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Abstract

We solve and quantitatively analyze a canonical noisy rational expectations model (Hell-

wig, 1980) within the framework of a conventional real business cycle model. Each household

receives a private signal about future productivity. In equilibrium, the stock price serves to

aggregate and transmit this information. We find that dispersed information about future

productivity affects the quantitative properties of our real business cycle model in three

dimensions. First, households’ ability to learn about the future affects their consumption-

savings decision. The equity premium falls and the risk-free interest rate rises when the

stock price perfectly reveals innovations to future productivity. Second, when noise trader

demand shocks limit the stock market’s capacity to aggregate information, households hold

heterogeneous expectations in equilibrium. However, for a reasonable size of noise trader

demand shocks the model cannot generate the kind of disagreement observed in the data.

Third, even moderate heterogeneity in the equilibrium expectations held by households has

a sizable effect on the level of all economic aggregates and on the correlations and standard

deviations produced by the model. For example, the correlation between consumption and

investment growth is 0.29 when households have no information about the future, but 0.41

when information is dispersed.
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1 Introduction

An efficient allocation of goods and services depends on the ability of financial markets to ag-

gregate dispersed information that is not available to any single economic agent in its totality

(Hayek, 1945). The way in which asset prices and economic aggregates reflect this dispersed

information has been the object of a large theoretical literature on “noisy rational expectations”

going back to Grossman (1976) and Hellwig (1980).

This literature has produced a rich set of predictions. For example, inefficiencies may arise

when prices transmit information that is costly to acquire (Grossman and Stiglitz, 1980; Verrec-

chia, 1982), when agents must form expectations about the expectations of others (Allen, Morris,

and Shin, 2006; Bacchetta and Van Wincoop, 2008; Qiu and Wang, 2010; Angeletos, Lorenzoni,

and Pavan, 2012), or when agents learn about actions that are strategic complements to their

own actions (Amador and Weill, 2012; Goldstein, Ozdenoren, and Yuan, 2013).1

Although this field of research has received a great deal of attention in recent years, quantify-

ing its results within the standard framework of dynamic stochastic general equilibrium (DSGE)

models has proven difficult. This relative scarcity of quantitative applications is the result of a

methodological barrier: the tools used to solve noisy rational expectations models are generally

perceived to be incompatible with the quantitative machinery of DSGE models. Noisy rational

expectations models typically combine normally distributed shocks with policy functions that

are (log) linear in the expectation of the shocks that agents learn about. This combination en-

sures that aggregate variables (e.g., prices or the capital stock) inherit the normal distribution,

allowing a straightforward application of the projection theorem when solving for equilibrium

expectations. By contrast, policy functions in contemporary DSGE models are inherently non-

linear in expectations of future variables (e.g., consumption, labor supply, and portfolio returns).

As a result, aggregate variables are not normally distributed in these models, even if they feature

normally distributed shocks. Consequently, the standard approach for solving noisy rational

expectations models is not directly applicable.

In this paper, we develop an approach that breaks this methodological barrier and allows us

to apply the standard toolkit for solving noisy rational expectations models within the standard

DSGE framework that is typically used for welfare and policy analysis. We use our approach to

quantitatively estimate the seminal noisy rational expectations model by Hellwig (1980).2

In noisy rational expectations models, households receive a private signal about future pro-

1See Brunnermeier (2001) and Veldkamp (2011) for excellent textbooks on the subject.
2We choose the framework by Hellwig (1980) mainly because the results are classics and require relatively little

introduction. However, we believe our methodological approach is applicable more broadly, and hope it paves
the way for a more general, quantitative evaluation of the noisy rational expectations literature. In addition to
the noisy rational expectations literature cited above, our approach may also be applicable to a range of related
dispersed information models in which agents learn from observing aggregate variables such as the capital stock
or investment flows.
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ductivity and can infer information about the signals received by others from observing the

equilibrium stock price. The model has three main qualitative predictions: First, in a frictionless

environment in which the trading motives of all economic agents are known, asset prices perfectly

reveal all dispersed information (the Grossman (1976) equilibrium). Second, the trading activ-

ity of “noise traders” who randomly demand an unknown quantity of stocks interferes with the

market’s capacity to aggregate information and prevents the perfect revelation of information in

equilibrium. When information is not perfectly revealed, households differ in their equilibrium

expectation of future productivity. Third, noise trader demand that is solely contingent on vari-

ables that are observable by households does not affect equilibrium expectations as long as the

equilibrium price function remains monotonic in the productivity shock.

In the first part of the paper, we set up a real business cycle model with capital accumulation,

flexible labor supply, and Epstein-Zin utility in which households receive private signals about

a future productivity shock and can learn from the equilibrium stock price. In addition, outside

“noise traders” engage in stochastic asset purchases in the stock market, as in Hellwig (1980).

We then introduce our solution method and formally derive the conditions under which

the three main predictions of the classical noisy rational expectations model carry over to the

quantitative model. The main insight from this analysis is that, under an appropriate assumption

on the distribution of noise trader demand shocks, we can solve for households’ equilibrium

expectations as a function of only two variables: the standard deviation of noise trader demand

and the standard deviation of idiosyncratic noise in households’ private signal. Jointly, the two

variables fully determine the equilibrium posterior distribution of households’ expectations of

the productivity shock. In fact, we are able to derive a monotonic transformation of noise trader

demand such that households’ equilibrium expectations take the same form as in the linear

model.

As a result, the three main qualitative insights from the linear model seamlessly carry over

to the quantitative model. In particular, the equilibrium stock price becomes perfectly revealing

of the productivity shock if no noise traders are present. In addition, any policy interventions

(e.g., open market operations) in the stock market do not affect the equilibrium informativeness

of stock prices as long as they are fully contingent on observables.

In the third part of the paper, we estimate and quantitatively evaluate the model. Relative to

a conventional DSGE model, we have two additional parameters: the standard deviation of noise

trader demand and the standard deviation of idiosyncratic noise in households’ private signal. To

get a benchmark value for the size of noise trader demand shocks, we calibrate their size to the

asset purchase program of the Federal Reserve. Although this estimate may not be accurate, this

benchmark value serves as an interpretable reference. We then choose the remaining parameter

to match the cross-sectional variance of the expectation of annual GDP growth from the Survey

of Professional Forecasters. Based on these estimates, we analyze the comparative statics in the
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model. In a final step, we estimate both the standard deviation of noise trader demand and the

standard deviation of noise in the private signal to match a set of financial and business cycle

moments.

We find that dispersed information about future productivity affects the quantitative results

of our DSGE model in four ways. First, households’ ability to learn about future productivity

affects their behavior, and especially their consumption-savings decision. In our calibration,

households receive private signals about the innovation to the long-run productivity shock one

month in advance. In the limit in which the standard deviation of the noise trader demand

shock goes to zero, the equilibrium stock price becomes perfectly revealing and all households

hold the same expectation in equilibrium. We compare this limiting case of perfect information

aggregation with a standard calibration in which households receive no information at all about

future productivity and find the equity premium falls by 1% and the risk-free interest rate rises

by 2% when the stock price perfectly reveals the productivity shock.

Second, when noise trader demand shocks limit the stock market’s capacity to aggregate

information, the model cannot generate the kind of disagreement observed in the data for any

reasonable size of noise trader demand shocks. For example, in our standard specification, the

cross-sectional standard deviation in households’ expectations of future GDP growth is 0.05%,

compared to 0.27% in the survey of economic forecasters. Similarly, when we choose the precision

of households’ private signal to maximize the cross-sectional variance in household expectations,

the cross-sectional variation in households’ holdings of stocks does not exceed 0.04% in our

standard specification.

Third, even moderate heterogeneity in household behavior affects the correlations and stan-

dard deviations produced by the model, as well as the level of all economic aggregates. For

example, the correlation between consumption growth and investment is 0.29 when households

have no information about the future, 0.27 when they have perfect information about the future,

but 0.41 in our standard specification.

Fourth, aside from their effect on information aggregation, noise trader demand shocks affect

the model in their own right. When we choose the standard deviation of noise trader demand

shocks to maximize the overall fit of the model we find that, with sufficiently (albeit unreasonably)

large shocks, the model comes closer to matching the standard deviation of stock returns and

stock prices, as well as the cross-sectional standard deviation of expectations of future GDP

growth observed in the data.

This last finding illustrates a number of difficulties that arise when transporting the concept

of noise traders into a general equilibrium setting. The first difficulty is that the non-fundamental

asset demand of noise traders has no clear counterpart in the data. As a reference point, we

calibrate the size of demand shocks by noise traders to trading activity by the Federal Reserve

to get into a sensible range. In a different specification, we estimate noise trader shocks along
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with other parameters of the model.

Second, noise traders effectively act as foreign agents, adding and subtracting resources from

the economy at different points in time. When we change the standard deviation of noise trader

demand shocks, we also directly change the volatility of all macroeconomic aggregates, which

makes comparative statics with respect to the standard deviation of noise trader demand shocks

somewhat difficult to interpret.

Finally, heterogeneous classes of agents, and in particular non-maximizing agents such as

noise traders, make thinking about welfare difficult. For example, it is unclear whether one

should include noise traders in a welfare measure, and if so, how to calculate their utility. On the

other hand, performing welfare analysis based on the utility of rational households alone may

lead to counterintuitive results as wealth transfers occur between the two groups in equilibrium.

In a related paper (Hassan and Mertens, 2014) we address these issues by removing noise

traders from the model altogether, and instead work only with a single class of “near-rational”

households. Near-rational households are perfectly rational in all dimensions of their behavior,

but make small correlated errors when forming expectations about future productivity (they

are on average slightly too optimistic in some states of the world and slightly too pessimistic

in others). By the envelope theorem, such small errors are of little concern to an individual

household, because they have only a lower-order effect on its own utility. However, as a result

of these small errors being correlated across households, they affect the equilibrium stock price.

As households (rationally) attempt to learn from the equilibrium price, the common component

of households’ errors is amplified and has a first-order external effect on the market’s capacity

to aggregate information. The model thus endogenously generates non-fundamental noise in the

stock price through an information externality: a given household does not internalize the effect

of its own error on the equilibrium expectation of other households in the economy. Having

eliminated non-maximizing agents from the model, we are then able to address a number of

welfare-related questions that we sidestep in the current paper. In particular, we show that

a deterioration of the market’s capacity to aggregate information may cause large (first-order)

aggregate welfare losses. Mertens (2009) analyzes a range of policies that may mitigate the

information externality and improve the market’s capacity to aggregate information.

In the interest of maintaining a maximum comparability to the most standard noisy rational

expectations model, we maintain the noise trader assumption in the current paper despite the

difficulties with its normative interpretation, and focus on the positive predictions of the model

throughout.

