consumption. Under a calibration where ε > 1 as in Barro and Misra (2013), this regression
in the data results in a coefficient smaller than 1. The second regression in this panel
investigates return predictability by logZt in both the model and the data. In the model,
logZt does not predict returns by construction, although in small samples it is occasionally
possible to spuriously find weak evidence of predictability. Both the population and median
values, however, show that there is no predictability coming from the supply channels. I run
the same regression in the data and find no evidence of predictability through logZt, which
is evidence that the predictability does not come from gold and platinum supply dynamics.

These results for repeated samples of 39 years lead to an interesting finding. Time-variation
in GP over finite samples is affected by logZt, which is not a priced variable in this economy.
The third panel shows return predictability regressions where I control for the effect of logZt,
which adds volatility and persistence to GP without adding predictive power. We see in
this case that the point estimates increase at all horizons, and now the 90% interval for
return predictability by GP does not contain 0. The R2 increase over all horizons quite
dramatically. In the data, we can separately identify logZt and logAt, the aggregate per-
capita stock of platinum used as autocatalysts. Empirically, a regression of GP on logZt
gives a significant, positive coefficient while a regression of GP on logAt gives a significant,
negative coefficient. When logZt is high, platinum is relatively more plentiful (gold more
scarce) so gold is relatively more expensive than platinum. High values of logAt correspond
to high demand for platinum as autocatalysts, which is associated with higher platinum
prices (lower GP). Neither logZt nor logAt predict returns in the data. Controlling for
persistent supply effects, the persistence of GP is lower; the monthy AR(1) coefficient is
0.96, which implies a half-life of about 1.5 years.

6 Conclusion

The risk and return tradeoff is one of the central tenets of asset pricing theory. However, em-
pirically identifying a viable proxy for risk, as manifest through robust return predictability,
cross-sectional pricing, and basic economic intuition, has been largely elusive in the liter-
ature. In this paper, I show that the ratio of gold to platinum prices (GP) proxies for an
important aggregate source of risk in the economy. GP predicts future stock returns in the
time-series, outperforms other predictors proposed in the literature, and GP risk is priced
in the cross-section of stock returns. GP is persistent and significantly correlated with tail

37For the data logZt, I interpolate annual values to monthly values.
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risk measures implied by options markets. An equilibrium model with time-varying tail risk
and shocks to preferences for gold and platinum can quantitatively account for the asset
pricing dynamics of equity, gold, and platinum markets, as well as the time variation and
return predictability of GP. In the model, higher aggregate risk lowers gold and platinum
prices through strong discount rate effects, although gold prices fall by less due to higher
expected rental income, which is consistent with the empirical evidence. I achieve these
results by modeling the countercyclical component of gold and platinum service flows in
reduced-form. The micro-foundations of this mechanism are an important open question,
which I leave for fruitful future research.
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Appendix

A1. Econometric Inference for Predictive Regressions

Stambaugh (1999) shows that predictive regressions using persistent predictors are biased
in finite samples. The standard return predictability regression is:

ret+1 = α+ βxt + εt+1

where ret+1 = log
(
Pt+1+Dt+1

Pt

)
− rft is the log excess return from time t to time t+ 1, and xt

is some predictor known at time t such as the log price-dividend ratio or the log GP ratio.
If xt is a persistent predictor, we can model it as an AR(1) process:

xt+1 = µ+ ρxt + ut+1

For predictors such as the price-dividend ratio, cov(ε, u) 6= 0, since a positive return shock
typically means prices increased, which also increases the price-dividend ratio. Letting
γ = cov(εt+1,ut+1)

var(ut+1) , the bias in the estimate of the predictive beta can be written as:

E[β̂ − β] = γ E[ρ̂− ρ]︸ ︷︷ ︸
≈− (1+3ρ)

T
<0

(23)

The degree of bias is proportional to γ, which can be estimated as the slope of the regression
of residuals from the predictive regression on the residuals from the AR(1) regression of the
predictor variable. For the price-dividend ratio, the correlation between ε and u in the
data is 0.94, while it is only -0.17 for the GP ratio. Also note that there is no mechanical
correlation between the residuals as is the case for the PD ratio. More formally, I project ε̂t
on ût and estimate γ̂ to be 10.55 for the PD ratio, whereas for the GP ratio γ̂ is only -1.78.
Evaluating at the maximum bias (ρ = 1) estimates an upper bound of -0.090 for PD ratio
bias, which is enough to change the sign, whereas it is only 0.015 for the GP ratio, which
is small compared to the predictive beta of 0.237. The evidence suggests that the GP ratio
predictability is not driven by finite sample bias.

Predictor persistence also potentially affects the size of tests (see e.g., Torous et al., 2004).
For δ = corr(ε, u), the test statistic for β has a non-standard limiting distribution:

tβ =⇒ δτρ +
√

(1− δ2) z

where τρ is non-normal and z is normal. I follow Elliot and Stock (1994) and use Monte
Carlo simulations to asses the magnitude of these size distortions. I run 100,000 simulations
of length equal to my sample size at a monthly frequency by simulating the above dynamics,
evaluating all parameters using their sample values. When δ = 0.94 (which is the case for the
PD ratio), a 5% test has a true rejection rate of 17%. For the GP ratio, where δ = −0.167,
a 5% test has a true rejection rate of 6%, which is very close to the true size. Since the
absolute value of δ is small in the case of the GP ratio, the significance of the predictability
tests is not affected by potential size distortions due to predictor persistence.
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A2. Realized Utility Gains

I calculate realized utility gains for an investor who maximizes mean-variance preferences
given a risk aversion of γ.38 Given forecasts of expected returns and stock market volatility,
the investor optimally allocates between stocks which earn the market return and bonds
which earn the risk-free rate. The allocation to stocks for period t + 1 is formed in period
t. Using the historical average as the estimate of expected return, the allocation is:

w1,t =

(
1

γ

)(
rt+1

σ̂2
t+1

)
Using the GP ratio, the allocation to stocks is given by:

w2,t =

(
1

γ

)(
r̂t+1

σ̂2
t+1

)
For both portfolio choice problems, σ̂2

t+1 is the forecasted variance of stock returns over the
next month, which I estimate following Li et al. (2013) by using a ten-year trailing window
of monthly stock returns. The average utility levels for the investor over the out-of-sample
period are given by:

U1 = µ1 −
1

2
γσ̂2

1

U2 = µ2 −
1

2
γσ̂2

2

(24)

where µi is the sample mean of the return for the portfolio formed based on strategy i,
where strategy 1 uses the historical average and strategy 2 uses the GP ratio. We can
view the utility level as a certainty equivalent return for an investor with these preferences
(Kandel and Stambaugh (1996)).39 The utility gain of using the GP ratio over the historical
average in percentage terms is given by 1200 × (U2 − U1), which can be thought of as the
management fee that an investor with mean-variance preferences would be willing to pay
to access the GP ratio to generate return forecasts. In the data, the GP ratio produces
a large, positive utility gain of 4.53% while other popular forecasting variables offer much
lower or weakly negative utility gains.40

A3. Stationary Mean of λt

I compute the stationary mean of the λt process. The process is given by:

dλt = κλ(ξt − λt)dt+ σλ
√
λtdW

λ
t + Jλt dN

λ
t

which implies that

E [λt]

dt
= κλ(n(t)−m(t)) + µλρ0 + µλρ1m(t)

E [ξt]

dt
= κξ ξ̄ − κξn(t)

(25)

38Following the literature, I set γ = 3.
39Following Campbell and Thompson (2008), I constrain the allocation to stocks to be between 0% and

150%.
40The results for other forecasting variables are similar to the results in Li et al. (2013).
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where m(t) = E [λt] and n(t) = E [ξt], with n(t) → ξ̄. Solving the ordinary differential
equation for m(t) implied by (25) results in the stationary mean of λt:

E [λ∞] = lim
t→∞

m(t) =
κλξ̄ + µλρ0

κλ − µλρ1
(26)

with necessary conditions κλ > µλρ1 and κλξ̄ + µλρ0 > 0, which are satisfied under the
model calibration.

