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1 Introduction

Global insurers are exposed to substantial default risk, given the sheer size of losses that

may materialize in the event of financial crises and major catastrophes, such as earth-

quakes, hurricanes, and terrorist attacks. Commonly used reinsurance counterparty risk

indices1 suggest that default risk is both sizable and time varying, due to occasional

catastrophic losses and wider market conditions affecting insurers’ funding costs. For

example, in the last financial crisis the deterioration of credit markets generated sol-

vency concerns for a number of insurers that had to mark down their assets or step

up liability provisions.2 Although counterparty risk can be reduced by spreading insur-

ance purchases across a large number of insurers, diversification fails in the presence of

systematic risk, as represented by market shocks and catastrophe losses cutting across

different business lines and insurers, and government guarantees are still essential in a

number of situations.3

In this work we study the effect of counterparty default risk on optimal insurance

contracts. The importance of insolvency risk in insurance markets has been emphasized

by several authors (e.g., Cummins and Danzon, 1997; Cummins, Doherty and Lo, 2002),

but fewer studies have considered its impact on the design of optimal risk transfers.

Notable exceptions are represented by Tapiero, Kahane and Jacque (1986), Schlesinger

and Schulenburg (1987), Doherty and Schlesinger (1990), Cummins and Mahul (2003)

and Richter (2003), whose contributions are reviewed more in detail below. As suggested

by Schlesinger and Schulenburg (1987) and Doherty and Schlesinger (1990), default is a

form of contract nonperformance,4 under which the insurance buyer is hit twice: first,

1See, for example, the TRX P&C Reinsurance Index V2, http://communities.thomsonreu-

ters.com/ILS.
2See Thompson (2010) for an analysis of the effects of counterparty risk in credit default swaps.
3Recent examples are the Terrorism Risk and Insurance Act (TRIA) following the 9/11 attacks (see

Kunreuther and Michel-Kerjan, 2006) and the intervention following Hurricane Katrina (see Kunreuther
and Pauly, 2006).

4Other reasons why insurance contracts may fail to perform are ex-post underwriting and litigation
(claims contested in court, delays in claims payments), or contract conditions introducing delay or
exclusions in claim payments (e.g, probationary periods).
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through the exposure to realized losses, as the indemnity may not be paid in full; second,

through the loss of premium dollars, which introduces positive dependence between the

amount of insurance purchased and the magnitude of default losses. Here we consider

one more channel affecting insurance demand, namely the fact that default may occur in

states of the world associated with low realizations of the insurance buyer’s wealth. Hence

our focus on measures of dependence between the agents’ holdings and the insurable loss.

In our model, insolvency arises endogenously from the interaction of the insurance

premium, the indemnity schedule, and the insurer’s assets. This represents a departure

from the extant literature, where default is typically triggered exogenously and can

therefore be seen as a special form of background risk. Default endogeneity allows us to

better understand the trade-offs that shape optimal insurance contracts, bringing into

the picture the value of the insurer’s default option, which is affected in a nonlinear way

by the insurer’s holdings, the promised coverage level, and the premium size. The main

result of the paper is an explicit characterization of these trade-offs for different forms of

dependence between the risks involved. We find that in several cases optimal contracts

involve retention schedules that are tent-shaped, meaning that smaller and larger risks

are retained, whereas medium sized risks are largely insured. This is consistent with

the empirical evidence on catastrophe reinsurance markets (Froot, 2001; Cummins and

Mahul, 2003) and corporate insurance purchases (Doherty and Smith, 1993).

A more detailed summary of our findings is as follows. We prove that, in the pres-

ence of bankruptcy costs, optimal contracts entail no insurance for some realizations of

the insurable loss. Whether this is in the form of a deductible or an upper limit on

coverage depends on the way the insurance buyer’s wealth is affected by the insurable

loss. When policyholder’s wealth is negatively affected by realized losses, optimal con-

tracts contain deductibles. The intuition is that the dollar premiums saved by retaining

small losses can be used as a buffer in states of the world where default risk is higher

and the policyholder more vulnerable. Hence, aversion to bankruptcy costs alone may
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explain deductibles without requiring the presence of administrative costs (see Raviv,

1979) or background risk (see Dana and Scarsini, 2007). When the policyholder’s wealth

is positively dependent on insurable losses, perhaps because of hedging instruments or

government guarantees, the optimal indemnity gives rise to an upper limit on coverage.

The intuition is that limited liability and bankruptcy costs make insurance demand van-

ish for loss realizations associated with higher default probabilities. The introduction

of bankruptcy costs in a setting where insurance demand is already weak may therefore

explain upper limits, without requiring regulatory constraints (see Raviv, 1979; Jouini,

Schachermayer and Touzi, 2008) or policyholders’ limited liability (see Huberman, May-

ers and Smith, 1983). Irrespective of the sign and degree of dependence between the

insurance buyer’s wealth and the insurable loss, we find that, whenever optimal policies

involve coinsurance, the marginal demand for coverage is shaped in a nontrivial way

by terms accounting for the conditional default probability and the expected loss given

default. This is the case even when background risk is independent of the insurable loss.

The results shed light on some counterintuitive, nonmonotonic relationships between in-

surance demand and default probabilities documented in Doherty and Schlesinger (1990).

When we abstract from bankruptcy costs and focus on the role of limited liability, we

find that insurance demand is almost entirely driven by background risk. The reason is

that in this case there is no loss of premium dollars upon default, and the policyholder

can fully benefit from her claim on the insurer’s residual assets, as the default option is

fairly priced in equilibrium.

The results have both positive and normative implications. On the positive side,

the analysis may shed light on the patterns of (re)insurance purchases documented in

the literature. For example, there is evidence that corporations and primary insurers

tend to retain very large exposures to catastrophic events (see figure 1). Froot (2001)

offers several possible explanations based on different types of frictions (including default

risk) affecting both the demand and the supply side. Cummins and Mahul (2003) give
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an explanation based on the insured and the insurer having divergent assessments of

(exogenous) default probabilities. Our findings may provide a rational explanation of

low insurance demand for high layers of exposure based on counterparty default risk in an

otherwise standard framework. In particular, we show how the indemnity schedules used

in the analysis of Froot (2001) can be endogenized by allowing for bankruptcy risk. On

the normative side, the analysis offers insights into how government intervention schemes

and guarantee funds can be optimally designed to account for the credit quality of private

insurance providers (e.g., Jaffee and Russell, 1997; Kunreuther and Pauly, 2006). Finally,

some of our analytical results may help assist the development of (re)insurance programs

in the presence of counterparty default risk (e.g., CEIOPS, 2009).

Related literature. The article is related to the literature on optimal risk sharing

originated with Borch (1962), Arrow (1963, 1974), and Raviv (1979). Although the

traditional complete market framework has been extended to different forms of mar-

ket incompleteness (see Schlesinger, 2000, for an overview), insurance demand under

insolvency risk has been studied in a limited number of articles.5 Tapiero, Kahane and

Jacque (1986) examine insolvency risk in the context of mutual insurance, and consider

the delicate relationship between premium and default, but do not study optimal indem-

nity schedules. Schlesinger and Schulenburg (1987) use a three-state model to examine

the effects of relative risk aversion and total default on insurance demand. Doherty and

Schlesinger (1990) use a similar setting to show that full insurance is never optimal when

default is total. For more general situations, they find that the relationship between risk

retention levels and default probabilities can be nonmonotonic. Cummins and Mahul

(2003) consider a setting where the insurer and the insurance buyer disagree on the

default probability. They provide conditions under which the risk retention schedule is

nondecreasing in the exposure, but their contract reduces to full insurance above a de-

5In a related contribution, Huberman, Mayers and Smith (1983) consider policyholders with limited
liability (e.g., government intervention). Our analysis encompasses their setup, although in reduced
form; see section 3.
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ductible as soon as disagreement is assumed away. Richter (2003) examines the trade-off

between default risk and basis risk for a primary insurer deciding between reinsurance

and hedging instruments. As opposed to the above contributions, we consider default

as being endogenously determined by the optimal contract and the performance of the

the insurer’s assets. We further allow for randomness in the insurance buyer’s wealth,

as its dependence on default risk plays an important role in shaping optimal insurance

decisions. The work on background risk by Dana and Scarsini (2007) is therefore very

relevant for our study. They do not study limited liability and bankruptcy costs, but

use concepts of positive dependence that prove to be essential for our characterization

of optimal contracts under counterparty default risk.

