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Abstract. In the United States, the boundaries of legislative districts are often
drawn by political partisans. In the resulting partisan gerrymandering problem, a
designer partitions voters into equal-sized districts with the goal of winning as many
districts as possible. When the designer can perfectly predict how each individual
will vote, the solution is to pack unfavorable voters into homogeneous districts and
crack favorable voters across districts that each contain a bare majority of favorable
voters. We study the more realistic case where the designer faces both aggregate
and individual-level uncertainty, provide conditions under which appropriate gener-
alizations of the pack and crack solution remain optimal, and analyze comparative
statics. Optimal districting plans are equivalent to special cases of segregate-pair dis-
tricting, a generalization of pack and crack where all sufficiently unfavorable voter
types are segregated in homogeneous districts, and the remaining types are matched
in a negatively assortative pattern. Methodologically, we exploit a mathematical
connection between gerrymandering—partitioning voters into districts—and inform-
ation design—partitioning states of the world into signals.
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1. Introduction

Legislative district boundaries are drawn by political partisans under many electoral
systems (Bickerstaff, 2020). In the United States, the importance of districting has re-
cently been underscored by the rise of computer-assisted partisan districting (Newkirk,
2017) together with concerted efforts to gain and exploit control of the districting pro-
cess. These trends culminated in “The Great Gerrymander of 2012” (McGhee, 2020),
where the Republican party’s Redistricting Majority Project (REDMAP), having previ-
ously targeted state-level elections that would give Republicans control of redistricting,
aggressively redistricted several states, including Michigan, Ohio, Pennsylvania, and
Wisconsin. The resulting districting plans are widely viewed as contributing to the
outcome of the 2012 general election, where Republican congressional candidates won
a 33-seat majority in the House of Representatives with 49.4% of the two-party vote
(McGann, Smith, Latner, and Keena, 2016).1 In light of these developments—along
with the Supreme Court ruling in Rucho v. Common Cause (2019) that partisan ger-
rymanders are not judiciable in federal court—partisan gerrymandering looks likely to
remain a prominent feature of American politics for some time. While the Republican
party raised over $30 million to fund REDMAP in the 2010 redistricting cycle, by 2022
it hopes to have raised $125 million for REDMAP 2020.2

In order to better define, measure, assess, and regulate gerrymandering, it is valuable to
understand how a partisan designer may optimally exercise the power to gerrymander.3

In the United States, undoubtedly the most important constraint a gerrymanderer faces
is that all districts must contain the same number of voters. This constraint is ob-
viously binding and is strictly enforced.4 There are also other important constraints,

1However, it is difficult to determine how much of the gap between the Republican vote share
and seat share is attributable to intentional gerrymandering rather than other features of political
geography, such as the concentration of Democratic voters in cities (Chen and Rodden, 2013).

2See http://www.redistrictingmajorityproject.com/ for the 2012 REDMAP summary report
and https://sglf.org/issues/redistricting/ for information on REDMAP 2020.

3Of course, asking this question in no way endorses gerrymandering, just as investigating mono-
polistic behavior does not endorse monopoly. On the contrary, understanding such behavior may be
an important step towards curbing it.

4In Karcher v. Daggett (1983), the Supreme Court rejected a districting plan in New Jersey with
less than a 1% deviation from population equality, finding that “there are no de minimus population
variations, which could practically be avoided, but which nonetheless meet the standard of Article I,
Section 2 [of the U.S. Constitution] without justification.”
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such as the federal requirements that districts are contiguous and do not discrimin-
ate on the basis of race, and various state-level restrictions, such as “compactness”
requirements, requirements to respect political sub-divisions such as county lines, re-
quirements to preserve “communities of interest,” and so on. Without minimizing the
practical significance of these complex additional constraints, in this paper we follow
much of the literature in focusing on the simpler problem with only the equipopulation
constraint.5 We call this problem of freely partitioning voters into equal-sized districts
so as to win as many districts as possible the partisan gerrymandering problem.

