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Abstract

We show that rare disaster concerns strongly drive cross-sectional return variation both
within and across asset classes, including international equity indices, currencies, global govern-
ment bonds, and commodities. Using a large set of out-of-the-money options on these assets, we
measure the global financial market’s rare disaster concerns under only no-arbitrage conditions.
Assets that have low (high) return covariations with such concerns earn high (low) excess returns
in the future. Such return patterns are not attributed to effects of global value and momentum,
and are robust to various long/short positions of average investors. Our results are not explained
by consumption and macroeconomic disaster risk, financial market disaster risk, and funding
and liquidity constraints of financial intermediaries. The evidence suggests time-varying disaster

fear/aversion as a potential venue to reconcile return dynamics across asset classes.

Keywords: Bond; Currency; Commodity; Equity; Rare disaster concerns; Options

JEL classifications: G12, G13, F37

*We would like to thank Torben Andersen, Warren Bailey, Gurdip Bakshi, Geert Beakert, John Cochrane, Gerard
Hoberg, Kewei Hou (discussant), Bob Jarrow, Pete Kyle, Erica Li, Matteo Maggiori, lan Martin, Pam Moulton, An-
thony Neuberger (discussant), Gideon Saar, Lawrence Schmidt, Zhongzhi Song, Marti Subrahmanyam, Hiro Tanaka,
Mary Tian (discussant), Allan Timmerman, Jessica Wachter, Jianfeng Yu, Yingzi Zhu (discussant), and seminar and
conference participants at CKGSB, Cornell University, Federal Reserve Board, University of Maryland, Xiamen Uni-
versity, and the 2014 China International Finance Conference, the 24th Annual Conference on Financial Economics
and Accounting, the 2014 Summer Institute of Finance in China, the 2014 NBER Summer Institute (EFWW), the
2014 FMA Napa Conference, and the 2014 Annual Conference in International Finance, for their helpful discus-
sions and suggestions. We are grateful to Kim Zhang for excellent research assistance. Financial support from the
2013 GARP Risk Management Research Program and The Chinese Finance Association (TCFA) Best Paper Award
is gratefully acknowledged. The analysis and conclusions set forth are those of the authors and do not indicate
concurrence by the Federal Reserve System.

tSamuel Curtis Johnson Graduate School of Management, Cornell University. Email: pg297@cornell.edu; Tel:
(607) 255-8729

1Board of Governors of the Federal Reserve System. E-mail: Zhaogang.Song@frb.gov; Tel: (202) 452-3363.



“Expected returns vary over time. How correlated is such variation across assets and asset classes?
How discount rates vary over time and across assets?”

John Cochrane, American Finance Association Presidential Address, January 8, 2011

“Large-scale asset purchases ... can signal that the central bank intends to pursue a persistently more
accommodative policy stance than previously thought. Such signaling can also increase household
and business confidence by helping to diminish concerns about ‘tail’ risks ...”

Ben Bernanke, Chairman of the Federal Reserve, at the FRB Kansas City Economic Symposium,

Jackson Hole, August 31, 2012

1 Introduction

The ex ante concerns of rare disasters on financial markets (hereafter rare disaster concerns) often
deviate from the disaster risk measured using (limited) historical observations of ex post disaster
shocks.! In this paper, we uncover a strong return pattern driven by rare disaster concerns: assets
that deliver contemporaneously low returns amid high market rare disaster concerns are unfavor-
able securities, and hence require high expected returns. Such a return pattern is pervasive across
asset classes including international equity indices, currencies, global government bonds, and com-
modities, echoing the importance of “concerns about ‘tail’ risks” emphasized by Ben Bernanke in
designing the U.S. monetary policies.? It makes a step forward on the path of understanding “how
discount rates vary over time and across assets”, the research agenda outlined by John Cochrane
in 2011 Presidential Address to the American Finance Association.

To capture such ex ante disaster concerns, we construct a rare disaster concern index (RIX)

based on out-of-the-money (OTM) put options that contain rich information about the ez ante

! Our focus is on disasters of financial markets (the extreme downside movements of financial asset prices), different
from Rietz (1988), Veronesi (2004), Barro (2006), Gabaix (2012), Gourio (2012), and Wachter (2013) who study the
disaster risk of consumptions and macroeconomic fundamentals. Though our results do not directly speak to the
macroeconomic driver of the finanical market’s disasters, we conduct analysis on whether return dynamics driven by
rare disaster cocnerns can be explained by disaster risk of fundamentals (see Section 5 for details). For comparisons
of disaster distribution estimates from macroeconomic data and those from S&P 500 index options, see Backus,
Chernov, and Martin (2011) and Seo and Wachter (2013).

?The meaning of rare disaster concerns in our framework is also related to “the perception of tail risk” pointed
out by Olivier Blanchard (the chief economist of IMF) in an influential article published in The Economist, January
31, 2009: “so what are policymakers to do? First and foremost, reduce uncertainty. Do so by removing tail risks,
and the perception of tail risks.”



market’s expectations on future rare disasters.®> Assuming only no-arbitrage conditions, our RIX
measure equals to a disaster insurance price that will spike whenever investors become concerned
about disasters in the future, though it does not separate preference and belief about disaster risk.
Empirical estimates using options on 30 international equity indices, 32 currencies, 14 government
bond futures, and 28 commodity futures from 1996 to 2012 show that RIXs are rather informative
about the market’s perception of future disaster events in different markets and asset classes. RIXs
spike up not only when disasters happened such as the Asian financial crisis in 1997, the collapse
of Long-Term Capital Management in 1998, the 9/11 terrorist attack in 2001, the stock market
downturn in 2002, the global bond market sell-off in 2003, and the 2007-2008 global financial crisis,
but also during periods of high disaster concerns with no subsequent realized disaster shocks such
as the Flash Crash in May 2010, and the stock market rally in October 2011.

Our basic premise of asset return dynamics driven by rare disaster concerns is that low RIX-
covariation assets are unfavorable securities (they deliver contemporaneously low returns when
the market’s rare disaster concerns spike) and hence require high expected returns. Consistent
with this hypothesis, we find systematic patterns that low RIX-covariation assets on average earn
higher excess returns than high RIX-covariation assets in each asset class we study. For example,
when portfolios are monthly formed, the low-minus-high RIX-covariation portfolios on average
significantly earn 0.76%, 0.37%, 0.21% and 0.90% per month in equity indices, currencies, bonds,
and commodities, respectively. Moreover, this RIX-covariation effect is not short-lived. At the semi-
annual frequency of portfolio formation, return spreads of these low-minus-high RIX-covariation
portfolios are even larger, 0.97%, 0.54%, 0.28%, and 1.45%, respectively, and all are close to three
standard errors from zero.

We further show that rare disaster concerns are strongly correlated across assets. As a result, in
order to capture the common variations of assets’ rare disaster concerns, we construct a global rare
disaster concern index (GRIX) as the first principal component (PC) of the correlation matrix of
three asset-class-specific rare disaster concern indices (this PC explains 70% of the covariations).*

We show the GRIX is important in explaining cross-sectional return variation across markets and

*In a recent study about risk-neutral moments and expected stock returns, Conrad, Dittmar, and Ghysels (2013)
argue that “options reflect a true ex ante measure of expectations” (p.3)

4 Asness, Moskowitz, and Pedersen (2013) use a similar approach in constructing global value and momentum
factors.



asset classes. In particular, we rank all 104 global investment assets into five GRIX-covariation
quintiles. On the monthly and quarterly frequencies of portfolio formation, the low-minus-high
GRIX-covariation portfolios on average significantly earn 1.00% and 0.72% per month, with -
statistics of 3.6 and 2.5, respectively. These cross-sectional return variations associated with GRIX
are not attributed to effects of global market, value, and momentum, and leverage and margin
constraints — the alphas benchmarked on various global factor models range from 0.76% to 0.96% per
month with ¢-statistics larger than three most of time. More importantly, both low and high GRIX-
covariation portfolios contain assets from multiple asset classes, and the asset composition varies
over time in response to time-varying rare disaster concerns of the global financial market, implying
that return dynamics driven by the GRIX are indeed pervasive across all asset classes including
equity, currency, bond, and commodity. Moreover, we show that alternative measures of rare
disaster concerns such as a global volatility index (GVIX) and volatility skew deliver similar return
patterns, though less significant due to larger noises of these measures than GRIX in capturing
disaster concerns. Overall, we show that rare disaster concerns are an important determinant of
securities’ expected returns in the cross section of global markets and asset classes.

Asset return dynamics across markets and asset classes incur involved issues such as perspectives
of average investors and the global vs local nature of disaster concerns. We conduct further analysis
to investigate these issues. First, our baseline results discussed above take the perspective of an
average U.S. investor who have long positions in international equity indices, foreign currencies,
and global government bond futures considering the funds of various types holding such positions
in practice, but have short positions in commodity futures following the long-standing hedging
pressure theory that commodity hedgers are net short in commodity futures to hedge the physical
commodity price risk (Keynes, 1923; Bessembinder, 1992; Hirshleifer, 1988; Cheng, Kirilenko,
and Xiong, 2014; Cheng and Xiong, 2014). In consequence, the GRIX measure in our baseline
results use OTM put options on equity indices, foreign currencies, and bond futures, but OTM
call options on commodity futures, in capturing the global market disaster concerns. However,
alternative perspectives exist. For example, an average investor with a global market portfolio
positively related to the global macroeconomy or financial market may view the surging prices of
bonds as signaling disasters because of flight-to-safety and flight-to-quality (Longstaff, 2004; Beber,
Brandt, and Kavajecz, 2009; Campbell, Pflueger, and Viceira, 2013, 2014). As a result, OTM calls



on bonds should be used to capture the global rare disaster concerns. Moreover, investors are known
to take carry trades in the currency market and hence long (short) currencies with a high (low)
interest rate. For such investors, OTM puts on high carry currencies should be used to capture
their disaster concerns. We re-compute the GRIX measure with such alternative perspectives and
find that the strong return pattern driven by rare disaster concerns still persist. For example,
with both alternative perspectives in bonds and currencies, the low-minus-high GRIX-covariation
portfolios on average significantly earn 0.82% with a t-statistic of 2.8. Therefore, return dynamics
driven by rare disaster concerns are robust to alternative perspectives of average investors across
markets and asset classes.

Second, we investigate the return dynamics driven by global vs local, in the sense of across asset
classes, rare disaster concerns to understand the global and local nature of disaster concerns. We
orthogonalize the RIX for each of the four asset classes by regressing it on the RIXs of the other
three, and take the residuals as the asset-class-local RIX. We then form portfolios of unfavorable
and favorable assets using an asset’s covariation with respect to this asset-class-local RIX both
in asset class it belongs to and in the other three asset classes. We find marginally significant
return spreads driven by such asset-class-local RIXs in equity and commodity markets, but not in
currency and bond markets. Such results suggest that disaster concerns of currencies and bonds
are "completely global", whereas those of equities and commodities have components that drive
"local" return dynamics but not the whole global financial market.

So far, our empirical results show that the economic mechanism associated with disaster con-
cerns is critically important to understand return dynamics across asset classes. However, as men-
tioned above, the rare disaster concern measures based on option prices do not separate preference
and belief. An increase in RIX can be due to increasing disaster risk of economic fundamentals and
financial markets (Barro, 2006; Gabaix (2012), Martin (2013c), and Wachter (2013)), increasing
funding and capital constraints of institutional investors (Brunnermeier and Pedersen, 2009; Gar-
leanu, Pedersen, and Poteshman, 2009; Garleanu and Pedersen, 2011; He and Krishnamurthy, 2012,
2013), and increasing disaster fear/perception (Liu, Pan, and Wang, 2005; Bates, 2008; Drechsler,
2013; Bollerslev and Todorov, 2011; Barberis, 2013; Chen, Dou, and Kogan, 2013; Weitzman, 2007).
We hence conduct a comprehensive analysis to further investigate implications of our results for

various economic channels (all associated with disaster risk) driving asset prices.



We collect variables for three economic channels, consumption and macro disaster risk, financial
market disaster risk, and liquidity and funding constraints of financial intermediates. To measure
the consumption and macro disaster risk, we collect a large set of variables of consumption and
macroeconomic risk for both U.S. and global economies (U.S., U.K., Japan, and Europe). To
measure the financial market disaster risk, we collect series of financial market liquidity and stock
market tail risk, and construct series of high-order risk-neutral moments using options on various
asset classes. Finally, to capture the liquidity and funding constraints of financial intermediaries,
we collect series of funding liquidity and leverage shocks of financial dealers.

We perform both correlation analyses and time-series regressions of low-minus-high GRIX-
covariation portfolio returns on these measures. Our results strongly indicate that the global asset
return predictability driven by ex-ante disaster concerns cannot be explained by the exposure to
disaster risk of consumption and macro fundamentals and disaster risk of financial markets. More-
over, it is not simply phantom of liquidity/capital constraints of financial intermediaries. Overall,
our results suggest time-varying disaster fear/aversion, which is shown to drive asset prices only in
U.S. stock markets by Bates (2008), Drechsler (2013), and Bollerslev and Todorov (2011), might be
the potential channel to reconcile security returns across asset classes. We stress that our empirical
evidence does not imply that standard disaster risk models are unimportant. Alternatively, the
RIX can be interpreted as a better measure of ex-ante disaster risk than other empirical proxies,
and hence our results can simply be evidence supporting disaster risk theory. Though plausible,
this interpretation faces an obstruction that the return spread of high-minus-low RIX-covariation
portfolios is significantly positive during most crisis periods, including the recent financial crisis
that is fairly extreme in the history of the global economies; it is expected to be negative should
we go with a disaster risk interpretation.’

Our study contributes to the growing literature that document return patterns across markets
and asset classes, including Asness, Moskowitz, and Pedersen (2013), Koijen, Moskowitz, Peder-
sen, and Vrugt (2012), Moskowitz, Ooi, and Pedersen (2012), Fama and French (2012), and Hou,

Karolyi, and Kho (2011). Our work complement these studies by uncovering a strong and per-

In the appendix, we show that rare disaster concerns as assets’ characteristics cannot explain cross-sectional
average returns, and indeed it is the RIX (and GRIX) covariations that explain returns. We also perform checks on
using various data of global asset returns such as the U.S. exchange trade funds and our results are robust to different
return specifications.



vasive return pattern across asset classes that are closely associated with an important economic
mechanism, i.e., rare disaster concerns. As discussed above, the RIX-covariation return patterns
cannot be attributed to characteristic effects documented in these studies. Other recent studies on
global asset pricing include Frazzini and Pedersen (2012) who propose betting-against-beta (BAB)
factors motivated by leverage constraints and Lettau, Maggiori, and Weber (2013) who use the
downside risk CAPM (DR-CAPM) beta, originally proposed by Ang, Chen, and Xing (2006) for
the U.S. equity market, to explain expected returns across asset classes. We show that our results
associated with rare disaster concerns cannot be attributed to these factors.

Our study also contributes to the disaster risk literature by documenting the explanatory power
of rare disaster concerns on security returns across asset classes, whereas existing studies largely
focus on the U.S. equity market or different asset classes in isolation (Jurek, 2009; Bollerslev and
Todorov, 2011; Burnside et al., 2011; Farhi and Gabaix, 2011; Gabaix, 2012; Julliard and Ghosh,
2012; Longstaff and Piazzesi, 2004; Bali, Cakici, and Whitelaw, 2011; Kelly, 2012).° Furthermore,
as discussed above, our joint approach of studying multiple asset classes sheds light on merits of
different channels related to disaster risk, suggesting time-varying disaster fear/perception as a
potential framework to unify “how discount rates vary over time and across assets” (Cochrane,
2011).” We leave this for future work.

The rest of the paper is organized as follows. Section 2 discusses the option data and measures of
rare disaster concerns. Section 3 systematically examines rare disaster concerns and asset returns.
Section 4 investigate issues related to portfolios across asset classes. Section 5 studies implications
of our results for different economic channels of disaster risk. Section 5 concludes. The appendix
provides robustness checks, and a separate online appendix provides additional empirical results

and detailed information on options data.

5Other related asset pricing models with jump risk include Benzoni, Collin-Dufresne, and Goldstein (2011), Du
(2011), Naik and Lee (1990), Eraker and Shaliastovich (2008), Shaliastovich (2009), Santa-Clara and Yan (2010),
Drechsler and Yaron (2011), with a focus on option pricing.

"Two recent studies, Martin (2013b) and Ross (2013), characterize the empirical patterns of expected returns
extracted exclusively from option prices.