The rest of the paper is organized as follows. The next section introduces the model

setup, whereas section 3 recaps three useful concepts of positive dependence between

random variables: association, stochastic increasingness, affiliation. In section 4 we

study optimal indemnity schedules for given premium, distinguishing between when

bankruptcy costs are present and absent. Section 5 extends the analysis to optimal in-

surance contracts, optimizing over both the premium level and the indemnity schedule.

We provide conditions that are both necessary and sufficient for optimality under default

risk, and discuss the existence of optimal contracts. Section 6 offers some concluding

remarks. All proofs are collected in the appendix, together with additional details and

results.

2 Model setup

We consider a one-period model with two agents, a risk-averse insurance buyer and a

risk-neutral insurer. The insurance buyer has utility function u and end-of-period wealth

W −X, with X representing random losses that can be insured and W ≥ 0 capturing

other variations in wealth. We assume that u is twice continuously differentiable, with
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u′ > 0 and u′′ < 0, and that X takes values in the compact interval [0, x]. The exposure

X is insurable, in the sense that an indemnity schedule can be purchased from the

insurer by payment of a premium P ≥ 0. By indemnity we mean a function I(·) :

[0, x] → R+ mapping the coverage level associated with each loss realization. We require

the indemnity to cover at most the realized loss, i.e., to satisfy I ≤ Id, with Id the

identity function. The insurer has terminal wealth A + P , the random variable A ≥ 0

representing the insurer’s capital at the end of the period.6 To obtain neater result,

we do not allow for discounting7 and require the triple (A,W,X) to have a density8

positive on R
2
++ × (0, x] and null elsewhere. We further require the joint density to be

continuous on R × R++ × [0, x]. We denote its marginals by fA, fW and fX , and the

conditional density of (A,W ), given X = x, by f(·|x). We will assume these densities

to be differentiable whenever the analysis requires it.

The insurer defaults on its obligations if total assets, A+P , are insufficient to cover

the promised indemnity, I(X). We assume that on the event {A + P < I(X)} only a

given fraction γ (with 0 ≤ γ ≤ 1) of the insurer’s assets can be recovered, making the

insurance buyer’s terminal wealth drop from the amount W̃ := W − P −X + I(X) to

the level W̃ (γ) := W − P −X + (A+ P )γ ≤ W̃ . The parameter γ captures deadweight

bankruptcy costs; the extension to non-fractional recovery rules, covered in the appendix,

yields similar results.

An insurance contract is identified by a pair (P, I). By limited liability, it yields the

insurer an expected profit equal to V (P, I) := E(max{Ã, 0}), with Ã := A+ P − I(X).

6Alternatively, we may allow A to be R-valued, so that A would represent the insurer’s net assets
and our risk-sharing problem would cover the sale of one extra policy to a risk-averse insurance buyer.

7An alternative formulation would have the insurer hold initial capital a > 0, which is invested with
the premium P to earn a random return R, yielding terminal wealth of amount (a + P )(1 + R). The
insurance buyer’s wealth could be modeled along the same lines. Our formulation yields equivalent
results.

8The point is to avoid using nonsmooth analysis techniques. The essential assumption is that the
conditional law of A, given X = x, is continuous (and if its support is bounded above, that the upper
bound is greater than x). Also, the requirement that W admits a density is for notational simplicity
only (for example, one can verify that the results for independent W and (A,X) appearing in the next
sections also cover the case of deterministic W ). Similarly, we may assume X to have a mass at zero at
the expense of more involved notation.
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On the other hand, the insurance buyer derives expected utility

U(P, I) := E
(
u
(
1
Ã≥0

W̃ + 1
Ã<0

W̃ (γ)
))

. (2.1)

With no bankruptcy costs, the policyholder recovers the entire amount A + P upon

default, and the above simplifies to

U(P, I) = E (u(W −X − P +min{I(X), A+ P})) , (2.2)

which is clearly monotone in both P and I, a property that is not satisfied by (2.1) in

general.

The default event is endogenous in this setting, as solvency of the insurer not only

depends on the pair (A,X), but also on the insurance contract (P, I) itself. The contract

may fail to perform and hit the policyholder in three different ways: first, through a

reduction in the indemnity payment, which may drop to (A + P )γ ≤ I(X); second,

through the loss of premium dollars in the default state; third, because default may

occur in states of the world when the policyholder is more vulnerable (low realizations

of W ).

A contract (P, I) strictly dominates another contract (P̂ , Î) if U(P, I) ≥ U(P̂ , Î) and

V (P, I) ≥ V (P̂ , Î), with at least one inequality strict. A contract is Pareto optimal if

it is not strictly dominated. The condition V (P, I) ≥ V (0, 0) = E(A) > 0 is necessary

for the insurer to offer (P, I), whereas U(P, I) ≥ U(0, 0) = E(u(W − X)) is necessary

for the insurance buyer to consider entering the contract. In what follows, we focus on

Pareto optimal contracts ensuring that these participation constraints are satisfied.

Optimal contracts can be characterized by examining the solutions of the following
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problem for different levels of the insurer’s reservation profit v:





sup(P,I)∈ R+×A U(P, I)

subject to: V (P, I) ≥ v

0 ≤ I(x) ≤ x for all x ∈ [0, x],

(2.3)

where A denotes the set measurable functions defined on [0, x]. We assume that the

pair (A,W ) is integrable, so that the problem is well posed. It is immediate to see

that condition v ≥ E(A) ensures that the contract is acceptable for the insurer. The

insurance buyer’s participation constraint is less straightforward and will be examined in

section 5. Although Pareto optimal contracts are certainly solutions to problem (2.3), it

is in general not obvious whether a solution to (2.3) is also Pareto optimal. In case of no

bankruptcy costs (γ = 1), the equivalence is immediate, due to the monotone behavior

of the objective functional (2.2). The general case of γ ∈ [0, 1] is more challenging, and

will be addressed in Proposition 5.3 below.

To understand the role of default endogeneity, it is useful to rewrite the insurer’s

participation constraint as

P ≥ E(I(X)) + (v − E(A))− E(max{I(X)− (A+ P ), 0}). (2.4)

The right-hand side includes the actuarial value of the indemnity, E(I(X)), the insurer’s

required excess return on capital, v−E(A), and the cost (to the insurance buyer) of the

insurer’s option to default, E(min{A+P −I(X), 0}). Note that an increase in the cover-

age level has the effect of increasing both the actuarial value of the promised indemnity

and the value (to the insurer) of the default option; hence limited liability introduces a

complex interaction between the optimal premium and the optimal indemnity schedule.

As bankruptcy costs do not explicitly appear on the right-hand side of (2.4), it may

be tempting to conclude that, for some insurance coverage to be optimal, the insurance
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buyer would have to be sufficiently risk averse to enter the contract and bear both the

expected bankruptcy costs and the extra loading v − E(A). We will prove in section 5,

however, that zero coverage (no insurance) is optimal only in degenerate cases, and that

constraint (2.4) is always binding. The reason is that the insurer’s participation con-

straint can fully internalize the expected bankruptcy costs via the optimal indemnity

schedule.

We develop the analysis of optimal insurance contracts in two steps. We first con-

sider agents that are price takers, and determine optimal indemnity schedules for fixed

premium level P ≥ 0 (section 4). We then undertake the more difficult task of jointly

optimizing with respect to the indemnity schedule and the premium level (section 5).

The issue of existence of optimizers is addressed separately for the two cases. Before

proceeding, we introduce tools to compare different risky prospects.

3 Concepts of dependence

The results derived in the next sections apply to a large class of risks and decision

makers. To limit parametric assumptions on the utility and distribution functions, we

rely on the following notions of dependence, which impose increasingly strong restrictions

on the dependence structure of a random vector (e.g., Müller and Stoyan, 2002). In the

following, a real valued function defined on R
n is said to be monotone if it is monotone

in each of its arguments. Inequalities between random variables are in the almost sure

sense.

Definition 3.1. A random vector Y is associated, if Cov(g(Y ), k(Y )) ≥ 0 for all pair

of nondecreasing functions g and k such that the covariance exists. A random vector Y

is conditionally associated, given a σ-field G, if Cov(g(Y ), k(Y )|G) ≥ 0 for all pairs

of nondecreasing functions g and k.

We say that a random vector Y is stochastically increasing in another vector Z if
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the conditional distribution of Y becomes larger (in the sense of first order stochastic

dominance) when conditioning on higher values of Z.

Definition 3.2. A random vector Y is stochastically increasing (strictly stochasti-

cally increasing) in another random vector Z, denoted Y ↑st Z (Y ↑sst Z), if the map

z → E (g(Y )|Z = z) is nondecreasing (increasing) for every nondecreasing (increasing)

function g such that the expectation of g(Y ) exists.

We write Y ↓st Z and Y ↓sst Z for the stochastic increasingness relations Y ↑st −Z

and Y ↑sst −Z.