A4. Gold and Platinum Mine Production

The data for world gold mine production is from the U.S. Geological Survey (USGS) Annual
Mineral Yearbook reports. The data for world platinum mine production is from Johnson
Matthey. The data is annual from 1975 to 2013. The Johnson Matthey data details both
annual platinum mine production as well as autocatalyst demand and salvage. I use as
my measure of the increment to the platinum stock the total quantity mined in a given
year minus the autocatalyst demand net of salvage. Thomas and Boyle (1986) estimate the
initial world above-ground stock of gold at the end of 1974 to be 84,000 tonnes (2,700 million
troy oz). There is not a consensus estimate of world above-ground platinum stock (net of
autocatalysts) that I am aware of, although during the 1975 to 2013 period in the data,
annual platinum production (net of autocatalyst demand) is consistently approximately
4.5% of gold production with very little variation each year. Annual gold production is
approximately 2,000 tonnes and platinum production is approximately 90 tonnes. Therefore,
I estimate the initial stock of platinum to be 3,780 tonnes.41 Using market prices at the
end of 2013, this puts the total dollar value of all gold in the world at $6.4 trillion, and
the value of all platinum in the world (not found in autocatalysts) at just over $300 billion.
I proxy for population growth using U.S. annual population growth data provided by the
U.S. Census Bureau.42

Panel A of Table 16 describes the log growth rate of the aggregate per-capita stock of gold
and platinum. Gt is the per-capita stock of gold, and Xt is the per-capita stock of platinum.
The mean per-capita log growth rate of the aggregate gold stock is 0.72% per year, and
the growth rate is very smooth: the standard deviation is only 0.21%. The platinum stock
displays similar dynamics, with an average growth rate of 0.71% and a standard deviation
of 0.29%. Furthermore, the means are close to the medians.

Given the stable relationship between gold and platinum production each year, I look for
evidence of cointegration between the log per-capita stock of gold and platinum. Two

processes logXt and logGt are cointegrated if there exists a vector β such that β′
[
logXt

logGt

]
is a stationary process. Panel B shows that logGt and logXt are unit root processes:
an augmented Dickey and Fuller (1979) test fails to reject the null of a unit root at all

41Is this a reasonable estimate? While the discovery of platinum is often credited to Antonio de Ulloa in
1735, it was not until Hans Merensky identified large economic deposits of platinum in the Bushveld Igneous
Complex of South Africa in 1924 that large scale platinum mining took place (Cawthorn (1999)). My results
are robust to reasonable perturbations of the initial estimate.

42I use U.S. population growth as opposed to world population growth to be consistent with the consump-
tion data in the calibration, which uses U.S. per-capita consumption data.
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lags 1 through 5. However, the process logZt = logXt − logGt appears to be stationary.
I estimate the cointegration vector using Dynamic Least Squares (DLS) as suggested by
Stock and Watson (1993)in Panel C of Table 16:

logXt = β0 + βG logGt +

k∑
i=−k

γi∆ logGt−i + εt (27)

for k = 1, 2, 3. The estimates of βG are significant, ranging from 0.99 to 1.04, and in all
cases a 95% confidence interval includes 1, which suggests that the cointegration vector is
not statistically different from [1,−1].

As further evidence of cointegration, I estimate the joint system Yt =
[
logXt logGt

]′
in a

Engle and Granger (1987) Vector Error-Correction Model (VECM):

∆Yt = µ+ ΠYt−1 +

p−1∑
j=1

Γj∆Yt−j + εt (28)

and conduct Johansen (1988) rank tests for cointegration based on the rank of the matrix
Π. The null hypothesis for the rank test is that there are no more than r cointegrating
relationships, which implies that the remaining K − r eigenvalues of Π must be zero where
K is the dimension of Yt. I follow Johansen (1995) and apply an iterative procedure which
starts testing at r = 0 and accepts as r̂ (number of cointegrating relationships) the first
value of r for which the test fails to reject the null. Table 16 Panel D shows the results
for the VECM with 1 through 4 lags. We see that for the estimation with 3 lags (which is
the optimal lag length as chosen by the Akaike Information Criterion), we reject the null of
zero cointegrating relationships, but fail to reject the null of 1 cointegrating relationship.43

Figure 9 plots the demeaned logXt and logGt processes, where we can clearly see that gold
and platinum supply seem to track each other over time.

A5. Model Solution

The equations for the Epstein-Zin discount factor coefficients are given by:

a =
(1− γ)(1

2(1− γ)σ2
c )

δ
+
bξκξ ξ̄ + ρ0Eη

[
ebλJ

λ
t − 1

]
δ

0 =
1

2
σ2
λbλ

2 − (κλ + δ)bλ + ρ1Eη
[
ebλJ

λ
t − 1

]
+ Ev

[
e(1−γ)Jct − 1

]
bξ =

kξ + δ

σξ2
−

√(
kξ + δ

σξ2

)2

− 2bλκλ
σξ2

.

In general, I can allow λλt = ρ0 + ρ1λt. Equity price-dividend ratio is given by:

Pt
Dt

=

∫ ∞
0

exp(aφ(τ) + bφ(τ)λt + cφ(τ)ξt)dτ

43The estimated βG in the VECM from Π = αβ′ has a 95% confidence interval of [-1.45,-1.04].
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with aφ(τ), bφ(τ), cφ(τ) given by the ODEs:

a′φ(τ) = cφ(τ)κξ ξ̄ + φḡc +
1

2
φ2σ2

c − δ − (ḡc +
1

2
σ2
c )

+ γ(1− φ)σ2
c + ρ0Eη

[
e(bλ+bφ(τ))Jλt − ebλJλt

]
b′φ(τ) =

1

2
σ2
λbφ(τ)2 + (bλσ

2
λ − κλ)bφ(τ) + Ev

[
e(φ−γ)Jct − e(1−γ)Jct

]
+ ρ1Eη

[
e(bλ+bφ(τ))λt − ebλJλt

]
c′φ(τ) =

1

2
σ2
ξcφ(τ)2 + (bξσ

2
ξ − κξ)cφ(τ) + bφ(τ)κλ

with initial conditions aφ(0) = bφ(0) = cφ(0) = 0.

Let P t+τg,t be the price of zero-coupon gold which pays Qg,t+τ and nothing else, and let

P t+τx,t be the analogous claim for platinum. Gold and platinum price-dividend ratios are

solved by noting that πtP
t+τ
g,t and πtP

t+τ
x,t are martingales, so the sum of the drift and jump

compensator must equal zero.

The gold price-dividend ratio is given by:

Pg,t
Qg,t

=

∫ ∞
0

exp(ag(τ) + bg(τ)λt + cg(τ)ξt)dτ

with ag(τ), bg(τ), cg(τ) given by the ODEs:

a′g(τ) = cg(τ)κξ ξ̄ +
1

ε

[
ḡc − µg +

1

2ε
(σ2
c + σ2

g)

]
− δ − (ḡc +

1

2
σ2
c )

+ γ(1− 1

ε
)σ2
c + ρ0Eη

[
e(a2+bλ+bg(τ))Jλt − ebλJλt

]
b′g(τ) =

1

2
σ2
λbg(τ)2 +

[
(a2 + bλ)σ2

λ − κλ
]
bg(τ)

+
1

2
σ2
λa

2
2 + a2(bλσ

2
λ − κλ) + Ev

[
e( 1

ε
−γ)Jct − e(1−γ)Jct

]
+ ρ1Eη

[
e(a2+bλ+bg(τ))λt − ebλJλt

]
c′g(τ) =

1

2
σ2
ξcg(τ)2 + (bξσ

2
ξ − κξ)cg(τ) + (a2 + bg(τ))κλ

with initial conditions ag(0) = bg(0) = cg(0) = 0.