2 Option Data and Rare Disaster Concern Measures

Out-of-the-money options are most informative about ex-ante expectations of extreme movements
of security prices and hence disaster risk of financial markets. In this section, we introduce our large
panel of options data on international equity indices, currencies, global government bond futures,
and commodity futures, and discuss the measures of rare disaster concerns. Before delving into
details, we first lay down the framework to unify various asset classes, in particular the perspective
of the average investor and correspondingly whether increasing or declining security prices poses
risk to her. Our baseline framework will take the perspective of an average U.S. investor who
have long positions in international equity indices, foreign currencies, and global government bond
futures considering the funds of various types holding such positions in practice, but have short
positions in commodity futures following the long-standing hedging pressure theory that commodity
hedgers are net short in commodity futures to hedge the physical commodity price risk (Keynes,
1923; Bessembinder, 1992; Hirshleifer, 1988; Cheng, Kirilenko, and Xiong, 2014; Cheng and Xiong,
2014). In consequence, the RIX measure in our baseline framework will use OTM put options on
equity indices, foreign currencies, and bond futures, but OTM call options on commodity futures
to capture the global market disaster concerns. We check robustness of our results to alternative

perspectives of average investors in Section 4.

2.1 Option data

International Equity Indices. We obtain daily index option prices from Thomson Reuters
Tick History (TRTH) for 30 international equity markets (index abbreviations are in parentheses):
Australia (ASX 200), Austria (ATX), Belgium (BEL 20), Canada (TSX 60), Denmark (OMX C20),
Europe (ESTX 50), Finland (OMX H25), France (CAC 40), Germany (DAX), Greece (ASE 20),
Hong Kong (HSI), India (CNX Nifty), Israel (TA 25), Italy (FTSE MIB), Japan (Nikkei 225),
Mexico (IPC), Netherlands (AEX), Nordic Countries (VINX 30), Norway (OBX), Poland (WIG
20), Russia (RTS), Singapore (SGX), South Korea (KOSPI 200), Spain (IBEX 35), Sweden (OMX
S30), Switzerland (SMI), Taiwan (TAIEX), Thailand (SET 50), United Kingdom (FTSE 100), and

United States (S&P 500).® The sample period is from January 1996 through October 2012, with

8Except the index options of Mexico, Russia, Singapore, and Spain that are written on equity index futures
associated with the cash equity indices, all other index options are written on the major cash index of a country or



variations depending on specific indices. Our data cover a large range of maturities, from 7 to 300
calendar days mostly, and a large range of strikes with moneyness (the ratio between spot and
strike) from 0.7 to 1.3.

We also collect the data of international equity indices and index futures from TRTH as the
underlying security prices of these index options. For the calculation of RIX, we use the interbank
borrowing rates corresponding to each equity market as the short-term discount rate for options,
following the financial industry standard. In particular, we use the LIBOR, EURIBOR, and zero-
coupon curves implied from interest rate swaps that are main global interbank interest rates, along
with NIBOR, SIBOR, and WIBOR as local interbank rates for Norway, Singapore, and Poland,
respectively. Appendix 1 provides detailed information of these equity index options.

Currencies. We obtain daily prices of over-the-counter (OTC) currency options from J.P. Mor-
gan. These options are written on US-dollar-based exchange rates (i.e., units of foreign currencies
per US Dollar). We have the following 32 currencies (currency codes are in parentheses): Argen-
tine Peso (ARS), Australian Dollar (AUD), Brazilian Real (BRL), Canadian Dollar (CAD), Chilean
Peso (CLP), Colombian Peso (COP), Czech Koruna (CZK), Danish Krone (DKK), Euro (EUR),
Hong Kong Dollar (HKD), Hungarian Forint (HUF), Icelandic Krona (ISK), Indian Rupee (INR),
Indonesian Rupiah (IDR), Israeli Shekel (ILS), Japanese Yen (JPY), Malaysian Ringgit (MYR),
Mexican Peso (MXN), New Zealand Dollar (NZD), Norwegian Krone (NOK), Peruvian Nuevo Sol
(PEN), Philippine Peso (PHP), Polish Zloty (PLN), Russian Federation Rouble (RUB), Singa-
porean Dollar (SGD), South African Rand (ZAR), South Korean Won (KRW), Swedish Krona
(SEK), Swiss Franc (CHF), Taiwanese Dollar (TWD), Thai Baht (THB), and United Kingdom
Pound (GBP). The sample period is from January 1996 through May 2012, with variations de-
pending on specific currencies.” The market of these currency options is the deepest, largest, and
most liquid market for options of any kind.!? Our data contain implied volatility quotes for options
of one-month maturity and five strikes that have standardized Black-Scholes deltas: at the money

(ATM), 10-delta call, 10-delta put, 25-delta call, and 25-delta put.!!

region.

9Because our main option samples start from January 1996, we don’t consider the currencies of eurozone countries
before 1999 and only keep the Euro series starting from January 1999.

19 According to the Bank for International Settlements (BIS), the notional value outstanding of OTC currency
options at the end of June 2012 is 110 trillion US dollars.

"'The convention in foreign exchange markets is to multiply the put delta by ~100 and call delta by 100. Hence,
a 10-delta put has a delta of —0.1, while a 10-delta call has a delta of 0.1.



We first convert the deltas into strikes using the implied volatilities based on the extended
Black-Scholes formula in Garman and Kohlhagen (1983), and then covert the implied volatilities
into prices using the strikes. Here, we use the one-month LIBOR obtained from Datastream as the
interest rates of US Dollar (USD) and major interbank borrowing rates as interest rates of other
currencies. In addition, we extract daily spot exchange rates of 32 currencies against USD from
Barclays and Reuters (via Datastream) for the same time period as the currency option sample.
Our spot exchange rates are based on midpoint quotes (i.e., the average of bid and ask rates).

Global Government Bonds. We obtain daily prices of sovereign bond futures and associated
futures options from different exchanges (via J.P. Morgan). We collect the following 14 bond futures:
Australia 3 and 10 Year Treasury Bonds, Ten-Year Government Bond of Canada, Euro-Bobl, Euro-
Schatz, Euro-Bund, Italy 10 Year Government Bond, Japan 10 Year Government Bond, Spain 10
Year Government Bond, Long Gilt (UK 10-Year Bond), U.S. 2, 5, and 10 Year Treasury Notes, and
U.S. 30 Year Treasury Bond.'? The sample period is from January 1996 through December 2012,
with variations depending on specific bonds.

As bond futures and futures options are issued usually in a quarterly cycle (March, June,
September, and December), we collect data of both the front contract with the nearest expiration
date (and time-to-maturity of up to three months) and the back contract with the second nearest
expiration date (and time-to-maturity of up to six months). There are around nine strikes, with
at-the-money, in-the-money, and out-of-the-money strikes all available, for options of each maturity.
Moreover, the futures options are of American style, and we treat them as European options. We
expect the impact of early exercise to be negligible for our calculation as we use only out-of-the
money options for which the early exercise is most unlikely.!> The interbank borrowing rates
corresponding to each bond market is used as the short-term discount rate for options, including
LIBOR, EURIBOR, and zero-coupon curves implied from interest rate swaps. Appendix 1 provides

detailed information of these government bond futures options.

2For Germany government bonds (their notional contract values are in euros), Schatz has 1.75-2.25 year maturity,
Bobl has 4.5-5.5 year maturity, and Bund has 8.5-10.5 year maturity. For brevity, we call them Germany 2YR, 5YR,
10YR bonds, respectively, in figures and tables throughout the paper. Note that in bond futures market, these
contracts are subject to the cheapest to deliver restriction, which has a certain range of maturity close to but not
necessarily equal to the original maturity underlying these futures contracts.

3 Jorion (1995) shows that early exercise premium is negligible for short maturity ATM options on futures.
Overdahl (1988) also finds that early exercise of options on bond futures happens only about 0.1% of the time, and
only for options that are significantly in the money.



Commodities. We collect end-of-day closing prices of liquid exchange-listed options on major
commodity futures in the U.S. and international commodity markets from the Commodity Research
Bureau (CRB). Our commodity option sample includes Butter (BA), Soybean oil (BO), Corn (C-
), Cocoa (CC), Crude o0il-WTI (CL), Cotton (CT), Milk (DE), Fedder cattle (FC), Gold (GC),
Copper (HG), Heat oil (HO), Unleaded Gasoline (HU), Orange juice (JO), Coffee (KC), Lumber
(LB), Live cattle (LC), Lean hogs (LH), Natural gas (NG), Oats (O-), Palladium (PA), Pork bellies
(PB), Platinum (PL), Coal (QL), RBOB blendstock gasoline (RB), Rough rice (RR), Soybeans
(S-), Sugar (SB), Silver (SI), Soybean meals (SM), and Wheat (W-), in major commodity groups
of Agricultural, Energy, Meat, Metal, and Soft. Though many of these commodity futures options
can go back before 1990s, we use data from January 1996 to December 2012 mostly, with variations
depending on specific commodities, to match the sample of other three asset classes.

We also collect commodity futures data from the CRB. Similar to bond futures and options,
we use both the front contract with the nearest expiration date and the back contract with the
second nearest expiration date following the literature (Gorton, Hayashi, and Rouwenhorst, 2013;
Hong and Yogo, 2012).'4 The grid of strikes is deep. Similar to bond futures options, we treat
commodity futures options of American style as European options. All the commodity futures and
options are quoted in USD, hence we use the one-month LIBOR as the short-term discount rate.

Appendix 1 provides detailed information of these commodity futures options.

2.2 Rare disaster concern measures

The ideal measure of rare disaster concerns should be parsimonious in terms of combining OTM
puts of different moneyness, and also rigorous in terms of picking up only the disaster risk and
excluding other types of risk like volatility risk in option prices. To construct such a measure, we
employ the methodology in Gao, Gao, and Song (2013) to develop a set of RIXs for each asset
of equity indices, currencies, bonds and commodities. The construction of these disaster concern
measures build on the literature of model-free implied volatility (Carr and Madan, 1998; Bakshi
and Madan, 2000; Britten-Jones and Neuberger, 2000; Carr and Wu, 2009; Du and Kapadia, 2012).

In particular, our rare disaster concern index (RIX) is essentially equal to the difference between

""Bakshi, Gao, and Rossi (2013) do not use the front contract to avoid the effect of the first notice day falling before
the expiration date of the front contact, which makes the investor face physical delivery issues from the counterparty.
We have tried this choice of futures contracts and found our results were not changed.
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the prices of two different option portfolios,
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where only OTM put options that protect investors against negative price jumps are used. We

then define the RIX as

RIX=V -1V = 2¢ / 7111 (St/ )P(St;K, T)dK. (2)
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Note that IV~ contains positions in OTM puts with a weight inversely proportional to their squared
strikes, while V~ differs by assigning larger (smaller) weights to more deeply OTM put options.
Since more deeply OTM options protect investors against larger price changes, it is intuitive that
the difference between IV~ and V™~ captures investors’ expectation about the distribution of large
price variations. We note that rare disaster concern measures can be constructed similarly with
OTM calls depending on perspectives of the average investor across markets and asset classes, as
discussed above.

Assume the price process follows the Merton (1976) jump-diffusion model with dS;/S; =
(r—Apy)dt + ocdWy + dJy, where r is the constant risk-free rate, o is the volatility, W; is a

standard Brownian motion, J; is a compound Poisson process with jump intensity A, and the

compensator for the Poisson random measure w [dz, dt] is equal to A \/%U exp (— (r—p J)2 / 2) i
J
We can show that
T
RHXE2E9/ / (142 +2%/2 —€")w™ [dz,dt], (3)
t Ro

where w™ [dz, dt] is the Poisson random measure associated with negative price jumps. Therefore,
our RIX captures all the high-order (> 3) moments of the jump distribution with negative sizes
given that e — (1 +z +22/2) = 23/3 + 24 /4 +---.

We observe from (2) and (3) that the RIX is both parsimonious in combining options with dif-
ferent moneyness and also rigorous in capturing high-order (> 3) moments of the jump distribution.

Hence, we shall use RIX as our main measure of ex-ante disaster concerns in empirical analysis.
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Nevertheless, alternative measures of rare disaster concerns exist. We consider two such measures
to check the robustness of the asset return patterns associated with rare disaster concerns. The first
is IV™, a model-free measure of semi-variance as the downside version of the model-free implied
volatility, which underlies the CBOE VIX (using S&P500 options). As IV~ is also a weighted aver-
age of OTM put option prices, we expect it to capture the rare disaster concerns to certain extent,
which echoes the role of CBOE VIX as an "investor fear gauge". We dub it as VIX™. The second
is the implied volatility skew, defined as the difference between the Black-Scholes implied volatility
of out-of-the-money and at-the-money options. It captures the expensiveness of the OTM options
relative to ATM options and hence disaster concerns potentially. Though intuitive and popular
in financial industry, these two measures may contain larger noises in terms of capturing disaster

concerns than our RIX measure that captures purges the lower-moment risks according to (3).

2.3 Empirical estimation

Following the literature, we clean option data of the four asset classes as follows: (1) we exclude
options with non-standard expiration dates, with missing implied volatility, with zero open interest,
with either zero bid price or negative bid—ask spread; (2) we discard observations with bid or ask
price less than 0.05 to mitigate the effect of price recording errors; and (3) we remove observations
where option prices violate no-arbitrage bounds. Finally, we only consider options with maturity
larger than 7 days and less than 180 days for liquidity concerns.

Throughout the paper, we use the 30-day horizon to construct each asset’s RIX, i.e., T'— t = 30.
On a daily basis, we choose options with exactly 30 days to expire, if they are available. Otherwise,
we choose two contracts that have the nearest maturities of 30 days with one longer and the other
shorter than 30 days. We exclude days with fewer than two option quotes of different moneyness
levels for each chosen maturity.!> As observed from (2), the computation of RIX relies on a
continuum of moneyness levels. Following Carr and Wu (2009) and Gao, Gao, and Song (2013),
we interpolate implied volatilities across the range of observed moneyness levels. For moneyness
levels outside of the available range, we use the implied volatility of the lowest (highest) moneyness

contract for moneyness levels below (above) it.

15Since the currency options are written on USD-based exchange rates, put options correspond to the depreciation
of USD and appreciation of the other currency, and vice versa for calls.
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In total, we generate 2,000 implied volatility points equally spaced over a strike range of zero
to three times the current spot price for each chosen maturity each date. We then obtain a 30-day
implied volatility curve either exactly or by interpolating the two implied volatility curves of the
two chosen maturities. Finally, we use the generated 30-day implied volatility curve to compute
the OTM option prices by the Black—Scholes formula and then RIX according to a discretization
of equation (2) for each day. After obtaining those daily estimates of each asset, we take the daily
average over each month to deliver a monthly time series of this asset’s RIX.

Figure 1 visualizes rare disaster concerns by showing time-series mean and standard deviation of
monthly RIX for each of 30 international equity indices, 32 currencies, 14 global government bonds,
and 28 commodity futures (Appendix 2 provides detailed summary statistics of these rare disaster
concern indices). The sample periods of options data of these assets vary and we list them below
each panel. Within the equity class (Panel A), the Russia market has the highest mean of RIX
and the Singapore market has the lowest; South Korean equity market has the highest standard
deviation of RIX and Israel equity market has the lowest. Within the currency class (Panel B),
the currency of Iceland has both the highest mean and standard deviation of RIX, most likely due
to the recent 2007-08 financial crisis (the currency option data of Icelandic Krona begin in 2006).
Within the bond class (Panel C), the U.S. 30-year bond displays the highest mean of RIX and the
Canada 10-year bond displays the highest standard deviation of RIX. We also observe long-term
bonds in general have higher RIX means and standard deviations than short-term bonds. Within
the commodity class (Panel D), the natural gas displays the highest mean of RIX and the RBOB
blendstock gasoline displays the highest standard deviation.

After constructing each asset’s RIX at month ¢ and averaging the cross-section of RIXs us-
ing all available ones at that time, we aggregate all assets’ RIXs within an asset class into an
asset-class-specific RIX. Figure 2 presents time-series plots of four asset-class-specific rare disaster
concern indices: EQRIX for equity index, FXRIX for currency, BDRIX for bond, and CMRIX for
commodity. Equity-class rare disaster concerns are more volatile, and they spike when the global
financial markets experienced realized shocks such as the 1997 Asian Financial Crisis and the recent
2007-08 global recession. Importantly, high levels of EQRIX also correspond to the periods when

the financial markets fear future global disaster events such as the Flash Crash in May 2010 and
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market rally in October 2011.16 Bond-class rare disaster concerns also spike in 2003 when there
was a sell-off in global bond markets. One can also observe a commonality pattern among the four

asset-class-specific RIXs. We further discuss co-movement of rare disaster concerns in Section 3.

3 Rare Disaster Concerns and Asset Returns

In this section, we present our baseline results on how rare disaster concerns drive global asset
returns. After discussing the return data for international equity indices, currencies, bond futures,
and commodity futures, we present empirical evidence within each asset class. We then document
the strong co-movement of RIXs across asset classes and construct a global rare disaster concern
index (GRIX). Finally we show that GRIX-covariation is a key determinants of cross-sectional

return variations across markets and asset classes.