A further characterization of the idea that high values of some of the components of

a random vector make the other components more likely to be high than small is given

by the concept of affiliation (or monotone likelihood ratio property; see Milgrom and

Weber, 1982).

Definition 3.3. A random vector Y = (Y1, . . . , Yn) with joint density f is affiliated if

f is log-supermodular, i.e., if it satisfies

f(y ∧ z)f(y ∨ z) ≥ f(y)f(z) for all y, z ∈ R
n, (3.1)

where y ∧ z and y ∨ z denote the componentwise minimum and maximum of y and z.

The intuition behind (3.1) is that compound returns in one variable are nondecreasing

in each other variable (e.g., Topkis, 1998; Athey, 2002). When f is positive and twice

continuously differentiable, an equivalent characterization of (3.1) can be given in terms

of second order derivatives:

∂2

∂yi∂yj
ln f(y) ≥ 0 for all y ∈ R

n, 1 ≤ i 6= j ≤ n.

Affiliation implies stochastic increasingness (of each component with respect to the oth-

ers), which in turn implies association. An important implication of affiliation is that
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the semielasticity of the conditional density f(y−i|yi) with respect to any component yi

is nondecreasing in each other component of y, denoted by y−i; see the appendix. De-

fined as lnyi f(y−i|yi) := ∂/∂yi ln f(y−i|yi), the semielasticity measures the approximate

percentage change in f(·|yi), given a unit increase in the i-th component of y.

For the risk sharing problem at hand, the following situations are of particular interest

(see Dana and Scarsini, 2007, for several other examples):

• A and W are conditionally independent, given X (denoted A⊥XW ). This means

that once the insurable loss is taken into account, the residual randomness affecting

the agents’ holdings is idiosyncratic. An example is represented by catastrophic

risks, which may impact the overall economy and introduce dependence between

otherwise uncorrelated endowments.

• A ↑st X and W ↑st X. High losses are likely to make both the insurance buyer and

the insurer better off. This may be the case when the insurer is invested in hedging

instruments (e.g., industry loss warranties) or has access to post-loss financing tools

(e.g., contingent surplus notes, loss equity puts). On the policyholder side, this

may be the case when the insurance buyer holds (say) credit default swaps, or

when the insured event is catastrophic enough to trigger government intervention

(e.g., Huberman et al., 1983).

• A ↓st X and W ↓st X. This represents situations where large losses are more likely

to negatively affect both agents’ holdings, as for catastrophic risks.

• W −X ↓sst X or W −X ↑st X. The first case may capture contagion between the

insurable loss and any uninsurable exposure included in W . The second case may

reflect a situation where the policyholder is overinvested in hedging instruments or

can rely on government guarantees.

• (A,W,−X) is affiliated. This implies that both (A,−X) and (W,−X) are affil-

iated, as well as the stochastic decreasingness relations A ↓st X, W ↓st X. A
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further implication is that (A,W ) is affiliated, reflecting the common dependence

of agents’ holdings on (say) macroeconomic conditions.

4 Optimal insurance policy schedules for given premium

Following Raviv (1979), it is convenient to see (2.3) as an optimal control problem where

the indemnity schedule is the control and the insurer’s expected return is the state

variable. For fixed premium level P ≥ 0, we can use the law of iterated expectations to

write problem (2.3) as





supI∈A
∫ x

0 Ex
(
1
Ã≥0

u(W̃ ) + 1
Ã<0

u(W̃ (γ))
)
fX(x)dx

subject to
∫ x

0 Ex(max{Ã, 0})fX(x)dx ≥ v

0 ≤ I(x) ≤ x for all x ∈ [0, x],

(4.1)

where Ex(·) denotes the conditional expectation operator E(·|X = x); we write P
x(·) for

the conditional probability P(·|X = x). The problem is feasible for reservation utility

levels satisfying E(A) ≤ v ≤ E(A) + P . Although the usual concavity requirements are

not satisfied by (4.1), the problem always admits a solution (see Neustadt, 1963; Cesari,

1983). We write the Lagrangian as

L(x, I(x), λ0, λ1(x), λ2(x);P ) := H(x, I(x), λ0;P ) + λ1(x)I(x) + λ2(x)(x− I(x)),

where the function H (the Hamiltonian) is defined as

H(x, I(x), λ0;P ) := Ex
(
1
Ã≥0

u(W̃ ) + 1
Ã<0

u(W̃ (γ))
)
fX(x) + λ0E

x(max{Ã, 0})fX(x),

with the multipliers λ0, λ1, λ2 ≥ 0 satisfying the complementarity conditions λ0(V (P, I∗)−

v) = 0, λ1(x)I(x) = 0 and λ2(x)(x − I(x)) = 0 for all x ∈ [0, x]. If I∗ is a solution of
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problem (4.1), I∗(x) maximizes H(x, ·, λ0;P ) over [0, x] for every x ∈ [0, x].

Default risk means that the policyholder may not receive the promised indemnity

schedule, I(X), and may recover only a fraction of the insurer’s residual assets, (A+P )γ.

The utilities derived in the ‘no-default state’ and ‘default state’ differ by ∆u(γ, I) :=

u(W̃ ) − u(W̃ (γ)). For each loss realization x, the expected utility loss incurred at the

default boundary when default occurs can be written as9

Ex(∆u(γ, I)|Ã = 0) = lim
a↑0

Ex(∆u(γ, I)|Ã = a)

=

∫

R+

[u(w − P − x+ I(x))− u(w − P − x+ γI(x))] fW (w|A = I(x)− P,X = x)dw,

is nonincreasing in γ and bounded below by Ex(∆u(1, I)|Ã = 0) = 0 for all admissible

indemnity schedules. The first order necessary conditions can then be characterized by

the following functions:

J(x) := Ex(u′(W − P − x)− λ0), (4.2)

J(x) := P
x(A ≥ x− P )Ex

(
u′(W − P )− λ0

∣∣A ≥ x− P
)

− fA(x− P |x)Ex
(
∆u(γ, Id)

∣∣A = x− P
)
,

(4.3)

K(x) := P
x(A∗ ≥ 0)Ex

(
u′(W ∗)− λ0

∣∣A∗ ≥ 0
)

− fA(I
∗(x)− P |x)Ex

(
∆u(γ, I∗)

∣∣A∗ = 0
)
,

(4.4)

where the terms W ∗,W ∗(γ), A∗ denote the random variables W̃ , W̃ (γ) and Ã computed

at the optimal schedule I∗. The first two functions quantify the variational trade-off

between insurance supply and demand when the constraints on the indemnity schedule

are binding (I∗(x) = 0 or I∗(x) = x), the last function when the optimal indemnity is

interior. The functions J, J are continuous and coincide with K in zero. Partitioning the

9Note that the expression is not defined on {I(x) < P}. In the following, we often consider expec-

tations conditional on {Ã = 0}, but they are always pre-multiplied by fA(I(x) − P |x), which clearly
vanishes on {I(x) < P}.
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interval (0, x] into the subsets X1 := {x ∈ (0, x] : 0 < I∗(x) < x}, X2 := {x ∈ (0, x] :

I∗(x) = x}, X3 := {x ∈ (0, x] : I∗(x) = 0}, we can summarize the necessary conditions

as follows:

Proposition 4.1. If I∗ is a solution of Problem (4.1), then the following implications

are satisfied for all x ∈ (0, x̄]: if x ∈ X1, then K(x) = 0; if x ∈ X2, then J(x) ≥ 0; if

x ∈ X3, then J(x) ≤ 0.

The conditions of Proposition 4.1 are only necessary for maximality. They would be

sufficient if, for example, the Hamiltonian were concave in I(x) for all x, but this is not

the case in general, even when γ = 1. On the other hand, the maximized Hamiltonian

does not depend on the state variable (an Arrow-type sufficient condition; see Seierstad

and Sydsaeter, 1987, p. 107) and hence a schedule satisfying the necessary conditions will

indeed be optimal. The situation is more complicated when the premium is no longer a

fixed parameter; see Theorem 5.8 below.

In the traditional case of no background risk (deterministic A and W ) and no default

risk, both J and J are monotone and may cross zero at most once; see Raviv (1979).

When the pair (A,W ) is random, but no default is considered, the behavior of J, J can be

understood by imposing restrictions on the dependence structure of the triple (A,W,X);

see Dana and Scarsini (2007). In our setting, J and J are in general nonmonotone, may

cross zero several times, and may be difficult to order. In particular, the implications in

Lemma 4.1 cannot be inverted unless additional assumptions are made.10

Before considering separately the cases of γ = 1 and 0 ≤ γ < 1, we recall some

definitions of common indemnity schedules.