When the designer knows exactly how each individual will vote, the solution to this
problem is the well-known pack and crack districting plan: if the designer’s party is
supported by a fraction x0 < 1/2 of voters, he creates a fraction 2x0 of “cracked”
districts which he wins with 50% of the vote, and a fraction 1 − 2x0 of “packed”
districts where he wins no votes at all. (If instead x0 ≥ 1/2, the designer can make all
districts identical and win them all.) We instead consider the more realistic case where
the designer faces uncertainty both about the total number of votes he will receive
(aggregate uncertainty) and about which voters will vote for him conditional on the
aggregate vote (individual uncertainty). We are of course not the first to notice the
importance of uncertainty in gerrymandering: in 1922, the political scientist Charles
Merriam wrote of gerrymandering that “The shifts in party vote make it a dangerous
practice, which sometimes recoils on the heads of those who undertake it,” (cited in
Owen and Grofman, 1988). But, as we will see, previous analyses focused on specific
forms of uncertainty, yielding important but disparate results. We instead develop a
general framework that unifies the literature, while also establishing new results on the
form of optimal districting plans and new comparative statics.

Our analysis leverages a tight mathematical connection between partisan gerryman-
dering and information design. In information design (recently surveyed by Bergemann
and Morris, 2019 and Kamenica, 2019), a designer partitions states of the world into

5See Friedman and Holden (2008) for more discussion of these constraints. We remark that contigu-
ity is not as severe a constraint as it might seem to be, because contiguous districts can have extremely
irregular shapes. The title of this paper, typeset in Gerry font (https://www.uglygerry.com/), con-
tains many examples of irregularly shaped districts. Another notable constraint is that in reality
gerrymanderers do not assign individual voters to districts, but rather small groups of voters, such
as census blocks. Thus a “voter” in our model should be interpreted as the smallest group of voters
that can actually be districted.
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Figure 1. An Example of Packing and Cracking under Uncertainty

signals, in order to induce a favorable action by a receiver in as many states of the world
as possible. In partisan gerrymandering, a designer partitions voters into equal-sized
districts, in order to induce a favorable majority vote in as many districts as possible.
For example, pack and crack districting (without uncertainty) is equivalent to optimal
information design with a binary state, as in the well-known “prosecutor–judge” ex-
ample of Kamenica and Gentzkow (2011). In turn, gerrymandering under uncertainty
is akin to information design with an informed receiver, where the receiver’s private
information is analogous to the aggregate shock facing the gerrymanderer. Figure 1
illustrates a simple example of this connection. Here, each voter is either a “supporter”
or an “opponent,” and U(x) is the probability that the designer wins a district with
x supporters.6 When the share of supporters in the population x0 exceeds the critical
value x∗, the designer’s expected seat share is maximized by creating uniform districts,
each with x0 supporters. When instead x0 < x∗ (as in the figure), the optimal plan
creates “cracked” districts with x∗ supporters and “packed” districts with 0 supporters,
and the designer’s expected seat share equals U(x0).7 This simple graphical analysis
immediately reproduces the main insight of the important work of Owen and Grofman
(1988).

6In information design, U(x) would be the probability that the receiver takes the sender’s preferred
action when the signal induces posterior belief x.

7Note that if aggregate uncertainty vanishes, in that U converges to the step function 1{x ≥ 1/2},
then x∗ converges to 1/2, and we recover classical pack and crack districting.
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We consider a standard electoral model with one-dimensional voter types (parameter-
izing a voter’s probability of voting for the designer’s party, i.e., a political spectrum
ranging from “extreme opponents” to “extreme supporters”) and one-dimensional ag-
gregate uncertainty (parameterizing the designer’s aggregate vote share), where the de-
signer partitions voters into districts prior to the realization of aggregate uncertainty.
We first analyze several benchmark cases that capture the key forces behind optimal
districting (Section 3). Here we show that some districting plans that have previously
been viewed as alternatives to pack and crack (such as the “matching extremes” plan
of Friedman and Holden, 2008) are better seen as special cases of pack and crack. We
also delineate the precise connection between gerrymandering and information design,
which forms the basis for the rest of our analysis.

The core of the paper (Sections 4–6) then analyzes optimal districting when the de-
signer aims to maximize his expected seat share. An insight here is that all optimal
districting plans identified in our paper (under our preferred assumptions) and in the
prior literature are equivalent to special cases of segregate-pair districting, where all
sufficiently unfavorable voter types are segregated in homogeneous districts, and the
remaining types are matched in a negatively assortative pattern.8 We also consider
comparative statics, for example establishing that a designer facing greater aggregate
uncertainty creates a more conservative districting plan with more packed districts
and fewer, more secure cracked districts, and that a less popular designer benefits
more from controlling the districting process (in terms of the ratio of his expected seat
share under an optimal districting plan to that under various benchmark plans). The
latter result gives one possible explanation for why in recent decades the Republicans—
typically the electorally less popular party—have pursued gerrymandering much more
aggressively than the Democrats.