3.1 Return data

Our return data on equity indices, currencies, bonds and commodities match the sample of options
introduced in Section 2. We describe return calculations as follows.

International Equity Index Returns. We obtain monthly returns of the 30 international
equity indices from MSCI and FTSE (via Datastream). These returns are denominated in local
currencies, and we convert them into USD-based returns as follows.

Let r,{c * be the net (and simple) return on equity index k denoted in a local currency for month
t, and S; be the spot exchange rate of currency k against US Dollar (i.e., foreign currency unit
(FCU) per USD) at the end of month ¢. Then the USD-based net return on equity index k for
month ¢ + 1 is

rig = Si(1+ Tffﬁ/stﬂ -1 (4)

We then subtract 7 ; by R{ﬁs, the one-month U.S. T-bill rate, to obtain the excess return raf, ;.

To ensure our portfolio strategies are implementable for investors, we use spot exchange rates from

16 Appendix 3 presents an event study of rare disaster concerns during the five-day period surrounding the event
of 2010 Flash Crash. The Flash Crash happened on the U.S. equity market on May 6, 2010. Interestingly, we
observe increased concerns on international equity markets not only on the event day but also on the day afterwards.
Moreover, increased concerns show up not only on equity class, but on currency and bond classes as well. These
results are consistent with the ex ante nature of RIXs, rare disaster concerns can increase with with no subsequent
realized disaster shocks.
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J.P. Morgan, one of the largest foreign currency dealers, to make such conversions.

Currency Returns. We use daily spot and one-month forward exchange rates against USD of
the 32 currencies obtained from Barclays and Reuters (via Datastream). Our empirical procedures
closely follow prior influential studies of currency returns such as Lustig, Roussanov, and Verdelhan
(2011).17 We use both spot and forward exchange rates that correspond to midpoint quotes (i.e.,
the average of bid and ask rates). Following the tradition in the currency literature, we work with
spot and forward rates in logarithms, denoted as s and f, respectively. The change in (log) spot
rate is defined as Asi11 = S$¢+1 — St

For a U.S. investor who buys a foreign currency k in the forward market and sells it in the spot

market one month later, we calculate the monthly (log) excess return as

E _ rk k
TTiy1 = fe = St+15

which is equal to the (log) forward discount minus the spot rate change
k k US k
TTiy1 = RZ - R{ —Asi g,

where R{ k and R{ US are the one-month risk-free rates of the foreign country and U.S., respec-
tively. If covered interest rate parity (CIP) holds, the forward discount is equal to the interest rate
differential: fF — sF ~ R{ ok _ R{ US 18 Because we will perform portfolio analyses on combined
assets from equity, currency, and bond classes, we use simple returns in our empirical analysis to
be consistent across asset classes (see the robustness check in Section 5.3 for portfolio results of
currency log returns).

Bond Futures Returns. We collect daily prices of 14 bond futures from various exchanges
(via J.P. Morgan). For each instrument, we compute monthly rolling excess returns of the most

liquid futures contract (typically the nearest or the next nearest to delivery contract). In particular,

1"Some of these currencies are pegged partly or completely to USD over our sample period (e.g., Argentine Peso
(ARS), Hong Kong Dollar (HKD), and Peruvian Nuevo Sol (PEN)). Similar to Lustig, Roussanov, and Verdelhan
(2011), we keep them in our sample because forward contracts are easily accessible to investors. Our results remain
unchanged if these currencies are excluded.

""Based on the large failure of CIP, we delete the following observations from our sample: Malaysia (August 1998
- June 2005) and Indonesia (December 2000 - May 2007). According to Akram, Rime, and Sarno (2008), the CIP
holds at daily and lower frequencies. Although this relation breaks down during the recent 2007-2008 financial crisis,
including or excluding those observations does not change our empirical results.
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at the end of each month, we select the nearest to maturity contract that will not expire during
next month (often called the “front” futures contract).!? We calculate the futures return on a fully
collateralized position as follows.

Let Ft{ jlf be the futures price (in local currency) for bond & at the end of month ¢, with expiration
date T'. Let R{ * be the one-month risk-free rate in the same bond market during month ¢, which is
assumed to be the interest earned on collateral. Then the monthly net return on a fully collateralized
long position in futures contract k& with expiration date 7 is

ok Flir ik
T = ( Ffjg + Ry ) -
&7

Hence, the monthly excess return of the bond futures k is ’I“l‘{_"_l = 7{_&1 T fRf k= F i T/ijf -1,
and then we convert it into USD-based excess return ra¥ '+1 7 using a similar procedure (4).20

Commodity Futures Returns. We collect daily prices of 28 commodity futures from the
CRB. Similar to bond futures, we compute monthly rolling excess returns of the most liquid futures
contract (typically the nearest or the next nearest to delivery contract), on a fully collateralized
position. In particular, at the end of each month, we select the nearest to maturity contract that
will not expire during next month (often called the “front” futures contract).?!

Let Ft{\f‘[p’k be the futures price (in USD) for commodity % at the end of month ¢, with expiration
date T'. Let R{ US be the one-month risk-free rate for U.S. dollars in month ¢ and hence the
interest rate on collateral. Then the monthly excess return on a fully collateralized long position

in commodity futures contract k with expiration date T is

Mk
M.k t+1,T USD,k USD.k Mk
TT L = < Iy >1Rt t+1T/F

FtT

Table 1 reports summary statistics of global asset monthly excess returns (in excess of the one-

month U.S. T-bill rate) in US dollars. On average, equity index earns 0.53% per month with a

9 As robustness checks, we also consider the “far” futures contract (the next maturity after the most liquid one)
and the 30-day constant maturity futures contract interpolated using the nearest and the next nearest to delivery
contracts. Results are similar (see Section 5.3 for details).

20 Asness, Moskowitz, and Pedersen (2013), Bessembinder (1992), de Roon, Nijman, and Veld (2000), Gorton,
Hayashi, and Rouwenhorst (2013), Moskowitz, Ooi, and Pedersen (2012), and Koijen, Moskowitz, Pedersen, and
Vrugt (2012) compute returns on futures contracts similarly.

2IThe appdendix contains robustness checks with the “far” futures contract and the interpolated 30-day futures
contract simlar to bond futures.
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standard deviation of 7.6%, currency earns 0.45% per month with a standard deviation of 3.6%,
bond futures earns 0.20% per month with a standard deviation of 1.3%, and commodity earns
0.36% per month with a standard deviation of 9.2%. Regarding skewness and kurtosis, equity
index return is left skewed whereas currency, bond, and commodity returns are right skewed; and
interestingly bond futures have heavier return tails than the other three asset classes. Turning
into individual assets within each asset class, the Russia investable market index, the currency of
Indonesian Rupiah, the Spain 10-year bond futures, and the unleaded gasoline yield the highest
mean excess returns of 2.56%, 3.26%, 0.35%, and 2.46% per month, within the asset classes of equity
index, currency, bond, and commodity, respectively. Overall, we observe large cross-sectional return
variations both within an asset class and across asset classes, which presents a challenging job for

asset-pricing models.

3.2 RIX covariation and portfolio construction

Starting from December 1997, we perform 24-month rolling-window regression of an asset’s monthly
excess returns on the factors of market excess return and the rare disaster concern index in com-
puting the asset’s RIX covariation. To ensure we have a reasonable number of observations in
the estimation, we require assets to have at least 18 months of returns. Specifically, we estimate
RIX covariation in the following way: in the equity class we regress equity index excess returns
(USD-based returns in excess of the one-month U.S. T-bill rate) on the MSCI world equity index
excess returns and EQRIX; in the currency class we regress currency returns on the dollar value
factor (currency market returns) and FXRIX; in the bond class we regress bond futures returns on
the Barclays Capital global government bond index return and BDRIX; and in the commodity class
we regress the commodity futures returns on the S&P GSCI index return and CMRIX. Our option
sample in measuring rare disaster concerns and return sample in estimating RIX covariations are
unbalanced panel data. We restrict the return sample to match the options sample, i.e., we require
the availability of an asset’s options (and its associated RIX) when using time-series regressions to
estimate its RIX covariation so that this asset’s rare disaster concern contributes to the aggregated
rare disaster concern index (within or across asset classes).

We perform standard portfolio analysis on RIX covariation and examine future asset returns.

When analyzing returns within an asset class, we rank assets into four groups based on their
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RIX covariations, and then calculate equal weighted portfolio excess returns and abnormal returns
(alphas) based on benchmark models. For the analysis of returns across asset classes, we sort all
the assets of the four global asset classes into five quintiles based on their covariation with respect
to global rare disaster concern index that we will discuss shortly. We construct the low-minus-
high RIX-covariation portfolio that is long low RIX-covariation (unfavorable) assets and short high
RIX-covariation (favorable) assets, both within and across asset classes. To study the horizons of
RIX covariation in explaining asset returns, we consider portfolio formation at monthly, quarterly,
semi-annual, and annual frequencies. Finally, to measure alphas, we use the Asness-Moskowitz-
Pedersen (AMP) value and momentum factors, Frazzini-Pedersen (FP) betting-against-beta factor,
and Moskowitz-Ooi-Pedersen (MOP) time series momentum factors, which have beee shown to drive

security returns across asset classes.??

3.3 RIX covariation and returns within asset classes

Table 2 presents results of RIX-covariation portfolios in each asset class. In particular, we form
four portfolios within each of the four asset classes of equity, currency, bond and commodity, based
on assets’ covariation with respect to rare disaster concern indices EQRIX, FXRIX, BDRIX, and
CMRIX, respectively. On average, there are five equity indices, six currencies, three bond futures,
and seven commodity futures in each respective RIX-covariation portfolio. To examine whether
diversification benefits exist across asset classes, we also conduct a simple combination strategy
that yields equal weighted returns across the four asset classes.

Three main results arise. First, we find consistent patterns that low RIX-covariation assets earn
higher returns than high RIX-covariation assets in each asset class. The return differences between
low and high RIX-covariation assets are not only statistically significant but also economically
large. For example, when we monthly form portfolios, the low-minus-high (LMH) RIX-covariation
portfolios on average significantly earn 0.76%, 0.37%, 0.21%, and 0.90% per month within asset
classes of equity, currency, bond, and commodity, respectively.

Second, asset return predictability associated with RIX covariation is not short-lived. For

22We also use other benchmark factors to compute alphas in different asset classes. For example, in the class of
international equity indicies, we use the Fama-French three factors augmented with the Carhart’s momentum factor
in the international context (Fama and French, 2012). In the currency class, we use the two common risk factors
of Lustig, Roussanov, and Verdelhan (2011). In the commodity class, we use the common risk factors based on
commodity basis (Yang (2013)). Our results remain unchanged.
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example, at the semi-annual frequency of portfolio formation, these portfolios earn even higher
average returns (0.97%, 0.54%, 0.28%, and 1.45% per month), all close to three standard errors
from zero. In addition, at various frequencies of portfolio formation, the spreads of LMH RIX-
covariation portfolios mainly come from high excess returns earned by low RIX-covariation assets
(the long leg).

Third, these return patterns from assets’ return covariation with rare disaster concerns are
largely unexplained by well-known benchmark factors across asset classes. Specifically, alphas of
LMH EQRIX-covariation, FXRIX-covariation, and CMRIX-covariation portfolios are significant
at all frequencies of portfolio formation, whereas those of LMH BDRIX-covariation portfolios are
significant at all frequencies except quarterly. The alphas are still economically large, only slightly
lower than the corresponding raw returns. Furthermore, the LMH RIX-covariation portfolio from
the simple combination strategy yields 0.60% to 0.77% (0.56% to 0.81%) mean returns (alphas)
per month depending on the portfolio formation frequency, all statistically significant (most of time
t-statistics are larger than three). This result of combination strategy illustrates the important
diversification effect of RIX-covariation portfolios across asset classes.

Figure 3 shows year-by-year annual returns and Sharpe ratios of the LMH RIX-covariation
portfolios within each asset class and through the asset-class combination. The outperformance of
low RIX-covariation assets is not restricted to a particular year. Importantly, the return spreads
of LMH RIX-covariation portfolios are positive during a few disaster periods such as the 2002
stock market downturn and the 2007-2008 global financial crisis, which suggests that asset returns
associated with ex ante rare disaster concerns differ from those driven by disaster risk. Should one
interpret low RIX-covariation assets as risky because of their high sensitivity to disaster risk, the
return spreads of LMH RIX-covariation portfolios are expected to be negative when disaster shocks

are realized.

3.4 Co-movement in rare disaster concerns

We perform correlation analysis of rare disaster concerns and report results in Table 3. Panel
A presents the summary statistics of all pairwise sample correlations of RIXs in each asset class.
The mean correlations are 0.78, 0.61, 0.28, and 0.31 within equity, currency, bond, and commodity

markets respectively. We also compute the pairwise correlations of RIXs across assets from different
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classes. The mean (median) correlations are the following: 0.43 (0.46) between equity and non-
equity classes, 0.46 (0.51) between currency and non-currency classes, 0.24 (0.31) between bond and
non-bond classes, and 0.27 (0.29) between commodity and non-commodity classes. These results
indicate strong co-movements or commonality of rare disaster concerns both within an asset class
and across asset classes.

To capture the commonality of disaster concerns across markets and asset classes, we construct
a global rare disaster concern index (GRIX) as the first principal component of the correlation
matrix of three asset-class-specific rare disaster concern indices (EQRIX for equity, FXRIX for
currency, BDRIX for bond, and CMRIX for commodity). The GRIX, which essentially averages
rare disaster concerns across asset classes, accounts for over 70% of the covariations of the rare
disaster concern indices for the four asset classes. Panel B of Table 3 presents correlations of the
global and asset-class-specific rare disaster concern indices. We observe that (both Pearson and
Spearman) correlations between GRIX and EQRIX, FXRIX, BDRIX and CMRIX range between

53% to 92%, with statistical significance at 1% level.

3.5 GRIX covariation and returns across asset classes

In this section, we present our main results on the relation between GRIX covariations and security
returns across asset classes, i.e., portfolios that potentially consist of different asset classes given
the global nature of GRIX.?3 We rank all 104 global investment assets into five GRIX-covariation
quintiles and examine their future returns. On average, there are 17 assets in each quintile portfolio.
Panel A of Table 4 presents monthly mean excess returns and alphas, whereas Panels B and C
present factor loadings of monthly and quarterly formed portfolios.

Panel A of Table 4 shows that global rare disaster concerns (channeled through GRIX covari-

ation) are a key driver of return variations across markets and asset classes. In particular, when

23The appendix contains results on the GRIX covariation and returns within each asset class. When portfolios
are monthly formed, there are significant return spreads between low and high GRIX-covariation portfolios in equity
and bond classes (0.79% for equity index with a ¢-statistic of 2.4, and 0.26% for bond futures with a t-statistic
of 2.2), but not in currency class (0.17% with a ¢-statistic of 1.0). The LMH GRIX-covariation portfolio in the
combination strategy earns 0.41% per month that is more than three standard errors from zero, again indicating
the diversification benefit across asset classes. Such return spreads within each asset class decrease and become less
statistically significant as we move into lower frequencies of portfolio formation. Yet, when averaging across three
asset classes, the combination strategy still yields significant return differences between low and high GRIX-covariation
portfolios (e.g., at the semi-annual frequency spreads of 0.27% with a t-statistic of 2.1). Overall, these results provide
initial evidence on the explanatory power of global rare disaster concerns on cross-sectional asset returns.
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portfolios are monthly formed, the return spread between low and high GRIX-covariation portfolios
is 1.00% per month with a significant t-statistic of 3.6. This return spread gradually decreases as
portfolios are formed at further lower frequencies (0.72%, 0.42%, and 0.02% with t-statistics of 2.5,
1.6, and 0.1 at the quarterly, semi-annual, and annual frequencies, respectively). In addition, these
return spreads are mainly driven by assets with low GRIX covariations — all low GRIX-covariation
quintiles earn significant excess returns around 0.70% per month at different portfolio formation
frequencies. In contrast, all high GRIX-covariation quintiles do not earn monthly excess returns
that are statistically different from zero.

Table 4 also shows that asset returns associated with GRIX are not attributed to effects of
global value and momentum, BAB factors, and time series momentum. In particular, Panel A of
Table 4 shows that monthly alphas of LMH GRIX-covariation portfolios are all economically large,
especially at monthly and quarterly frequencies of portfolio formation, ranging from 0.76% to 0.96%
(with ¢-statistics from 2.3 to 3.2). Furthermore, Panels B and C show that loadings on the market
factor, the VME factors, and the BAB factor have little explanatory power for the return spread
between low and high GRIX-covariation quintiles.