Definition 4.2. For each x̂ ∈ (0, x], if there exists δ > 0 such that, for all ε ∈ (0, δ),

i) x̂ ∈ X3 and x̂ + ε ∈ X1, then x̂ is a generalized deductible (which is called

standard deductible if I∗(x̂+ ε) = ε);

10Proposition A.3 in the appendix offers partial results in this direction.
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ii) x̂ ∈ X3 and x̂ + ε ∈ X1, and Id − I∗ is nonincreasing on [x̂, x], then x̂ is a

disappearing deductible;

iii) x̂− ε ∈ X1 and x̂ ∈ X3, then x̂ represents an upper limit on coverage;

iv) x̂ ∈ X2 and x̂+ ε ∈ X1, then x̂ represents an upper limit on full coverage.

We use the terms ‘deductible’ and ‘upper limit’ locally, rather than for a contract as a

whole, due to the diverse indemnity schedules our setup may give rise to. Figure 2 depicts

an example with both a disappearing deductible and an upper limit on full coverage.

4.1 No bankruptcy costs

Setting γ = 1, in this section we abstract from bankruptcy costs and emphasize the role

of limited liability. We first characterize interior policy schedules under a differentiability

assumption.

Proposition 4.3. Let γ = 1 and consider a schedule I∗ differentiable on X1. If I∗ is

optimal, it satisfies the differential equation

I∗′(x) = 1−
δ1(x)− h(x)δ2(x)

δ0(x)− h(x)δ2(x)
, x ∈ X1, (4.5)

where the function h(x) is defined in (4.6) below, and the terms δ0, δ1, δ2 are given by11

δ0(x) := Ex(u′′(W ∗)|A∗ ≥ 0)

δ1(x) := Covx(u′(W ∗), lnx f(A,W |x)
∣∣A∗ ≥ 0)

δ2(x) := Ex(u′(W ∗)|A∗ = 0)− Ex(u′(W ∗)|A∗ ≥ 0),

with lnx f(·|x) denoting the semielasticity of f(·|x) with respect to x.

11Given the random variables X,Y, Z, and the event H, we use the notation Covx(Y, Z|H) for the
conditional covariance of Y and Z, given X and H, computed at X = x.
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The result shows that the marginal demand for coverage is shaped by terms account-

ing for the dependence structure of (A,W,X) and the insurance buyer’s risk preferences,

exactly as in the case of background risk (e.g., Gollier, 1996; Dana and Scarsini, 2007).

However, all these terms are conditional on no default occurring, and there is a specific

component, h(x)δ2(x), stemming from limited liability. We have that δ2 quantifies the

expected loss in marginal utility incurred by crossing the default boundary, whereas the

function h is essentially a hazard rate, defined as

h(x) :=
fA(I

∗(x)− P |x)

Px(A∗ ≥ 0)
= lim

ǫ↓0

P
x(A∗ ≤ ǫ|A∗ ≥ 0)

ǫ
. (4.6)

Under the conditional independence assumption A⊥XW , the term δ2 is null, and both

δ0 and δ1 no longer depend on the event {A∗ ≥ 0}. In particular, we have δ0(x) =

Ex(u′′(W ∗)) and δ1(x) = Covx(u′(W ∗), lnx fW (W |x)). This suggests that limited liabil-

ity may affect indemnity schedules the most when the dependence between A and W is

not channeled by the insurable loss alone. On the other hand, conditional independence

allows us to provide a number of sharper results, as we now show. First, we note that

the lack of concavity of the Hamiltonian means that condition (4.5) is only necessary for

local extrema. To focus on local maxima, we need to impose the second order condition

(∂2H/∂I(x)2)|I=I∗ = δ0(x) − h(x)δ2(x) ≤ 0, which is always satisfied (strictly) under

the assumption A⊥XW . Second, we can invert the implications of Proposition 4.1, and

thus obtain necessary and sufficient conditions for optimal policies directly based on

comparison of the functions J and J , exactly as in Raviv (1979).

Theorem 4.4. Assume that A⊥XW and γ = 1. If I∗ is an optimal solution to problem

(4.1) then, for all x ∈ (0, x], one of the following exhaustive and mutually exclusive

conditions is satisfied: x ∈ X1 if and only if J(x) < 0 < J(x); x ∈ X2 if and only if

J(x) ≥ 0; x ∈ X3 if and only if J(x) ≤ 0.

Theorem 4.4 can be used to characterize optimal contracts as follows. Denote by
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xi (with i = 1, 2, . . .) the i-th positive zero of either J or J (in the two cases we write

xi = xj or xi = xk, with j, k ≤ i), with the convention that xi = +∞ means that there

are fewer than i zeros. Each xi gives then rise to changes in the indemnity schedule that

can be classified according to Definition 4.2. An illustration is given in Figure 2, which

depicts the behavior of the functions J and J , as well as the optimal policy schedule I∗.

The optimal contract involves a deductible given by the first zero of J , x1 = x1, which

is followed by coinsurance until the first zero of J , x2 = x1. Full insurance then follows,

but the second zero of J , x3 = x2, gives rise to an upper limit on full coverage. (If we had

x3 ≥ x, the contract would be a disappearing deductible.) In this example, the fraction

of exposure that is insured, I∗(x)/x, is tent-shaped: small losses are retained, medium

sized losses are substantially insured, whereas a significant fraction of large losses is

retained (the retention schedule Id− I∗ is increasing from x3 onwards).

4.2 Bankruptcy costs

The introduction of bankruptcy costs adds a range of interesting features to optimal

indemnity schedules. We can see it immediately by examining interior differentiable

solutions.

Proposition 4.5. For fixed 0 ≤ γ < 1, consider a schedule I∗ differentiable on X1. If

I∗ is optimal, it satisfies the differential equation

I∗′(x) =
δ0(x)− δ1(x)− h(x)(δ5(x, γ)− δ6(x, γ) + δ7(x, γ))

δ0(x)− h(x) (δ2(x) + δ3(x, γ) + δ4(x, γ))
, x ∈ X1, (4.7)

with the terms δ3, δ4, δ5, δ6, δ7 admitting the explicit expressions (B.2)-(B.6) reported in

the appendix.

Apart from the case of x ∈ X1 ∩ [0, P ], which yields I∗′(x) = 1 − δ1(x)/δ0(x), the

marginal coverage level is shaped by six more terms than when bankruptcy costs are ab-

sent (compare with Proposition 4.3), demonstrating the complexity of trade-offs solved
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by the optimal contract. This provides a rational explanation for some of the appar-

ently counterintuitive results documented in Doherty and Schlesinger (1990), who could

not identify a monotone relationship between insurance demand and the probability of

default.

As in the case with no bankruptcy costs, the differential equation (4.7) only identifies

local extrema for the Hamiltonian. Writing the second order condition, we obtain that

local maxima must in addition satisfy the following inequality on X1:

δ0(x)− fA(I
∗(x)− P |x)δ3(x, γ)− h(x) (δ2(x) + δ4(x, γ) + h(x)) ≤ 0. (4.8)

The stronger condition that A⊥XW and lna f(I
∗(x) − P |x) ≥ −h(x) for all x ∈ X1, a

property used in the next section for the sufficiency of the first-order conditions, ensures

that the second-order condition (4.8) is automatically satisfied.

From expression (4.7), we can understand the salient features of interior indemnity

schedules by elaborating on some special cases.

Proposition 4.6. Let I∗ be a solution of problem (4.1), differentiable on X1. For all

x ∈ X1 we have:

i) If A,W,X are independent, then

I∗′(x) =
δ0(x)− h(x)δ5(x, γ)

δ0(x)− h(x)(δ3(x, γ) + δ4(x, γ))
. (4.9)

ii) If γ = 0, W⊥(A,X), and (A,−X) is affiliated, then Id− I∗ is nondecreasing.

Although it is in general difficult to characterize the optimal risk retention schedule,

statement (ii) shows that it is nondecreasing whenever there is total default and the

insurer’s holdings are negatively dependent on the insurable loss (in the sense of affil-

iation). Point (i) demonstrates that bankruptcy costs are incompatible with straight

deductibles and constant coinsurance rates, even when background risk is independent
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of the insurable loss; compare with Proposition 4.3. Shutting off the background risk

channel is important to isolate the impact of default endogeneity on coinsurance rates:

the result should be contrasted with Cummins and Mahul (2003, Corollary 2), who ob-

tain optimality of full insurance above a deductible when default is exogenous and there

is no recovery.