The solution method we use in this paper generalizes a solution method we use in earlier

work (Mertens, 2009; Hassan and Mertens, 2014). It builds on Judd (1998) and Judd and Guu

(2001) in using an asymptotically valid higher-order expansion in all state variables around the

deterministic steady state of the model in combination with a nonlinear change of variables (Judd
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(2002)). Tille and van Wincoop (2013) independently develop a similar solution method based

on perturbation methods.3 ? develop an alternative approach in which they constrain each

agent’s asset purchases, such that the optimality conditions of only one marginal agent holds in

equilibrium.

This paper is part of a large literature that strives for a richer representation of financial

markets within otherwise standard DSGE models. Examples include Bernanke and Gertler

(1989), Bernanke et al. (1999), Woodford and Curdia (2009), He and Krishnamurthy (2011),

and Brunnermeier and Sannikov (2013). We add to this literature by providing a simple way

to incorporate the notion that stock markets aggregate and transmit information into otherwise

standard quantitative models.

Another closely related literature considers the effect of information about future fundamen-

tals in the form of exogenous news shocks within DSGE models (Jaimovich and Rebelo, 2009;

Barsky and Sims, 2011; Schmitt-Grohé and Uribe, 2012). Blanchard et al. (2013) estimate the

relative contributions of noise shocks and information in the data. We add to this literature by

providing a means to quantify the extent to which asset markets endogenously transmit news

about future fundamentals.

The remainder of the paper is structured as follows. Section 2 introduces the classic noisy

rational expectations model and describes the usual steps in solving the linear model. Section

3 sets up the quantitative DSGE model and shows how we can follow the same steps when

solving for equilibrium expectations in the non-linear model. Section 5 quantitatively analyzes

and estimates the model. Section 6 concludes.

2 The Classic Noisy Rational Expectations Model

The model economy exists at two points in time t = 1, 2. It is populated by a continuum of

identical households indexed by i ∈ [0, 1]. At t = 1, each household is endowed with N units of

a numéraire good that can be stored until t = 2 and K units of capital. At t = 2, each unit of

capital returns η units of the numéraire

Y = ηK, η ∼ N
(
η̄, σ2

η

)
. (1)

Before trading commences, each household receives a private signal about productivity:

si = η + νi, (2)

where νi represents i.i.d. draws from a normal distribution with zero mean and variance σ2
ν .

Given si, each household chooses to purchase zi units of capital to maximize expected utility

3Also see Tille and van Wincoop (2008) and Devereux and Sutherland (2011).
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from terminal wealth,

E1i [Ui] = E1i [w2i]−
ρ

2
V1[w2i], (3)

where E1i [η] = E [η|si, Q] and V1[w2i] is the posterior variance of w2i conditional on the private

signal si and the stock price Q. The parameter ρ > 0 determines the degree of absolute risk

aversion. Terminal wealth is given by

w2i = zi(η −Q) +N. (4)

Households thus optimally demand

zi =
E1i [η]−Q
ρV1[η]

(5)

units of capital.

Market clearing requires that aggregate asset demand is equal to aggregate supply:∫ 1

0

zidi+ T (Q) + τ = K, (6)

where T (Q) reflects asset purchases by noise traders that follow some policy rule contingent on Q

and τ are asset purchases by noise traders that are stochastic from the perspective of households.

Throughout, we focus on symmetric equilibria.

Assumption L1 Contingent asset purchases by noise traders are a linear function of Q

T (Q) = b0 + b1Q. (7)

Assumption L2 Random asset purchases by noise traders follow the normal distribution

τ ∼ N
(
0, σ2

τ

)
. (8)

Assumption L3 Households can condition their expectation on prices (Q) but not on aggre-

gate quantities (
∫ 1

0
zidi).

2.1 Solving the Model

The standard approach to solving this “CARA-Gaussian” model proceeds in three steps. Because

the steps in the solution of the quantitative model are generalized versions of these same steps,

we derive them in detail to show the analogy in the procedure.
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Step 1: Guess Equilibrium Price Function

We guess that the equilibrium price function is linear in η and τ

Q = π0 + π1η + γτ , (9)

where π0, π1, and γ are endogenous coefficients to be solved below.

Step 2: Bayesian Expectation Formation

Plugging (5) into (6) and rearranging terms yields

q̂ ≡
∫ 1

0

E1i [η] di+ τρV1[η] = ρV1[η] (K − T [Q]) +Q. (10)

Note that all variables on the right-hand side of the equation are known at t = 1. Observing Q

is thus equivalent to observing the average expectation of η across households with some error

τρV1[η]. Without loss of generality, we refer to this monotonic transformation of the stock price

as q̂.

Assuming our guess in (9) is correct, we can show that the rational expectation of η given

the private signal and q̂ takes a linear form

E1i[η] = α0 + α1si + α2q̂, (11)

where the constants α0, α1, and α2 are Bayesian weights households give to the prior, the private

signal, and the monotonic transformation of the market price of capital, respectively.

Plugging the definition in (10) into (11), integrating on both sides, solving for
∫
E1i[η]di, and

then adding τρV1[η] on both sides yields

q̂ =
α0

1− α2

+
α1

1− α2

η +
1

1− α2

τρV1[η].

Observing the stock price is thus also equivalent to observing an unbiased signal of η(
q̂ − α0

1− α2

)
1− α2

α1

= η +
ρV1[η]

α1

τ . (12)

We thus have a prior and two independent, unbiased signals of η. It follows that the posterior
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variance is the inverse of the sum of the precision of these three elements4

V [η|si, Q] = V1[η] =

(
σ−2
η + σ−2

ν +

(
α1

ρV1[η]

)2

σ−2
τ

)−1

. (13)

Moreover, the conditional expectation of η is the precision-weighted sum of the signals and the

prior mean divided by the posterior precision

E[η|si, Q] =
σ−2
η η̄ + σ−2

ν si +
(

α1

ρV1[η]

)2

σ−2
τ

(
η + ρV1[η]

α1
τ
)

V1[η]−1
. (14)

Matching coefficients (14) with (11) yields

α1 =
V1 [η]

σ2
ν

. (15)

Plugging into (13) yields

V1 [η] =

(
1

σ2
η

+
1

ρ2σ4
νσ

2
τ

+
1

σ2
ν

)−1

. (16)

Step 3: Verification of the Price Guess

Plugging (7), (14), and (15) into both sides of the second equality in (10), solving for Q and

collecting terms by η and τ yields

Q =

(
σ−2
η η̄ − ρ (K − b0)

)
V1[η]

1− ρV1[η]b1

+
σ−2
ν (1 + ρ−2σ−2

ν σ−2
τ )V1[η]

1− ρV1[η]b1

η +
(ρ−1σ−2

ν σ−2
τ + ρ)V1[η]

1− ρV1[η]b1

τ (17)

Matching coefficients with (9), plugging in (16) and simplifying yields

π1 =
σ2
η(ρ2σ2

νσ
2
τ+1)

σ2
η−ρ2σ2

νσ
2
τ(σ2

η(b1ρσ2
ν−1)−σ2

ν)
and γ = ρσ2

νπ1 , (18)

verifying the guess (9).

2.2 Three Classical Results

From (16), we can readily read off the three main qualitative predictions of the noisy rational

expectations model.

4See Appendix A for a formal derivation using the projection theorem.
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Result 1. Absent stochastic noise trader demand, the stock price becomes perfectly revealing

lim
στ→0

V1 [η] = 0.

Result 2. Noise trading reduces the market’s capacity to aggregate information,

∂V1 [η]

∂στ
> 0.

When information aggregation is less than perfect, households put weight on their private signal

and thus hold different expectations in equilibrium. (This follows directly from (15).)

Result 3. Noise traders’ contingent asset purchases have no effect on price informativeness.

(Note that T (Q) does not feature in (16).)

3 A DSGE Model with Dispersed Information

We now generalize Results 1-3 to the context of a quantitative DSGE model. To this end, we set

up a decentralization of the real business cycle model by Croce (2013). We choose this model

because it performs well on matching quantities as well as asset prices and can readily be solved

using perturbation methods. However, in principle, we believe our method is applicable to any

DSGE model in which equilibrium policy functions are smooth.

3.1 Setup

Technology is characterized by a linear homogeneous production function that uses capital, Kt,

and labor, Nt, as inputs

Yt = Kα
t (eatNt)

1−α, (19)

where Yt stands for output of the consumption good. The growth of labor productivity, ∆at+1 =

log (At+1/At), has a long-run risk component, ω, and a short-run risk component, ϕ,

∆at+1 = µa + ωt + σϕϕt+1. (20)

where the long-run component follows

ωt = ρωt−1 + σηηt. (21)

Both shocks to productivity, ϕ and η, are i.i.d. standard normal.
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The equation of motion of the capital stock is

Kt+1 = (1− δk)Kt + It −GtKt, (22)

where It denotes aggregate investment and δk is the rate of depreciation. Furthermore, convex

adjustment costs to capital arise following Jermann (1998)

Gt =
It
Kt

−

(
v1

1− 1
ξ

(
It
Kt

)1− 1
ξ

+ v0

)
, (23)

where v1, v2, and ξ are positive constants.

A representative firm purchases capital and labor services from households.5 As it rents

services from an existing capital stock, the firm’s objective collapses to a period-by-period max-

imization problem

max
Kt,Nt

Yt − dtKt − wtNt, (24)

where Kt and Nt denote factor demands for capital and labor, respectively. First-order conditions

with respect to capital and labor pin down the market-clearing wage,

wt = (1− α)
Yt
Nt

, (25)

and the rental rate of capital, α Yt
Kt

. Both factors receive their marginal product. Because the

production function is linear homogeneous, the representative firm makes zero economic profits

from producing the consumption good.

The representative firm owns an investment goods sector that converts the consumption good

into units of capital, while incurring adjustment costs. It takes the price of capital as given and

then performs instantaneous arbitrage:

max
It

Qt (It −GtKt)− It. (26)

Taking the first-order condition of (26) gives us the equilibrium price of capital.

Qt =
1

1−G′t
. (27)

Due to decreasing returns to scale in converting consumption goods to capital, the investment

goods sector earns positive profits in each period. Profits are paid to shareholders as a part of

5The assumption that firms rent capital services from households implies that there are no principal agent
problems between managers and stockholders. Managers therefore cannot prevent errors in stock prices from
impacting investment decisions. We circumvent the question which pricing kernel a firm would use to solve an
intertemporal problem.

11



dividends per share:6

Dt = dt +Qt

(
G′t

It
Kt

−Gt

)
. (28)

A continuum of households on the interval i ∈ [0, 1] has Epstein and Zin (1989) preferences

over the consumption bundle C̃it

Uit =

(
(1− δ)C̃

1− 1
ψ

it + δEit
[
U1−γ
it+1

] 1− 1
ψ

1−γ

) 1

1− 1
ψ

, (29)

where the parameters ψ and γ measure the households’ intertemporal elasticity of substitution

and relative risk aversion, respectively. The consumption bundle C̃it is a CES aggregate of

consumption and leisure

C̃it =

(
oC

1− 1
ξl

it + (1− o)(At−1(1− nit))
1− 1

ξl

) 1

1− 1
ξl , (30)

where the weight of leisure scales with aggregate productivity, A, to ensure the existence of a

balanced growth path. At the beginning of every period, each household receives a private signal

about the shock to long-run productivity:

sit = ηt+1 + νit, (31)

where νit represents i.i.d. draws from a normal distribution with zero mean and variance σ2
ν .