Does the low (or high) GRIX-covariation portfolio only contain assets from a single asset class?
Moreover, does the asset composition across equity indices, currencies, bond futures, commodity
futures vary over time in the low (or high) GRIX-covariation portfolio? Figure 4 presents asset
class distributions over time of both low (top panel) and high (bottom panel) GRIX-covariation
portfolios.?* Take the allocation distribution of the equity index as an example. We first count the
number of equity indices within the low (or high) GRIX-covariation quintile, and then divide it by
the total number of equity indices that are available for investment at the end of each month when
we form GRIX-covariation portfolios.

Two main results arise from Figure 4. First, no single asset class fills up the low or high
GRIX-covariation portfolio at any time. That is, both low and high GRIX-covariation portfolios
contain assets from multiple asset classes in our sample. Second, the composition of low and high
GRIX-covariation portfolios varies over time, indicating that asset classes on average have time-

varying loadings on GRIX. Overall, our empirical evidence implies that return dynamics driven by

24In Appendix, we report the frequency of each asset within one asset class appearing in low and high asset-class-
specific RIX-covariation portfolios.
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the GRIX are indeed pervasive across all asset classes (equity, currency, bond, and commodity) in

response to time-varying global rare disaster concerns.

3.6 Alternative measures of rare disaster concerns

In this section, we show that the return dynamics driven by rare disaster concerns persist when
alternative measures are used, though less significant due to larger noises of these measures than
GRIX in capturing ex-ante disaster concerns. We consider the two alternative measures discussed
in Section 2.2, VIX™ and volatility skew, dubbed as GVIX™ and GVS in the setting of global
markets and asset classes. To construct GVIX™ and GVS, we follow the procedures similar to the
GRIX construction. Specifically, we first employ each asset’s options data to estimate VIX™ and
volatility skew measures using all available moneyness, average over assets within an asset class to
get asset-class VIX™ and volatility skew measures, and finally take the first principal component
of the correlation matrix of the four asset-class-specific measures.

We rank the 104 global investment assets into five quintiles based on their covariation with
GVIX™ and GVS. Table 5 reports monthly mean excess returns and alphas. Similar to results in
Table 4 for GRIX-covariation portfolios, unfavorable assets with respect to rare disaster concerns
outperform favorable assets by 0.67% and 0.61% each month, with t-statistics of 2.5 and 2.1,
respectively, based on GVIX™ and GVS. The alphas are significant for portfolios based on GVIX™
(about 0.68% with a t-statistics of 2.4), though not for those based on GVS (about 0.28% with a
t-statistic of 1.0). By contrast, returns of GRIX-covariation portfolio are more significant, with a
mean excess return of 1.0% (a t-statistic of 3.6) and an alpha of 0.96% (a t-statistic of 3.2) from
Panel A of Table 4. Overall, the strong (but less significant) return patterns based on GVIX™ and
GVS confirm that rare disaster concerns are a key driver of security returns across markets and

asset classes, and that GRIX captures the global rare disasters better than alternative measures.

4 Additional Analyses on Global Asset Portfolios

Asset return dynamics across markets and asset classes incur involved issues such as perspectives of
average investors. Furthermore, the global and local nature of rare disaster concerns is important

for understanding the asset allocation in a portfolio across markets and asset classes. In this section,
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we first conduct analysis to show that the pervasive return pattern associated with rare disaster
concerns is robust to alternative perspectives of average investors. We then dissect the global and

local nature of rare disaster concerns.

4.1 Alternative positions of average investors

As discussed in Section 2, our baseline results take the perspective of an average U.S. investor
who have long positions in international equity indices, foreign currencies, and global government
bond futures and short positions in commodity futures. In consequence, the GRIX measure in our
baseline results use OTM put options on equity indices, foreign currencies, and bond futures and
OTM call options on commodity futures to capture the global market disaster concerns.

However, alternative perspectives exist. For example, an average investor with a global market
portfolio positively related to the global macroeconomy or financial market may view the surging
prices of bonds as signaling disasters because of flight-to-safety and flight-to-quality (Longstaff,
2004; Campbell, Pflueger, and Viceira, 2013, 2014), As a result, OTM calls on bonds should be
used to capture the global rare disaster concerns. Moreover, investors are known to take carry
trade portfolios in the currency market and hence long currencies with a high interest rate. In this
case, OTM puts on high carry currencies should be employed to capture the disaster concerns of
global markets.

To investigate whether return dynamics driven by rare disaster concerns are robust to alternative
perspectives of average investors, we re-compute the GRIX measure consistent with such alternative
perspectives. In particular, the alternative BDRIX can be computed using OTM calls on bond
futures by a formula similar to (2). Furthermore, we compute the alternative FXRIX using OTM
puts (calls) on the foreign currency with a higher (lower) interest rate than US. We then reconstruct
the GRIX with these alternative asset-class-specific RIX~, similar to the baseline GRIX. We
estimate each asset’s return covariation with the alternative GRIX and then monthly form five
quintiles.

Table 6 reports the mean excess returns and alphas when only using the alternative BDRIX,
only using the alternative FXRIX, and using both the alternative BDRIX and FXRIX. We observe
that the return dynamics driven by rare disaster concerns are robust to such alternative perspectives

of average investors. The return spread between unfavorable assets with low covariation with rare
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disaster concerns and favorable assets ranges from 0.82% to 0.89% (with t-statistics from 2.8 to 3.1)
in different scenarios of alternative perspectives, about the same as the baseline results in Panel
A of Table 4. Moreover, the alphas are from 0.61% to 0.84% with t-statistics above 2. Overall,
we find that the return dynamics associated with rare disaster concerns across markets and asset

classes are robust to alternative perspectives of average investors.

4.2 Global and local disaster concerns

To understand global and local nature of the rare disaster concerns, we orthogonalize an asset-class
RIX by regressing it on the other three asset-class RIXs and take the residuals as the asset-class-local
RIX. We then form portfolios according to an asset’s covariation with respect to this local RIX, both
in the asset classes it belongs to and the other three asset classes together. For example, we perform
a time series regression of monthly EQRIX (equity-class disaster concerns) on FXRIX (currency),
BDRIX (government bond), and CMRIX (commodity), and use the residuals as a measure of the
local EQRIX. Within the equity class, we monthly form five local-EQRIX-covariation quintiles;
and across the currency, bond, and commodity assets classes, we form quintiles in a similar way.
We perform similar regression and portfolio analyses for local FXRIX, BDRIX, and CMRIX.
Table 7 reports these portfolio excess returns in Panel A and five-factor alphas in Panel B.
We find marginally significant return differences driven by such asset-class-local RIXs in equity
and commodity classes, but not in currency and bond markets. Also as expected, none of the
asset-class-local RIXs can explain returns in the other three asset classes. Such results suggest
that disaster concerns of currencies and bonds are "completely global", whereas those of equities
and commodities have components that drive "local" return dynamics but not the whole global

financial market.

5 Economic Channels of Rare Disaster Concerns

The rare disaster concern measures based on option prices do not separate preference and belief.
Hence, an increase in RIX can be due to increasing disaster risk of economic fundamentals and
financial markets (Barro, 2006; Gabaix (2012), Martin (2013c), and Wachter (2013)), increasing

funding and capital constraints of institutional investors (Brunnermeier and Pedersen, 2009; Gar-
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leanu, Pedersen, and Poteshman, 2009; Garleanu and Pedersen, 2011; He and Krishnamurthy, 2012,
2013), and increasing disaster fear/perception (Liu, Pan, and Wang, 2005; Bates, 2008; Drechsler,
2013; Bollerslev and Todorov, 2011; Barberis, 2013; Chen, Dou, and Kogan, 2013; Weitzman, 2007).
In this section, we conduct a comprehensive analysis to investigate implications of our return pat-
terns driven by rare disaster concerns for various economic channels (all associated with disaster
risk) of asset pricing theories. We collect variables for three economic channels, consumption and
macro disaster risk, financial market disaster risk, and liquidity and funding constraints of finan-
cial intermediates, and study whether return dynamics associated with GRIX can be explained by

them.

5.1 Economic channels and empirical measures

Consumption and Macroeconomic Disaster Risk. We obtain various measures of macroeco-
nomic risk, including GDP growth, inflation, recession indicator, corporate default risk, and term
spread of bond yields, for global economies (U.S., U.K., Japan, and Europe). The GDP growth is
the real per-capita growth rate of GDP, computed quarterly by the real GDP growth rate obtained
from Federal Reserve Economic Data (FRED) of the Federal Reserve Bank of St. Louis and the
annual population growth obtained from the World Economic Outlook (WEQO) database of Inter-
national Monetary Fund (IMF). The inflation rate is the monthly year-on-year percentage change
of the core CPI in different economies published by their respective central banks. For example, we
use the Harmonized Index of Consumer Prices (HICP) for the Euro area. At monthly frequency, we
collect the recession indicator for the U.S. economy from the NBER, and that for global economies
from the Organization of Economic Development (OECD).2% To obtain global factors of the GDP
growth, the inflation rate, and the recession indicator, we calculate the average of each factor across
U.S., U.K., Japan, and Europe, weighted by their respective beginning-of-year GDP obtained from
the WEO.

We also proxy the corporate default risk using the difference between the Moody’s AAA and
BAA corporate bond yield obtained from the FRED for U.S. We use the difference between the
AAA and BBB corporate bond yield indices with maturities of 7-10 years for U.K. and Euro zone,

and the difference between investment and non-investment grade corporate bond yield indices for

?The recession indicator is equal zero (one) if an economy enters into a state of peak (trough) ez post.
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Japan, both obtained from J.P. Morgan. Finally, we compute the term spread between the 10-year
bond yield and 3-month T-bill rate for U.S., U.K., Japan, and Europe (using Germany as a proxy).
We use differences (shocks to term spread and default factors) to measure risk exposure. The
global term spread and default risk factors are computed as the first principal component of the
correlation matrix of corresponding shocks across countries. We use the correlation rather than
covariance matrix to accommodate the difference in volatility and scale of factors across various
economies (see a similar approach in Asness, Moskowitz, and Pedersen (2013)).

Financial Market Disaster Risk. To measure the financial market disaster risk, we collect
series of financial market liquidity and stock market tail risk, and construct series of high-order risk-
neutral moments using options on various asset classes. Due to data constraints, we only use the
U.S. variables for market liquidity, including the on-the-run minus off-the-run 10-year Treasury yield
spread obtained from the Federal Reserve Board and innovations of the liquidity factor in Pastor
and Stambaugh (2003) (obtained from Robert Stambaugh’s webpage). Using the methodology in
Bakshi, Kapadia, and Madan (2012), we also construct high-order risk-neutral moments, including
variance, skewness, and kurthosis based on the set of equity indices, currencies, bond futures, and
commodity futures options (the aggregation procedures are similar to those of constructing GRIX).

Funding and Liquidity Constraints of Financial Intermediaries. Our variables of fund-
ing liquidity and leverage constraints of financial intermediaries include the “noise” measure in
Hu, Pan, and Wang (2012) (obtained from Jun Pan’s webpage) associated with the abundance
of arbitrage capital and the leverage shock to the securities broker-dealers (obtained from Tyler
Muir’s website) in Adrian, Muir, and Etula (2012). We also collect series of Treasury-Eurodollar
(TED) spread (the local 3-month interbank borrowing interest rate minus the local 3-month T-bill
rate), the LIBOR-Repo spread (the local 3-month interbank borrowing interest rate minus the lo-
cal 3-month General Collateral repurchase rate), and the Swap-Treasury spread (the local 10-year
interest rate swap rate minus the local 10-year government bond yield) in each of the four markets.
We first obtain daily series of the 3-month interbank borrowing interest rates (LIBOR for the U.S.,
the U.K., and Japan, and EURIBOR for Europe), 3-month T-bill rates, 3-month General Collateral
repurchase rate, 10-year government bond yields, and 10-year interest rate swap rates from several
datasources (J.P. Morgan, TRTH, and FRED). We then average daily data to construct monthly

series. Finally, in order to measure liquidity shocks, we take the first-order difference in each of
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these monthly series.?6

5.2 Results

Table 8 reports correlations of rare disaster concern indices with measures of global macroeconomic
disaster risk (in Panel A), with measures of financial market disaster risk (in Panel B), and liquidity
and funding constraints of finanical intermediaries (in Panel C). We find that RIXs have low
correlations with these measures, less than 30% mostly. As exceptions, the recession indicator and
leverage shock to dealer-brokers have correlations with rare disaster concners at about 40% and
-50%, respectively. Notably, the risk-neutral high-order moments based on the same set of options
have low correlations with our RIX measures, suggesting that the RIX is not simply repackaing
these high-order moments.

Panel A of Table 9 reports regression results of low-minus-high (LMH) RIX-covariation portfolio
returns (within and across asset classes) on macroeconomic disaster risk proxies. We observe that
macroeconomic risk factors are generally not significant in explaining the return spreads between low
and high RIX-covariation portfolios, with the regression adjusted R? mostly small and oftentimes
negative. Several factors do show certain statistical significance in driving return spreads of RIX-
covariation portfolios, such as the global market return. However, their economic significance is
contradictory with interpreting the macroeconomic risk as driving our RIX-covariation portfolio
returns. Specifically, when the market return is low, low GRIX-covariation assets earn even higher
returns than high GRIX-covariation assets. Moreover, though having a correlation of 0.49 with
our GRIX, the recession indicator has no power to explain our GRIX-covariation portfolio returns
at all. These results suggest that asset return predictability associated with the global market’s
rare disaster concerns is distinct from the exposure to disaster risk associated with macroeconomic
downturns.

Panel B of Table 9 reports regression results for LMH RIX-covariation portfolio returns on
disaster risk factors of financial markets. Similar to macroeconomic disaster risk factors, financial
market liquidity factors and the risk-neutral moments are hardly significant in explaining the time-

series variability of the LMH RIX-covariation portfolio return, with the risk-neutral kurtosis as the

% Defining shocks as the residuals from an AR(1) or AR(2) model (e.g., Korajczyk and Sadka, 2008; Moskowitz
and Pedersen, 2012; Asness, Moskowitz, and Pedersen, 2013) does not change our results.

27



only exception for GRIX portfolios. However, the explanatory power is weak with the regression
adjusted R? about 1%.

Panel C of Table 9 reports regression results for LMH RIX-covariation portfolio returns on
funding and liquidity constraints of finanical intermediaries. We observe that these variables are
not significant in explaining the return spreads between low and high RIX-covariation portfolios,
including the leverage shock factor that is shown to have a high correlation of -0.6 with GRIX. The
regression adjusted R? are mostly small.

Overall, our results strongly indicate that the global asset return predictability driven by ex-
ante disaster concerns cannot be explained by the exposure to disaster risk of consumption and
macro fundamentals and disaster risk of financial markets. Moreover, it is not simply phantom of
liquidity/capital constraints of financial intermediaries. Excluding these channels as driving our
return patterns associated with rarer disaster concerns, such evidence suggests that time-varying
disaster fear/perception, which is shown to drive asset prices in U.S. stock markets by Bates (2008),
Drechsler (2013), and Bollerslev and Todorov (2011), might be a potential channel to reconcile
security returns across asset classes.

We stress that our empirical evidence does not imply that models with macroeconomic and
finanical disaster risk and model with intermediary constraints are unimportant. Alternatively, the
RIX can be interpreted as a better measure of ex-ante disaster risk than other empirical proxies,
and hence our results can simply be evidence supporting disaster risk theory. Though plausible,
this interpretation faces an obstruction that the return spread of high-minus-low RIX-covariation
portfolios is significantly positive during most crisis periods, including the recent financial crisis
that is fairly extreme in the history of the global economies; it is expected to be negative should

we go with a disaster risk interpretation.

5.3 Fama-MacBeth Regressions

Table 10 reports Fama-MacBeth (1973) regression coefficient estimates and ¢-statistics from cross-
sectional regressions of USD-based excess returns of the 104 global assets on their covariations with
respect to the rare disaster concern indices, market return, liquidity risk, GDP growth, inflation,
default risk, and term risk. Except for market beta, we estimate each asset’s non-market beta in

month ¢ from a bivariate regression that always includes the market factor (the MSCI world equity
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index return in excess of one-month U.S. T-bill rate). For example, to estimate an asset’s GRIX
covariation we regress its excess returns on the market factor and the global rare disaster concern
index based on the past 18-24 monthly observations. To reduce beta estimation error, we use each
asset’s beta rankings as regressors when running cross-sectional regressions at each point of time.
Specifically, we form four RIX-covariation portfolios within each asset class and use these rankings
for “Asset-Class RIX covariation”; we form 10 GRIX-covariation deciles across all assets and use
these rankings for “Global RIX covariation”. For other macro and liquidity betas, we do the same
by forming 10 beta deciles and use their rankings. Thus, regression coefficients are comparable
across different model specifications.