The platinum price-dividend ratio is given by:

Px,t
Qx,t

=

∫ ∞
0

exp(ax(τ) + bx(τ)λt + cx(τ)ξt + dx(τ) logZt)dτ
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with ax(τ), bx(τ), cx(τ), dx(τ) given by the ODEs:

a′x(τ) = cx(τ)κξ ξ̄ +
1

ε

[
ḡc − µg +

1

2ε
(σ2
c + σ2

g + σ2
z)

]
− δ − (ḡc +

1

2
σ2
c )

+ γ(1− 1

ε
)σ2
c +

1

2
σ2
zdx(τ)2 + dx(τ)(θzµz −

1

ε
σ2
z)

− 1

ε
θzµz + ρ0Eη

[
e(b2+bλ+bx(τ))Jλt − ebλJλt

]
b′x(τ) =

1

2
σ2
λbx(τ)2 +

[
(b2 + bλ)σ2

λ − κλ
]
bx(τ)

+
1

2
σ2
λb

2
2 + b2(bλσ

2
λ − κλ) + Ev

[
e( 1

ε
−γ)Jct − e(1−γ)Jct

]
+ ρ1Eη

[
e(b2+bλ+bx(τ))λt − ebλJλt

]
c′x(τ) =

1

2
σ2
ξcx(τ)2 + (bξσ

2
ξ − κξ)cx(τ) + (b2 + bx(τ))κλ

d′x(τ) = −θzdx(τ) + θz
1

ε

with initial conditions ax(0) = bx(0) = cx(0) = dx(0) = 0.

A6. Log-Linearized Gold and Platinum Prices

Gold price-dividend ratios are given by

Pg,t
Qg,t

= Gg(λt, ξt) =

∫ ∞
0

eag(τ)+bg(τ)λt+cg(τ)ξtdτ

Let g(λt, ξt) = logGg(λt, ξt). Given fixed λ∗, ξ∗, Taylor expansion implies that

g(λ, ξ) ≈ g(λ∗, ξ∗) +
∂g

∂λ

∣∣∣∣
(λ∗,ξ∗)

(λt − λ∗) +
∂g

∂ξ

∣∣∣∣
(λ∗,ξ∗)

(ξt − ξ∗)

where we have that

∂g

∂λ

∣∣∣∣
(λ∗,ξ∗)

=
1

G(λ∗, ξ∗)

∫ ∞
0

bg(τ)eag(τ)+bg(τ)λt+cg(τ)ξtdτ = b∗g,λ

∂g

∂ξ

∣∣∣∣
(λ∗,ξ∗)

=
1

G(λ∗, ξ∗)

∫ ∞
0

cg(τ)eag(τ)+bg(τ)λt+cg(τ)ξtdτ = b∗g,ξ.

This implies that Gg(λt, ξt) ≈ Gg(λ∗, ξ∗)eb
∗
g,λ(λt−λ∗)+b∗g,ξ(ξt−ξ

∗), and I set λ∗ and ξ∗ equal to

the stationary means of λt and ξt, respectively. Since Qg,t = ea1+a2λte
1
ε

logCt− 1
ε

logGt , This
implies that log-linearized gold prices are given by

logPg,t = Ag +
1

ε
logCt −

1

ε
logGt + (a2 + b∗g,λ)λt + b∗g,ξξt.

Similarly, log-linearized platinum prices are given by

logPx,t = Ax +
1

ε
logCt −

1

ε
logGt + (b2 + b∗x,λ)λt + b∗x,ξξt + (b∗x,Z −

1

ε
) logZt.

The constants Ag and Ax only affect the level of GP and are mainly determined by the
scaling term a1 − b1.
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A7. Implied Volatilities in the Model

While the model implies that the GP ratio captures time-variation in the tail risk measures
λt and ξt, can it formally reconcile the empirical evidence that the GP ratio can explain the
slope of the implied volatility curve for equity index options? To investigate this, I price
options in the model following Eraker and Shaliastovich (2008), Nowotny (2011), and Seo
and Wachter (2014). Since the model is in the class of affine jump diffusion models studied
by Duffie et al. (2000), the solution for the discounted characteristic function is known up
to a system of differential equations.The risk-neutral dynamics of the state variables are
also in the class of affine jump diffusions and we can derive the discounted characteristic
function where Xt is a vector of the state variables:

EQ
t

[
e−
∫ t+τ
t rfs dseuXt+τ

]
= eα(τ)+β(τ)Xt (29)

and α(τ), β(τ) are the solutions to a system of ordinary differential equations as given in
Duffie et al. (2000). Nowotny (2011) describes the change of measure in detail.

I approximate the price-dividend ratio using a Taylor approximation following Seo and
Wachter (2014), who also show that the approximation is very accurate when the intertem-
poral elasticity of substitution is equal to one. This allows me to express the price-dividend
ratio as:

G(λt, ξt) ≈ G(λ∗, ξ∗)eb
∗
φ,λ(λt−λ∗)+b∗φ,ξ(ξt−ξ

∗) (30)

for constants λ∗ and ξ∗ which I set equal to the long-run mean of λt and ξt, respectively.
Let A0 = logG(λ∗, ξ∗)− b∗φ,λλ∗− b∗φ,ξξ∗. We can express the price of equity at time t+ τ as:

Pt+τ = eA0+d′Xt+τ , for d = [φ, b∗φ,λ, b
∗
φ,ξ]
′

Following Carr and Madan (1999), Lewis (2000), and Eraker and Shaliastovich (2008), I
price options using Fourier transform methods. The forward and inverse Fourier transforms
are:

f̂(z) =

∫ ∞
−∞

f(x)eizxdx

f(x) =
1

2π

∫ izi+∞

izi−∞
f̂(z)e−izxdz

where i2 = −1 and zi denotes the imaginary part of the complex variable z. The payoff of
a European put option is given by f(x) = max(K − ex, 0), whose inverse transform is given
by:

f̂(z) = −K Kiz

z2 − iz
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The price of a European put option is a function of the state variables Xt, strike price K,
and time to maturity τ , and can be computed as:

P (Xt,K, τ) = EQ
t

[
e−
∫ t+τ
t rfs ds max(K − eA0+d′Xt+τ , 0)

]
=
−K
2π

∫ izi+∞

izi−∞
eiziA0EQ

t

[
e−
∫ t+τ
t rfs dse−izdXt+τ

]( Kiz

z2 − iz

)
dz

=
−K
2π

∫ izi+∞

izi−∞
eiziA0eα(τ)+β(τ)Xt

(
Kiz

z2 − iz

)
dz

(31)

with α(0) = 0, β(0) = −izd, and zi < 0. I normalize strike price and option price by Pt so
strike prices can be interpreted as moneyness. Given put option prices, I back out Black
and Scholes (1973) implied volatilities using the endogenous dividend yield 1

G(λt,ξt)
and set

the risk-free rate equal to the government bond rate in the model.

Figure 10 plots the difference between the implied volatility of a OTM put option with
0.95 moneyness and an ATM put option with moneyness equal to 1, as a function of the
state variables λt and ξt. The options have 1 month to maturity as in the data. This
figure is quite informative because it gives intuition about how λt and ξt affect return
volatility (endogenously determined) and tail risk in the model.44 In a one-factor model,
where λt reverts to a constant, both volatility and disaster risk are controlled by the same
variable. The combined result is that when λt increases, this increases the average level of
volatility in addition to the likelihood of negative jumps. Option maturities are typically
short (measured in months, for most liquid equity index options), and at this horizon the
increase in volatility level is actually stronger than the increase in tail risk, resulting in the
implied volatility slope being a decreasing function of λt in the one-factor model.