Finally, in Section 7 we consider more general objective functions for the designer,
such as weighted averages of expected seat share and the probability of controlling
a majority of seats. One result here is that as the designer puts more weight on
controlling a majority, he creates more packed districts and fewer cracked districts.

Our results involve a range of different assumptions about the form of uncertainty
facing the designer and the designer’s objective function. To help orient the reader,

8As we will see, segregate-pair districting is a kind of hybrid (or mutual generalization) of Friedman
and Holden (2008)’s matching extremes plan and Gul and Pesendorfer (2010)’s “p-segregation” plan.
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the main results on the form of optimal districting plans are summarized in Table 1 at
the end of the paper. In the Conclusion, we offer some speculative take-aways for the
analysis of partisan gerrymandering in practice.

We build closely on three prior papers on optimal partisan gerrymandering: Owen and
Grofman (1988), Friedman and Holden (2008), and Gul and Pesendorfer (2010). Owen
and Grofman’s model is equivalent to the special case of our model with two voter types
(e.g., Democrats and Republicans). In this setting, they characterize optimal pack and
crack schemes under uncertainty, deriving results like those captured in Figure 1 (see
also Corollary 2). Gul and Pesendorfer consider competition between two designers
who each control districting in some area and aim to win a majority of seats.9 A
simplified version of their model with a single designer is equivalent to the special
case of our model where the probability that a given voter votes for the designer is
linear in the voter’s type.10 Under their assumptions, optimal districting plan takes
a segregate-pool form, where voters with types below a threshold are segregated, and
those with higher types are pooled into uniform districts.11 This result is a special
case of our Proposition 6, which provides necessary and sufficient conditions for the
optimality of segregate-pool districting. Friedman and Holden present a general model
that is similar to ours (and in particular allows non-linear vote shares), but their main
results focus on the special case where individual uncertainty is small, but non-zero.
We characterize optimal districting without individual uncertainty in Proposition 3;
the plans characterized by Friedman and Holden are a subset of these. We also give
conditions for the same plans to arise with large individual uncertainty (Corollary 4).12

The broader literature on gerrymandering and redistricting addresses a wide range of
issues, including geographic constraints on gerrymandering (Sherstyuk, 1998; Shotts,
2001; Puppe and Tasnádi, 2009), socially optimal districting (Gilligan and Matsu-
saka, 2006; Coate and Knight, 2007; Bracco, 2013), district compactness (Chambers
and Miller, 2010; Fryer and Holden, 2011; Ely, 2019), the interaction of redistricting
and policy choices (Shotts, 2002; Besley and Preston, 2007), measuring gerrymandering
(Grofman and King, 2007; McGhee, 2014; Stephanopoulos and McGhee, 2015; Duchin,

9Friedman and Holden (2020) study designer competition in the model of their 2008 paper.
10This linear case is itself a generalization of the binary-type case considered by Owen and Grofman.
11Gul and Pesendorfer call this pattern p-segregation.
12As we discuss in Section 5, Friedman and Holden also develop two lemmas that apply more

generally, which are very similar to our Proposition 7.
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2018; Gomberg, Pancs, and Sharma, 2020), and assessing the consequences of redis-
tricting (among many: Gelman and King, 1994; McCarty, Poole, and Rosenthal, 2009;
Hayes and McKee, 2009).13 As the partisan gerrymandering problem interacts with
many of these issues, our analysis may facilitate future research in these areas.

2. Model

There is a continuum of voters. Each voter has a type s ∈ [0, 1], which is observed by
the designer. Let F denote the population distribution of voter types. The aggregate
shock is denoted by r ∈ R; its distribution is denoted by G. The share of type-s voters
who vote for the designer when the aggregate shock takes value r is deterministic and
is denoted by v(s, r) ∈ [0, 1]. We assume that the distributions F and G are continu-
ously differentiable with strictly positive densities f and g; however, we allow discrete
distributions in some benchmark cases. We also assume that v(s, r) is continuously dif-
ferentiable, strictly increasing in s, and strictly decreasing in r (outside the benchmark
case where v(s, r) = 1{s ≥ r} for all s and r). That is, higher-type voters are stronger
supporters of the designer (in that they vote for him with higher probability for every
realization of the aggregate shock r), and higher realizations of the aggregate shock
are less favorable for the designer (in that they reduce the probability with which each
type of voter votes for him.)