Results of the first two regression specifications confirm our portfolio results in Section 3, il-
lustrating the asset return predictability driven by rare disaster concerns both within and across
asset classes. In the other four specifications (with specifications (3) and (5) controlling for U.S.
macroeconomic and liquidity risk factors and specifications (4) and (6) controlling for global risk
factors), the coefficients on RIX beta are negative and statistically significant except for one case.
Moreover, the regression coeflicients of RIX-covariation and GRIX-covariation do not change much
in presence of macroeconomic and liquidity risk betas. Regarding other regression coefficients, in-
flation beta is significantly negative with a right sign, and global default risk beta is significantly
positive with a wrong sign. Overall, the explanatory power of rare disaster concerns on global asset
return variations is robust to market beta, liquidity risk beta, real GDP growth beta, inflation beta,

default risk beta, or term risk beta.

6 Robustness Checks

In this section, we discuss the robustness of our main findings about assets’ covariation with rare
disaster concerns and their cross-sectional expected returns. The detailed results are in Appendix.
6.1 Downside risk CAPM betas

Can the downside risk CAPM (DR-CAPM) in Lettau, Maggiori, and Weber (2013) price the
cross section of RIX-covariation portfolios? An interpretation of DR-CAPM is that assets having

higher covariances with the market during its downturns than its upturns are more risky and hence
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require higher expected returns in equilibrium. Recall in our analysis low RIX-covariation assets
are unfavorable ones delivering low returns during the time of high disaster concerns of the market
and we find they earn high excess returns on average. Thus, it seems imperative to ask whether
low RIX-covariation assets have high DR-CAPM betas, and particularly, whether the exposure
to realized downside return shocks on the market is large enough to explain the return difference
between low and high RIX-covariation assets.

Among the set of RIX-covariation portfolios of three asset classes, we estimate each portfolio’s
DR-~-CAPM beta by regressing its monthly excess returns on the market excess returns using only
downstates that are all months in which the market return is at least one standard deviation
below its sample mean (see Table 10 for details about the choice of market factor and the sample
period of calculating mean and standard deviation of market returns). Table 10 presents DR-
CAPM beta estimates, t-statistics, and regression R-squares. Two results arise. First, a fair
amount of time series return variations of RIX-covariation portfolios during market downstates are
captured by the corresponding market excess returns.?’ This pattern is especially true for equity
indices and currencies. Second, within each asset class, variations in loadings on the DR-CAPM
market factor are unable to explain the cross-sectional return differences between low and high
RIX-covariation assets. The DR-CAPM betas of low-minus-high RIX-covariation portfolios are
both small in general and statistically insignificant. For example, the DR-CAPM beta spreads of
the combination portfolios are 0.12 and 0.15, respectively, at frequencies of monthly and semi-annual
portfolio formation, and both are less than one standard error from zero.

We also look at downside risk CAPM betas of GRIX-covariation portfolios formed across 104
assets (there are 26 monthly observations in which we use as market downstates to estimate re-
gression). Figure 5 illustrates the failure of DR-CAPM in explaining cross-sectional mean returns
of GRIX-covariation portfolios. The downside beta of low GRIX-covariation portfolio (0.87 with
a t-statistic of 4.6), if anything, is lower than that of high GRIX-covariation portfolio (0.98 with
a t-statistic of 4.6), which goes in a wrong direction to explaining the monthly return spreads of

low-minus-high GRIX-covariation portfolio 0.62% (see Panel A of Table 5).2% Although our analy-

2TQur definition of market downstate assigns 24, 21, and 29 monthly observations in asset classes of equity,
currency, and bond, respectively.

?8In an (unreported) analysis, we also follow Ang, Chen, and Xing (2006) to estimate assets’ downside risk CAPM
betas on a rolling-window basis. We find no systematic and significant return variations associated with these
downside betas. In the asset class of equity indices, for example, the monthly return difference between low and high
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sis suggests that the downside risk CAPM cannot explain global asset returns associated with rare
disaster concerns, we interpret these results with caution given the relatively short sample period
in our study (1996-2012) and (potentially) the lack of power in performing DR-CAPM asset pricing
tests. In sum, the empirical findings in this section reiterate our earlier point in Section 4 that as-
sets’ covariation with the market’s rare disaster concerns can be much different from their exposure

to realized downside shocks on the market return.

6.2 Asset return data

We evaluate the strength of our main results of asset-class RIX-covariation portfolios by using
various data of global asset returns as follows: (1) we use exchange trade funds (ETFs) on the
U.S. equity market to track international equity indices in our sample, and then use their monthly
returns in the Center for Research in Security Prices (CRSP) to estimate ETFs’ EQRIX betas and
calculate equal-weighted index portfolio returns; (2) we use log returns instead of simple returns
to estimate currencies’ FXRIX betas and calculate currency portfolio returns; and (3) we use
interpolated futures returns of 30-day constant maturity (contracts are based on the nearest and
next nearest to delivery) to estimate bonds’ BDRIX betas and calculate bond portfolio returns.
Appendix 5 provides details of ETFs that are used to track international equity indices.?”

We check mean excess returns of RIX-covariation portfolios within each of three asset classes.
In Panel A, when U.S. equity ETFs are used as investable assets, we find significant return spreads
of low-minus-high EQRIX-beta portfolios, especially when forming portfolios on quarterly, semi-
annual, or annual basis. Moreover, these spreads (0.67% to 0.85% per month) are close to those
of EQRIX-beta portfolios based on the original Datastream returns of MSCI/FTSE international
equity indices (0.86% to 0.97% as shown in Table 2). In Panels B and C, when using log returns on
currency and interpolated futures returns on bond, respectively, we find return results very similar
to those reported in our baseline analysis (see Table 2 for details). For example, the spreads of
low-minus-high FXRIX-beta portfolios vary from 0.36% to 0.46% based on the specification of log

returns, and these numbers vary from 0.37% to 0.52% based on the specification of simple returns

downside-beta portfolios is 0.28% (with an insignificant ¢-statistic of 0.9). These results are available upon request.

29 Among 30 equity indices, we are able to locate 28 ETFs with available returns in CRSP. Two equity markets,
Finland and Denmark, have ETFs lunched on the U.S. equity market in January 2012, for which, however, we are
unable to find corresponding monthly return data in CRSP.
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7 Conclusion

We show that rare disaster concerns strongly drive cross-sectional return variation both within and
across asset classes, including international equity indices, currencies, global government bonds,
and commodities. Using a large set of out-of-the-money options on these assets, we measure the
global financial market’s rare disaster concerns under only no-arbitrage conditions. Assets that
have low (high) return covariations with such concerns earn high (low) excess returns in the future.
Such return patterns are not attributed to effects of global value and momentum, and are robust
to various long/short positions of average investors.

We also find that our results are not explained by consumption and macroeconomic disaster
risk, financial market disaster risk, and funding and liquidity constraints of financial intermediaries.
The evidence suggests time-varying disaster fear/aversion as a potential venue to reconcile return
dynamics across asset classes, making a step forward towards understanding “how discount rates
vary over time and across assets” (Cochrane, 2011). We leave the exploration of this direction for

future work.
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Figure 1: Rare disaster concern index (RIX) for equity index, currency, sovereign bond, and commodity
This figure shows time-series mean (left axis) and standard deviation (right axis) of monthly RIX for each of 30 international equity indices (Panel A), 32 foreign currencies
(Panel B), 14 global government bonds (Panel C), and 28 commaodities (Panel D). We also list option sample period below each panel.
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Equity index option sample period: ASX200 (2001:02 - 2012:10), ATX (1996:01 - 2012:10), BEL20 (1996:01 - 2012:10), TSX60 (1999:09- 2012:10), OMXC20 (2005:10 - 2012:01), ESTX50
(2001:07 - 2012:10), OMXH25 (2005:02 - 2012:10), CAC40 (2005:05 - 2012:10), DAX (2001:07 - 2012:10), ASE20 (2000:10 - 2012:10), HSI (1996:01 - 2012:10), NSEI (2001:07 - 2012:10), TA25
(1996:01 - 2012:10), MIB (2004:05 - 2012:10), N225 (1996:01 - 2012:10), IPC (2004:06 - 2012:10), AEX (1997:01 - 2012:10), VINX30 (2006:09 - 2012:10), OBX (1999:02 - 2012:10), WIG20
(2003:09 - 2012:10), RTS (2009:03 - 2012:10), SGX (2009:04 - 2012:10), K$200 (1997:07 - 2012:10), IBEX (2001:11 - 2012:10), OMXS30 (2004:11 - 2012:10), SMI (2001:07 - 2012:10), TAIEX
(2001:06 - 2012:10), SETS0 (2008:06 - 2012:10), FTSE100 (1996:01 - 2012:10), SPX (1996:01 - 2012:10).



Panel B: Foreign currency
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Currency option sample period: ARS (2004:03 - 2012:05), AUD (1996:01 - 2012:05), BRL (2004:03 - 2012:05), CAD (1996:02 - 2012:05), CLP (2004:03 - 2012:05), COP (2004:03 - 2012:05),
CZK (2000:11 - 2012:05), DKK (1996:07 - 2012:05), EUR (1999:01 - 2012:05), HKD (1996:01 - 2012:05), HUF (2000:11 - 2012:05), ISK (2006:01 - 2012:05), INR (2004:03 - 2012:05), IDR
(2001:03 - 2012:05), ILS (2004:03 - 2012:05), JPY (1996:02 - 2012:05), MYR (2000:11 - 2012:05), MXN (2000:11 - 2012:05), NZD (1996:12 - 2012:05), NOK (1996:02 - 2012:05), PEN (2004:03
-2012:05), PHP (2003:02 - 2012:05), PLN (2000:11 - 2012:05), RUB (2006:01 - 2012:05), SGD (1997:03 - 2012:05), ZAR (1996:01 - 2012:05), KRW (2002:02 - 2012:05), SEK (1996:01 -
2012:05), CHF (1996:01 - 2012:05), TWD (2004:08 - 2012:05), THB (2000:11 - 2012:05), GBP (1996:01 - 2012:05). Note: The RIX mean and standard deviation of Icelandic Krona (ISK) are
divided by 10.



Panel C: Glboal government bond
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Bond futures option sample period: AUS 10YR (1996:01 - 2012:12), AUS 3YR (1996:01 - 2012:12), CAN 10YR (1996:01 - 2003:05), DEU 10YR (1996:01 - 2012:12), DEU 2YR (1998:02 -
2012:12), DEU 5YR (1996:01 - 2012:12), ITA 10YR (1996:01 - 2000:06), JPN 10YR (1996:01 - 2012:12), ESP 10YR (1996:01 - 2000:08), GBR 10YR (1996:01 - 2012:12), USA 10YR (1996:01 -
2012:12), USA 2YR (2006:11 - 2012:12), USA 30YR (1996:01 - 2012:12), USA 5YR (1996:01 - 2012:12).



Panel D: Commodity
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Commodity futures option sample period 1996:01 - 2012:12 with the following exceptions: BA (2008:07 - 2012:12), HU (1996:01 - 2006:11), LH (1996:11 - 2012:12), PA (2010:11 - 2012:12),
PB (1996:01 - 2010:05), QL (2009:07 - 2012:10), RB (2006:05 - 2012:12).



Figure 2: Time series of four asset-class-specific RIXs (equity, currency, bond, and commaodity)
Each asset-class-specific rare disaster concern index (RIX) is calculated as the cross-sectional average of available assets' RIXs within that asset class at point of time. The
top figure presents monthly time series of RIXs: international equity index (EQRIX), currency (FXRIX), global government bond (BDRIX), and commodity (CMRIX). The values

of EQRIX, BDRIX, and CMRIX are on left axis, and the values of FXRIX are on right axis. To facilitate the presentation, we multiply the original values of FXRIX and BDRIX by
100, and those of CMRIX by 10. The bottom figure marks important events associated with EQRIX spikes.

e===EQRIX ====BDRIX ====CMRIX ====FXRIX

0.045 0.25
0.04
0.2
0.035

0.03 \\‘ 0.15
0.025

\ Foa
0.02 k
0.015 / N /N

\ A S 0.05
n A A AA \ A
0.01 V
Y
0.005 W ASALY -~ - M
0 L B e e L B e e o e e I S e e o e s e e e B e -0.05
QR QP Y QYRR QYYIIQFIIIQFIFIQEOIEIQ[LIEIYQYQQQ g gl
= c > = o o = o > B = W C c > = Q 9 5 o > 8 = W C c > = Q 9 5 o > B = W C c > = Q
3 o ERR] S & 3 o R S & 3 o ERE S & 3 a
fT32288eL>4830s5328222gLE"a2os3IsI2HELE830s5382228
0.045
The Asian Financial
0.04 - Crisis Lehmanandthe ¢ Escalated
* peak of 2007-08 concerns on
0.035 1 financial crisis Greece and
Japan's recession in Spain

003 | 23 years Dow/Nasdag
worst in 2 yrs

0.025 -

Euro debt crisis
Russia's default, LTCM
HKand US

0.02 - 4 collaps, Latin-US-Japan

n:arket . stock market crashes
plummets

0.015 - <

Quant crisis 4

Market
rally

Global stock market
downturns in 2002

Flash Crash on
the U.S. equity

Bear
Stearns

market
0.01 - 9/11 attacks Indian stock market
s meltdown and emerging \L
markets sell-off
0.005 - 4
0 T — T T — T —T— T T T T — T — T
o o o ~ ~ 0 o] 0 [ D o o - - b} o 2 o o o0 < < [%a} wn o o o ~ ~ ] o] =] (o2} D o o - - - o~ o~
TP QR Q2P QPP QYQRIYQQIIITILIIQIIQIRIIIIIIIYIIFIIQQ G g g G od oo
c c > = Q 9 5 o > B = w c > = Q Q9 = o > B = W c c > = Q 9o 5 o > B = W c c > = Q
T 53 0 2 0o o 2 9 & 8 & 3 & 53 0 2 0 @ 2 0 ©m8 82 &8 5 & 53 0 2 0 0 2 0 m 82 & 5 & 5 0 2 o
S 5 Z2 < v ow 0 s 0O s <<~ 5 2 < v uw 0 s 0 s~ 5z < v o 0 s 0 s <<~ S5 z<v




Figure 3: Annual Sharpe ratios of unfavorable-minus-favorable portfolios within asset classes

This figure shows the annual Sharpe ratio each year from the strategy of going long unfavorable assets (low RIX beta) and short
favorable assets (high RIX beta). We peform the strategy within each of the following asset classes: international equity index (EQ),
currency (FX), government bond futures (BD), and commodity futures (CM). We also consider the strategy that takes the equal
weighted combination across these four asset classes (COMB). The top figure present results based on monthly portfolio formation,
and the bottom figure present results based on semi-annual portfolio formation. Note: the monthly returns in 2012 are only up to May.

Year Avg: EQ 0.67, FX 0.4, BD 0.7, CM 0.48, COMB 1.22

4

3

2
EEQ

1 mFX
mBD

0 ECM

2002 2003 2004

4 m COMB

-2

-3

Year Avg: EQ 0.75, FX 0.69, BD 0.92, CM 0.93, COMB 1.46

6

5

4

3 EEQ

) M FX
HBD

1 HCM

0 - = COMB

% l 99 2000 [R2001 2002 2003 2004 2005 2006 2007 008 2009 2010 2011 2012

-1

-2

-3




Figure 4: Asset class distribution

This figure shows the time series of asset class distributions across equity index (EQ), currency (FX), bond (BD), and commodity (CM) within the portfolios of unfavorable assets (top panel) and favorable
assets (bottom panel). The global rare disaster concern index (GRIX) is estimated as the first principal component of the correlation matrix of three asset-class-specific rare disaster concern indices (EQRIX
FXRIX, BDRIX, and CMRIX). At the end of each month from December 1997 to April 2012, we rank global assets (30 equity indices, 32 foreign currencies, 14 bond futures, and 28 commodity futures in
total) into quintiles according to their GRIX betas. Assets in the low (high) GRIX-beta portfolio are unfavorable (favorable). We estimate each asset's GRIX beta by regressing its excess returns on the
market factor and GRIX based on the past 18-24 monthly observations. To get asset class distribution, we first count the number of assets from an asset class within a GRIX-beta quintile, and then divide

it by the total number of assets from that asset class that is available for investment as of portfolio formation. For example, if there are 10 equity indices available at portfolio formation month, and the
low GRIX-beta quintile consists of 3 equity indices, then the equity-class distribution is 30%.
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Table 1: Summary statistics of global asset returns by markets and asset classes

This table reports summary statistics of global asset monthly excess returns (in excess of the one-month U.S. T-bill rate).
Returns are based on US dollar. Panel A presents returns of international equity index (the 1st column shows the index
name from Datastream), Panel B presents returns of foreign currency, Panel C presents returns of global government bond
futures (the 1st column shows country name and bond maturity), and Panel D presents returns of commodity futures. For
each of these assets, we use out-of-the-money options to measure rare disaster concerns and construct rare disaster
concern index (RIX). The months in which we obtain asset excess returns correspond to the sample period in which its rare
disaster concern index becomes available (see Figure 1 for underlying options and sample periods).