Note that with bankruptcy costs the characterization of optimal indemnities provided

by Theorem 4.4 no longer applies, and the optimality conditions do not admit an imme-

diate interpretation in terms of the functions J and J . The main issue is to compare the

functions K and J when J > 0: the behavior of fA(I
∗(x)−P |x)Ex(∆u(γ, I∗)|A∗ = 0) is

difficult to characterize, unless explicit assumptions are made on the utility function and

the conditional law of A. In the following section, we will nonetheless derive a number

of results without imposing further restrictions beyond conditional independence.

5 Pareto optimal policies

In this section we derive contracts that are optimal with respect to both the premium

level and the indemnity schedule. Although the standard concavity assumptions ensuring

existence of optimizers do not apply to this case, one can show that Ux(P, I) belongs

to a class of integrands satisfying a Cesari-type growth condition (see Zaslavski, 2001).

We can then invoke Theorem 1.2 in Zaslavski (2001), and claim that in this class there

exists a dense subset of integrands for which our problem has a unique solution, and

this solution is stable under small perturbations of the integrand. In the following, we

assume the integrand Ux(P, I) to belong to this subset.

As is customary in control problems depending on a parameter, it is convenient to see

the premium as an additional state variable. This means that the previous analysis still

applies, but one more optimality condition needs to be considered: an optimal contract
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(P ∗, I∗) must also satisfy the restriction (e.g., Seierstad and Sydsaeter, 1987)

∫ x

0

∂

∂P
L(x, I∗(x), λ0, λ1(x), λ2(x);P )

∣∣∣
P=P ∗

dx ≤ 0. (5.1)

The inequality reduces to an equality when P ∗ > 0. A calculation developed in the

appendix shows that in the latter case we have

∫

X2

J(x)fX(x)dx+ (1− γ)E
(
u′(W ∗(γ))1A∗<0

)
=

∫

X3

(−J(x))fX(x)dx, (5.2)

where (1− γ)E (u′(W ∗(γ))1A∗<0) is nonnegative, and equal to zero if and only if γ = 1

or I∗(x) ≤ P ∗ for all x. Note that in this case the optimal policy does not satisfy the

insurance buyer’s participation constraint, as one can show that U(P, I) < U(0, 0) for

all insurance contracts with coverage bounded by the (positive) premium.

Recalling that J(x) ≥ 0 on X2, and J(x) ≤ 0 on X3, from (5.2) we see that the no

insurance region is used to balance the provision of full insurance and the expected loss

of marginal utility arising from bankruptcy costs. This allows us to make the following

general statement.

Proposition 5.1. When 0 ≤ γ < 1, any optimal contract must provide no insurance on

a set of positive measure.

Hence bankruptcy costs are incompatible with full insurance, with coinsurance, and

with indemnity schedules that offer a mixture of full and partial coverage against loss

realizations. In other words, insurance contracts must provide deductibles and/or upper

limits on coverage to be optimal.

In the absence of bankruptcy costs, the impact of limited liability is less dramatic and

the joint provision of full insurance and no insurance is essentially driven by background

risk. As the following proposition shows, the dependence between the insurance buyer’s

wealth and the insurable loss is particularly relevant in this context.
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Proposition 5.2. Let γ = 1 and assume that either W ↓st X or W−X ↑sst X (W ↓sst X

or W ↑sst X) holds. Then any optimal contract offering no insurance (full insurance) on

a set of positive measure must offer full insurance (no insurance) on a nonnegligible set.

The previous results allow us to finally establish the Pareto optimality of solutions to

problem (2.3). As the following proposition shows, the insurer’s participation constraint

is binding at an optimum and hence the compelling premium representation (2.4) applies.

Proposition 5.3. For fixed v ≥ E(A), let (P ∗, I∗) solve problem (2.3). Then, the

optimal premium P ∗ is related to the optimal schedule I∗ by

P ∗ = E(I∗(X)) + (v − E(A))− E(max{I∗(X)− (A+ P ∗), 0}), (5.3)

and the pair (P ∗, I∗) is Pareto optimal.

As was discussed in section 2, the fact that bankruptcy costs do not explicitly appear

in expression (5.3) may suggest that the insurance buyer may not have an incentive to

trade if risk aversion is not large enough to offset both the expected bankruptcy costs

and the insurer’s required return on capital. It turns out, however, that the insurer’s

participation constraint fully internalizes both aspects, although indirectly, via the op-

timal indemnity schedule, and no insurance can only be optimal in degenerate cases.

The next proposition shows that there is always insurance, for example, when W ↓st X

(which encompasses W⊥X) or W −X ↑sst X (which implies W ↑sst X).

Proposition 5.4. If no insurance is optimal, then Ex(u′(W − x)) is constant.

To obtain sharper results on Pareto optimal contracts, it is convenient to work under

the conditional independence assumption A⊥XW , exactly as we did in section 4. The

structure of efficient policies crucially depends on the way the insurance buyer’s wealth

is affected by the insurable loss. We focus first on the case of negative dependence and

no bankruptcy costs.
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Theorem 5.5. Assume A⊥XW and W ↓st X. If γ = 1, any optimal insurance contract

is either full insurance or admits a generalized deductible followed by first coinsurance

and then full insurance. We further have:

i) If (W,−X) is affiliated, optimal contracts are disappearing deductibles.

ii) If W⊥X, full insurance is optimal.

We note that, when there are no bankruptcy costs, background risk is the main factor

shaping optimal contracts, and optimal policies are remarkably similar to those arising

in the absence of limited liability (e.g., Gollier, 1996; Dana and Scarsini, 2007). The

intuition is that the contract gives the policyholder a claim on the insurer’s residual

assets, thus allowing the risk averse agent to extend her balance sheet in case of default.

As the insurer’s default option is fairly priced via (5.3), and there are no premium losses

upon default, insurance demand is essentially unaffected by default risk.

The situation changes when introducing bankruptcy costs. As the insurer’s participa-

tion constraint does not explicitly take into account the expected bankruptcy costs, the

insurance buyer needs to adjust the demand for coverage to internalize expected default

costs. An immediate consequence is that insurance demand becomes weaker for large

loss realizations associated with higher default risk. More importantly, there is always a

positive deductible, even in the independence case. The intuition is that the insurance

buyer reduces the potential loss in premium dollars by giving up coverage for low loss

realizations. As a result, we have that bankruptcy costs may explain deductibles without

requiring the introduction of administrative costs or even background risk. Moreover,

optimal risk retention schedules can be nondecreasing, giving rise to a tent-shaped pat-

tern in the fraction I∗(x)/x of exposure insured. We prove this for the case of total

default, γ = 0, which is easier to analyze.

Theorem 5.6. Assume A⊥XW and W ↓st X. If 0 ≤ γ < 1, any optimal contract

involves a positive deductible. In particular, we have:
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i) If W⊥X, the deductible is followed by coinsurance.

ii) If W⊥X, γ = 0, (A,−X) is affiliated, and I∗ is differentiable on X1, then the risk

retention schedule Id− I∗ is nondecreasing on X1.

Finally, we consider the case when the policyholder’s wealth is positively dependent

on the insurable loss, which may capture (in reduced form) the limited liability con-

straints studied by Huberman, Mayers and Smith (1983), or may reflect the fact that

the buyer is partially hedged against the insurable loss. In this case we obtain the natural

result that limited liability and bankruptcy costs make insurance demand vanish for loss

realizations associated with higher default probabilities. As a result, bankruptcy costs

may explain upper limits in situations where insurance demand is naturally weak.

Theorem 5.7. Assume A⊥XW and W −X ↑sst X. Then any optimal contract involves

full insurance followed by coinsurance and no insurance.

Some numerical examples for the optimal schedule I∗(x) and insured fraction I∗(x)/x

are presented in figures 3-4. We use exponential utility and work under the assumption

of independence, with lognormal A,W , and X distributed according to a truncated

Gamma. Although optimal indemnity schedules do not present an upper limit on cov-

erage, the indemnity flattens out for high loss realizations, tending towards a ‘stop-loss

contract’. Taking into account the presence of deductibles, we have therefore an example

of how the insurance layers considered in Froot (2001) can be endogenized by allowing

for bankruptcy costs.

We conclude this section by addressing the issue of sufficiency of the optimality

conditions discussed so far. As opposed to section 4, the problem is now more challenging,

as the premium level is an additional state variable and hence the optimized Hamiltonian

does depend on the state. The following theorem, however, shows that an Arrow-type

sufficiency result can be obtained under mild conditions.
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Theorem 5.8. Let (P̂ , Î) be an admissible contract, with λ̂0 ≥ 0 the corresponding

adjoint constant, and suppose that H(x, Î(x), λ̂0; P̂ ) = maxz∈[0,x]H(x, z, λ̂0; P̂ ) for all

x ∈ [0, x] and condition (5.1) is satisfied. Moreover, assume A⊥XW and that either of

the following conditions hold:

i) there are no bankruptcy costs, γ = 1;

ii) there is total default, γ = 0, and lna fA(Î(x)− P̂ |x) ≥ −h(x) for all x ∈ [0, x].