In the two-factor model, ξt controls the level of volatility more than it affects the likelihood
of jumps, which is directly controlled by λt. Therefore, we see that the implied volatility
slope is increasing in λt, and particularly fast when ξt is low. Similarly, the implied volatility
slope decreases in ξt, and especially quickly when λt and ξt are low. As shown earlier, GP
loads positively on both λt and ξt. For computational tractability, I first compute the
implied volatility slope over a fine mesh of the state variables (λt, ξt). I then simulate
repeated samples of length equal to the data counterpart (17 years). The model implied
volatility slope is calculated by interpolating the mesh surface, and regressed on GP in the
model. We see a coefficient as large as the data estimate in over 20% of sample paths.
Staying within the class of rare disaster models, the two-factor model is necessary to allow
the disaster intensity and the implied volatility slope to be positively related.

44Seo and Wachter (2014) offer a detailed discussion of this topic.
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Tables

Table 1: Summary Statistics for Predictors
Table 1 gives descriptive statistics for the log GP ratio and other known stock return predictors. Monthly data
from 1975 - 2013. logGPt is the log GP ratio, computed as the log of the ratio of monthly gold to platinum fixing
prices. Monthly prices are the average of daily prices. Prior to April 1990, I use monthly average dealer prices for
platinum. Gold fixing prices are from the LBMA, and platinum fixing prices are from the LPPM. Platinum dealer
prices are from the USGS. logPDt is the log price-dividend ratio for the CRSP value-weighted index. logPEt is
the cyclically adjusted price-earnings ratio from Robert Shiller’s website. logPNYt is the net payout yield from
Michael Roberts’ website, available until December 2010. ICCt is the implied cost of capital from Li et al. (2013),
available from January 1977. DFSPt is the default spread, calculated as the difference between the yield of Baa
and Aaa corporate bonds; the data is from FRED. TMSPt is the term spread, calculated as the difference in
yield between a 10 year constant maturity U.S. government bond and a 3 month constant maturity U.S. treasury
bill. The data is from FRED. INFLt is the growth rate of the consumer price index from the FRED. CAYt is
the consumption-wealth ratio from Lettau and Ludvigson (2001) and the data is from Martin Lettau’s website,
available until March 2013. The data is quarterly, interpolated to a monthly frequency. V RPt is the variance
premium, calculated as the difference between the squared VIX index and annualized realized volatility over the
past month. The VIX data is from the CBOE website, and the high-frequency realized variance is from Hao
Zhou’s website, available from January 1990. ADF is the augmented Dickey and Fuller (1979) test statistic, and
p-val is its p-value. The number of lags in the ADF test is selected based on the Ng and Perron (1995) sequential t-test.

Variable Mean Std. Dev. AR(1) ADF p-val. Min. Max. Corr. GPt Start End

logGPt -0.233 0.266 0.981 -2.872 0.049 -0.850 0.299 1.000 1975.1 2013.12

logPDt 3.608 0.447 0.994 -1.238 0.657 2.764 4.510 -0.588 1975.1 2013.12

logPEt 2.878 0.474 0.995 -1.227 0.662 1.893 3.789 -0.539 1975.1 2013.12

logPNYt 2.247 0.249 0.979 -2.276 0.180 1.700 3.235 -0.461 1975.1 2010.12

ICCt 7.445 2.694 0.949 -2.759 0.064 -0.040 13.850 0.339 1977.1 2013.12

DFSPt 1.126 0.474 0.961 -4.252 0.001 0.550 3.380 0.336 1975.1 2013.12

TMSPt 1.819 1.261 0.952 -3.458 0.009 -2.650 4.420 0.232 1975.1 2013.12

INFLt 0.322 0.323 0.643 -4.574 0.000 -1.787 1.420 0.027 1975.1 2013.12

CAYt 0.003 0.018 0.995 -1.798 0.381 -0.035 0.034 0.258 1975.1 2013.03

V RPt* 0.022 0.024 0.258 -5.700 0.000 -0.217 0.140 0.051 1990.1 2013.12
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Table 2: U.S. Stock Return Predictability

Table 2 shows return predictability regressions for the U.S. equity market, January 1975 to December 2013, 468
monthly observations. The regression is:

12

h

h∑
i=1

logRt+i − logRft+i = β0 + β1 logGPt + εt+h

The left hand variable is the excess log return of the CRSP value-weighted index, annualized by the horizon h. The
right hand predictor is logGP . Returns are calculated from overlapping monthly data, and t-statistics are based
on Newey and West (1987) HAC robust standard errors. The bottom panel estimates a VAR following Hodrick (1992).

VW Excess Returns 1m 3m 6m 1y 2y 3y 4y 5y

OLS Regression

logGPt 0.237 0.246 0.260 0.243 0.202 0.161 0.145 0.129

t-stat. (2.82) (3.14) (2.94) (2.76) (2.67) (3.12) (4.11) (4.77)

Radj
2 (%) 1.21 4.23 9.55 16.57 23.60 23.57 27.80 31.66

VAR Estimation

logGPt 0.236 0.234 0.228 0.215 0.192 0.172 0.155 0.140

t-stat. (2.75) (2.89) (2.82) (2.66) (2.69) (2.62) (2.61) (2.60)

RV AR
2 (%) 1.27 3.46 6.34 10.89 16.43 18.99 19.84 19.73

Table 3: Univariate Return Predictability

Table 3 shows univariate return predictability regressions for the U.S. equity market, controlling for other known
predictors. January 1975 to December 2013, 468 monthly observations. The regression is:

12

h

h∑
i=1

logRt+i − logRft+i = β0 + β1Xt + εt+h

The left hand variable is the excess log return of the CRSP value-weighted index return, annualized by the horizon
h. The right hand predictor is logGP . Returns are calculated from overlapping monthly data, and t-statistics use
Newey and West (1987) HAC robust standard errors. Radj

2 is the adjusted R2 statistic. Xt is a return predictor,
including logGP .

1 month horizon 3 month horizon 1 year horizon 5 year horizon

Coef. t-stat. R2
adj Coef. t-stat. R2

adj Coef. t-stat. R2
adj Coef. t-stat. R2

adj

logGPt 0.237 2.82 1.21 0.246 3.14 4.23 0.243 2.76 16.57 0.129 4.77 31.66

logPDt -0.067 -1.19 0.10 -0.066 -1.39 0.68 -0.065 -1.30 3.15 -0.064 -2.94 22.12

logPEt -0.045 -0.86 -0.05 -0.045 -1.00 0.24 -0.050 -1.04 2.01 -0.049 -1.99 14.70

logPNYt -0.096 -0.84 -0.03 -0.084 -0.86 0.21 -0.122 -1.29 3.35 -0.095 -3.52 14.31

ICCt 0.019 1.98 0.74 0.014 1.75 1.22 0.015 2.33 6.08 0.013 2.86 22.35

DFSPt 0.013 0.18 -0.20 0.016 0.25 -0.16 0.035 0.88 0.90 0.032 1.07 5.23

TMSPt 0.015 0.77 -0.08 0.013 0.77 0.04 0.025 1.80 3.77 0.017 2.15 12.41

INFLt -0.071 -0.87 -0.02 -0.008 -0.10 -0.21 -0.081 -1.93 2.48 -0.013 -0.68 0.18

CAYt 0.566 0.46 -0.18 0.743 0.66 -0.03 1.158 1.10 1.49 1.970 3.43 23.03

V RPt* 5.011 4.32 5.12 4.370 6.27 11.12 1.265 2.60 2.95 -0.487 0.99 1.90
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Table 4: Bivariate Return Predictability: Short Horizon

Table 4 shows bivariate return predictability regressions for the U.S. equity market for 1 and 3 month horizons,
controlling for other known predictors. January 1975 to December 2013, 468 monthly observations. The regression is:

12

h

h∑
i=1

logRt+i − logRft+i = β0 + β1 logGPt + β2Xt + εt+h

For the monthly frequency, h = 1. The left hand variable is the excess logarithmic return of the CRSP value-weighted
index return annualized by the horizon h. The right hand predictors are logGP and another return predictor Xt.
Returns are calculated from overlapping monthly data, and t-statistics use Newey and West (1987) HAC robust
standard errors. Radj

2 is the adjusted R2 statistic.