Mean Std Skew Kurt Q1 Median Q3

Panel A: International equity index

MSCI Australia Investable Market 0.93% 0.066 -0.629 1.834 -2.28% 1.36% 4.91%
MSCI Austria Investable Market 0.44% 0.071 -0.895 4.205 -3.66% 0.58% 4.84%
MSCI Belgium Investable Market 0.38% 0.064 -1.313 5.379 -2.46% 0.93% 4.32%
MSCI Canada Investable Market 0.77% 0.064 -0.622 2.101 -2.76% 1.03% 5.12%
MSCI Switzerland Investable Market 0.51% 0.051 -0.452 0.387 -2.27% 1.04% 2.95%
MSCI Germany Investable Market 0.53% 0.078 -0.411 1.267 -3.62% 0.80% 4.90%
MSCI Denmark Investable Market 0.64% 0.073 -0.813 2.083 -2.75% 1.96% 5.48%
MSCI Spain Investable Market 0.56% 0.075 -0.480 1.110 -2.83% 1.23% 4.71%
FTSE Eurofirst 300 Eurozone Euro 0.25% 0.069 -0.489 0.867 -3.58% 0.94% 4.84%
MSCI Finland Investable Market 0.12% 0.084 0.006 1.007 -5.34% 0.70% 4.96%
MSCI France Investable Market 0.20% 0.071 -0.482 0.384 -3.64% 0.72% 5.03%
MSCI United Kingdom Investable Market 0.39% 0.048 -0.381 1.479 -2.07% 0.50% 3.29%
MSCI Greece Investable Market -0.97% 0.103 -0.258 1.383 -7.38% -0.23% 5.11%
MSCI Hong Kong Investable Market 0.57% 0.076 0.022 2.296 -3.61% 0.81% 4.13%
MSCI India Investable Market 1.48% 0.093 -0.014 1.924 -3.87% 1.66% 7.73%
MSClI Israel Investable Market 0.52% 0.071 -0.188 0.770 -3.01% 0.96% 4.97%
MSCI Italy Investable Market -0.16% 0.074 -0.351 0.462 -4.06% 0.07% 4.98%
MSCI Japan Investable Market -0.21% 0.056 0.199 -0.092 -4.30% -0.26% 3.51%
MSCI Korea Investable Market 0.94% 0.125 0.821 4.386 -5.90% 0.17% 7.10%
MSCI Mexico Investable Market 1.15% 0.074 -1.017 3.308 -2.21% 1.69% 6.17%
MSCI Nordic US Dollar 0.30% 0.085 -0.358 1.149 -4.48% 0.33% 5.39%
MSCI Netherlands Investable Market 0.31% 0.064 -0.638 1.306 -3.43% 0.82% 4.15%
MSCI Norway Investable Market 0.87% 0.082 -0.712 2.162 -4.00% 1.44% 6.47%
MSCI Poland Investable Market 0.83% 0.100 -0.386 0.775 -5.26% 2.20% 7.05%
MSCI Russia Investable Market 2.56% 0.117 0.215 0.541 -4.73% 1.98% 10.51%
MSCI Singapore Investable Market 2.29% 0.082 0.631 1.181 -2.13% 1.93% 5.54%
MSCI Sweden Investable Market 0.84% 0.081 -0.252 1.682 -3.04% 0.50% 6.06%
MSCI Thailand Investable Market 1.43% 0.100 -0.878 1.991 -4.39% 2.11% 8.45%
MSCI Taiwan Investable Market 0.54% 0.080 -0.006 0.063 -4.62% 0.32% 6.39%
MSCI United States Investable Market 0.44% 0.048 -0.656 0.815 -2.31% 1.24% 3.63%

0.53% 0.076 -0.143 3.575 -3.49% 0.82% 4.93%

Panel B: Foreign currency

Argentine Peso 0.57% 0.026 6.421 57.077 -0.08% 0.35% 0.91%
Australian Dollar 0.39% 0.037 -0.463 1.647 -1.74% 0.46% 2.63%
Brazilian Real 1.25% 0.044 -0.963 2.108 -0.67% 1.60% 4.01%
Canadian Dollar 0.18% 0.025 -0.292 3.243 -1.20% 0.22% 1.68%
Swiss Franc 0.00% 0.032 0.314 1.297 -2.26% -0.17% 2.05%
Chilean Peso 0.36% 0.038 -1.335 4.602 -1.50% 0.44% 2.89%
Colombian Peso 0.70% 0.040 -0.219 0.895 -1.49% 0.85% 2.98%
Czech Koruna 0.51% 0.039 -0.365 0.538 -1.67% 0.83% 3.29%
Danish Krone 0.01% 0.030 0.109 0.888 -1.83% -0.09% 1.79%
Euro 0.08% 0.031 -0.033 0.767 -1.64% 0.04% 2.04%
United Kingdom Pound 0.13% 0.025 -0.274 1.452 -1.39% 0.16% 1.77%
Hong Kong Dollar -0.01% 0.002 1.206 6.417 -0.08% -0.01% 0.04%
Hungarian Forint 0.70% 0.046 -0.976 2.255 -1.89% 1.07% 3.85%
Indonesian Rupiah 3.26% 0.064 -0.126 0.586 -0.43% 2.17% 7.21%
Indian Rupee 0.23% 0.025 -0.040 1.233 -1.04% 0.35% 1.68%
Icelandic Krona -0.25% 0.053 -0.708 4.250 -2.80% 0.07% 2.58%
Israeli Shekel 0.19% 0.027 -0.147 0.284 -1.27% 0.11% 1.94%

Japanese Yen -0.07% 0.032 0.748 3.590 -2.08% -0.17% 1.88%



South Korean Won 0.23% 0.037 -0.134 3.909 -1.21% 0.33% 1.90%
Mexican Peso 0.16% 0.029 -1.339 5.168 -1.04% 0.45% 1.91%
Malaysian Ringgit 1.98% 0.026 -0.634 -0.373 0.12% 2.01% 4.47%
Norwegian Krone 0.14% 0.032 -0.215 0.860 -1.73% 0.17% 1.91%
New Zealand Dollar 0.35% 0.039 -0.198 1.410 -2.04% 0.55% 2.68%
Peruvian Nuevo Sol 0.57% 0.024 2.347 11.416 -0.24% 0.30% 1.02%
Philippine Peso 0.56% 0.017 -0.529 -0.109 -0.25% 0.76% 1.90%
Polish Zloty 0.59% 0.044 -0.737 1.431 -1.79% 0.85% 3.53%
Russian Federation Rouble 0.34% 0.035 -0.902 3.032 -0.56% 0.40% 1.73%
Singaporean Dollar -0.01% 0.019 -0.286 2.027 -0.99% 0.11% 1.05%
Swedish Krona 0.02% 0.033 0.089 0.282 -2.16% -0.04% 1.79%
Thai Baht 1.10% 0.030 2.006 6.271 -0.46% 0.64% 2.03%
Taiwanese Dollar 0.05% 0.018 0.341 0.779 -1.03% -0.21% 1.17%
South African Rand 1.20% 0.059 0.664 1.327 -2.14% 0.43% 3.70%
0.45% 0.036 0.181 4.260 -1.23% 0.26% 2.12%
Panel C: Global government bond futures
Australia 10YR 0.03% 0.003 0.035 0.064 -0.15% 0.02% 0.20%
Australia 3YR 0.05% 0.003 0.219 0.179 -0.15% 0.02% 0.26%
Canada 10YR 0.20% 0.015 -0.112 -0.062 -0.60% 0.24% 1.01%
Germany Bund 10YR 0.32% 0.014 0.018 0.058 -0.68% 0.47% 1.25%
Germany Schatz 2YR 0.09% 0.004 -0.033 0.488 -0.16% 0.07% 0.34%
Germany Bobl 5YR 0.22% 0.009 -0.020 -0.149 -0.37% 0.23% 0.77%
Spain 10YR 0.35% 0.014 0.101 0.830 -0.39% 0.35% 1.06%
United Kingdom Gilt 10YR 0.25% 0.016 0.025 0.501 -0.75% 0.23% 1.29%
Italy 10YR 0.07% 0.013 -0.389 -0.699 -0.64% 0.19% 1.07%
Japan 10YR 0.22% 0.010 -1.325 6.686 -0.18% 0.33% 0.78%
United States of America 10YR 0.34% 0.016 0.054 2.038 -0.69% 0.36% 1.39%
United States of America 2YR 0.17% 0.004 0.630 0.922 -0.04% 0.12% 0.36%
United States of America 30YR 0.31% 0.026 -0.045 2.869 -1.29% 0.44% 1.95%
United States of America 5YR 0.22% 0.011 0.007 1.028 -0.40% 0.22% 0.88%
0.20% 0.013 0.096 8.240 -0.32% 0.15% 0.78%
Panel D: Commodity futures
BUTTER (BA) 0.15% 0.074 -0.036 0.687 -4.76% 0.71% 4.96%
SOYBEAN OIL (BO) 0.10% 0.078 0.011 1.527 -4.01% 0.24% 5.02%
CORN (C-) -0.25% 0.084 0.139 0.508 -5.05% -0.97% 5.48%
COCOA (CC) 0.47% 0.094 0.542 1.073 -5.28% -0.50% 5.00%
CRUDE OIL LIGHT (CL) 1.12% 0.096 -0.039 0.682 -5.04% 1.22% 7.58%
COTTON (CT) -0.41% 0.087 0.335 0.691 -5.39% -0.61% 3.64%
MILK (DE) 0.63% 0.079 0.417 1.978 -4.72% 0.99% 4.62%
CATTLE FEEDER (FC) 0.31% 0.041 -0.534 2.755 -2.07% 0.53% 2.98%
COPPER (HG) 0.92% 0.083 0.009 2.783 -4.36% 0.45% 5.82%
HEATING OIL (HO) 1.40% 0.104 0.400 1.752 -4.81% 1.46% 6.74%
UNLEADED GASOLINE (HU) 2.46% 0.124 0.610 1.708 -5.03% 1.71% 10.25%
ORANGE JUICE (JO) -0.03% 0.088 0.316 0.258 -5.63% -0.75% 4.70%
COFFEE (KC) 0.28% 0.108 0.758 1.038 -7.88% -0.81% 5.52%
LUMBER (LB) -0.73% 0.092 0.341 0.442 -7.23% -1.33% 4.91%
CATTLE LIVE (LC) 0.17% 0.043 -0.642 3.817 -2.21% 0.05% 2.75%
HOGS LEAN (LH) -0.46% 0.081 0.020 1.373 -5.33% -0.45% 4.88%
NATURAL GAS (NG) -0.55% 0.156 0.618 1.016 -11.59%  -1.10% 8.23%
OATS (0-) 0.24% 0.097 0.672 1.349 -6.17% -0.65% 5.07%
PALLADIUM (PA) 0.55% 0.078 -0.755 1.647 -4.78% 1.88% 5.94%
PORK BELLIES (PB) 1.10% 0.107 0.654 1.840 -5.87% 0.27% 7.07%
PLATINUM (PL) 0.92% 0.064 -0.805 4.133 -2.36% 1.55% 4.94%
COAL (QL) -0.34% 0.073 0.350 0.108 -5.24% -0.93% 3.63%
BLENDSTOCK GASOLINE (RB) 1.59% 0.108 -0.757 2.695 -4.14% 2.74% 8.65%
RICE (RR) -0.60% 0.076 0.006 0.464 -4.99% -0.78% 4.26%
SOYBEANS (S-) 0.79% 0.078 -0.282 0.510 -3.56% 0.21% 6.45%
SUGAR (SB) 0.43% 0.113 -0.975 7.405 -6.22% 0.64% 6.50%
SOYBEAN MEAL (SM) 1.43% 0.086 0.077 0.762 -3.81% 1.22% 6.77%
WHEAT (W-) -0.69% 0.088 0.578 1.766 -6.72% -1.28% 4.97%
0.36% 0.092 0.292 2.848 -5.07% 0.03% 5.37%




Table 2: Portfolio returns of unfavorable and favorable assets within asset classes

Within an asset class, we estimate an asset's RIX beta using its asset-class-specific rare disaster concern index and the
asset's past 18-24 monthly returns, and then form four RIX-beta portfolios. Assets in the low (high) RIX-beta portfolio are
unfavorable (favorable). We also form a hedge portfolio within an asset class by going long in unfavorable assets and

short in favorable assets. We consider portfolio formation at monthly/quarterly/semi-annual/annual frequency and

calculate equal-weighted returns. This table presents the mean excess returns (monthly raw return in excess of the 1-

month U.S. T-bill rate), abnormal returns (alphas) based on various factors, and Newey-West t -statistics (in parentheses)

of each RIX-beta portfolio in each market and asset class we study: equity index (EQ), currency (FX), sovereign bond

futures (BD), and commaodity futures (CM). We also report results of each combination RIX-beta portfolio that generates

equal weighted return across four asset classes (COMB). To measure alphas, we use the following benchmark factors for

different asset classes: Asness-Moskowitz-Pedersen (AMP) value and momentum factors, Frazzini-Pedersen (FP) betting-

against-beta factor, and Moskowitz-Ooi-Pedersen (MOP) time series momentum factor. Returns are reported in percent.

On average, there are 5 equity indices, 6 currencies, 3 bond futures, and 7 commodities in each portfolio.

Monthly Portfolio Formation

Quarterly Portfolio Formation

EQ FX BD CM COMBO EQ FX BD CM COMBO
Unfavorable  1.023 0.827 0.356 0.807 0.739 1.015 0.873 0.280 0.821 0.730
(1.80)  (3.40) (3.12) (2.05)  (2.80) (1.83)  (3.16)  (2.71)  (1.88)  (2.69)
2 0.476 0.147 0.181 0.591 0.321 0.599 0.246 0.205 0.352 0.301
(0.83) (0.86) (2.86)  (1.53)  (1.32) (1.00)  (1.35) (3.08)  (0.96)  (1.20)
3 0.382 0.327 0.153 0.379 0.279 0.316 0.318 0.165 0.406 0.265
(0.74)  (1.95)  (2.32) (0.97) (1.20) (0.59)  (1.83)  (2.44)  (1.17)  (1.16)
Favorable 0.260 0.454 0.142 -0.092 0.142 0.156 0.352 0.194 -0.268 0.114
(0.51)  (2.36)  (1.84) (-0.25)  (0.59) (0.29)  (1.75)  (2.41) (-0.83)  (0.52)
U-F 0.763 0.373 0.213 0.899 0.597 0.859 0.521 0.086 1.088 0.616
(2.42)  (2.00) (2.54) (2.07) (3.58) (2.55)  (2.70)  (1.07)  (2.27)  (3.49)
Alpha of unfavorable-minus-favorable portfolio
AMP alpha 0.672 0.348 0.199 0.901 0.659 0.814 0.469 0.073 0.981 0.650
(2.34) (1.82) (2.69) (2.12)  (4.17) (2.60)  (2.38)  (0.94)  (2.15)  (4.02)
FP alpha 0.677 0.347 0.193 0.955 0.614 0.786 0.496 0.055 1.015 0.574
(2.12)  (1.83)  (2.49) (2.19)  (3.53) (2.13)  (2.58) (0.70)  (2.23)  (3.35)
MOP alpha 0.615 0.332 0.159 0.914 0.563 0.738 0.469 0.043 1.035 0.602
(2.12)  (1.72)  (2.15)  (2.18)  (3.26) (2.28)  (2.36) (0.56)  (2.32)  (3.69)
Semi-Annual Portfolio Formation Annual Portfolio Formation
EQ FX BD CcM COMBO EQ FX BD CcM COMBO
Unfavorable 1.072 0.928 0.412 1.047 0.810 1.010 0.836 0.368 0.759 0.722
(1.93)  (3.34) (3.92) (2.58)  (3.06) (1.68)  (3.45) (3.32)  (1.89)  (2.70)
2 0.415 0.073 0.176 0.010 0.164 0.478 0.132 0.158 0.177 0.234
(0.74)  (0.41)  (3.02) (0.03)  (0.68) (0.87)  (0.74)  (2.82)  (0.48)  (1.01)
3 0.499 0.367 0.153 0.775 0.409 0.360 0.367 0.128 0.873 0.408
(0.89)  (2.06)  (2.49) (2.17) (1.73) (0.70)  (2.10)  (1.91)  (2.41)  (1.89)
Favorable 0.104 0.392 0.133 -0.402 0.042 0.080 0.420 0.174 -0.391 0.097
(0.20)  (1.95)  (1.52)  (-1.24)  (0.19) (0.16)  (2.27)  (1.98) (-1.19)  (0.44)
U-F 0.968 0.535 0.279 1.449 0.768 0.930 0.416 0.194 1.149 0.625
(2.79)  (2.69)  (3.39)  (3.48)  (4.56) (2.99)  (2.24)  (2.43)  (2.80)  (3.94)
Alpha of unfavorable-minus-favorable portfolio
AMP alpha 0.928 0.512 0.247 1.304 0.810 0.860 0.422 0.189 1.025 0.592
(2.84)  (2.53)  (3.11)  (3.21)  (4.97) (2.80)  (2.21)  (2.52)  (2.45)  (3.45)
FP alpha 0.889 0.516 0.260 1.417 0.758 0.829 0.384 0.174 1.138 0.581
(2.30)  (2.56)  (3.18)  (3.51)  (4.20) (2.50)  (1.97) (2.23) (2.77) (3.14)
MOP alpha 0.840 0.497 0.246 1.299 0.742 0.876 0.407 0.114 1.036 0.584
(2.57)  (2.40)  (3.08) (3.19)  (4.36) (2.89)  (2.04)  (1.43) (2.52)  (3.54)




Table 3: Correlation of rare disaster concerns

This table presents sample correlations of rare disaster concern indices (RIXs) both within
and across asset classes. For each asset from four asset classes, we use its OTM options
to construct its RIX. Then within an asset class, we average across all assets' RIXs to
construct the asset-class-specific RIX: EQRIX for equity index, FXRIX for currency, BDRIX
for bond, and CMRIX for commodity. We also develop the global rare disaster concern
index (GRIX) that is based on the first principal component of the correlation matrix of
EQRIX, FXRIX, BDRIX, and CMRIX. Panel A reports summary statistics of pairwise
correlations of RIXs. For example, within the equity class, we estimate all pairwise sample
(Pearson) correlations of equity RIXs, and report summary statistics in the first row. In
addition, we estimate all pairwise correlations between equity's RIXs and currency's RIXs,
between equity's RIXs and bond's RIXs, and between equity's RIXs and commaodity's RIXs,
and report summary statistics in the second row. We do the same for currency, bond,
and commodity classes. We exclude the correlation of each asset's RIX with itself (i.e.,
remove the 1's). Panel B reports both Pearson correlations (upper diagonal elements)
and Spearman correlations (lower diagonal elements) of asset-class-specific RIXs and the
global RIX. All of these sample correlations are significant at 1% level.