The designer thus faces uncertainty about two types of objects: the aggregate vote
share (determined by r), and individual voters’ votes conditional on their type and
the aggregate vote share (captured by v(s, r), the probability that a type-s voter votes
for the designer given aggregate shock r). The latter form of uncertainty may be
interpreted as concerning voter “taste shocks,” where each type-s voter independently
draws a preference parameter t ∈ R according to a distribution Q(t|s), and votes for
the designer iff t ≥ r. With this interpretation, we have

Q(r|s) = 1− v(s, r) for all (s, r).14

We will consider the cases where either or both types of uncertainty are absent or
small, as well as the case where both types of uncertainty are substantial.

13Gomberg, Pancs, and Sharma (2020) is a contemporaneous paper which likewise emphasizes
the connection between gerrymandering and information design, albeit in a model without aggregate
uncertainty.

14Technically, for Q(t|s) to be a proper probability distribution for all s, this interpretation requires
the additional assumption that limr→−∞ v(s, r) = 1 and limr→∞ v(s, r) = 0 for all s.
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The designer allocates voters among a continuum of equal-sized districts based on
their types s, which determines a distribution P of s in each district. As a district is
characterized by the distribution P of voter types it contains, a districting plan—which
specifies the measure of districts with each voter-type distribution P—is a distribution
H over distributions P of s, such that the population distribution of s is given by F :
thus, H ∈ ∆∆[0, 1] and ∫

PdH(P ) = F.

For example, under uniform districting, where all districts are the same, H assigns
probability 1 to P = F . In the opposite extreme case of segregation, where each
district consists entirely of one type of voter, every distribution P in the support of H
takes the form P = δs for some s ∈ [0, 1], where δs denotes the degenerate distribution
on voter type s. We henceforth identify a district with the distribution of voter types
it contains, and thus speak of “a district P” rather than “a district with voter-type
distribution P .”

The designer wins a district iff he receives a majority of the district vote. Thus, the
designer wins a district P iff r satisfies

∫
v(s, r)dP (s) ≥ 1/2. Denote the threshold

value of the aggregate shock below which the designer wins a district P by

r∗(P ) = max
{
r :

∫
v(s, r)dP (s) ≥ 1/2

}
.15

Note that, whenever the designer wins a district P , he also wins all districts P ′ satis-
fying r∗(P ′) ≥ r∗(P ). Our model thus reflects what Grofman and King (2007, p. 12)
call “a key empirical generalization that applies to all elections in the U.S. and most
other democracies: the statewide or nationwide swing in elections is highly variable
and difficult to predict, but the approximate rank order of districts is highly regular
and stable.”16

The designer’s utility from winning a measure m ∈ [0, 1] of districts is W (m), where
W is an increasing function, and the designer evaluates lotteries over m by expected
utility. Much of the literature focuses on two specific designer objective functions:

15We employ the convention that r∗(P ) = ∞ if
∫
v(s, r)dP (s) ≥ 1/2 for all r, and r∗(P ) = −∞ if∫

v(s, r)dP (s) < 1/2 for all r.
16Of course, the rank order of districts does change during rare but important political realignments.

Such realignments could be allowed in a yet more general model, with district-level uncertainty in
addition to individual and aggregate (state-level) uncertainty. Our model instead allows a very general
form of swings, but not realignments.
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the majoritarian objective, where there exists a threshold seat share k ∈ (0, 1) (often
1/2) such that W (m) = 1{m ≥ k}, and the proportional objective, where W (m) = m

for all m ∈ [0, 1]. That is, under the majoritarian objective the designer maximizes
the probability of winning at least k seats, while under the proportional objective the
designer maximizes his expected seat share. Outside the majoritarian case, we assume
that W is continuously differentiable with strictly positive derivative w.

Under a districting plan H, the designer’s utility when the realized value of the ag-
gregate shock is r equals

W

(∫
P

1{r ≤ r∗(P )}dH(P )

)
.

Thus, the designer’s problem is

max
H∈∆∆[0,1]

∫
r

W

(∫
P

1{r ≤ r∗(P )}dH(P )

)
dG(r)

s.t.
∫
P

PdH(P ) = F.

This problem nests the optimal gerrymandering problems of Owen and Grofman (1988),
Friedman and Holden (2008), and (with a single designer) Gul and Pesendorfer (2010).17

Unfortunately it is not very tractable at this level of generality: the designer is choosing
a high-dimensional object (a distribution of distributions of voter types) to maximize
an objective that is non-linear in the shares of districts of different types dH(P ). We
will therefore consider different cases of the model (i.e., different assumptions on F ,
G, v, and W ), focusing on the most realistic cases (including those where aggregate
or individual uncertainty is small), cases that nest the prior literature, and cases that
yield relevant comparative statics.