Then, (P̂ , Î) is optimal.

A simple calculation shows that the condition lna fA(Î(x)− P̂ |x) ≥ −h(x) is satisfied

if, for all x ∈ [0, x], the hazard rate fA(a|x)/P
x(A ≥ a) is nondecreasing on the interval

[0,max(0, Î(x)− P̂ )]. In other words, sufficiency can be enforced by restricting the set of

admissible contracts to pairs (P, I) offering coverage no higher than the premium level

whenever the insurer’s hazard rate is decreasing. Note that condition (ii) automatically

ensures that the second-order condition (4.8) is satisfied.

6 Conclusion

In this work we have characterized optimal insurance contracts when the insurer can

default on its obligations and the insurance buyer is risk-averse. We have shown how

bankruptcy costs can explain the presence of deductibles and upper limits in optimal

contracts, thus endogenizing the risk-sharing arrangements often considered in the lit-

erature studying catastrophe (re)insurance markets. We have also demonstrated how

default risk may give rise to nonmonotonic relationships between the marginal demand

for insurance and conditional default probabilities, consistently with what was pointed

out in Doherty and Schlesinger (1990). The analysis is based on a static model with

symmetric information. Our results are therefore just a first step towards understanding

how couterparty default risk may jointly affect optimal insurance premiums and indem-
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nity schedules in the presence of additional frictions. Extensions to include information

asymmetries, for example by allowing the insurer to have superior information on the

quality of her assets, seem of particular interest, but are clearly quite challenging.
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Appendix

A Additional discussion and results

A.1 Further results on dependence

The proofs of the main results (appendix B) rely on some consequences of the dependence concepts

introduced in section 3. We begin by elaborating on the relation between association and stochastic

increasingness.
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Proposition A.1. Let X, Y, Z be univariate random variables. Then, the following properties hold:

i) X is associated conditionally on Y , and (X,Y ) is associated conditionally on (Y, Z);

ii) if X ↑st (Y, k(Z)) for strictly monotone function k, then (X,Y ) is associated conditionally on Z;

iii) If Z ↑st (k(X), Y ) for strictly monotone function k, then for every nondecreasing function f we

have Ex(f(Y, Z)|Y ≥ 0) ≥ Ex(f(Y, Z)|Y = 0) for all x such that Px(Y ≥ 0) > 0.

Proof. Part i) follows directly from the fact that any univariate random variable is associated. To prove

part ii), consider nondecreasing functions f and g. We have

Cov(f(X,Y ), g(X,Y )|Z) =E(Cov(f(X,Y ), g(X,Y )|Y, Z)|Z)

+ Cov(E(f(X,Y )|Y, Z), E(g(X,Y )|Y, Z)|Z).

The first term is nonnegative by i). With regard to the second term, we have that f̃(y, z) := E(f(X,Y )|Y =

y, Z = z) is nondecreasing in y, and likewise g̃(y, z) := E(g(X,Y )|Y = y, Z = z) is nondecreasing in y.

It follows again by i) that

Cov(E(f(X,Y )|Y, Z), E(g(X,Y )|Y, Z)|Z) = Cov(f̃(Y, Z), g̃(Y, Z)|Z) ≥ 0.

Part iii) follows from observing that

Ex(f(Y, Z)|Y ≥ 0) =
1

Px(Y ≥ 0)

∫ ∞

0

Ex(f(y, Z)|Y = y)FY (dy|x),

where FY (·|x) is the conditional law of Y , given X = x, and from the fact that the function y 7→

Ex(f(y, Z)|Y = y) is nondecreasing in y.

The next proposition shows why we need to resort to the stronger notion of affiliation to study the

marginal demand for insurance when it involves semielasticities.

Proposition A.2. Let X, Y, Z be random variables with joint density h, and let h(·|z) denote the

conditional density of (X,Y ) given Z = z. Then, the following properties hold:

i) If (X,Y, Z) is affiliated, the conditional density function h(x, y|z) is log-supermodular.

ii) If X and Y are independent conditionally on Z, then (X,Y, Z) is affiliated if and only if (X,Z)

and (Y, Z) are affiliated.

iii) If (X,Y, Z) ((X,Y,−Z)) is affiliated, the semielasticity lnz h(x, y|z) is nondecreasing (nonincreas-

ing) in x, y.
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Proof. Part i) is obvious. Part ii) follows from the fact that by conditional independence we have

h(x, y, z) = hX(x|z)hY (y|z)hZ(z), where hX(·|z) and hY (·|z) are the conditional densities of X and

Y given Z = z, and hZ is the density of Z. Part iii) follows from the observation that, for example,

∂
∂x

lnz h(x, y|z) =
∂

∂x∂z
lnh(x, y, z) ≥ 0.

A.2 Characterizing the behavior of J, J,K.

In section 4 we have shown that the presence of bankruptcy costs prevents us from fully characterizing

optimal indemnities in terms of the zeros of the the functions J, J,K, even when working under the

conditional independence assumption A⊥XW . The next proposition collects a number of results that

can be obtained in different cases.

Proposition A.3. For x ∈ (0, x̄], let I∗ be a solution of Problem (4.1). Then, the following properties

hold:

1. If J(x) < 0 < J(x), then x ∈ X1.

2. When A⊥XW , we have: (i) if J(x) ≥ 0, then J(x) > 0; (ii) if J(x) ≤ 0, then K(x) < 0, J(x) < 0

and x ∈ X3; (iii) if x ∈ X1, then J(x) > 0.

3. When A⊥XW and γ = 1, we have: (j) x ∈ X1 if and only if J(x) < 0 < J(x); (jj) x ∈ X2 if and

only if J(x) ≥ 0; (jjj) x ∈ X3 if and only if J(x) ≤ 0.

4. If x ≤ P then (3.j), (3.jj), and (3.jjj) always hold.

Proof. Part (1) follows directly from Theorem 4.1. To prove part (2), note first that under A⊥XW we

have

J(x) = P
x(A ≥ x− P )Ex(u′(W − P )− λ0)− fA(x− P |x)Ex(∆u(γ, Id))

K(x) = P
x(A∗ ≥ 0)Ex(u′(W ∗)− λ0)− fA(I

∗(x)− P |x)Ex(∆u(γ, I∗)).

We also note that

Ex(u′(W − P )− λ0) ≤ Ex(u′(W − P − x+ I∗(x))− λ0)

≤ Ex(u′(W − P − x)− λ0) = J(x), (A.1)

where the first inequality is strict if I∗(x) < x, the second one if I∗(x) > 0. Finally, we have P
x(A ≥

z) > 0 for all z. Hence (i), (ii) and (iii) immediately follow. To prove part (3.jj), let γ = 1 and assume

J(x) ≥ 0. If I∗(x) = 0, then J(x) ≤ 0 but (A.1) gives J(x) > 0. If 0 < I∗(x) < x, we then have

K(x) = 0, but (A.1) implies J(x) < 0. It then follows that I∗(x) = x is the only admissible case and
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(jj) is proved. Points (j) and (jjj) can be proved in a similar way.

Finally, part (4) follows from the fact that for x ≤ P we have J(x) ≤ K(x) ≤ J(x), the first inequality

being strict if I∗(x) < x, the second one if I∗(x) > 0.

A.3 Beyond fractional recovery rules

The assumption of fractional recovery can be relaxed without affecting the main conclusions of the

paper. Let Γ be a smooth, nonnegative function defined on R+ and satisfying Γ ≤ Id. We assume that

on the default event {A + P < I(X)} the insurance buyer recovers Γ(A + P ). The relevant random

variables depending on the recoverable assets are redefined accordingly; for example, W (γ) is replaced by

W (Γ) := W −P −X+Γ(A+P ). Then all the results on optimal indemnity schedules for given premium

appearing in section 4 still apply, provided the condition γ = 1 (no bankruptcy costs) is replaced with

Γ = Id, and the condition 0 ≤ γ < 1 (bankruptcy costs) with Γ 6= Id. As for Pareto optimal contracts,

condition (5.2) now takes the form

∫

X2

J(x)fX(x)dx+ E
(
(1− Γ′(A+ P ∗))u′(W ∗(Γ))1A∗<0

)
=

∫

X3

(−J(x))fX(x)dx.