Given sit and their knowledge about the state of the economy, households maximize life-

time utility (29) by choosing a time path for consumption, labor, and their holdings of stocks

{Cit, nit, kit}∞t=0. Each household’s optimization is subject to a budget constraint:

Qtkit+1 = Qt−1Rtkit +Hit − Cit + wtnit, (32)

where Qt denotes the price of capital, Hit transfers from state-contingent claims discussed below,

and wt the wage rate. The returns to capital are defined as

Rt+1 =
(1− δk)Qt+1 + α Yt+1

Kt+1
+Qt+1

(
G′t+1

It+1

Kt+1
−Gt+1

)
Qt

. (33)

Foreign noise traders engage in open market operations in the stock market using an inde-

pendent source of wealth. In each period, they purchase T k (St) + T τt+1 units of capital, where

6Alternatively, profits may be paid to households as a lump-sum transfer; this assumption matters little for
the quantitative results of the model.
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the first term follows a policy rule that is a function of the vector of observable state variables

St, and the second term, T τt+1, is random from the perspective of the households. Despite being

determined in period t, we denote noise trader demand by an index t+ 1 since it interferes in the

market for capital Kt+1. The market clearing conditions for the stock, labor, and goods markets

are

Kt+1 =

∫
kit+1di+ T k (St) + T τt+1, (34)

Nt =

∫
nitdi, (35)

and

Yt + ς t = Ct + It, (36)

where ς t stands for the net value of noise traders’ purchases,

ς t = Qt

(
T k (St) + T τt+1

)
−Qt−1Rt

(
T k (St−1) + T τt

)
. (37)

Noise traders therefore trade goods with households and thus have a non-zero trade balance with

the economy. The trade balance corresponds to financial claims which are held in the form of

noise traders’ ownership of capital.

Solving this model poses two main challenges. First, equilibrium quantities are non-linear

functions of the underlying shocks. Maintaining the assumption of normally distributed shocks

inevitably leads to a non-normal distribution of equilibrium variables. As a result, we can no

longer solve for conditional distributions in closed form based on these quantities. Second,

information dispersion results in a distribution of choices and state variables, which generates

a non-degenerate distribution of wealth across households. To focus our attention on the first

challenge, we side-step the second challenge by introducing contingent claims that households

can use to insure against the idiosyncratic risk they face due to their private signal.7

At the beginning of each period (and before receiving their private signal), households can

trade claims that are contingent on the state of the economy and on the realization of the noise

they receive in their private signal, νit. These claims are in zero net supply and pay off at the

beginning of the next period. Since they are traded before any information about ηt+1 is known,

their prices cannot reveal any information about future productivity. Contingent claims trading

thus completes markets between periods, without affecting households’ signal extraction problem.

7See Mertens and Judd (2013) for a perturbation-based approach to solving incomplete markets models with
substantial heterogeneity.
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In equilibrium, all households choose to hold these securities with net payoff

Hit =


Qt−1Rt

(
Kt − T k [St−1]− T τt

)
− Qt−1Rtkit

if
{
C̃it, nit, kit

}
= arg max (29)|Hit=0

0 otherwise

, (38)

such that all households enter each period with the same amount of wealth.8 From (34), it follows

immediately that these claims are in zero net supply∫
Hitdi = 0. (39)

3.2 Equilibrium

Definition 1. Given a time path of shocks, an equilibrium in this economy is a time path of

quantities, signals, and prices with the following properties:

1. The time path of households’ consumption, stock holdings, and labor supply maximizes (29)

given the vector of prices and signals.

2. The demand for capital and labor services solve the representative firm’s maximization

problem (24) given the vector of prices.

3. The time path of capital investment solves the investment good sector’s problem (26) given

the vector of prices.

4. The time paths of stock prices, wages, and stock returns clear the markets for stocks, labor

services, and capital services, respectively.

We compute the first-order and envelope conditions for households in Appendix B.2. After

taking the ratio of the first-order conditions with respect to labor and consumption, we get the

marginal rate of substitution between labor supply and consumption

1− o
o

A
1− 1

ξl
t−1 (1− nit)

− 1
ξl

C
− 1
ξl

it

= wt. (40)

The optimal choice of stock holdings is determined by the familiar asset pricing equation,

Eit[Mit+1Rt+1] = 1, (41)

8To save space we directly use the equilibrium result that households will perfectly share the risk associated
with the noise in their private signal and relegate the detailed notation concerning contingent claims to the
Appendix. Hit is thus the equilibrium net payoff received by household i from its contingent claims trading.
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where the stochastic discount factor, Mit+1, is given by

Mit+1 = δ

(
Cit+1

Cit

)− 1
ξl

(
C̃it+1

C̃it

) 1
ξl
− 1

Ψ

 Uit+1

Eit
[
U1−γ
it+1

] 1
1−γ

 1
Ψ
−γ

, (42)

and returns Rt+1 are defined in (33). Given these conditions of optimality, consumption follows

from the household’s budget constraint (32).

For convenience, we write the average of stock holdings across households as∫
kit+1di = K̄t+1, (43)

such that we can rewrite the market-clearing condition for capital (34) as Kt+1 = K̄t+1 +T k(St)+

T τt+1.

The labor market clears when condition (35) holds. Again for convenience, we write aggregate

consumption and labor supply as

Xt =

∫
Xitdi, X = C,N. (44)

Note that noise trader demand shocks affect this system of equations via the resource con-

straint (36), which determines the amount of aggregate investment. Investment, in turn, influ-

ences the price of capital Q via equation (27).

3.3 Solving the Model

In this section, we generalize the three solution steps for the linear model in section 2 to solve

the quantitative model with dispersed information. The main trick is again to define a statistic

q̂ that aggregates all relevant information about ηt+1. We conjecture that this statistic takes

analogous form to the linear model,

q̂t ≡ Ēt +
V1 [η]

σ2
η

τ t, (45)

where Ēt =
∫
Eit[ηt+1]di denotes the average expectation of ηt+1 across households. We guess

that the equilibrium stock price is a function of known state variables of the economy and q̂, where

the mapping from q̂ into Q can now be non-linear. Using this guess, we show how households form

expectations in the non-linear model. We then show that the signal extraction problem remains

linear and Gaussian and can thus be solved in closed form. As an immediate consequence, the

three main theoretical results from the linear setting carry over to the dynamic economy. In a

third step, we confirm our initial guess and show that we find a recursive equilibrium. To complete
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each of these steps, we need three assumptions, which generalize each of the assumptions L1-L3

in the linear model of section 2.

Assumption Q1 Contingent stock purchases by noise traders are a function of known state

variables,

T kt = T k(St),

where

St = {Kt, Tt, ωt−1, ηt, ϕt}.

Assumption Q2 The stochastic component of noise trader demand T τ , is a function of a

normally distributed shock to noise trader demand τ ∼ N(0, µ) and follows a state-dependent

distribution such that the following property holds

Î(St, Ēt, q̂t) +QtT
τ (St, q̂t, Ēt, τ t) = I(St, q̂t), (46)

where Ît = Yt −Qt−1RtT
τ
t − Ct is the “fundamental” component of aggregate investment.

Just like we needed stochastic noise trader demand to be a linear function of a normally

distributed shock in section 2, we now need it to be a particular (non-linear) function of a

normally distributed shock. This function adds noise to the second argument of Î such that

aggregate investment (and thus the equilibrium stock price) is a function of only q̂ and St. We

show below that this assumption boils down to assuming the T τ is a particular multivariate

normal polynomial of τ .

Assumption Q3 When forming expectations about future productivity, households condition

their expectations on their private information, the equilibrium stock price, and the commonly

known state variables of the economy St but not on other quantities or prices.9

Eit[ηt+1] = E[ηt+1|St, sit, Qt]. (47)

As L3 in the linear model, this assumption rules out that households condition their expecta-

tion on the “fundamental” demand for stocks or any quantity that reflects this information. In

the context of this general equilibrium model, it also implies that households cannot condition

their expectation of η on the wage rate or other prices. Households in our model thus act as

“Lucas households” where the member of the household charged with forecasting ηt+1 observes

St, sit, and Q, forms her expectation based on this information, and then communicates it to

another household member who decides on the household’s labor supply.

We make this assumption mainly for convenience. In the more general case in which house-

holds can condition their expectation on two prices, the model simply requires an additional

9Agents also know the history of shocks which does not add any predictive power to expectations due to the
equilibrium being recursive and choices being determined by the state space.
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source of non-fundamental noise.

In addition to assumptions Q1-Q3, we require the following condition.

Condition 1. The equilibrium stock price, Q, is a strictly monotonic function of q̂.

This condition typically holds in a wide range of models. It states that, other things equal, the

stock price either strictly increases or strictly decreases when households expect higher produc-

tivity in the future. While we cannot solve for the mapping of q̂ into Q in closed form, we verify

this condition ex-post using the numerical solution of the model.

3.3.1 Step 1: Guess for state space

Analogously to the linear case, we start by guessing the form of equilibrium variables. The

solution of the model is a set of equilibrium quantities and prices that are functions of the

underlying state variables. We split these state variables into the commonly known set, St, and

a set that depends on expectations about η.

Lemma 1. There exists a recursive equilibrium satisfying the system of equations defined in

section 3.2 with the following properties:

1. The equilibrium stock price, Qt, is a function of the current (commonly known) state of the

economy, St, and q̂t.

2. All other prices and aggregate quantities depend on St, the average expectation, Ēt, and q̂t

Xt = X(S̄t), X = C,N, K̄ ′, w,R, (48)

where we abbreviate S̄t = {St, q̂t, Ēt}.

3. A household’s optimal behavior is a function of St, the household’s conditional expectation

of next period’s innovation to long-run productivity Eit[ηt+1], the average expectation, Ēt,

and the demand statistic q̂t. The conditional expectation, in turn, depends on the private

signal sit as well as the demand statistic q̂t,

xit = x(Sit), x = c, n, k, (49)

where, for convenience, we write Sit = {S̄t, Eit}. In a slight abuse of notation, Eit =

Eit[ηt+1].

In the remainder of the section, we verify the validity of the lemma.
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Step 2: Bayesian Expectation Formation

Given Lemma 1, we invoke condition 1 (which ensures the stock price is a strictly monotonic

function of q̂) and assumption Q3 to arrive at the main insight of our solution method: learning

from the stock price Q is just as informative as learning from its monotonic transformation, q̂.

Since there is a one-to-one mapping between the stock price and q̂ conditional on all commonly

known state variables, St, households can infer the only unknown quantity q̂ from observing the

stock price. In other words, conditioning on Q and q̂ spans the same σ-algebra.