1 month horizon 3 month horizon

GP GP GP GP
Coef. t-stat. Coef. t-stat. R2

adj Coef. t-stat. Coef. t-stat. R2
adj

logPDt 0.262 2.71 0.026 0.40 1.03 0.278 3.25 0.032 0.66 4.16

logPEt 0.274 2.94 0.038 0.68 1.09 0.288 3.45 0.043 0.98 4.33

logPNYt 0.232 2.44 0.019 0.16 0.80 0.250 2.65 0.040 0.39 3.54

ICCt 0.180 1.91 0.013 1.24 1.25 0.220 2.37 0.007 0.72 4.12

DFSPt 0.258 2.81 -0.036 -0.47 1.09 0.267 3.00 -0.035 -0.52 4.28

TMSPt 0.233 2.60 0.004 0.18 1.01 0.245 2.82 0.001 0.03 4.02

INFLt 0.239 2.88 -0.077 -0.91 1.22 0.246 3.17 -0.014 -0.17 4.04

CAYt 0.241 2.64 -0.345 -0.26 0.99 0.250 3.03 -0.201 -0.18 4.03

V RPt* 0.265 2.79 4.850 4.25 6.91 0.304 3.54 4.177 6.96 18.49
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Table 5: Bivariate Return Predictability: Long Horizon

Table 4 shows bivariate return predictability regressions for the U.S. equity market for 1 and 5 year horizons, controlling
for other known predictors. January 1975 to December 2013, 468 monthly observations. The regression is:

12

h

h∑
i=1

logRt+i − logRft+i = β0 + β1 logGPt + β2Xt + εt+h

For the monthly frequency, h = 1. The left hand variable is the excess logarithmic return of the CRSP value-weighted
index return annualized by the horizon h. The right hand predictors are logGP and another return predictor Xt.
Returns are calculated from overlapping monthly data, and t-statistics use Newey and West (1987) HAC robust
standard errors. Radj

2 is the adjusted R2 statistic.

1 year horizon 5 year horizon

GP GP GP GP
Coef. t-stat. Coef. t-stat. R2

adj Coef. t-stat. Coef. t-stat. R2
adj

logPDt 0.279 3.06 0.036 0.85 17.03 0.102 1.98 -0.024 -0.69 33.27

logPEt 0.280 3.05 0.037 0.95 17.26 0.118 2.26 -0.010 -0.29 31.92

logPNYt 0.231 2.11 -0.008 -0.08 14.76 0.113 2.92 -0.038 -0.91 33.35

ICCt 0.219 2.15 0.008 1.02 17.79 0.116 5.04 0.009 2.02 44.49

DFSPt 0.252 2.72 -0.014 -0.32 16.54 0.127 3.07 0.004 0.15 31.57

TMSPt 0.228 2.47 0.014 0.84 17.57 0.116 4.96 0.011 1.96 36.51

INFLt 0.248 2.92 -0.089 -1.94 19.65 0.131 4.97 -0.020 -1.40 32.57

CAYt 0.241 2.71 0.131 0.16 16.40 0.100 4.11 1.172 1.89 38.09

V RPt* 0.319 3.13 1.028 2.31 30.93 0.174 4.66 -0.579 -1.31 44.12
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Table 6: Out-of-Sample Tests

Table 6 shows results for out-of-sample testing, using the out-of-sample R2 statistic. Let T be the sample length, and
m equal to the size of the initial training window (for expanding regressions) or the size of the training window (for
rolling regressions). The Out-of-Sample R2 is given by:

R2
OS = 1−

T−m∑
k=1

(rem+k − r̂em+k)2

T−m∑
k=1

(rem+k − rem+k)2

For expanding window regressions, the first out-of-sample forecast r̂em+1 is based on parameters estimated using
observations from 1 tom, the second out-of-sample forecast r̂em+2 is based on parameters estimated using observations
1 to m + 1, and so on. For expanding window regressions, the historical average excess return ret+1 is calculated
as the average excess return from time 1 to time t. For rolling window regressions, the first out-of-sample forecast
r̂em+1 is based on parameters estimated using observations from 1 to m, the second out-of-sample forecast r̂em+2 is
based on parameters estimated using observations 2 to m+1, and so on. For rolling window regressions, the historical
average excess return is calculated as the average excess return from over the last m periods, where m is the window
length. I consider windows of length 120 months or 180 months to estimate betas, and predict the return in the next
month. The In-Sample R2 is the adjusted R2. The p-values are calculated using the adjusted-MSPE statistic of Clark
and West (2007) given by:

ft+1 = (rt+1 − rt+1)2 −
[
(rt+1 − r̂t+1)2 − (rt+1 − r̂t+1)2

]
which is regressed against a constant and the test is a one-sided test.

In-Sample (%) Out-of-Sample (%)

Rolling Expanding

Horizon 120m p-val 180m p-val 120m p-val 180m p-val

1m 1.21 -1.46 0.315 1.44 0.018 0.88 0.033 1.35 0.028

3m 4.23 3.95 0.010 8.28 0.002 4.59 0.009 6.18 0.008

6m 9.55 14.39 0.002 18.29 0.001 10.89 0.010 13.39 0.010

1y 16.57 23.02 0.009 29.37 0.007 19.31 0.021 21.35 0.024

2y 23.60 30.98 0.044 37.28 0.030 25.64 0.041 26.02 0.045

3y 23.57 22.08 0.069 29.30 0.027 23.56 0.033 24.51 0.029

4y 27.80 24.03 0.047 31.39 0.010 29.36 0.008 29.69 0.004

5y 31.66 21.09 0.057 31.88 0.010 33.60 0.010 34.37 0.003
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Table 7: International Markets Return Predictability

Table 7 shows return predictability regressions for international equity markets, January 1975 to December 2013, 468
monthly observations. The regression is:

12

h

h∑
i=1

logRt+i − logRft+i = β0 + β1 logGPt + εt+h

In Panel A, the left hand variable is the excess log capital gain on the MSCI World Index, annualized by the horizon
h. The index is calculated in U.S. dollars and the risk-free rate is the U.S. treasury bill rate. Panel B presents the
regression results for individual countries, using the respective MSCI country indices denominated in local currency.
The risk-free rate for the U.K is the 3-month U.K Treasury rate from FRED. The risk-free rate for Switzerland is
the 3-month Swiss franc interbank rate. The risk-free rate for Japan is the interest rate on Japanese Government
Treasury bills from FRED. The risk-free rate for Sweden is the 3-month Swedish Treasury rate from FRED from 1982
onwards. Prior to 1982, I use the historical short-term Swedish interest rates from the Sveriges Riksbank website.
Newey and West (1987) HAC robust standard errors.