We can first note a couple immediate comparative statics, which may help clarify the
model. First, if the designer becomes more popular, in that F , G, or v shifts in his
favor, then his expected utility increases under an optimal districting plan. Here, F
becomes more favorable if F (s) decreases for all s: this lets the designer increase the
distribution of voter types s in each district (in the first-order stochastic dominance
sense), which increases the cutoff aggregate shock r∗ below which the designer wins

17Another apparent difference with Gul and Pesendorfer (2010) is that they consider the major-
itarian objective with district-level uncertainty in addition to aggregate uncertainty. However, once
one conditions on the pivotal value of the aggregate shock, the district-level uncertainty in Gul and
Pesendorfer plays the same role as the aggregate uncertainty in our model.
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each district, and hence increases the designer’s expected utility. Similarly, v becomes
more favorable if v(s, r) increases for all (s, r): for any districting plan, this increases
the cutoff aggregate shock r∗ below which the designer wins each district. Finally, G
becomes more favorable if G(r) increases for all r: this makes more favorable aggregate
shocks more likely, and thus increases the probability that the designer wins each
district under any districting plan.

Second, under the taste shock interpretation of v(s, r), the designer’s expected utility
under an optimal districting plan increases if he becomes better-informed about voter
preference parameters t. Recall that (F̃ , Q̃) is a garbling of (F,Q) if there exists a
family of conditional densities c(s̃|s) such that q̃(t|s̃)f̃(s̃) =

∫
c(s̃|s)q(t|s)f(s)ds for all

(s̃, t). Intuitively, s̃ simply adds noise to s and is thus less informative about t. The
designer is better-off under (F,Q) because any districting plan that is feasible under
(F̃ , Q̃) is also feasible under (F,Q), as the designer can stochastically relabel voter
types from s to s̃ according to c(s̃|s) and then allocate voters among districts based
on the relabeled types.18 Note also that the designer’s information does not affect his
expected vote share. Therefore, if the designer maximizes his expected seat share (as
we will assume in Sections 4–6), any measure of gerrymandering that increases with the
designer’s expected seat share and decreases with his expected vote share (such as the
“efficiency gap” of Stephanopoulos and McGhee (2015)) increases when the designer
becomes better-informed.

3. Benchmark Cases

We begin by considering several benchmark cases. These simple cases convey many of
the main ideas in this paper as well as the prior literature. As we discuss in Section
3.6, they also illustrate the main forces governing the designer’s problem and can help
frame much of our subsequent analysis.

3.1. Classical Pack and Crack. We start with the classical case without uncertainty,
where it has long been known that optimal districting plans “pack and crack.”

18This result is essentially Blackwell’s theorem (Blackwell, 1953). See also Proposition 4 of Fried-
man and Holden (2008), Theorem 4 of Gul and Pesendorfer (2010), and Proposition 3 of Gomberg,
Pancs, and Sharma (2020).
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Proposition 1. Assume there is no aggregate or individual uncertainty: there exists
r0 such that r = r0 with certainty, and v(s, r0) = 1{s ≥ r0} for all s. Denote the
fraction of the designer’s “supporters” by x0 = 1− F (r0). There are two cases.

(1) If x0 ≥ 1/2, a districting plan is optimal iff it creates measure 1 of districts
satisfying PrP (s ≥ r0) ≥ 1/2. Under such a plan, the designer wins all districts.

(2) If x0 < 1/2, a districting plan is optimal iff it creates measure 2x0 of “cracked”
districts satisfying PrP (s ≥ r0) = PrP (s < r0) = 1/2 and measure 1 − 2x0 of
“packed” districts satisfying PrP (s < r0) = 1. Under such a plan, the designer
wins the cracked districts.

Case (1) says that a designer with majority support in the population may choose
any districting plan where he retains majority support in every district. One such
optimal plan is uniform districting. Case (2) is the classical pack and crack solution
for a designer with minority support: a designer supported by fraction x0 < 1/2 of the
population with no uncertainty creates 2x0 districts that he wins with 50% of the vote
and 1− 2x0 districts where he receives no votes at all.