Eit[ηt+1] = E[ηt+1|St, sit, Qt] = E[ηt+1|St, sit, q̂t]. (50)

The signal extraction problem is thus isomorphic to the one in section 2, despite the non-

linear nature of the quantitative model. As a result, we can solve for equilibrium expectations

independently of the aggregate dynamics of the model.

Lemma 2. Households’ equilibrium expectations of ηt+1 are independent of the aggregate dy-

namics of the model. Conditioning on the (normally-distributed) demand statistic q̂ results in

expectations of the form

Eit[ηt+1] =
σ−2
ν

(
ηt+1 + νit

)
+

σ4
η

σ4
νσ

2
τ

(
ηt+1 + σ2

ν

σ2
η
τ t

)
Vt[ηt+1]−1

. (51)

Moreover, the conditional expectation of ηt+1 is the precision-weighted sum of the signals and the

prior mean divided by the posterior precision,

Vt[ηt+1] =

(
σ−2
η + σ−2

ν +
σ4
η

σ4
ν

σ−2
τ

)−1

. (52)

The coefficient on the private signal is given by

α1 =
Vt[ηt+1]

σ2
ν

(53)

and the coefficient on q̂ is given by

α2 =
1

σ−4
η σ2

νσ
2
τ + 1

. (54)

Proof: See Appendix B.5.

As an immediate consequence, we get the following corollary.

Corollary 1. Given condition 1 and assumptions Q1-Q3, results 1-3 hold in the dynamic econ-

omy.
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Corollary 1 shows that the main insights from the linear setting survive in the non-linear economy.

First, without stochastic shocks to noise trader demand, the economy becomes perfectly revealing.

In the context of a dynamic economy, this result means households know innovations to the long-

run component of productivity one period in advance. The expectations held by households then

act as they would in a “news shocks” model.

The second result states that stochastic shocks to noise trader demand increase the con-

ditional variance of ηt+1. As a result, stock prices and all economic aggregates reflect both

information about the future and noise. Moreover, when information aggregation is less than

perfect, households put weight on their private signal and thus hold heterogeneous expecta-

tions in equilibrium. Heterogeneity in equilibrium expectations in turn generates cross-sectional

variation in consumption, investment, and labor supply decisions.

Third, noise trading will only have an impact on expectations and information aggregation

insofar as it adds noise to the price process. Noise trades based on observable variables will not

affect equilibrium expectations.

Since the part of noise trading conditioning only on observable variables, T k, does not affect

equilibrium expectations, we set it to zero for the remainder of the paper.

3.3.2 Step 3: Verification of guess

Whereas the previous two steps give us a framework for thinking about the equilibrium, we need

to make sure the guess for the equilibrium structure is indeed correct. We proceed in three steps

that demonstrate the consistency of each of the three statements in Lemma 2.

The second and third statements in Lemma 1 posit that a household’s consumption, labor

supply, and investment decisions can only depend on the variables included in the vector Sit =

{S̄t, Eit}, whereas S̄t determines all aggregate variables and prices. Assuming these statements

are correct, we can write any individual choice as a function xi(Sit) and all aggregate variables

and prices as functions as X
(
S̄t
)
. Plugging this structure into the model’s equilibrium conditions

and re-arranging terms results in a form

gl(Sit) = Eit [gr(Sit, Sit+1)] , (55)

where gl(·) and gr(·) are analytic, continuously differentiable functions, and we have used the

fact that S̄t ⊂ Sit. (See Appendix B.4 for the full list of equilibrium conditions and analytical

details.)

Because the functions xi(Sit) are the solution to the system of equations (55), the key to

showing the first part of Lemma 1 is to show we can rewrite Eit [gr(Sit, Sit+1)] as a function of

Sit. If all equilibrium conditions depend only on Sit, the same must be true for the the optimal
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behavior that is derived from these conditions. The proof follows from Taylor’s theorem and the

properties of the multivariate normal distribution.

We begin by rewriting gr as a function of all elements of Sit

gr
[
Sit, Kt+1, Tt+1, ωt, ηt+1, ϕt+1, q̂t+1, Ēt+1, Eit+1

]
= ĝr

[
Sit, Kt+1, τ t+1, ωt, ηt+1, ϕt+1, q̂t+1, Ēt+1, Eit+1

]
=
∑
j

cj(Sit)

j!
(Kt+1 −K0)j1τ j2t+1ω

j3
t η

j4
t+1ϕ

j5
t+1q̂

j6
t+1Ē

j7
t+1E

j8
it+1

The first equality follows from assumptions Q1 and Q3, which implies that we can rewrite Tt+1 as

a function of state variables known in period t and the noise shock τ t+1. For the second equality,

we replace gr with its infinite-order Taylor series expansion, where K0 is the level of capital at

the deterministic steady state, cj(Sit) denotes the (state-t dependent) coefficients of the Taylor

series, and j = (j1, j2, j3, j4, j5, j6, j7, j8) is a multi-index for the expansion. (Note that to save

space, we have absorbed all the terms depending on Sit into the coefficients of the expansion.)

Now we take the expectation of gr conditional on St, sit, andQt. The terms depending onKt+1

and ωt are known at time t and can thus be taken outside the expectations operator. Moreover, we

get a series of terms depending on the conditional expectation of ϕt+1. Since ϕt+1 is unpredictable

for an investor at time t and all shocks are uncorrelated with each other, the first-order term

is 0, and all the higher-order terms are known moments of the unconditional distribution of ϕ

Eit[ϕ
j
t+1] = E[ϕjt+1] (recall that all higher-order moments of the normal distribution are fully

determined by its mean and variance). The same is true for the terms depending on Eit[q̂
j
t+1] =

E[q̂jt+1], Eit[Ē
j
t+1] = E[Ēj

t+1], and Eit[E
j
it+1] = E[Ej

it+1], because all three arguments are normally

distributed and have an unconditional mean and variance that follows directly from Lemma 2.

The only terms remaining inside the expectations operator are those depending on τ t and ηt+1.

We can thus write

Eit [ĝr[Sit, Sit+1]] =
∞∑
j=0

∞∑
k=0

ĉjk(Sit, Kt+1, ρωt−1 + σηηt)

j!k!
Eit[τ

j
tη
k
t+1]

= gl(Kt, Tt, ωt−1, ηt, ϕt, q̂t, Ēt, Eit),

(56)

where the coefficients ĉjk(Sit, Kt+1, ωt) collect all the terms depending on Kt+1, ωt, and the higher

unconditional moments of ηt+1, Ēt+1, and Eit+1.

To deal with the remaining conditional term, Eit[τ
j
tη
k
t+1], we use the fact that the two random

variables are independent. As a result, their monomials τ jt and ηkt+1 do not co-vary and we can

calculate them independently.

Eit[τ
j
tη
k
t+1] = Covit

[
τ jt , η

k
t+1

]
+ Eit[τ

j
t ]Eit

[
ηkt+1

]
= Eit[τ

j
t ]Eit

[
ηkt+1

]
.
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Now note from Lemma 2 that ηt+1 is conditionally normal distributed, where its mean and

variance are given by (51) and (52), respectively. All higher moments, that is, the conditional

expectation of monomials ηjt+1 for j > 2 are fully determined by the conditional mean and

variance. Since the conditional variance does not vary over time, we merely have to keep track

of the conditional mean to recover the entire conditional distribution.

Similarly, the conditional distribution of τ t is normal, as we show in Appendix B.5. The

conditional variance is again constant and the conditional mean of τ t is simply a function of q̂

and the conditional mean of ηt+1. From (27), we can write

Eit[τ t] = (1− α2)q̂t − α1Eit[ηt+1]. (57)

Finally, in deriving the set of individual state variables, we notice that contingent claims trading

eliminates any meaningful distribution of capital across time, such that any heterogeneity in

equilibrium behavior arises exclusively due to cross-sectional variation in Eit. It follows that we

can write Eit [gr(Sit, Sit+1)] as a function of Sit, concluding the proof of the first statement in

Lemma 1.

The second part of Lemma 1 states that aggregate quantities and prices depend on Sit, Ēt,

and q̂. To see the meaning of this statement, consider an aggregate variable of the form

X(S̄t) =

∫
xi(Sit)di, (58)

where X can represent aggregate capital (43), labor, or consumption (44). Again, without loss

of generality we rewrite the right-hand side of the equation as an infinite-order Taylor series

expansion in the elements of Sit,∫
xi(Sit)di =

∫ ∑
j

cj
j!

(Kt −K0)j1ωj2t−1η
j3
t ϕ

j4
t q̂

j5
t Ē

j6
t E

j7
it di. (59)

Only the last term differs across households and thus all other variables can be taken outside the

integral. The integral over Eit can be rewritten as

∫
Ej
it =

∫
(Eit − Ēt + Ēt)

jdi =

j∑
k=0

(
j

k

)
Ēj−k
t

∫
(Eit − Ēt)kdi. (60)

Now we can use the fact that Eit − Ēt = α1νi, such that we can replace the last remaining term

in the integral with the unconditional moments of νi, which are known. Therefore, all aggregate

variables and prices are a function of q̂t and Ēt, but not a function of Eit, such that equation

(58) holds.
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The first part of Lemma 1 states that Qt depends only on St and q̂ but not on the average

expectation, Ēt. We can see from (27) and (23) that Qt is fully determined by It/Kt. Because Kt

is itself a commonly known state variable (a part of St), it follows that the equilibrium stock price

function will depend on the same arguments as aggregate investment. From assumption Q2, we

know that the state-dependent distribution of noise trader demand is such that It = I(St, q̂t),

and therefore Qt = Q(St, q̂t), concluding the proof of the Lemma.

T τ has a state-dependent distribution such that the noise trading shock τ adds linearly to the

average expectation. The only remaining question is then what this state-dependent distribution

of noise trader demand must look like and how we can compute it. The resource constraint in

equation (46) links aggregate variables and noise trading with investment.

To compute the state-dependent distribution explicitly, we rewrite (46) as

Î(St, Ēt, q̂t) + T̂ τ (St, q̂t, Ēt, τ t) = I(St, q̂t), (61)

where T̂ τ ≡ T τ/Qt. We can then replace the expressions on both sides of the equation with their

Taylor series and iteratively match the coefficients of T̂ τ such that the equation holds.