World Excess Returns 1m 3m 6m 1y 3y 5y

Panel A - World Portfolio

logGPt 0.183 0.200 0.214 0.202 0.140 0.111

t-stat. (2.15) (2.22) (2.02) (1.88) (1.94) (2.52)

Radj
2 (%) 0.67 2.62 5.88 9.97 14.91 21.50

Panel B - Individual Countries

United Kingdom

logGPt 0.266 0.239 0.232 0.213 0.156 0.105

t-stat. (3.05) (3.30) (3.02) (2.70) (2.90) (4.41)

Radj
2 (%) 1.19 3.46 7.34 14.15 26.00 25.52

Switzerland

logGPt 0.196 0.216 0.240 0.236 0.166 0.129

t-stat. (2.29) (2.50) (2.45) (2.23) (2.01) (2.61)

Radj
2 (%) 0.71 2.56 6.24 11.28 16.61 19.73

Japan

logGPt 0.186 0.207 0.221 0.212 0.163 0.148

t-stat. (1.74) (1.78) (1.75) (1.67) (1.44) (1.70)

Radj
2 (%) 0.39 1.72 3.74 6.57 10.34 15.36

Sweden

logGPt 0.391 0.427 0.427 0.367 0.190 0.132

t-stat. (2.72) (3.00) (2.69) (2.34) (1.82) (2.70)

Radj
2 (%) 1.54 5.08 8.88 11.51 10.62 11.96
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Table 8: Predicting Dividend Growth

Table 8 shows dividend growth predictability regressions, January 1975 to December 2013, 468 monthly observations.
The regression in Panel A is:

12

h

h∑
i=1

∆dt+i = β0 + β1 logGPt + εt+h

The regression in Panel B is:

12

h

h∑
i=1

∆et+i = β0 + β1 logGPt + εt+h

∆dt is the annualized log dividend growth rate calculated from the CRSP value-weighted index, annualized by the
horizon h. ∆et is the annualized log earnings growth rate calculated from the earnings data on Robert Shiller’s
website. The CPI used to deflate dividends is from FRED. Annual dividend growths are calculated from overlapping
monthly data, and t-statistics use Newey and West (1987) HAC robust standard errors.

Panel A - Real Dividend Growth 1y 2y 3y 4y 5y

logGPt 0.018 0.027 0.028 0.023 0.014

t-stat. (0.39) (0.63) (0.74) (0.62) (0.51)

R2 (%) 0.08 0.41 0.77 0.89 0.57

Panel B - Real Earnings Growth 1y 2y 3y 4y 5y

logGPt 0.371 0.199 0.121 0.100 0.057

t-stat. (1.31) (1.06) (0.93) (1.12) (1.04)

R2 (%) 5.08 3.61 2.79 3.48 2.78
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Table 9: Cross-Sectional Implications

Table 9 shows the implications of GP risk for the cross-section of stock returns. I first run time-series regressions to
estimate betas:

Rei,t+1 = ci + βi,∆gp∆ logGPt+1 + εi,t+1

where Rei,t+1 is the excess return for portfolio i and ∆ logGPt + 1 = logGPt+1−Et [logGPt] is the innovation in GP.
The slope coefficient βi,∆gp represents the portfolio exposure of asset i to GP risk. To estimate the cross-sectional
market price of risk associated with GP, I run a cross-sectional regression of time-series average excess returns on the
risk exposures:

E
[
Rei,t+1

]
= cons + βi,∆gpλ∆gp + υi.

Panel A reports the market price of risk λ with Shanken (1992) t-statistic. Panel B shows the results for βi,∆gp
with Newey and West (1987) HAC robust standard errors. The book-to-market and size portfolio returns are from
Kenneth French’s website. The data is monthly from 1975 - 2013.

Panel A: Price of Risk λ∆gp t-stat

Cross-Section -0.0217 -6.45

R2(%) 60.64

Panel B: Risk Exposures β∆gp t-stat

BM1 -0.163 -2.83

BM2 -0.150 -2.46

BM3 -0.137 -2.93

BM4 -0.165 -2.62

BM5 -0.128 -2.67

BM6 -0.170 -2.79

BM7 -0.149 -2.56

BM8 -0.150 -2.59

BM9 -0.177 -3.12

BM10 -0.262 -3.05

SIZE1 -0.277 -4.42

SIZE2 -0.254 -4.05

SIZE3 -0.247 -4.17

SIZE4 -0.233 -4.01

SIZE5 -0.234 -3.85

SIZE6 -0.201 -3.42

SIZE7 -0.213 -3.10

SIZE8 -0.198 -2.97

SIZE9 -0.181 -2.67

SIZE10 -0.132 -2.60
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Table 10: GP and Tail Risk

In Panel A, SLOPEn∆
t = σOTM,∆t − σATMt , where σOTM,∆t is the implied volatility of an out-of-the-money put

option with n∆, where n = 40, 30, 20, and σATMt is at-the-money implied volatility. Option prices and implied
volatilities are from OptionMetrics, January 1996 to August 2013. The regression of the slope of the implied volatility
curve for index options against the log GP ratio is

σOTM,∆t − σATMt = β0 + β1 logGPt + β2σ
ATM
t + εt.

The OTM option ranges from deep out-of-the-money (20∆) to slightly out of the money (40∆), and the ATM option
is defined as a put option with 50∆. The options have just under one month until expiration, and are taken on the
last trading day of the month.
In Panel B, the encompassing regression is:

SKEWQ
t = β0 + β1 logGPt + β2

(
V ARQ

t × 100
)

+ εt

where SKEWQ
t is as defined in Bakshi et al. (2003) and equal to:

SKEWQ
t =

EQ
t

{(
Rt,t+τ − EQ

t [Rt,t+τ ]
)3
}

EQ
t

{(
Rt,t+τ − EQ

t [Rt,t+τ ]
)2
}3/2

.

For both panels, t-statistics use Newey and West (1987) HAC robust standard errors.

logGPt σIV,ATMt

Panel A: IV Slope Coef. t-stat. Coef. t-stat. Radj
2

SLOPE40∆
t 0.585 (2.74) 9.35

0.056 (12.54) 59.26

0.332 (2.97) 0.053 (12.91) 62.13

SLOPE30∆
t 1.402 (3.10) 11.29

0.123 (12.84) 60.24

0.846 (3.85) 0.117 (13.06) 64.22

SLOPE20∆
t 2.578 (3.29) 13.05

0.209 (11.55) 59.21

1.640 (4.12) 0.197 (11.66) 64.33

logGPt V ARQ
t × 100

Panel B: BKM Coef. t-stat. Coef. t-stat. Radj
2

SKEWQ
t -0.479 (-2.84) 5.65

-0.06

0.500 (3.09) 5.50

-0.514 (-2.71) 5.36

-0.587 (-3.58) 0.615 (3.62) 13.97

-0.560 (-3.07) 0.633 (3.58) 13.67
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Table 11: Inventory Financing for Jewellers

Table 11 shows the cash ledger for alternative raw materials inventory financing considerations for a hypothetical
jeweller deciding between leasing gold or buying gold on credit. Pg,t is the spot price of 1 troy oz of gold in period t.
In both scenarios, the gold ledger is flat. rf,t is the borrowing rate for dollars, rp,t is the futures premium over the
spot price, and δt is the gold lease rate. No-arbitrage and no institutional frictions implies δt = rf,t − rp,t.