Finally, all the results given in section 5 still apply, provided the additional condition Γ′ ≤ 1 is satisfied.

B Proofs

B.1 Proofs for section 4

Proposition 4.1

Proof. For fixed x ∈ [0, x] and P ≥ 0, the Hamiltonian can be written as

H(x, I(x), λ0;P ) = [Ux(P, I) + λ0V
x(P, I)] fX(x)

where V x(P, I) := Ex(max{Ã, 0}) and Ux(P, I) is similarly defined. The multiplier λ0 ≥ 0 is constant,

as the Hamiltonian is not state-dependent, and the participation constraint
∫ x

0
V x(P, I)fX(x)dx ≥ v

induces the transversality condition λ0(V (P, I)− v) = 0. The Lagrangian is then given by

L(x, I(x), λ0, λ1(x), λ2(x);P ) = H(x, I(x), λ0;P ) + λ1(x)I(x) + λ2(x)(x− I(x)),

for multipliers λ1, λ2 ≥ 0 satisfying λ1(x)I(x) = 0, λ2(x)(x − I(x)) = 0 for all x ∈ [0, x]. As the
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conditional distribution of A, given X, is continuous, we can differentiate the Lagrangian with respect

to I(x), to obtain

∂

∂I
L(x, I(x), λ0, λ1(x), λ2(x);P ) =Ex(1Ã≥0(u

′(W̃ )− λ0))fX(x)

− fA(I(x)− P |x)Ex(∆u(γ, I)|Ã = 0)fX(x) + λ1(x)− λ2(x).

(B.1)

Fix now x ∈ (0, x]. Assume that 0 < I∗(x) < x, so that λ1(x) = λ2(x) = 0 and the first order

condition reads as K(x) = 0, with K defined in (4.4). Next consider the case I∗(x) = 0, which implies

λ2(x) = 0. As λ1(x) ≥ 0 and fX > 0 on [0, x], the first order condition now reads J(x) = − λ1(x)
fX (x)

≤ 0,

with J(x) defined in (4.2). Finally, consider the case I∗(x) = x, so that λ1(x) = 0. As λ2(x) ≥ 0,

and fX > 0 on [0, x], we can write the first order condition as J(x) = λ2(x)
fX (x)

≥ 0, with J(x) defined in

(4.3).

Proposition 4.1

Proof. If v = E(A) + P then no insurance is the only feasible contract. Conversely, if I∗ ≡ 0 is optimal

then V (P, I∗) = E(A) + P ≥ v. If E(A) + P > v then λ0 = 0 and J(x) = Ex(u′(W − P − x)) > 0, thus

contradicting Proposition 4.1.

Proposition 4.3

Proof. When γ = 1, the function K simplifies to

K(x) = Ex
(
(u′(W ∗)− λ0)1A∗≥0

)
.

Noting that K(x) = 0 for all x ∈ X1, by total differentiation we get

I∗′(x) =
fA(I

∗(x)− P |x)Ex(u′(W ∗)− λ0|A
∗ = 0)− P

x(A∗ ≥ 0)Ex(u′′(W ∗)|A∗ ≥ 0)

Ex((u′(W ∗)− λ0) lnx f(A,W |x)1A∗≥0)− Px(A∗ ≥ 0)Ex(u′′(W ∗)|A∗ ≥ 0)
,

where we have used the fact that I∗ is differentiable on X1. Replacing λ0 recovered again from K(x) = 0,

and rearranging terms, we finally obtain (4.5).

Theorem 4.4

Proof. See Proposition A.3.
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Proposition 4.5

Proof. Proceeding as in Proposition 4.3, lengthy calculations yield (4.7), with the terms δ3, δ4, δ5, δ6, δ7

admitting the following explicit expressions:

δ3(x, γ) :=
Ex(∆u(γ, I∗)|A∗ = 0)

Px(A∗ ≥ 0)
, (B.2)

δ4(x, γ) :=
∂

∂I(x)
Ex(∆u(γ, I)|A∗ = 0)

∣∣∣
I=I∗

(B.3)

δ5(x, γ) := Ex(u′(W ∗)− u′(W ∗(γ))|A∗ = 0) (B.4)

δ6(x, γ) := Covx(∆u(γ, I∗), lnx f(I
∗(x)− P,W |x)

∣∣A∗ = 0) (B.5)

δ7(x, γ) := Ex(∆u(γ, I∗)|A∗ = 0)
[
Ex(lnx f(A,W |x)

∣∣A∗ ≥ 0)− Ex(lnx f(A,W |x)|A∗ = 0)
]
. (B.6)

Proposition 4.6

Proof. (i). If A,W,X are independent, we have δ1 = δ2 = δ6 = δ7 = 0. The result then follows by (4.7).

(ii). We first note that by W⊥(A,X) we have δ1 = δ2 = δ6 = 0. Rearranging terms in (4.7), we obtain

I∗
′
(x) = 1 +

h(x)(δ5(x, γ)− δ4(x, γ)− δ3(x, γ) + δ7(x, γ))

|δ0(x)|+ h(x)(δ3(x, γ) + δ4(x, γ))
.

As γ = 0, we also have δ4(x, 0) = Ex(u′(W ∗)) > 0, and δ5(x, 0)− δ4(x, 0) < 0. We also have δ3 > 0 and

δ7 ≤ 0. To show the latter, note that affiliation of (A,−X) implies that lnx fA(·|x) is nonincreasing (see

Proposition A.2), and hence by Proposition A.1 we obtain

δ7(x, 0) = Ex(∆u(0, I∗))
(
Ex(lnx fA(A|x)|A∗ ≥ 0)− Ex(lnx fA(A|x)|A∗ = 0)

)
≤ 0.

Putting everything together, we finally obtain I∗′(x) ≤ 1 for all x ∈ X1, and hence Id − I∗ is nonde-

creasing on X1.

B.2 Proofs for section 5

Derivation of expression (5.2)
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Proof. For x ∈ X1, we have

∂

∂P
L(x, I∗(x), λ0, λ1(x), λ2(x);P ) =

[
fA(I

∗(x)− P |x)Ex(∆u(γ, I∗)|A∗ = 0)

− Ex(u′(W ∗)1A∗≥0)− (1− γ)Ex(u′(W ∗(γ))1A∗<0) + λ0P
x(A∗ ≥ 0)

]
fX(x)

=−K(x)fX(x)− (1− γ)Ex(u′(W ∗(γ))1A∗<0)fX(x).

Similarly, for x ∈ X2 we can write

∂

∂P
L(x, x, λ0, λ1(x), λ2(x);P ) = −J(x)fX(x)− (1− γ)Ex(u′(W̃ (γ))1A<x−P )fX(x),

whereas for x ∈ X3 we have (∂/∂P )L(x, 0, λ0, λ1(x), λ2(x);P ) = −J(x)fX(x). Noting that for I = I∗

the function K is null on X1, we can then write the necessary condition for an optimum as

∫ x

0

∂

∂P
L(x, I∗(x), λ0, λ1(x), λ2(x);P )

∣∣∣
P=P∗

dx =

∫

X2

(−J(x))fX(x)dx+

∫

X3

(−J(x))fX(x)dx

− (1− γ)E(u′(W ∗(γ))1A∗<0) ≤ 0,

where the inequality holds with equality if P ∗ > 0.

Proposition 5.1

Proof. If 0 ≤ γ < 1, the term (1 − γ)E(u′(W ∗(γ))1A∗<0) is always positive, unless I∗(x) ≤ P ∗ for all

x ∈ [0, x]. If that were the case, however, there would be no insurance, as it can be easily shown that

U(0, 0) > U(P, I) for all contracts (P, I) such that I(x) ≤ P for all x and P > 0. If there is insurance,

the left hand side of (5.2) is therefore positive. But then we must have
∫
X3

(−J(x))fX(x)dx > 0.

Proposition 5.2

Proof. If γ = 1, the term (1 − γ)E(u′(W ∗(γ))1A∗<0) in condition (5.2) is always null. Consider first

the case either W ↓st X or W − X ↑sst X hold. If (P ∗, I∗) provides no insurance on a nonnegligible

set, then the right hand side of (5.2) is positive, as now J is increasing (if W ↓st X) or decreasing (if

W −X ↑sst X) and nonpositive on X3. For equality to hold in (5.2), we then need
∫
X2

J(x)fX(x)dx > 0.

The case in which either W ↓st X or W−X ↑sst X hold is proved similarly, by noting that J is increasing

(if W ↓sst X) or decreasing (if W ↑sst X) and nonnegative on X2.