T̂ τ0 + T̂ τS Ŝt + T̂ τĒĒ + T̂ τq̂ q̂+ T̂ ττ τ t + . . .+ Î0 + ÎSŜt + ÎĒĒ + Îq̂ q̂+ . . . = I0 + ISŜt + Iq̂ q̂+ . . . , (62)

where we denote Fx as the derivative of the function F with respect to x. In particular, FS

is the vector of derivatives of the F with respect to each element of the vector of commonly

known state variables St and Ŝt refers to deviations of the elements of St from their deterministic

steady-state values. To a first order, the implied distribution of T̂ τt only needs to add noise to

average expectation,

T̂ τ0 = 0 T̂ τS = 0 T̂ τĒ = 0 T̂ τq̂ = 0 T̂ ττ = ÎĒ
Vt[ηt+1]

σ2
η

, (63)

which then determines aggregate investment as a function of known state variables and q̂, such

that

I0 = Îτ0 IS = T̂ τS Iq̂ = Îq̂ + T̂ τq̂ + ÎĒ + T̂ ττ . (64)

The matching of higher-order coefficients is analogous.

Using these insights, we solve the model using standard perturbation techniques. Perturbation

methods approximate equilibrium policy functions by their Taylor series around the deterministic

steady-state. To arrive at the coefficients of the Taylor series, we bring all equilibrium conditions

into the appropriate form shown in equation (55). Successively differentiating the equation,

evaluating at the steady-state, and solving the resulting system of equations for the coefficients

in the Taylor series delivers the approximate solutions for the equilibrium policy functions and
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prices.

4 Qualitative Results

Upshot from the analysis above is that given Assumptions Q1-Q3, we can separate the solution

of the dynamic model from its information microstructure. Doing so allows us to characterize

the the dynamic effects of dispersed information with some generality.

Contrary to a representative agent setting, the model with dispersed information leads to a

cross-sectional distribution of choices. The guess for equilibrium functions holds that individual

expectations determine individual choices. Hence, a key statistic for the cross-sectional dispersion

of choices is the cross-sectional variance of posterior expectations

Vt

[
Eit
[
ηt+1

]
−
∫
Eit
[
ηt+1

]
di

]
= α2

1σ
2
ν . (65)

Recall from Lemma 1 that households’ policy functions can be characterized as a function

of the state vector {St, q̂t, Ēt, Eit}. Without loss of generality, we can use equation (45) and the

fact that Eit[ηt+1] = α0 + α1sit + α2q̂t to re-write this state vector as {St, τ , Ēt, νit}. Without

using any further information about the information microstructure, we can then use a standard

perturbation approach to solve for all endogenous variables of the model as a function of these

state variables, the coefficients α1 and α2, and the conditional variance Vt
[
ηt+1

]
. Equation (66)

shows the first-order terms of the equilibrium aggregate consumption function,

Ct = c0 + c′SŜt +
1

2
cσ2︸ ︷︷ ︸

standard RBC

+ cττ +
1

2
cNTσ2 σ2

τ︸ ︷︷ ︸
direct effect of noise trading

+ cĒηt+1 +
1

2
cnsσ2︸ ︷︷ ︸

News Shock

(66)

+cĒ

(
− (1− (α1 + α2)) ηt+1 + α2

Vt
[
ηt+1

]
σ2
η

τ

)
+

1

2
cdispσ2 α2

1σ
2
ν︸ ︷︷ ︸

Dispersed Information

+ h.o.t.,

where the coefficients denoted c on the right-hand side are numbers that are determined by the

usual “macroeconomic” parameters of the model but independent of the parameters relating to

information and noise. In other words, any representative agent DSGE model implies such a series

of c’s, where we denote cx as the derivative of the equilibrium aggregate consumption function

with respect to x. In particular, cS is the vector of derivatives of the aggregate production

function with respect to each element of the vector of commonly known state variables St, and

Ŝt refers to deviations of the elements of St from their deterministic steady-state values.

The grouping of terms on the right-hand side in (66) isolates the effect of the information

microstructure on aggregate consumption. (The effects on all other aggregate variables have the
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same form, except that the coefficients c will be different when we consider output, investment,

or aggregate labor supply.) The first three terms on the right-hand side give the solution for

aggregate consumption that would obtain in a standard RBC model containing no information

about the future, σν = ∞, and no noise trading, στ = 0. c0 + c′SŜt is the first-order Taylor

series in deviations of the commonly known state variables from their deterministic steady-state

values, and 1
2
cσ2 is the effect of risk on the level of consumption in the standard RBC model.

The second set of terms gives the direct effect of noise trading. Even when households learn

nothing about the future (σν = ∞), τ has a direct effect on consumption (and all business-

cycle moments) as asset purchases and sales of stocks effectively add and subtract resources

from the economy. The second term in the grouping shows that when noise traders are active,

they effectively increase the risk faced by households and thus add to the level effect of risk on

consumption.

The third grouping shows the effect of information provision in a model in which σν = 0. If

households are perfectly informed about ηt+1 they fully react to this information in t, altering

the dynamic response of economic aggregates to the long-run productivity shock. In addition,

learning about the future reduces the uncertainty households face, and thus may mitigate the

effect of risk on the level of economic aggregates (the second term in the grouping).

The fourth grouping gives the dynamic and level effects of dispersed information. When

information is dispersed and σν > 0, households need to rely on q̂t when learning about ηt+1.

When στ > 0, this inference is not perfect, such that (α1 + α2) < 1. Dispersion in households’

information then dampens the reaction of economic aggregates to ηt+1 (see the first term in the

round brackets). Instead, when α2 > 0, households also react to τ when making their equilibrium

consumption, labor-supply, and investment decisions (the second term in the round brackets).

In addition, when α1 > 0, households rely on their (now noisy) private signal when making

decisions, such that equilibrium consumption will differ across households. Because households’

policy functions are non-linear, this dispersion in equilibrium behavior has itself a level-effect

on all economic aggregates. In particular, if individual households’ consumption is concave in

Eit
[
ηt+1

]
, the dispersion in household expectations lowers the level of aggregate consumption.

5 Quantitative Analysis

5.1 Calibration and Estimation

As is standard practice in the long-run risk literature, we calibrate our model to a monthly

frequency and focus on time-aggregated statistics matching the behavior of annualized moments

for the US economy 1929-2008 (Bansal and Yaron, 2004).

Our model depends on 15 parameters, 13 of which are identical to the parameters in the
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original real business cycle model by Croce (2013). To focus on the incremental effect of dispersed

information within this framework, we set all of these 13 parameters to equal the ones in Croce’s

benchmark calibration.

Table 1: Calibration

Parameter Value Parameter Value
α 0.34 12 δ 0.060
β12 0.95 γ 10.
12 µ 0.018 Ψ 2.0
ρ12 0.80 o 0.20
ξ 7.0 φlev 2.0√

12σa 0.033
√

12ση 0.0036√
12στ 0.0051

Notes : Values of the 13 technology and preference parameters used in all following calibrations
and estimations. α: capital share; δk: capital depreciation rate; ξ: elasticity of the adjustment
cost function; µa: average growth of productivity; ρ: auto-correlation of long-run component
in productivity growth; ση: standard deviation of shock to the long-run component in produc-
tivity growth; σϕ: standard deviation of short-run component in productivity; ξl: consumption
bundle elasticity; o consumption share in the consumption bundle; γ: relative risk aversion; ψ:
intertemporal elasticity of substitution; δ: subjective discount factor and φlev: leverage of market
return.

Table 1 lists the parameter values. On the technology side, α is set to match the capital

income share and δk is set to match the annualized capital depreciation rate in the US economy

(6%). The elasticity of the adjustment cost function, ξ, is set to 7, such that investment can be

sufficiently volatile. In addition, Croce sets µa = 0.0015 to yield an annual average growth of

1.8%. The long-run component in productivity, ωt, is calibrated so as to be relatively small but

persistent, where ρ is set to yield a conservative and empirically plausible annualized persistence

of 0.80. To keep the long-run component as small as in the data, he imposes ση = 10% σϕ, where

σϕ is set as 1% to obtain an annual volatility of output growth of 3.34% under the benchmark

calibration.

On the preference side, the consumption bundle elasticity is ξl = 1 for simplicity. The

parameter o is calibrated so that the labor share is 18% at the steady state, as in Tallarini

(2000). The relative risk aversion and the intertemporal elasticity of substitution are set to

values of 10 and 2, respectively. The annualized subjective discount factor δ is fixed at 0.95.

We also follow Croce (2013) in calculating excess stock returns as the excess returns on a

levered claim to capital

RLEV
ex,t =

(
Rt −Rf

t−1

)φlev
. (67)

This practice, again, is standard in the finance literature because, in the data, most claims

to equity are levered, where we set φlev = 2, consistent with the amount of financial leverage
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measured by Rauh and Sufi (2012).

Finally, the parameters v1 and v2 in the adjustment cost function are set such that, at the

deterministic steady-state, Gt = 0 and ∂Gt/∂ (It/Kt) = 0. As a result, the parameters have to

be set at v0 =
(

1
1−ξ

)
(δ + eµ − 1) and v1 = (δ + eµ − 1)

1
ξ .

Before the introduction of dispersed information, our calibration thus exactly coincides with

the one in Croce (2013).10 The two remaining parameters, σν and στ determine the size of

noise trader demand shocks, the dispersion in private signals, and therefore the equilibrium

expectations of all households. We estimate both parameters to minimize the loss function

(m− θ)W (m− θ) , (68)

where m is a vector of moments generated by the model, θ is the vector of data targets for these

moments, and W is a diagonal matrix where each entry is 1
θ2
j
, and θj is the j’th entry in θ. We

thus minimize a weighted sum of squared deviations from the target vector.

We first present a set of results for which we calibrate noise trader demand shocks, στ , to a

reasonable ballpark and estimate only σν . In these specifications, we choose στ such that the

unconditional variance of T τ equals one half of the standard deviation of the growth rate of asset

purchases by the Federal Reserve between 1948 and 2008 (0.43% of GDP). In a second set of

results, we freely estimate both στ and σν to minimize the deviation from the target moments

given in equation (68).

5.2 Results

Table 2 shows our basic results for a range of parameters σν and στ . Throughout, lowercase

variables denote logs, σ (·) and corr (·) denote standard deviations and correlations, respectively,

and d stands for the first difference in the time series (e.g., σ(dy) stands for the standard deviation

of output growth). Column 2 lists the data targets and the remaining columns list the moments

generated by the model. All data targets except the one for σxs (E [dy]) are generated using

annual data ranging from 1929-2008 following the procedure in Croce (2013) (see appendix C.1 for

details). σxs (E [dy]) is our measure of the cross-sectional dispersion of equilibrium expectations.

We calculate it as the time-series average of the cross-sectional standard deviation in annualized

forecasts of GDP growth in Survey of Economic Forecasters for the period 1969-2008.

The two remaining moments in the second panel have no direct counterpart in the data.