Gold Leasing Period t Period t+ 1

Lease gold at δt, repay in 1 period −Pg,t+1 − δt × Pg,t
Jewellery fabrication & sales Pg,t+1 + Markup

Net Cash Flow 0 Markup− δt × Pg,t

Buying Gold on Credit Period t Period t+ 1

Borrow money at rf,t, repay in 1 period +Pg,t −(1 + rf,t)× Pg,t
Buy spot gold −Pg,t
Jewellery fabrication & sales Pg,t+1 + Markup

Short gold futures (1 + rp,t)× Pg,t − Pg,t+1

Net Cash Flow 0 Markup− (rf,t − rp,t)× Pg,t

Table 12: Gold and Platinum Returns

Table 12 estimates gold and platinum returns. All estimates are annualized real percentage terms, except for the
Sharpe ratios. The data is monthly from 1975 - 2013. The spot prices are calculated from the LBMA fixing price
(gold), LPPM fixing price (platinum). Before April 1990, I use USGS dealer prices for platinum. Futures prices are
based on the futures contracts with closest to 3 months to maturity from the COMEX division of the CME (formery
NYMEX). The interest rate is the U.S. dollar Libor rate (before 1986, the Eurodollar deposit rate). CPI data is from
FRED, and the risk-free rate is the 1 month U.S. Treasury bill rate. δ is the dividend yield (for stocks) or lease rate
(convenience yield, for gold and platinum).

Equity, Gold, and Platinum Returns

Equity Gold Platinum

Variable Data Variable Data Variable Data

E[Rm −Rb] 7.53 E[Rg −Rb] 2.40 E[Rx −Rb] 6.51

σ(Rm) 15.11 σ(Rg) 16.76 σ(Rx) 22.18

Sharpe Ratio 0.50 Sharpe Ratio 0.14 Sharpe Ratio 0.29

E[δm] 2.71 E[δg ] 1.00 E[δx] 3.47
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Table 13: Model Parameters

Parameter values below are in annual terms. The third column gives the reference source for the parameter.
“Standard” means that the parameter value is in a standard range of values commonly used in the literature. “Data”
means that this parameter choice is disciplined by the data. Citations mean this parameter is from the cited paper.
“Bounded Parameter” means this parameter is free to be set within bounds imposed by either existence of solutions
(for a2 and b2) or by data estimates (for µλ). “Fixed” is for the intratemporal elasticity of substitution and volatility
of ξt, as discussed in the main text. NSBU (2013) refers to Nakamura et al. (2013) and BU (2008) refers to Barro
and Ursua (2008).

Parameter Value Reference

Relative risk aversion γ 3 Standard

Subject time preference δ 0.012 Standard

Mean log consumption growth (normal times) ḡc 0.025 Data

Volatility of log consumption growth (normal times) σc 0.020 Data

Leverage φ 2.6 Wachter (2013)

Mean-reverting target of ξt process ξ̄ 0.0355 Wachter (2013)

Rate of mean reversion κλ 0.25 Target AR1(logGP )

Rate of mean reversion κξ 0.095 Target AR1(p− d)

Volatility of λt process σλ 0.183 Target σ(logGP )

Volatility of ξt process σξ 0.0861 Fixed

Probability of default given disaster q 0.40 Barro (2006), Wachter (2013)

Average disaster size Eν [1− exp Jct ] 0.15 BU (2008), Nakamura et al (2013)

Intratemporal elasticity of substitution ε 1/φ Fixed

Log growth rate in gold and platinum stock µg 0.0072 Data

Volatility of log gold stock growth σg 0.0021 Data

Mean-reverting target of logZt process µz -3.114 Data

Rate of logZt mean reversion θz 0.022 Data

Volatility of logZt process σz 0.003 Data

Scaling term a1 − b1 6.34 Match E [logGP ]

Intensity jump mean µλ 0.03 Bounded Parameter

Gold preference loading a2 5.73 Bounded Parameter

Platinum preference loading b2 1.25 Bounded Parameter
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Table 14: Simulation Results: Asset Pricing Moments

Table 14 shows results from model simulations for stocks, bonds, gold, and platinum. State variables are simulated
at a monthly frequency and aggregated to an annual frequency. The population moments are computed from a
1,000,000 year simulation. The model confidence intervals are computed from 100,000 simulations of length equal to
the length of the data. Data moments are calculated using monthly observations, from 1975 to 2013 and annualized.
Expected returns, yields, and volatilities are given in real percentage terms. δ represents the dividend yield (for
stocks) or lease rate (for gold and platinum). p− d is the log price-dividend ratio.

Data All Simulations No Disaster Simulations

Est. 5% 50% 95% Pop. 5% 50% 95%

Stocks and Bonds
E[Rm −Rf ] 7.53 3.30 6.77 12.69 7.23 3.63 6.38 10.68

σ(Rm) 15.18 11.77 20.27 31.99 21.53 10.35 16.32 24.99

E[δm] 2.71 1.34 1.81 3.76 2.08 1.29 1.56 2.40

E[Rf ] 1.11 -1.06 2.46 3.50 2.00 1.93 3.16 3.57

σ(Rf ) 1.07 0.29 1.71 6.96 3.51 0.17 0.73 2.06

σ(p− d) 0.45 0.12 0.28 0.58 0.44 0.10 0.21 0.44

AR1(p− d) 0.92 0.56 0.82 0.94 0.92 0.50 0.78 0.92

Gold
E[Rg −Rf ] 2.40 0.23 2.62 5.74 2.78 0.88 2.67 4.96

σ(Rg) 16.76 6.19 10.38 20.64 12.48 5.67 7.60 11.15

E[δg ] 1.00 0.59 0.77 1.79 0.93 0.58 0.66 0.96

Gold Sharpe 0.14 0.02 0.26 0.52 0.22 0.13 0.35 0.57

Platinum
E[Rx −Rf ] 6.51 2.37 5.34 10.22 5.70 2.70 5.05 8.55

σ(Rx) 22.18 9.37 15.28 23.98 16.27 8.40 12.30 17.49

E[δx] 3.47 2.33 3.01 5.45 3.34 2.26 2.63 3.67

Platinum Sharpe 0.29 0.15 0.37 0.60 0.35 0.24 0.42 0.62

GP Ratio
E[logGP ] -0.23 -0.37 -0.25 0.15 -0.23 -0.38 -0.31 -0.09

σ(logGP ) 0.26 0.05 0.14 0.42 0.28 0.04 0.10 0.29

AR1(logGP ) 0.79 0.50 0.78 0.92 0.91 0.46 0.74 0.90
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Table 15: Simulation Results: Return Predictability

Table 15 shows results from model simulations for return predictability. State variables are simulated at a monthly
frequency and aggregated to an annual frequency. The population moments are computed from a 1,000,000 year
simulation. The model confidence intervals are computed from 100,000 simulations of length equal to the length of
the data. I run the regression in the first panel is:

12

h

h∑
i=1

logRt+i − logRft+i = β0 + βh,gp logGPt + εt+h

and the period is annual. Excess returns are log equity returns over the log return on the government bond, as in
Barro (2006) and Wachter (2013). The regressions I run in the second panel are:

logGPt = β0 + βZ logZt + εt

and predicting returns using logZt

12

h

h∑
i=1

logRt+i − logRft+i = β0 + βh,Z logZt + εt+h.

In the third panel, I run the return predictability regression controlling for supply effects:

12

h

h∑
i=1

logRt+i − logRft+i = β0 + βh,gp⊥Z logGPt + γh,Z logZt + εt+h.