Panel A: summary statistics of pairwise correlations of rare disaster concern indices

Pairwise correlations of RIX Mean Median  25th pctl 75th pctl # of pairs
Within the class of 0.78 0.83 0.70 0.93 435
international equity index

Between equity index and non- 0.43 0.46 0.19 0.72 2166
equity asset classes

Within the class of foreign 0.61 0.69 0.47 0.83 496
currency

Between foreign currency and 0.46 0.51 0.26 0.71 2256
non-currency classes

Within the class of sovereign 0.28 0.22 -0.01 0.58 88
bond futures

Between bond futures and non- 0.24 0.31 -0.03 0.53 1150
bond asset classes

Within the class of commodity 0.31 0.34 0.17 0.48 373
futures

Between commodity futures 0.27 0.29 0.11 0.47 2110
and non-commodity asset

classes

Panel B: correlations of global rare disaster concern indices across asset classes

EQRIX FXRIX BDRIX CMIX GRIX

EQRIX 1 0.55 0.43 0.38 0.68
FXRIX 0.39 1 0.65 0.80 0.92
BDRIX 0.27 0.44 1 0.61 0.82
CMRIX 0.27 0.79 0.46 1 0.86

GRIX 0.53 0.80 0.74 0.81 1




Table 4: Portfolios of unfavorable and favorable assets across markets and asset classes

Our sample consists of 30 equity indices, 32 currencies, 14 government bonds, and 28 commodities. The
global rare disaster concern index (GRIX) is based on the first principal component of the correlation matrix
of four asset-class rare disaster concern indices (see Table 3 for details). We estimate each asset's GRIX
beta using its past 18-24 monthly returns and then form five GRIX-beta quintiles across these 114 global
investment assets. Assets in the low (high) GRIX-beta portfolio are unfavorable (favorable). We also form a
hedge portfolio by going long in unfavorable assets and short in favorable assets. We consider portfolio
formation at monthly/quarterly/semi-annual/annual frequency. Panel A presents mothly mean excess
returns and alphas benchmarked on the five-factor global asset pricing model (MSCI global equity market
excess return, Frazzini-Pedersen betting-against-beta (BAB), Moskowitz-Ooi-Pedersen time series
momentum (TSMOM), and Asness-Moskowtiz-Pedersen value and momentum factors). Panels B and C
present factor loadings of monthly and quarterly formed portfolios. Newey-West t -statistics are shown in
parentheses. On average, there are 17 assets in each quintile portfolio.

Panel A: portfolio excess returns and alphas (in percent)

Monthly Form. Quarterly Form. Semi-Ann. Form. Annual Form.

Excess Alpha Excess Alpha Excess Alpha Excess Alpha

Return Return Return Return
Unfavorable 1.063 0.546 0.877 0.463 0.709 0.267 0.684 0.484
(3.27) (2.08) (2.76) (1.83) (2.24) (1.03) (1.90) (1.77)
2 0.380 -0.020 0.399 0.053 0.541 0.267 0.317 0.197
(1.75) (-0.11) (1.84) (0.29) (2.19) (1.22) (0.96) (0.71)
3 0.380 -0.057 0.286 -0.092 0.292 -0.090 0.278 0.143
(1.90) (-0.47) (1.31) (-0.66) (1.30) (-0.63) (1.43) (1.06)
4 0.241 -0.282 0.300 -0.258 0.106 -0.463 0.104 -0.147
(0.74) (-1.24) (0.93) (-1.12) (0.36) (-2.34) (0.39) (-0.79)
Favorable 0.062 -0.416 0.153 -0.297 0.289 -0.192 0.668 0.528
(0.16) (-1.60) (0.43) (-1.13) (0.85) (-0.71) (1.86) (1.84)
U-F 1.001 0.962 0.724 0.760 0.420 0.458 0.016 -0.044

(3.55) (3.17) (2.48) (2.34) (1.63) (1.42) (0.05) (-0.14)




Panel B: factor loadings of monthly formed portfolios

MSCI Market FP BAB MoP AMP Value AMP

TSMOM Momentum
Unfavorable 0.563 0.633 0.252 -0.343 -0.228
(9.46) (3.31) (2.36) (-1.96) (-1.81)
2 0.386 0.500 0.140 -0.070 -0.122
(8.79) (5.17) (2.63) (-0.71) (-1.44)
3 0.392 0.477 0.088 0.074 0.028
(11.75) (4.75) (2.34) (0.77) (0.31)
4 0.598 0.756 -0.026 0.260 0.084
(9.53) (3.89) (-0.43) (1.79) (0.68)
Favorable 0.591 1.134 -0.067 -0.181 -0.087
(8.42) (6.23) (-0.79) (-1.10) (-0.60)
U-F -0.028 -0.501 0.318 -0.162 -0.141
(-0.44) (-2.09) (2.71) (-0.77) (-0.80)

Panel C: factor loadings of quarterly formed portfolios

MSCI Market FP BAB MoP AMP Value AMP

TSMOM Momentum
Unfavorable 0.524 0.602 0.183 -0.298 -0.192
(8.14) (2.88) (1.95) (-1.69) (-1.46)
2 0.365 0.523 0.082 -0.034 -0.068
(9.16) (5.06) (1.30) (-0.24) (-0.75)
3 0.394 0.516 0.074 -0.020 -0.027
(8.75) (4.99) (1.78) (-0.27) (-0.35)
4 0.595 0.811 0.010 0.191 0.099
(10.14) (4.25) (0.16) (1.33) (0.89)
Favorable 0.583 1.101 -0.049 -0.067 -0.123
(9.23) (6.60) (-0.57) (-0.45) (-0.81)
U-F -0.059 -0.500 0.232 -0.231 -0.069

(-0.87) (-1.98) (2.22) (-1.04) (-0.37)




Table 5: Alternative measures of global rare disaster concerns

We rank 104 global investment assets into favorable and unfavorable portfolios
based on two alternative measures of global rare disaster concerns: (1) "Global
VIX" is the model-free implied volatility across markets and asset classes; and (2)
"Implied Volatility Skew" is the difference in option implied volatility between
OTM puts and ATM calls (across markets and asset classes). To construct these
measures, we follow the procedures similar to the GRIX construction. For
example, we first employ each asset's options data to estimate implied volatility
through all available moneyness, average over assets within an asset class to get
asset-class VIX, and finally apply PCA across four asset classes to extract the GVIX.
We do the same for implied volatility skewness. Each asset's return covariation
with the global rare disaster concerns is used to monthly form five quintiles.
Assets with low (high) covariances are unfavorable (favorable). This table presents
equal-weighted portfolio mean excess returns and five-factor alphas.

Global VIX Implied Volatility Skew

Excess Alpha Excess Alpha

Return Return
Unfavorable 0.940 0.464 0.851 0.197
(2.98) (1.85) (2.48) (0.65)
2 0.486 -0.002 0.230 -0.160
(2.14) (-0.01) (1.18) (-1.02)
3 0.240 -0.119 0.431 0.006
(1.24) (-1.10) (2.67) (0.05)
4 0.179 -0.362 0.369 -0.103
(0.54) (-1.41) (1.40) (-0.61)
Favorable 0.274 -0.215 0.237 -0.180
(0.73) (-0.88) (0.70) (-0.59)
U-F 0.666 0.680 0.614 0.376

(2.48) (2.44) (2.05) (1.04)




Table 6: Alternative definitions of long/short positions in bonds and currencies

We rank 104 global investment assets into favorable and unfavorable portfolios
based on alternative choices of long/short positions in government bonds, foreign
currencies, and the combination of these two cases. In the first definition, an
investor goes short in bond futures and hence we use the OTM calls of bond
futures options to estimate the bond-class RIX. In the second definition, an investor
goes short (long) in a foreign currency when the foreign country's interest rate is
lower (higher) than the U.S. interest rate and hence we use the OTM calls (puts) of
this currency to estimate the currency-class RIX. We reconstruct the global GRIX
factor by aggregating over each asset's RIX and then four asset-class-specific RIXs.
The methodology is the same one used in our baseline analysis. We estimate each
asset's return covariation with the GRIX factor and then monthly form five quintiles
(see Table 4 for details). Assets with low (high) covariances are unfavorable
(favorable). This table presents equal-weighted portfolio mean excess returns and
five-factor alphas.

Bond (Short) and FX

Bond (Short) FX (Long or Short) (Long or Short)

Excess Alpha Excess Alpha Excess Alpha

Return Return Return
Unfavorable 0.977 0.437 0.981 0.469 0.960 0.375
(3.02) (1.70) (3.03) (1.77) (2.96) (1.52)
2 0.336 -0.185 0.540 0.011 0.382 -0.157
(1.33) (-1.04) (2.50) (0.07) (1.49) (-0.83)
3 0.292 -0.153 0.400 -0.015 0.330 -0.101
(1.29) (-1.14) (1.81) (-0.11) (1.57) (-0.73)
4 0.433 -0.050 0.078 -0.325 0.320 -0.111
(1.50) (-0.24) (0.26) (-1.58) (1.10) (-0.49)
Favorable 0.091 -0.275 0.127 -0.369 0.136 -0.233
(0.24) (-1.02) (0.33) (-1.38) (0.36) (-0.90)
U-F 0.886 0.712 0.854 0.838 0.824 0.609

(3.05) (2.39) (2.96) (2.60) (2.78) (1.99)




Table 7: Orthognized asset-class RIX and returns of portfolios within and across asset classes

We first orthognize an asset-class RIX by regressing it on the other asset-class RIXs, and then we form portfolios of
unfavorable and favorable assets using an asset's beta with respect to this orthognized RIX. For example, we perform
a time series regression of monthly EQRIX (equity-class disaster concerns) on FXRIX (currency), BDRIX (government
bond), and CMRIX (commodity), and use the residuals as a measure of the orthognized EQRIX. Within the equity class,
we monthly form five orthognized-EQRIX-beta quintiles; and across the currency, bond, and commodity assets
classes, we form quintiles in a similar way. We perform similar regression and portfolio analyses for FXRIX, BDRIX, and
CMRIX. This table presents equal-weighted portfolio mean excess returns and five-factor alphas (in percent).

Panel A: excess returns

EQRIX residual FXRIX residual BDRIX residual CMRIX residual

withingq  ArOsS (X ininex ACOSS (BQ g ACOSSEQ i o ACToss (EQ
BD, CM) BD, CM) FX, CM) FX, BD)
Unfavorable 0.715 0.356 0.503 0.208 0.179 0.405 0.795 0.697
(1.19) (1.16) (1.95) (0.50) (1.88) (1.03) (1.71) (2.02)
2 0.616 0.383 0.428 0.228 0.134 0.376 0.283 0.392
(1.09) (2.94) (2.11) (0.76) (1.85) (1.20) (0.60) (1.84)
3 0.440 0.171 0.267 0.487 0.255 0.507 0.300 0.138
(0.85) (0.81) (1.39) (1.86) (3.38) (1.73) (0.76) (0.64)
Favorable 0.161 0.681 0.535 0.672 0.245 0.462 0.288 0.447
(0.31) (1.89) (2.20) (1.59) (2.67) (1.42) (0.66) (1.33)
U-F 0.555 -0.324 -0.032 -0.464 -0.067 -0.056 0.507 0.250
(1.60) (-1.01) (-0.20) (-1.28) (-0.74) (-0.21) (0.97) (1.26)

Panel B: 5-factor alphas

EQRIX residual FXRIX residual BDRIX residual CMRIX residual

Within EQ ACBESZ,S/T)X ’ Within FX ACBrSISSC,(\;IE;J“ Within BD ACFr;()I SZIS/T)O“ Within CM AC;;?;(DE)O“
Unfavorable 0.290 0.262 0.301 -0.394 0.050 -0.156 0.586 0.015
(0.86) (0.97) (1.50) (-1.19) (0.51) (-0.46) (1.21) (0.08)
2 0.299 0.295 0.281 -0.281 0.016 -0.097 -0.298 -0.022
(1.20) (2.57) (1.75) (-1.18) (0.26) (-0.43) (-0.66) (-0.15)
3 -0.054 0.082 0.136 0.082 0.205 0.065 -0.147 -0.211
(-0.26) (0.44) (0.87) (0.47) (2.78) (0.35) (-0.38) (-1.60)
Favorable -0.482 0.537 0.365 0.226 0.120 -0.107 -0.651 0.018
(-2.00) (1.54) (1.84) (0.68) (1.08) (-0.58) (-1.60) (0.11)
U-F 0.772 -0.275 -0.063 -0.620 -0.070 -0.049 1.237 -0.003

(2.17) (-0.79) (-0.40) (-1.53) (-0.59) (-0.16) (2.13) (-0.01)




Table 8: RIX correlations with factors of disaster risk

The macroeconomic variables include quarterly real GDP growth per capita, inflation based
on the change of CPI, recession dummy based on NBER recession dates, default risk based
on the change of default spread (the spread between U.S. corporate bonds and U.S.
Treasuries), and term risk based on the change of term spread (the spread between long-
term and short-term government bonds). The variables related to finanical market disaster
risk include the Pastor-Stambaugh innovation measure, the spread between on-the-run
and off-the-run 10-year government Treasury notes, and risk-neutral (RN) moment risks of
variance, skewness, and kurtosis based on the set of equity indices, currencies, bond
futures, and commodity futures options (the aggregation procedures are similar to those of
constructing GRIX). An increase of the Pastor-Stambaugh innovation measure and the
spread between on-the-run and off-the-run 10-year government Treasury notes represent
higher illiquidity. The variables of funding and liquidity constraints of financial
intermediaries include the broker-dealer leverage shock, the Hu-Pan-Wang noise measure,
the Treasury-Eurodollar (TED) spread, the spread between interest rate swap and T-bill, the
spread between LIBOR and repo, and the aggregated funding liquidity risk based on the
principal component analysis (PCA) of the last three types of spreads.