σ (kit/Kt) is the time-series average of the cross-sectional standard deviation in equity portfolio

holdings, which is a simple measure of the dispersion in equilibrium behavior induced by dis-

10The only way in which we deviate from his framework is that we do not introduce exogenous cash-flow shocks
to levered returns (67). We omit this detail for clarity, because our objective here is not to argue for or against
the ability of the long-run risk model to match the volatility of stock returns in the data.
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Table 2: Common vs. Dispersed Information

Data ’No ’News ’Grossman ’Dispersed
Info’ Shock’ Eq.’ Info’

σ(T τ )/Y SS(%) 0. 0. 0. 0.43
σν/ση ∞ 0. 0. 3.2

Vt[η]/ση
2 1. 0. 0. 0.81

σ(ki/(KSS))(%) 0. 0. 0. 0.04
σxs(E[dy])(%) 0.28 0. 0. 0. 0.05
σ(dy)(%) 3.56 3.58 3.57 3.57 3.53
σ(dc)/σ(dy) 0.71 0.61 0.61 0.61 0.61
σ(di)/σ(dy) 4.49 5.27 5.25 5.25 4.97
E[I/Y](%) 20 30.54 30.54 30.54 30.55
cor(dc, di) 0.39 0.29 0.3 0.3 0.41

cor(dc, rex
lev
)

0.25 0.32 0.32 0.32 0.45
E[rex

lev](%) 4.71 4.54 4.49 4.49 4.53
σ[rex

lev](%) 20.89 4.97 4.94 4.94 4.55
σ(q) 0.29 0.26 0.25 0.25 0.26

E[rf](%) 0.65 0.89 0.91 0.91 0.89
σ(rf)(%) 1.86 1.07 1.07 1.07 1.07

Notes : Data are annual (1929-2008). Lowercase letters denote log-units. E[.], σ(.), and corr(., .)
denote the mean, volatility, and correlation respectively. σxs(E[dy]) is the dispersion in GDP
forecasts across forecasters, calculated as the time-series average of the cross-sectional standard
deviation of one-year ahead forecasts.

persion in equilibrium expectations. In the data, differences in behavior due to differences in

expectations are of course conflated with large differences in wealth across households, such that

we have no obvious moment in the data to which we can compare our model’s prediction. The

same applies to our measure of information revelation, Vt [η] /σ2
η, calculated as the ratio of the

posterior variance of η, divided by its unconditional variance. When this ratio is 1, no informa-

tion is revealed in equilibrium. When it is zero, households can perfectly infer ηt+1 one period

in advance.

Column 3 shows Croce’s original calibration in which households receive no information about

the future productivity shock (σν =∞). In this limit, our model coincides with a standard

DSGE model in which all shocks are unknown ex-ante. Column 4 shows the opposite extreme in

which households receive perfectly accurate private signals about the future productivity shock

(σν = 0). In both specifications all households have identical information sets (no information in

the former and full information in the latter). The comparison between these two specifications

thus shows the effect of common information about η on the moments generated by the model

(the third set of terms in (66)). Comparing the coefficients across rows shows that the provision of

common information has only a small effect on conventional business cycle moments such as σ (dy)

and σ (dc). However, it has a larger effect on all moments that relate to the consumption/savings
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decision. For example, the equity premium falls from 4.54% in the case without information to

4.49% in the case of perfect information. Similarly, the risk-free interest rate rises from 0.89% to

0.91% between these two scenarios. These effects of information provision make intuitive sense.

In our model, households worry about shocks to long-run productivity. When these shocks are

revealed one month in advance, the unconditional variance of stock returns fall from 4.97% to

4.94%. In addition, households require a lower risk premium for holding stocks and have less

incentive to engage in precautionary savings behavior. As a result, the equity premium falls and

the risk-free rate rises.

In column 5, we show results for the case in which σν < ∞, while στ = 0. In this case,

the stock price becomes perfectly revealing of innovations to productivity ηt+1, as predicted by

Corollary 1. Although households receive noisy private signals ex-ante, their posterior expecta-

tion is perfectly accurate, such that the dispersion of information has no effect on households’

equilibrium behavior. The moments given in this column thus are exactly the same as those in

column 3.

Although the overall effect of information provision may appear small in this calibration, it

is important to keep in mind that we are evaluating the effects of learning about a small shock

to the long-run component of productivity. We show below that many moments of the model

are more sensitive to the provision of information about the (much larger) short-run shock to

productivity. In addition, all our calculations consider learning about shocks one month, rather

than a year or a decade, in advance. While this experiment is a natural starting point because

long-run risk models are typically calibrated to monthly data, the model should be interesting

at any other frequency as well. In a calibration to annual data, for example, households would

learn a year in advance about a larger (annual-sized) shock, such that learning presumably would

have a much larger effect on all aspects of the model. Although an in-depth analysis of the effect

of information provision at different frequencies is beyond the scope of the present paper, we

believe it is an important avenue for future research.

5.3 Reasonably Sized Noise Trader Shocks

In column 6, we set the annualized standard deviation of noise trader demand shocks to 0.43%

of GDP and estimate σν to match the cross-sectional standard deviation of expectations of GDP

growth from the Survey of Economic Forecasters. The estimation returns σν = 3.2 · ση, in

which case the model is able to generate a cross-sectional dispersion in equilibrium expectations

of 0.05% (compared to 0.28% in the data). Similarly, the cross-sectional dispersion of stock

holdings is small (0.04%).

Figure 1 plots the comparative statics over σν for the three variables in the second panel

of Table 2. The comparative static for the objective of our estimation, σxs(E[dy]), is given in

the middle of the figure. It shows that no heterogeneity occurs across households in equilibrium
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expectations when households receive a perfectly revealing private signal (σν/ση = 0). For

moderate amounts of noise in the private signal, this heterogeneity rapidly increases, peaks at

around (σν/ση = 5), and then monotonically decreases.

To gain intuition for this result, we can write using equations (65) and (53)

Vt [α1νit] =

(
Vt[ηt+1]/σ2

η

σν/ση

)2

σ2
η. (69)

To the left of the figure, Vt[ηt+1]/σ2
η = 0 and the dispersion of equilibrium expectations is zero.

As we move to the right of the figure, the precision of the private signal decreases, the mar-

ket’s capacity to aggregate information deteriorates, and Vt[ηt+1]/σ2
η rises, such that households

rely more on their private signal when forming expectations. Toward the middle of the graph,

Vt[ηt+1]/σ2
η begins to converge to one and the increase in the denominator, σν/ση, begins to dom-

inate. As the information content of stock prices and the precision of the private signal continue

to deteriorate, households rely more and more on their priors and reduce weight on their private

signal. Heterogeneity in equilibrium expectations thus peaks at an intermediate value of σν . For

a given size of the noise trader demand shock, the information microstructure thus requires that

heterogeneity in equilibrium behavior is bounded from above.

The conclusion from our estimation in column 6 of Table 2 is that for a reasonable size of

noise trader demand shocks, this upper bound is about an order of magnitude smaller than the

dispersion of equilibrium expectations we observe in the data.

Another interesting result in column 6 of Table 2 is that some moments, such as the equity

premium and the risk-free rate, fall into the range established by the “no information” case in

column 3 and the “full information” case in column 4. However, most other moments, such as

the standard deviation of output (3.53% vs. 3.58% and 3.57%) and the correlation of investment

growth with consumption growth (0.41 vs. 0.29 and 0.30) fall well outside of this range.

To further investigate this finding, Figure 2 plots the comparative statics of selected moments

in column 6 of Table 2 over σν . In each panel of the figure, the horizontal dashed line represents

the moment generated in the “no information” case (column 3) and the horizontal dotted line

represents the same moment in the “full information” case (column 4).

The figure shows that all moments coincide with the moment from the “full information”

case when the private signal is fully precise, and appear to converge to the moment from the “no

information” case as σν becomes large. However, for an intermediate range around σν/ση = 3.2,

the standard deviation of output growth, the standard deviation of stock returns, and the ratios

of the standard deviations of output and investment growth to output growth are well below

that range. Similarly, the correlation of consumption growth and investment growth, as well as

the correlation of consumption growth with stock returns, are well above that range.

Comparing these results with Figure 1 suggests the same forces that drive heterogeneity in
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households’ equilibrium expectations also affect the quantitative results for these moments, be-

cause the same value of σν that maximizes dispersion in equilibrium expectations also maximizes

the effect of a given shock to noise trader demand on households’ expectations. To see this,

note from (51) that the coefficient on τ t in households’ equilibrium expectation is Vt[ηt+1]α1/σ
2
τ .

Substituting (53) yields Vt[ηt+1]2/(σ2
νσ

2
τ ), which, for a given στ , has its maximum at the same

σν as (69). The patterns in Figure 1 can thus be explained by the effect of noise trader demand

shocks on the equilibrium expectations held by households (the fourth set of terms in (66)).

Figure 3 shows the effect of a two-standard-deviation (positive) shock to the long-run compo-

nent of productivity in month 10, where again the dashed line corresponds to the no-information

case, the dotted line to the full-information case, and the solid line to the specification in column

6 of Table 2. The graph shows that the no-information and the full-information case look similar

in the sense that they show large effects on output growth in the period in which the shock

is revealed. By contrast, the solid line shows a partial adjustment in each period, and thus a

smoother adjustment to the shock. The reason is that households that see a rise in the stock

price are unsure whether this rise is a result of a noise trader demand shock or an productivity

shock. They thus partially adjust to potentially good news in month 9 and adjust fully only

when the shock is realized in period 10.

The two panels on the left of Figure 4 show the effect of dispersion in equilibrium behavior

on the level of consumption and labor supply that corresponds to the fourth grouping of terms

on the right-hand side of (66). It shows that even moderate dispersion in equilibrium expec-

tations may have a surprisingly large effect on the level of both aggregate variables. Because

the consumption function is concave in Eit+1[ηt+1], the dispersion in consumption choices lowers

aggregate consumption by up to 0.015%. Similarly, dispersion in labor-supply decisions may

lower aggregate labor supply by up to 0.03% (note that households’ labor-supply decisions are

convex in Eit+1[ηt+1]).

The two panels to the right of Figure 4 compare this level effect of dispersion with the level

effect of risk that is present even if the model has a representative agent (the first grouping of

terms in (66)). It shows that in both cases, the level effect of dispersion is up to an order of

magnitude larger than the level effect of risk in a representative agent framework.

In column 4 of Table 3, we choose σν to minimize (68) for the full vector of data moments

in column 2. Since the “no-information” model in column 3 already gives a reasonably good

fit to the data, it is not surprising that we obtain a relatively large estimate σν/ση = 6.4,

such that households learn little about future productivity in equilibrium (Vt[η]/σ2
η = 0.97). As

a result, the macroeconomic and financial moments remain close to those in column 2. The

only significant difference between the two specifications is that in column 4, the cross-sectional

variance of equilibrium expectations is non-degenerate with σxs(E[dy]) = 0.04%.

30



5.4 Large Noise Trader Demand Shocks

In column 5, we repeat the same exercise, but now simultaneously estimate the standard deviation

of noise trader demand shocks and the precision of the private signal. Minimization of the

distance to target moments in equation (68) returns a standard deviation of noise trader demand

shocks of 4.3% of GDP and σν/ση = 3.2. In equilibrium households again learn little about

the future productivity shock (Vt[η]/σ2
η = 95), but the very large noise trader demand shocks

significantly improve the overall fit of the model. In particular, large noise trader demand shocks

increase the equity premium to 4.66% (relative to 4.54% in column 2), while lowering the risk-free

rate to 0.82%.