Data All Simulations No Disaster Simulations

Est. 5% 50% 95% Pop. 5% 50% 95%

Excess Returns
β1y,gp 0.243 -0.007 0.334 1.023 0.132 0.095 0.444 1.148

β3y,gp 0.161 -0.006 0.303 0.753 0.127 0.100 0.390 0.818

β5y,gp 0.129 -0.010 0.270 0.598 0.121 0.090 0.333 0.635

R2
1y,gp 16.57 0.28 7.69 23.01 3.07 1.22 10.36 25.94

R2
3y,gp 23.57 0.76 20.63 49.42 8.85 3.31 26.50 53.13

R2
5y,gp 31.66 1.08 30.06 63.78 13.98 3.92 37.04 66.72

Supply Regressions
βZ 7.86 -23.20 1.60 26.80 1.69 -14.64 1.59 18.57

R2
Z 11.35 0.09 9.10 49.09 0.77 0.07 8.41 46.15

β1y,Z -0.55 -10.19 0.01 10.26 0.00 -7.49 0.03 7.63

R2
1y,Z 0.16 0.00 1.12 9.27 0.00 0.00 1.03 8.80

Excess Returns
Controlling for Supply
β1y,gp⊥Z 0.283 0.004 0.392 1.154 0.132 0.111 0.512 1.286

β3y,gp⊥Z 0.188 0.005 0.343 0.817 0.127 0.115 0.432 0.884

β5y,gp⊥Z 0.145 0.002 0.293 0.634 0.121 0.105 0.358 0.668

R2
1y,gp⊥Z 19.99 1.65 11.25 28.00 3.07 3.34 13.88 30.58

R2
3y,gp⊥Z 28.84 4.58 28.55 56.53 8.85 9.28 33.81 59.51

R2
5y,gp⊥Z 35.65 6.88 40.28 70.68 13.98 12.80 45.87 72.80
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Table 16: Gold and Platinum Supply Dynamics

Table 16 shows the per-capita growth rate of the world gold and platinum stock, annual data from 1975 to 2013. The
data is calculated from annual world production data. The data for platinum production is from Johnson Matthey.
The data for gold production is from the U.S. Geological Survey Minerals Yearbook. The estimate of the initial gold
stock is 84,000 tonnes (Thomas and Boyle (1986)), and the estimate of the initial platinum stock (net of autocatalysts)
is set to be 4.5% of the initial gold stock. Population growth is proxied by the U.S. annual population growth from
the U.S. census. Gt is the per-capita gold stock and Xt is the per-capita platinum stock. Panel A gives descriptive
statistics for the log growth rates of per-capita gold and platinum stock. Panel B shows results from augmented
Dickey-Fuller tests. Panel C reports the estimate of the cointegrating coefficient βG from a Stock and Watson (1993)
Dynamic Least Squares (DLS) regression:

logXt = β0 + βG logGt +
k∑

i=−k
γi∆ logGt−i + εt

using Newey and West (1987) HAC robust standard errors. Panel D results of the Johansen (1988) rank test for the
VECM:

∆Yt = µ+ ΠYt−1 +

p−1∑
j=1

Γj∆Yt−j + εt

where Yt =
[
logXt logGt

]′
. The null hypothesis is H0 : rank(Π) = r against the alternative Ha : rank(Π) > r.

Panel A - Growth Rates Mean (%) Median (%) Std. Dev. (%) Min. (%) Max. (%)

∆ logGt 0.72 0.76 0.21 0.21 1.00

∆ logXt 0.71 0.68 0.29 0.24 1.28

Panel B - ADF 1 lag 2 lags 3 lags 4 lags 5 lags

logGt 1.046 1.645 1.326 1.464 1.580

p-val 0.995 0.998 0.997 0.997 0.998

logXt 2.592 1.954 1.879 1.259 1.319

p-val 0.999 0.999 0.999 0.996 0.997

logZt -1.776 -3.085 -3.032 -2.781 -3.024

p-val 0.392 0.028 0.032 0.061 0.033

Panel C - DLS Estimate Std. Err. t-stat [95% confidence interval]

βG (k=1) 0.990 0.034 29.39 0.92 1.06

βG (k=2) 1.006 0.035 29.02 0.94 1.08

βG (k=3) 1.038 0.044 23.38 0.95 1.13

Panel D - Rank Test Statistic 90% CV 95% CV p-val H0 = r

1 lag in VAR 11.61 13.43 15.50 0.177 0
0.99 2.71 3.84 0.448 1

2 lags in VAR 23.28 13.43 15.50 0.004 0

3.10 2.71 3.84 0.078 1

3 lags in VAR 26.01 13.43 15.50 0.001 0

2.53 2.71 3.84 0.112 1

4 lags in VAR 21.76 13.43 15.50 0.005 0

0.84 2.71 3.84 0.504 1
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Figures

Figure 1: Gold and Platinum Prices

The top panel shows the behavior of real gold prices (solid line) and the log price-dividend ratio on the CRSP

value-weighted portfolio (dashed line) from 1975 - 2013. The bottom panel shows real platinum prices (solid

line) and the log price-dividend ratio on the CRSP value-weighted portfolio (dashed line) from 1975 - 2013.

The shaded grey bars are NBER recessions.
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Figure 2: Log GP Ratio

The figure above shows the natural logarithm of the ratio of gold to platinum prices (log GP ratio) from

1975 to 2013. The data is monthly frequency. Gold data is from LBMA, and platinum data is from LPPM

and the U.S. Geological Survey. Shaded bars represent NBER recessions.
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Figure 3: Rolling Regressions - GP ratio

The figure above shows estimated betas and 95% confidence intervals for 2-year ahead predictive regressions

of future U.S. stock market excess returns by the log GP ratio. The top left is for the rolling window method

with a 120 month window. The top right is for the rolling window method with a 180 month window. The

bottom left is for the expanding window method with a 120 month window. The bottom right is for the

expanding window method with a 180 month window.
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Figure 4: Rolling Regressions - PD ratio

The figure above shows estimated betas and 95% confidence intervals for 2-year ahead predictive regressions

of future U.S. stock market excess returns by the log price-dividend (PD) ratio. The top left is for the

rolling window method with a 120 month window. The top right is for the rolling window method with a

180 month window. The bottom left is for the expanding window method with a 120 month window. The

bottom right is for the expanding window method with a 180 month window.
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Figure 5: Cross-Sectional Pricing

Panel A in the figure above shows the realized average excess returns for book-to-market and size portfolios

against the risk exposures (betas). Panel B shows the realized average excess returns against the predicted

excess returns. Results are based on the one-factor model with only GP risk. Monthly data 1975 - 2013,

annualized percentage excess returns.
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Figure 6: Gold and Platinum Demand

The figure above shows gold and platinum demand for jewellery and investment as a percentage of total

demand in a given year, from 1990 - 2013. Gold data is from Thomson Reuters Gold Fields Mineral Services

(GFMS) and platinum data is from Johnson Matthey.

Figure 7: Gold Lease Rates 2007 - 2009

The figure plots the annualized gold lease rates in percentages from 2007 - 2009. The data is computed as

the Libor rate minus the Gold Forward Offered Rate (GOFO) as published by the LBMA.
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Figure 8: Multinomial Disaster Size Distribution

The figure shows the disaster size distribution for the quantity 1 − eJ
c
t in the model. The red dashed line

is the distribution from the Barro and Ursua (2008) calibration, which is also used in Wachter (2013) with

an average jump size of 22% using a 10% cutoff to identify disasters. The blue solid line is the distribution

used in this paper with an average jump size of 15% using a 6% cutoff to identify disasters. The plots show

distributions smoothed by a kernel estimator with a bandwith of 0.05. The model uses draws from the exact

multinomial distribution.
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Figure 9: Per-Capita Gold and Platinum Stock Growth

The figure shows the log per-capita gold and platinum stock (de-meaned) from 1975 to 2013. The data is

annual frequency. Gold stock is calculated from world supply data from the U.S. Geological Survey, and

platinum stock is calculated from world supply data from Johnson Matthey.
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Figure 10: Implied Volatility Slope by Disaster Intensities

The figure plots the implied volatility slope, calculated as the difference between a out-of-the-money put

option with strike
spot

= 0.95 and an at-the-money put option with strike
spot

= 1 with 1 month to maturity,

as a function of the state variables λt and ξt. Implied volatility measures are calculated by inverting the

Black-Scholes formula using the model implied price-dividend ratio and government bond rate.
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