Proposition 5.3
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Proof. Assume that (P ∗, I∗) solves (2.3) and the constraint (2.4) is not binding, that is V (P ∗, I∗) > v ≥

E(A), so that P ∗ > 0 and λ0 = 0. When γ = 1, this is clearly a contradiction, as we could increase the

insured’s expected utility by lowering the premium. When 0 ≤ γ < 1, we know by Proposition 5.1 that

the contract must provide no insurance for some loss realization, but this contradicts Proposition 4.1,

as J(x) = Ex(u′(W − P ∗ − x)) > 0 for all x when λ0 = 0. Now, assume that (P ∗, I∗) is not Pareto

optimal. This means there is a contract (P̃ , Ĩ) which dominates (P ∗, I∗). By optimality and inefficiency

of (P ∗, I∗) we must then have U(P̃ , Ĩ) = U(P ∗, I∗) and V (P̃ , Ĩ) > V (P ∗, I∗) ≥ v. This means that

(P̃ , Ĩ) is also optimal. Slackness of the state constraint, however, would give a contradiction, as discussed

in the first part of the proof.

Proposition 5.4

Proof. Let (P = 0, I = 0) be Pareto optimal. Then it is optimal for v = E(A). We then have X3 = (0, x],

and hence

J(x) = Ex(u′(W − x))− λ0 ≤ 0 for all x ∈ [0, x]. (B.7)

On the other hand, condition (5.2) implies

∫

X3

(−J(x))fX(x)dx− (1− γ)E(u′(W −X)1A<0) = λ0 − E(u′(W −X)) ≤ 0. (B.8)

From (B.7)-(B.8) we obtain |E(J(X))| ≤ 0, and the result follows.

In particular, if W ↓st X (if W − X ↑sst X) then Ex(u′(W − x)) is increasing (decreasing). In both

cases the contract (P = 0, I = 0) cannot be Pareto optimal.

Theorem 5.5

Proof. Under the assumptions A⊥XW and γ = 1 we can use Theorem 4.4 to characterize the optima in

terms of the zeros of J, J . By Proposition 5.4 W ↓st X implies that no insurance is never Pareto optimal.

Also, J is increasing and J(x) is given by Ex(u′(W−P ∗)−λ0)P
x(A > x−P ∗), with Ex(u′(W−P ∗)−λ0)

nondecreasing. If J(0) > 0, then J > 0 and X2 = (0, x̄], thus contradicting (5.2). If J(0) = 0, then

J ≥ 0, and there is full insurance. If J(0) < 0, then J must cross zero and there is therefore a deductible,

followed by first coinsurance and then full insurance (by Proposition 5.2).

i) The assumption that (W,−X) is affiliated implies W ↓st X (see section 3), and the previous analysis

applies. By Propositions A.1-A.2 we also have that Id − I∗ is nonincreasing on X1. By Definition 4.2,
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optimal contracts are disappearing deductibles.

ii) As we work under the assumption A⊥XW , if W⊥X we have that Ex(u′(W −P ∗)−λ0|A ≥ x−P ∗) =

E(u′(W −P ∗)− λ0), and hence the sign of J is constant. If J(0) < 0, then J < 0, whereas J is initially

negative and crosses zero once. Hence a deductible can be followed by coinsurance only, contradicting

Proposition 5.2. The only remaining possibility is therefore J(0) = 0, in which case J is nonnegative

and J is null on [0, x]; there is therefore full insurance.

Theorem 5.6

Proof. By Proposition 5.4 the assumption W ↓st X implies that no insurance cannot be optimal, i.e.,

X3 6= (0, x̄]. On the other hand, by Proposition 5.1, we know that no insurance must be offered on a set

of positive measure and hence X3 6= ∅.

The assumption W ↓st X implies W − X ↓sst X and hence J is increasing; the case J(0) ≥ 0 can

therefore be excluded, as it contradicts Proposition 5.1. Let us assume J(0) < 0. J must then cross

zero once, for otherwise the contract would be no insurance by Proposition A.3. Letting x1 denote the

zero of J , we have X3 = (0, x1]. If J < 0 for all x ∈ [0, x], then X1 = (x1, x̄]; otherwise we have that the

contract is coinsurance (if J < 0) and full insurance (only if J ≥ 0).

(i) The assumption W⊥X implies that J < 0, because J(0) < 0 and hence J(x) = J(0)Px(A >

x− P ∗)− fA(x− P ∗|x)E(∆u(γ, Id)) < 0. We have therefore coinsurance on the set (x1, x̄].

(ii) If W⊥X, γ = 0, and (A,−X) affiliated, we can use Propositions 4.6 to obtain the result.

Theorem 5.7

Proof. By Proposition 5.4, W − X ↑sst X implies that no insurance cannot be Pareto optimal, i.e.

X3 6= (0, x̄], and P ∗ > 0. If A⊥XW and W −X ↑sst X, then J and Ex(u′(W −P ∗)−λ0) are decreasing.

If J(0) ≤ 0 then J < 0, but we would then have X3 = (0, x̄] by Proposition A.3. Hence J(0) > 0 and

the contract is initially full insurance, again by Proposition A.3, as P ∗ > 0. If γ = 1, it follows by

Proposition 5.2 that no insurance must be offered on a nonnegligible set. The same conclusion holds if

0 ≤ γ < 1, by Proposition 5.1. Therefore in both cases we have X3 6= ∅. But then J must cross zero once

at x1 ∈ (0, x) and X3 = (x1, x], by Proposition A.3. Focusing then on the set (0, x̄1), when γ = 1 we

have X2 = (0, x1] and X1 = (x1, x1), with x1 the first zero of J . When 0 ≤ γ < 1, on every subinterval

of (0, x̄1) where J < 0, and in particular on an interval (x
last

, x1), where x
last

is the last zero of J , the

contract offers coinsurance, and on the remaining sets the contract may offer full insurance.
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Theorem 5.8

Proof. The Hamiltonian for problem (2.3) is still given by H(x, I(x), λ0;P ) (see section 4), but with the

premium now acting as the initial/terminal value of a fictitious, constant state variable. We define the

maximized Hamiltonian as

Ĥ(x, P, λ0) = max
z∈[0,x]

H(x, z, λ0;P ).

If H(x, z, λ0;P ) is concave in P , then Ĥ(x, ·, λ0) is concave (e.g. Seierstad and Sydsaeter, 1987, p. 164).

This means that the Arrow condition applies and the necessary conditions for optimality given by the

Maximum principle are also sufficient (e.g. Seierstad and Sydsaeter, 1987, p. 107). In particular, letting

(P̂ , Î) denote an admissible insurance contract with associated adjoint constant λ̂0 ≥ 0, we have that

(P̂ , Î) is optimal if and only if all the conditions of the Maximum Principle are satisfied. To prove

concavity of H(x, z, λ̂0;P ) in P , we compute the second order derivative (∂2/∂P 2)H(x, I(x), λ̂0;P ) to

obtain, after some calculations, the explicit expression

∂2

∂P 2
H(x, I(x), λ̂0;P ) = Ex

(
u′′(W̃ )1Ã≥0

)
− fA(I(x)− P |x)

{
Ex

(
u′(W̃ )

∣∣Ã = 0
)
− Ex

(
u′(W̃ )

∣∣Ã ≥ 0
)

+ Ex
(
u′(W̃ )− γu′(W̃ (γ))

∣∣Ã = 0
)
+ Ex

(
∆u(γ, I(x)) (lna fA(I(x)− P,W |x) + h(x))

∣∣Ã = 0
)}

.

Under A⊥XW , the above is clearly strictly negative for γ = 1. When γ = 0, imposing the additional

condition lna fA(I(x)− P̂ |x) ≥ −h(x) is sufficient for the last term to be nonnegative. The result then

follows.
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Figure 1: Source: Guy Carpenter & Co., see Froot (2001)
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Figure 2: The coinsurance set is given by X1 = X ′
1 ∪ X ′′

2 , the full insurance set by X2, and the no
insurance set by X3. There is a deductible, x1 = x1, followed by coinsurance until x2 = x1,
and then full insurance. There is also an upper limit to full coverage at x3 = x2.
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Figure 3: Insurance coverage (I∗(x)) for different levels of fractional recovery. Assumptions: u(w) =
−e−αw, with α = 0.05 (note that in this case the efficient contract does not depend on the
insurance buyer’s wealth distribution); A,W,X independent; A log-normally distributed, with
A ∼ lnN (30, 15); X has Gamma distribution truncated at x̄ = 100 with mean 20 and standard
deviation 10; v = 30.

40



0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

I* (x
)/x

x

γ=0
γ=0.25
γ=0.50
γ=0.75

Figure 4: Insurance coverage as a fraction of the exposure (I∗(x)/x) for different levels of fractional
recovery.
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