In column 6, we ask how much heterogeneity in equilibrium behavior the model can produce,

by choosing both the size of the noise trader demand shocks and the precision of the private signal

to match the cross-sectional standard deviation of equilibrium expectations. This estimation

again returns στ/ση = 4.3 (the largest noise trader demand shocks on our grid) and σν/ση = 1.6.

For this extreme set of parameters, the model generates a cross-sectional standard deviation of

expected GDP growth of 0.11%, which is about factor four larger than the dispersion we were

able to generate in Table 2. Nevertheless, the estimate is still less then half the size of the

dispersion observed in the data (0.28%).

5.5 Learning about the Short-Run Shock

Figure 5 shows the same comparative static as Figure 2 for the case in which households receive

private signals about the short-run shock to productivity, ϕ, rather than the long-run shock, η.

Both models coincide when households have no information about the future (the red dashed

line). In all panels the moments estimated for the dispersed information case are now in between

the bounds set by the “no information” and the “full information” specifications. In addition,

the overall effect of information provision on the standard deviation of output and the other four

moments shown on the top of the figure is now smaller than in Figure 2. However, learning about

the short-run shock has a much larger effect on the equity premium which now ranges between

4.53 in the “no information” case and 3.65 in the “full information” case. Similarly, the risk-free

rate now ranges between 0.89 and 1.32, showing a much larger effect than when households learn

about the long-run component of productivity.

The conclusion from this figure is that the effects of dispersed information on the moments

generated by the model vary depending on what kind of information households receive. In

our example, learning about a persistent shock has relatively larger effects on the dynamics

of household behavior, while learning about an i.i.d. shock has relatively larger effects on the

risk-free rate and the equity premium. Since modern DSGE models often feature a range of

different shocks that affect the economy at different frequencies, a more general analysis of these
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Table 3: Estimates of σν and στ

Data ’No ’Dispersed ’Dispersed ’Dispersed
Info’ Info’ Info’ Info’

Pick σν to match all all σxs(E[dy])
σ(T τ )/Y SS(%) 0. 0.43 4.3 4.3

σν/ση ∞ 6.4 3.2 1.6
Vt[η]/ση

2 1. 0.97 0.95 0.83
σ(ki/(KSS))(%) 0. 0.03 0.05 0.08
σxs(E[dy])(%) 0.28 0. 0.04 0.07 0.11
σ(dy)(%) 3.56 3.58 3.57 3.56 3.53
σ(dc)/σ(dy) 0.71 0.61 0.61 0.61 0.61
σ(di)/σ(dy) 4.49 5.27 5.2 5.16 4.99
E[I/Y](%) 20 30.54 30.54 30.56 30.59
cor(dc, di) 0.39 0.29 0.32 0.33 0.41

cor(dc, rex
lev
)

0.25 0.32 0.35 0.36 0.45
E[rex

lev](%) 4.71 4.54 4.54 4.66 4.68
σ[rex

lev](%) 20.89 4.97 4.86 4.82 4.57
σ(q) 0.29 0.26 0.26 0.26 0.26

E[rf](%) 0.65 0.89 0.88 0.82 0.81
σ(rf)(%) 1.86 1.07 1.07 1.07 1.07

Notes : Data are annual (1929-2008). Lowercase letters denote log-units. E[.], σ(.), and corr(., .)
denote the mean, volatility, and correlation, respectively. σxs(E[dy]) is the dispersion in GDP
forecasts across forecasters, calculated as the time-series average of the cross-sectional standard
deviation of one-year-ahead forecasts (1969-2008).
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relationships is beyond the scope of the current paper. However, we hope that our work will

facilitate future research in this area.

6 Conclusion

In this paper, we introduced a solution method that allows us to solve the standard noisy ratio-

nal expectations model within the framework of a contemporary non-linear DSGE model. We

showed that under mild assumptions on the distribution of noise trader demand shocks, the main

qualitative results of the canonical noisy rational expectations model carry over to the non-linear

framework. One of these findings is that any component of noise trader demand that is contin-

gent on variables that are observable by households does not affect equilibrium expectations as

long as the equilibrium price function remains monotonic in the productivity shock. An immedi-

ate corollary to this result is that any monetary or fiscal policy that conditions only on publicly

observable variables does not affect the equilibrium informativeness of stock prices.

Our quantitative exercise yields four main insights. The first main insight is that households’

ability to learn about the future affects consumption-savings decisions. A major shortcoming of

the present framework is that it does not lend itself to a welfare analysis of these quantitative

effects, mainly because noise trading implies large wealth transfers between maximizing house-

holds and non-maximizing noise traders, which are hard to judge from a normative perspective.

In a related paper (Hassan and Mertens, 2014), we propose to solve this conceptual problem by

introducing a single class of near-rational households.

The second main insight is that the differences in opinion about future GDP growth reflected

in the Survey of Economic Forecasters are hard to rationalize within a noisy rational expecta-

tions model. For a reasonable size of noise trader demand shocks, the dispersion of equilibrium

expectations in the model remains an order of magnitude smaller than that in the data.

Third, even when households have moderate differences of opinion in equilibrium, their ex-

pectations about the future, and thus their behavior, may load on non-fundamental noise trader

demand shocks. As a result, the effect of the demand shocks on household expectations may dra-

matically change the moments generated by the model. Although these changes did not improve

the overall fit of the model to the data in the example we study in this paper, they may do so in

a range of other applications. The main point is that the noisy rational expectations framework

predicts that households rationally respond to non-fundamental noise in equilibrium. Our quan-

titative exercise shows this response is large enough to affect the quantitative predictions of the

DSGE model.

Fourth, when noise trader demand shocks are (unreasonably) large, these demand shocks no

longer have a large effect on household expectations but nevertheless directly affect the quanti-

tative predictions of the model.
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Figure 1: Cross-Sectional Variation in Equilibrium Behavior
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Figure 2: Comparative Statics for Selected Moments in Column 6 of Table 2
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Month 10. Calculations based on specification in column 6 of Table 2.
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Figure 4: The effect of dispersion on the level of aggregate consumption and labor supply.
Calculations based on specification in column 6 of Table 2.
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Figure 5: Comparative statics identical to those in Figure 2 for the case in which households
receive private signals about the short run shock to productivity (φ) rather than η.
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Appendix

A Appendix to Section 2

A.1 Deriving (13) and (14)

Using (2) and (9), the vector (η, si, q̂) has unconditional expectation (η̄, η̄, α1

1−α2
η̄) and the variance

covariance matrix

Σ =

 σ2
η σ2

η
α1

1−α2
σ2
η

σ2
η σ2

η + σ2
ν

α1

1−α2
σ2
η

α1

1−α2
σ2
η

α1

1−α2
σ2
η ( α1

1−α2
)2σ2

η + (ρV1[η]
1−α2

)2σ2
τ

 . (70)

Thus by the property of the conditional variance of the multi-normal distribution,

V [η|si, q̂] = σ2
η −

(
σ2
η

α1

1−α2
σ2
η

)( σ2
η + σ2

ν
α1

1−α2
σ2
η

α1

1−α2
σ2
η ( α1

1−α2
)2σ2

η + (ρV1[η]
1−α2

)2σ2
τ

)−1(
σ2
η

α1

1−α2
σ2
η

)
. (71)

Simplifying (71) and noting V [η|si, q̂] = V [η|si, Q] gives (13).

Similarly, by the properties of conditional mean of the multi-normal distribution,

E[η|si, q̂] = η̄ +
(
σ2
η

α1

1−α2
σ2
η

)( σ2
η + σ2

ν
α1

1−α2
σ2
η

α1

1−α2
σ2
η ( α1

1−α2
)2σ2

η + (ρV1[η]
1−α2

)2σ2
τ

)−1(
si − η̄

q̂ − α1

1−α2
η̄

)
. (72)

Substituting in q̂ with (12) and V [η|si, q̂] with (71) and noting E[η|si, q̂] = E[η|si, Q] gives (14).

B Appendix to Section 3

B.1 Equation of Motion for Capital

Plugging (38) into (32) and integrating over individuals on both sides with (34) and (35) gives

Qt

(
Kt+1 − T k [St]− T τt+1

)
= Qt−1Rt

(
Kt − T k [St−1]− T τt

)
− Ct + wtNt. (73)

Plugging in (25), (33), (36), and (37) yields (22).

B.2 Deriving the Equilibrium Conditions

Agents maximize utility (29) subject to budget constraint (32). State variables in individual

optimization are the holdings of capital and bonds, i.e. Uit = Uit(kit, bit−1). Thus the first-order
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conditions and envelope conditions are as follows:

First-order condition with respect to consumption

(1− δ)C̃
− 1
ψ

it C̃
1
ξl
it oC

− 1
ξl

it = δEit
[
U1−γ
it+1

] γ− 1
ψ

1−γ Eit[U
−γ
it+1Uikt+1

1

Qt

]. (74)

First-order condition with respect to labor

(1− δ)C̃
− 1
ψ

it C̃
1
ξl
it (1− o)A

1− 1
ξl

t−1 (1− nit)
− 1
ξl = δEit

[
U1−γ
it+1

] γ− 1
ψ

1−γ Eit[U
−γ
it+1Uikt+1

wt
Qt

]. (75)

Envelope condition for capital

Uikt = U
1
ψ

it δEit
[
U1−γ
it+1

] γ− 1
ψ

1−γ Eit[U
−γ
it+1Uikt+1

Qt−1

Qt

Rt]. (76)

Taking the ratio of first-order conditions with respect to labor (75) and to consumption (74)

gives (40), where wt is given by (25).

Plugging the first-order condition with respect to consumption (74) into the right-hand side

of the envelope condition for capital (76) gives

Uikt = U
1
ψ

it (1− δ)C̃
1
ξl
− 1
ψ

it oC
− 1
ξl

it Qt−1Rt. (77)

Iterating (77) to t+ 1, plugging Uikt+1

Qt
into the first-order condition with respect to consumption

(74), and rearranging yield

C̃
− 1
ψ

it C̃
1
ξl
it oC

− 1
ξl

it = δEt
[
U1−γ
it+1

] γ− 1
ψ

1−γ Et[U
−γ
it+1U

1
ψ

it+1C̃
1
ξl
− 1
ψ

it+1 oC
− 1
ξl

it+1Rt+1]. (78)

Defining Mit+1 = δ
(
Cit+1

Cit

)− 1
ξl

(
C̃it+1

C̃it

) 1
ξl
− 1

Ψ

(
Uit+1

Et[U1−γ
it+1]

1
1−γ

) 1
Ψ
−γ

in (78) gives (41) and (42).