EQRIX FXRIX BDRIX CMRIX GRIX

Panel A: Disaster Risk of Consumption and Macro Fundamentals

Real GDP Growth -0.34 -0.24 -0.20 -0.18 -0.29
Inflation 0.10 -0.25 -0.05 -0.22 -0.14
Recession 0.39 0.42 0.36 0.41 0.49
Default Risk 0.38 0.07 -0.01 -0.06 0.07
Term Risk 0.18 0.20 0.20 0.17 0.23

Panel B: Disaster Risk of Financial Market

Pastor-Stambaugh Liqg. 0.10 0.06 0.10 0.07 0.10
On-Off Run Spread 0.32 0.09 0.09 -0.02 0.13
RN Moment Risk (Var.) 0.26 0.07 0.13 0.09 0.08
RN Moment Risk (Skew.) -0.07 0.05 -0.05 0.12 0.12
RN Moment Risk (Kurt.) 0.01 -0.04 -0.05 -0.07 -0.01

Panel C: Funding and Liquidity Constraints of Financial Intermediaries

Hu-Pan-Wang Noise 0.33 -0.01 0.06 -0.07 0.07
Leverage Shock -0.49 -0.60 -0.48 -0.49 -0.61
TED Spread 0.10 -0.12 -0.08 -0.18 -0.10
Swap - T-bill 0.13 0.19 0.11 0.16 0.19
Libor - Repo 0.11 -0.09 -0.06 -0.16 -0.07

Funding Liquidity Risk (PCA) 0.16 -0.07 -0.05 -0.16 -0.05




Table 9: RIX Portfolios and Economic Channels of Disaster Risk

This table reports coefficient estimates and Newey-West t -statistics (in parentheses) from regressing unfavorable-
minus-favorable (UMF) hedge portfolio returns on the macroeconomic disaster risk (Panel A), financial market disaster
risk (Panel B), and funding and liquidity constraint (Panel C) factors. Within each of asset classes of equity index (EQ),
currency (FX), government bond (BD), and commodity (CM), we construct the hedge portfolio using the asset's RIX
beta (see Table 2 in detail). Combining asset-class hedge portfolios together, we construct a hedge portfolio that
generates equal weighted return across four asset classes (COMBO). Using all assets from global markets and asset
classes (ALL), we construct the hedge portfolio based on the asset's GRIX beta (see Table 4 in detail). The construction
of various risk factors is explained in Table 8.

UMF Return  UMF Return  UMF Return  UMF Return  UMF Return  UMF Return

(EQ) (FX) (BD) (C™m) (COMBO) (ALL)
Panel A: Disaster Risk of Consumption and Macro Fundamentals
Market return -0.018 0.098 0.410 0.144 0.015 -0.058
(-0.26) (1.16) (2.00) (1.65) (0.46) (-1.07)
Real GDP growth 0.002 -0.001 -0.001 0.002 0.001 0.001
(0.64) (-0.46) (-0.66) (0.36) (0.50) (0.28)
Inflation -0.000 -0.000 -0.001 -0.026 -0.006 -0.005
(-0.05) (-0.02) (-0.27) (-2.45) (-1.52) (-0.77)
Recession -0.003 -0.005 0.001 -0.006 -0.003 0.002
(-0.26) (-0.79) (0.21) (-0.33) (-0.50) (0.24)
Default risk -0.004 -0.005 0.001 0.009 -0.001 0.002
(-0.57) (-1.47) (0.28) (0.86) (-0.43) (0.34)
Term risk -0.002 0.014 0.004 -0.008 0.000 -0.002
(-0.16) (2.10) (0.69) (-0.60) (0.10) (-0.18)
Adj. R-square -0.03 0.01 0.05 0.04 0.00 -0.03

Panel B: Disaster Risk of Financial Market

Pastor-Stambaugh Liqg. 0.078 0.014 -0.024 0.040 0.030 0.023
(1.71) (0.55) (-1.62) (0.62) (1.50) (0.47)
On-Off Run Spread -0.002 -0.000 0.000 -0.001 -0.001 -0.001
(-1.17) (-0.53) (1.21) (-0.89) (-1.36) (-0.83)
RN Moment Risk (Var.) 0.144 -1.261 3.598 7.131 0.000 0.002
(0.10) (-0.37) (0.19) (1.25) (0.02) (0.73)
RN Moment Risk (Skew.) -0.014 -0.006 0.004 -0.306 -0.005 -0.007
(-0.59) (-0.39) (0.84) (-1.59) (-1.75) (-0.98)
RN Moment Risk (Kurt.) 0.003 0.001 -0.001 0.056 -0.004 -0.008
(0.97) (0.18) (-1.07) (1.37) (-1.88) (-2.08)
Adj. R-square 0.03 -0.02 0.07 0.06 0.04 0.01

Panel C: Funding and Liquidity Constraints of Financial Intermediaries

Hu-Pan-Wang Noise -0.004 -0.001 0.003 -0.007 -0.003 -0.003
(-0.96) (-0.29) (1.47) (-1.33) (-1.33) (-0.70)
Leverage Shock -0.000 -0.000 -0.000 0.000 -0.000 -0.000
(-0.15) (-1.30) (-0.31) (0.20) (-0.07) (-0.55)
TED Spread 0.007 -0.002 -0.001 0.005 0.003 -0.003
(1.51) (-0.84) (-0.42) (0.71) (1.28) (-0.71)
Swap - T-bill -0.001 0.003 0.002 0.000 0.001 0.000
(-0.43) (2.17) (1.25) (0.11) (0.52) (0.20)
Libor - Repo -0.006 0.002 0.001 -0.003 -0.003 0.003
(-0.96) (0.77) (0.36) (-0.41) (-1.01) (0.78)
Funding Lig. Risk (PCA) 0.001 -0.000 -0.000 0.002 0.000 0.000
(0.43) (-0.21) (-0.15) (0.86) (0.24) (0.32)

Adj. R-square -0.01 0.00 0.06 0.02 0.00 -0.01




Table 10: Fama-MacBeth cross-sectional regressions of global asset returns

We report Fama-MacBeth (1973) coefficient estimates (in percent) and Newey-West t -statistics (in parentheses)
of regressing global assets' realized USD-based excess returns in month t+1 on asset RIXs, global RIX beta, and
other betas in month t. Our testing assets include 30 international equity indices, 32 currencies, 14 sovereign
bond futures, and 28 commaodity futures. In addition to GRIX beta, we estimate each asset's betas with respect
to the following macroeconomic risk, liqudity risk, investment style, and tail risk factors: (1) MSCI world equity
index excess return, (2) U.S. liquidity risk factor that is based on the first principal component of various market
liquidity and funding liquidity measures in the U.S., (3) U.S. real GDP growth per capita, (4) U.S. inflation rate, (5)
U.S. default risk that is based on the change of U.S. default spread, (6) U.S. term risk that is based on the change
of U.S. term spread, (7) the global version of these liquidity and macroeconomic variables, (8) the global
investment factors of value and momentum, betting-against-beta (BAB), and time series momentum (TSMOM),
and (9) the global tail risk factors of risk-neutral (RN) moment risks of variance, skewness, and kurtosis. To
reduce estimation error in regressors, we use each asset's rankings as regressors in performing cross-sectional
regressions at each point of time. For example, we form 5 GRIX-beta quintiles across all assets and use these
rankings for "Global RIX beta". We do the same for other variables.

1) (2) (3) (4) (5) (6) ()

Global RIX beta -0.212 -0.190 -0.173 -0.156 -0.216 -0.174 -0.156
(-3.13) (-2.88) (-2.32) (-2.06) (-2.85) (-2.30) (-1.76)
Asset RIXs (characteristics) 0.014
(0.24)
Market beta 0.088 0.124 0.050 0.080 0.135
(0.73) (1.17) (0.35) (0.67) (0.93)
U.S. Liquidity risk beta -0.067
(-0.62)
U.S. Real GDP growth beta 0.029
(0.35)
U.S. Inflation beta 0.098
(1.02)
U.S. Default risk beta 0.130
(1.47)
U.S. Term risk beta 0.109
(1.43)
Global Liquidity risk beta -0.107 -0.153
(-1.02) (-1.65)
Global Real GDP growth beta -0.082 -0.166
(-0.90) (-1.66)
Global Inflation beta -0.036 -0.080
(-0.46) (-0.86)
Global Default risk beta 0.180 0.126
(1.71) (1.21)
Global Term risk beta 0.124 0.156
(1.69) (1.76)
Global Volatility risk beta 0.155 0.006
(1.40) (0.05)
Global Value beta 0.085 0.036
(0.79) (0.33)
Global Momentum beta 0.118 0.134
(0.84) (1.13)
Global BAB beta -0.095 -0.109
(-0.91) (-1.04)
Global TSMOM beta -0.086 -0.088
(-0.62) (-0.71)
Global RN variance risk beta 0.176 0.178
(1.75) (1.33)
Global RN skewness risk beta -0.178 -0.123
(-2.10) (-1.42)
Global RN kurtosis risk beta -0.126 -0.093

(-1.36) (-0.92)
Average R-square 0.02 0.04 0.15 0.16 0.16 0.14 0.26




Figure A-1: Downside risk of portfolios of unfavorable and favorable assets

This figure presents mean excess returns of five GRIX-beta quintiles against their downside risk CAPM (DR-CAPM)
betas. These quintile portfolios are monthly formed using 104 global assets of equity indices, currencies,
government bonds, and commodities (see Table 4 in detail). Assets in the low (high) GRIX-beta portfolio are
unfavorable (favorable). To estimate each portfolio's DR-CAPM beta, we regress its monthly excess returns on the
MSCI world equity index excess returns using only downsates that are all months in which the market return is at
least one standard deviation below its sample mean over the period from January 1998 through May 2012. The
DR-CAPM beta of unfavorable-minus-favorable hedge portfolio is -0.008 (with a t -statistic of -0.03).
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Table A-2: Disaster concern innovation and returns of portfolios within and across asset classes

Within an asset class, we estimate an asset's beta with respect to the innovation of its asset-class-specific RIX, and then form four
ARIX-B portfolios. Across all global assets from four asset classes, we estimate an asset's beta with respect to the innovation of the
GRIX, and then form four AGRIX-B portfolios. Both within and across asset classes, we also form hedge portfolios by going long in low
beta assets and short in high beta assets. The rolling-window regression setup is similar to that in Table 2. We monthly form
portfolios and calculate equal-weighted portfolio returns. This table presents mothly mean excess returns (in percent) and alphas
benchmarked on the five-factor global asset pricing model. Newey-West t -statistics are reported in parentheses.

B estimated Equity Indices Currencies Sovereign Bonds Commodities All Assets

using ARIX (or  Excess Alpha Excess Alpha Excess Alpha Excess Alpha Excess Alpha
AGRIX) Return Return Return Return Return

Low - B 0.759 0.404 0.549 0.248 0.254 0.263 0.508 0.251 0.633 0.090
(1.19) (1.15) (1.91) (1.47) (2.11) (3.44) (1.13) (0.77) (1.65) (0.27)
2 0.402 0.100 0.385 0.111 0.174 0.179 0.564 0.339 0.385 -0.081
(0.78) (0.42) (1.86) (1.25) (2.54) (4.56) (1.65) (1.34) (1.71) (-0.46)
3 0.316 0.006 0.355 0.115 0.198 0.202 0.381 0.148 0.188 -0.090
(0.66) (0.04) (1.87) (1.30) (3.25) (4.76) (0.98) (0.57) (0.78) (-0.52)
High - B 0.679 0.356 0.448 0.174 0.172 0.176 0.353 0.129 0.449 -0.157
(1.31) (1.71) (2.09) (1.60) (2.34) (3.36) (0.91) (0.50) (1.44) (-0.82)
High - Low 0.080 0.048 0.101 0.074 0.082 0.087 0.155 0.122 0.184 0.247

(0.25)  (0.16) (0.53)  (0.38) (0.83)  (0.96) (0.39) (0.31) (0.72) (0.71)




Table A-2: Downside risk CAPM betas of asset-class-specific RIX-beta portfolios (to be updated)

Within an asset class, we form four RIX-beta portfolios using the asset-class-specific rare disaster concern index (see Table 2 for details). We also form
combination portfolios that generate equal weighted returns across three asset classes (equity, currency, and bond). The frequency of portfolio formation
is monthly (Panel A) and semi-annual (Panel B). To estimate each portfolio's downside risk CAPM (DR-CAPM) beta, we regress its monthly excess returns
on the market excess returns using only downsates that are all months in which the market return is at least one standard deviation below its sample
mean. We use the following market returns in estimating DR-CAPM betas: (1) the MSCI world equity index excess returns during January 1998 through
October 2012 for EQRIX-beta portfolios; (2) the dollar value factor returns during January 1998 through May 2012 for FXRIX-beta portfolios; (3) the
Barclays Capital global government bond index returns during January 1998 through December 2012 for BDRIX-beta portfolios; and (4) the MSCI world
equity index excess returns during January 1998 through May 2012 for combination portfolios.

Panel A: monthly portfolio formation

EQRIX-Beta Portfolios FXRIX-Beta Portfolios BDRIX-Beta Portfolios EQ-FX-BD RIX-Beta Comb
B t(B) Adj. R B t(B) Adj. R* B t(B) Adj. R® B t(B) Adj. R?
Low -1 1.257 4.59 46.6% 1.195 6.49 67.3% 0.535 1.03 0.2% 0.699 4.46 45.1%
2 1.353 6.61 65.0% 0.570 4.10 44.1% 0.693 2.00 9.7% 0.574 5.30 54.1%
3 1.415 7.13 68.5% 1.021 10.05 83.3% 1.038 3.07 23.1% 0.623 5.45 55.5%
High - 4 1.086 4.56 46.2% 1.035 7.12 71.3% 1.104 1.97 9.3% 0.578 4.20 42.0%
Low - High  0.171 0.56 -3.1% 0.160 0.59 -3.4% -0.569 -0.75 -1.6% 0.121 0.81 -1.5%

Panel B: semi-annual portfolio formation

EQRIX-Beta Portfolios FXRIX-Beta Portfolios BDRIX-Beta Portfolios EQ-FX-BD RIX-Beta Comb
B t(B) Adj. R® B t(B) Adj. R? B t(B) Adj. R B t(B) Adj. R
Low-1 1.431 5.27 54.9% 1.174 6.96 70.3% 1.356 2.41 14.2% 1.431 5.27 54.9%
2 1.348 6.20 63.0% 0.660 3.71 39.0% 0.457 1.54 4.6% 1.348 6.20 63.0%
3 1.498 11.25 85.1% 1.014 6.26 65.6% 0.847 3.09 22.7% 1.498 11.25 85.1%
High - 4 1.284 4.76 49.7% 0.943 6.21 65.2% 0.623 1.15 1.1% 1.284 4.76 49.7%

Low - High  0.148 0.46 -3.7% 0.231 1.02 0.2% 0.732 0.96 -0.3% 0.148 0.46 -3.7%




Table A-3: Robustness checks (more to be added)

This table presents mean excess returns of RIX-beta portfolios based on different specifications of
global asset returns. We form four RIX-beta portfolios within each asset class and report results based
on different frequencies of portfolio formation. For equity class (Panel A), we use U.S. ETFs to track our
original sample of international equity indices, and also use monthly returns in CRSP in estimating ETFs'
EQRIX betas and calculating equal weighted portfolio returns. For currency class (Panel B), we use log
returns in estimating currencies' FXRIX betas and calculating portfolio returns. For bond class (Panel C),
we use interpolated futures returns of 30-day constant maturity in estimating bonds' BDRIX betas and
calculating portfolio returns.

Panel A: U.S. ETFs tracking international equity indices

Monthly Portfolio Quarterly Portfolio Semi-Annual Portfolio  Annual Portfolio

EQRIX Beta Formation Formation Formation Formation
Low-1 0.668 0.906 0.904 0.999
(1.38) (1.91) (2.00) (2.13)
2 0.379 0.241 0.395 0.260
(0.84) (0.53) (0.84) (0.53)
3 0.271 0.260 0.167 0.254
(0.59) (0.55) (0.36) (0.57)
High - 4 0.198 0.089 0.234 0.149
(0.41) (0.18) (0.48) (0.33)
High - Low -0.471 -0.817 -0.670 -0.850
(-1.69) (-2.76) (-2.27) (-3.06)

Panel B: Currency log returns

Monthly Portfolio Quarterly Portfolio Semi-Annual Portfolio  Annual Portfolio

FXRIX Beta . . . .
Formation Formation Formation Formation

Low-1 0.734 0.795 0.802 0.723

(3.06) (3.26) (3.41) (2.97)

2 0.074 0.163 0.061 0.093

(0.42) (0.96) (0.35) (0.51)

3 0.319 0.276 0.301 0.318

(1.94) (1.71) (1.84) (1.88)

High - 4 0.374 0.296 0.342 0.366

(1.93) (1.56) (1.76) (1.97)

High - Low -0.360 -0.499 -0.460 -0.357

(-2.00) (-2.86) (-2.72) (-1.92)

Panel C: Bond futures interpolated returns of 30-day constant maturity

Monthly Portfolio Quarterly Portfolio Semi-Annual Portfolio  Annual Portfolio

BDRIX Beta . . . .
Formation Formation Formation Formation

Low-1 0.320 0.252 0.353 0.325

(2.82) (2.37) (3.17) (2.65)

2 0.149 0.153 0.125 0.095

(2.10) (2.17) (1.91) (1.34)

3 0.116 0.097 0.085 0.070

(1.83) (1.52) (1.33) (1.06)

High - 4 0.102 0.155 0.124 0.158

(1.38) (2.07) (1.58) (2.16)

High - Low -0.219 -0.097 -0.229 -0.167

(-2.38) (-1.17) (-2.62) (-1.72)