B.3 Programming Guide

B.3.1 Normalizing transformation

Define normalized variables

Ĉt =
Ct
At−1

, K̂t =
Kt

At−1

, ˆ̄Kt =
K̄t

At−1

, V̂t =
Vt

C̃t
, Ît =

It
At−1

,

Ĉit =
Cit
At−1

, k̂it =
kit
At−1

, V̂it =
Vit

C̃t
. (79)
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B.3.2 Functional forms

IAagg (Ît) Normalizing (36) with (79) and plugging in (19) yields

Ît = K̂α
t (e∆atNt)

1−α − Ĉt + ς̂ t, (80)

where applying (79) to (37) and substituting in (33) gives the last term ς̂ t = ςt
At−1

as

ς̂ t = QtT̂t+1e
∆at −

(
α

(
e∆atNt

K̂t

)1−α

+Qt

[
1− δk + (

v1

1− 1
ξ

− v1)(
Ît

K̂t

)1− 1
ξ + v0

])
T̂t. (81)

G (Gt) Normalizing (23) with (79) yields

Gt =
Ît

K̂t

−

 v1

1− 1
ξ

(
Ît

K̂t

)1− 1
ξ

+ v0

 . (82)

Q (Qt): Plugging (84) into (27) and applying (79) yields

Qt = v−1
1

(
Ît

K̂t

) 1
ξ

. (83)

Rn (Rt+1): Taking derivative of (23) with respect to It
Kt

and then applying (79) yields

G′t = 1− v1

(
It
Kt

)− 1
ξ

= 1− v1

(
Ît

K̂t

)− 1
ξ

. (84)

Substituting Yt+1, Gt+1 and G′t+1 with (19), (23), and (84) separately into (33) and applying (79)

yields

Rt+1 =

α
(
e∆at+1Nt+1

K̂t+1

)1−α
+Qt+1

[
1− δk + ( v1

1− 1
ξ

− v1)( Ît+1

K̂t+1
)1− 1

ξ + v0

]
Qt

. (85)

SDFin (Mit+1): With ξl = 1, applying (79) to Cobb-Douglas form C̃i,t

C̃i,t = Co
i,t(At−1(1− ni,t))1−o = Ĉo

itAt−1(1− ni,t)1−o. (86)
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Plugging (86) into Vi,t+1 yields

Vi,t+1 =
Vi,t+1

C̃i,t+1

C̃i,t+1

C̃i,t
C̃i,t = V̂it+1

(
Ĉit+1

Ĉit

)o(
1− ni,t+1

1− ni,t

)1−o

e∆atC̃i,t. (87)

Applying (79) to (42) with ξl = 1 and substituting in (86) and (87) yields

Mit+1 =δ

(
Ĉit+1

Ĉit
e∆at

)−1((
Ĉit+1

Ĉit

)o(
1− ni,t+1

1− ni,t

)1−o

e∆at

)1− 1
Ψ


(
V̂it+1

(
Ĉit+1

Ĉit

)o (
1−ni,t+1

1−ni,t

)1−o
e∆at

) 1
Ψ
−γ

Eit[Φ1]
1
Ψ

−γ
1−γ

 , (88)

where Φ1 =
(
Vi,t+1

C̃i,t

)1−γ
=

(
V̂it+1

(
Ĉit+1

Ĉit

)o (
1−ni,t+1

1−ni,t

)1−o
e∆at

)1−γ

by (87).

B.3.3 Setup

Eqm1: Plugging (25) into (40) with ξl = 1 yields

1− o
o

(
Ĉit

1− ni,t

)
= (1− α)K̂α

t N
−α
t e(1−α)∆at . (89)

Eqm2: This is simply (41).

Eqm3: Dividing both sides of (29) by C̃i,t and applying (79) yields

V̂
1− 1

Ψ
it =(1− δ) + δ

Eit[Φ2]
1− 1

Ψ
1−γ

(
e∆at

)1− 1
Ψ(

Ĉo
it(1− ni,t)1−o

)1− 1
Ψ

, (90)

where we write U = V and Φ2 =
(
V̂it+1Ĉ

o
it+1 (1− ni,t+1)1−o

)1−γ
.

EqmKAaggn (Market clearing of capital): Applying (79) to (43) yields

ˆ̄Kt+1 =

∫
k̂it+1di. (91)

EqnCAagg (Aggregation of consumption): Applying (79) to the definition of Ct yields∫
Ĉitdi = Ĉt. (92)
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EqnLagg (Market clearing of labor): This is simply (35).

EqmKAin ((KAi)t+1): Plugging (19), (25), (33), and (38) into (32) and applying (79) yields

Qtk̂it+1e
∆at =

(
α

(
e∆atNt

K̂t

)1−α

+Qt

[
1− δK + (

v1

1− 1
ξ

− v1)(
Ît

K̂t

)1− 1
ξ + v0

])
(K̂t − T̂t)

− Ĉit + (1− α)K̂α
t N

−α
t e(1−α)∆atnit. (93)

B.4 Structure of Equilibrium Conditions

Rearranging (40) yields

1− o
o

A
1− 1

ξl
t−1 (1− nit)

− 1
ξl

C
− 1
ξl

it

− wt = 0. (94)

Rearranging (41) yields

QtC
− 1
ξl

it C̃
1
ξl
− 1

Ψ

it Eit

[
U1−γ
it+1

] 1
Ψ

−γ
1−γ

= Eit

[
δC
− 1
ξl

it+1C̃
1
ξl
− 1

Ψ

it+1 U
1
Ψ−γ
it+1 (α

Yt+1

Kt+1
+Qt+1(1− δk +G′t+1

It+1

Kt+1
−Gt+1))

]
(95)

Rearranging (32) yields

Qtkit+1 −Qt−1Rtkit − Tit + cit − wtnit = 0 (96)

B.5 Proof of Lemma 2

Given Lemma 1, it follows immediately that

Eit
[
ηt+1

]
= E

[
ηt+1|sit, St

]
= E

[
ηt+1|sit, q̂t

]
, (97)

We can thus guess that the rational expectation of ηt+1 to be the linear function

Eit[ηt+1] = α0 + α1sit + α2q̂t, (98)

where α0, α1, and α2 are the optimal weights on the prior, the private signal and the average

expectation, respectively. Substituting in (45), taking the integral across individuals, and solving

for
∫
Eit
[
ηt+1

]
gives∫

Eit[ηt+1]di =
α0

1− α2

+
α1

1− α2

ηt+1 +
α2

1− α2

Vt [η]

σ2
η

τ t. (99)
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Adding Vt[η]
σ2
η
τ t on both sides of the equation, substituting (45) and simplifying yields

1− α2

α1

q̂t −
α0

α1

= ηt+1 +
1

α1

Vt [η]

σ2
η

τ t. (100)

Thus with the normality of the fundamental shock τ t and the demand statistic q̂t, the vector

(ηt+1, sit, q̂t) has an unconditional expectation of

µt =
(
η̄ η̄ α0

1−α2
+ α1

1−α2
η̄
)

(101)

and an unconditional variance covariance matrix of

Σt =


σ2
η σ2

η
α1σ2

η

1−α2

σ2
η σ2

η + σ2
ν

α1σ2
η

1−α2
α1σ2

η

1−α2

α1σ2
η

1−α2

α2
1σ

2
η

(1−α2)2 +
V 2

1 σ
2
τ

(1−α2)2σ4
η

 . (102)

Thus by the property of the conditional variance of the multi-normal distribution, the condi-
tional variance is

V [ηt+1|sit, q̂t] = σ2
η −

(
σ2
η

α1

1−α2
σ2
η

) σ2
η + σ2

ν
V1σ

2
η

(1−α2)σ2
ν

V1σ
2
η

(1−α2)σ2
ν

V 2
1 σ

2
η

(1−α2)2σ4
ν

+
V 2

1 σ
2
τ

(1−α2)2σ4
η

−1( σ2
η

α1

1−α2
σ2
η

)
(103)

which simplifies to (52). Similarly, the conditional mean is

E[ηt+1|sit, q̂t] = η̄ +
(
σ2
η

α1

1−α2
σ2
η

)( σ2
η + σ2

ν
α1

1−α2
σ2
η

α1

1−α2
σ2
η ( α1

1−α2
)2σ2

η + (ρV1[η]
1−α2

)2σ2
τ

)−1(
sit − η̄

q̂ − ( α0

1−α2
+ α1

1−α2
η̄)

)
,

(104)

which simplifies to (51).

Matching coefficients with (98) gives (53) and (54).

Taking conditional expectation on both sides of (100) and solving for Eit[τ t] yields

Eit [τ t] =
(
(1− α2) q̂t − α0 − α1Eit

[
ηt+1

]) σ2
η

Vt [η]
.

Similarly, taking conditional variance on both sides of (100) and plugging (53) gives

Vit[τ t] =
σ4
η

σ4
ν

Vit[ηt+1]
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C Appendix to Section 5

C.1 Data Sources

Consumption (Ct). Per-capita consumption data are from the National Income and Prod-

uct Accounts (NIPA) annual data reported by the Bureau of Economic Analysis (BEA). The

data are constructed as the sum of consumption expenditures on nondurable goods and services

(Table 1.1.5, Lines 5 and 6) deflated by corresponding price deflators (Table 1.1.9, Lines 5 and 6).

Physical Investment (It). Per-capita physical investment data are also from the NIPA tables.

We measure physical investment by fixed investment (Table 1.1.5, Line 8) minus information-

processing equipment (Table 5.5.5, Line 3) deflated by its price deflator (Table 1.1.9, Line 8).

Information-processing equipment is interpreted as investment in intangible capital and is there-

fore subtracted from fixed investment.

Output (Yt). It is the sum of total consumption and investment, that is, Ct + It. We exclude

government expenditure and net export because they are not explicitly modeled in our economy.

Labor (Nt). It is measured as the total number of full-time and part-time employees as reported

in the NIPA Table 6.4. Data are annual.

Stock market returns (Rt) and Risk-free rate (Rf
t ) The stock market return are from the

Fama-French dataset available online on K. French′s webpage at

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F Research Data Factors.zip.

The nominal risk-free rate is measured by the annual three-month T-bill return. The real stock

market returns and risk-free rate are computed by subtracting realized inflation (annual CPI

through FRED) from the nominal risk-free rate.

Price-dividends (pdt) ratio and Tobin′s Q (Qt). Data on annual price-dividend ratio, and

dividend are obtained from CRSP. Annual dividends are obtained by time-aggregating monthly

dividends. Nominal dividends are turned into real dividends using the CPI index. Data on

Tobin′s Q are from the Flow of Funds (FoF) and are obtained directly from the St. Louis Fed

by dividing the variable MVEONWMVBSNNCB (Line 35 of Table B.102 in the FoF report) by

TNWMVBSNNCB (Line 32 of table B.102 in the FoF report).

GDP Forecast (ŷit and ŷt). GDP forecast data during 1969-2010 are from the Survey of

Professional Forecasters provided by the Philadelphia Federal Reserve at

http://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/
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