In the special case where voter types are binary, the classical pack and crack plan is
unique: it creates 2x0 districts with 50% favorable voters and 1 − 2x0 districts with
no favorable voters. However, there are many optimal plans when voter types are
continuous: for example, some favorable voter types can be assigned to only a subset
of cracked districts, and some unfavorable voter types can be assigned only to packed
districts. This seemingly pedantic point will become important when we recognize
that optimal plans under a small amount of uncertainty converge to some but not all
classical pack and crack plans. See Figure 2, which illustrates four varieties of pack
and crack districting that play important roles in our analysis.

With a finite number N of districts and x0 < 1/2, the designer optimally wins ⌊2x0N⌋
districts, where ⌊·⌋ denotes the round-down function.19 Our continuum district as-
sumption lets us ignore such integer problems. We will clarify how our results extend
to the finite-district case when appropriate.

19Obtaining a majority in ⌊2x0N⌋ districts requires ⌊2x0N⌋/2N favorable voters. The remaining
x0 − ⌊2x0N⌋/2N favorable voters are of no use to the designer and can be assigned to any district.
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1− 2x0 x0 x0

packing cracking

(a) simple pack and crack districting

1− 2x0 x0 x0

segregation cracking

(b) segregate-pool districting

1− 2x0 x0 x0

segregation pairing

(c) segregate-pair districting
x0 1− 2x0 x0

pairing

(d) matching extremes districting

Figure 2. Four Varieties of Pack and Crack Districting

Notes: In each panel, the horizontal axis is the interval of voter types,
s, where red voters are supporters and blue voters are opponents. The
designer wins red districts and loses blue ones. Solid shading indic-
ates pooling; curved lines connecting two voter types indicate pairing;
hatched shading indicates segregation.

If there is almost no aggregate or individual uncertainty—a case that may be fairly
realistic in some elections—then a simple variation of a classical pack and crack plan is
approximately optimal. Suppose that r ≈ r0 with high probability and v(s, r) ≈ 1{s ≥
r} for s ̸= r. If 1 − F (r0) > 1/2, the designer wins all districts with high probability
under uniform districting. If 1 − F (r0) < 1/2, the designer can win 2(1 − F (r0 +

ε))/(1 + 2ε) districts with high probability, for arbitrarily small ε > 0, by composing
each of these districts of fraction 1/2 + ε voters with s > r0 + ε and fraction 1/2 − ε

voters with lower types; moreover, this plan is approximately optimal because under
any districting plan the designer loses at least 1 − 2(1 − F (r0 − ε))/(1 − 2ε) districts
with high probability. A similar comment applies to the districting plans characterized
in Propositions 2 and 3 in the following subsections: similar variations of these plans
are approximately optimal when there is almost no aggregate uncertainty (Proposition
2) or almost no individual uncertainty (Proposition 3).
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3.2. No Aggregate Uncertainty. We next consider the case with individual uncer-
tainty but no aggregate uncertainty.

Proposition 2. Assume there is no aggregate uncertainty: there exists r0 such that
r = r0 with certainty. There are two cases.

(1) If
∫
v(s, r0)dF (s) ≥ 1/2, a districting plan is optimal iff it creates measure 1

of districts satisfying
∫
v(s, r0)dP (s) ≥ 1/2. Under such a plan, the designer

wins all districts.

(2) If
∫
v(s, r0)dF (s) < 1/2, let s∗ be the unique solution to

∫ 1

s∗
(v(s, r0)−1/2)dF (s) =

0. A districting plan is optimal iff it creates measure 1− F (s∗) of cracked dis-
tricts satisfying PrP (s ≥ s∗) = 1 and

∫ 1

s∗
v(s, r0)dP (s) = 1/2, and measure

F (s∗) of packed districts satisfying PrP (s < s∗) = 1. Under such a plan, the
designer wins the cracked districts.

In Case (1), the designer wins all districts under uniform districting. In Case (2), an
optimal plan assigns all voters with types s > s∗ to favorable districts, so that the
designer wins exactly 50% of the vote in every favorable district, and assigns the re-
maining voters to unfavorable districts in an arbitrary way. The intuition is that the
designer maximizes the measure of favorable districts by assigning only voters with
types above s∗ to these districts: if any such voters were replaced by voters with types
below s∗, then the designer would win less than 50% of the vote in some previously-won
district. Note that, since the designer wins 50% of the vote in each favorable district
and the total vote share in the unfavorable districts is as small as possible, the pack
and crack vote share pattern is approximated as closely as possible given the designer’s
inability to perfectly predict how each individual will vote. The resulting vote share
pattern seems more realistic than the pack and crack pattern: when aggregate uncer-
tainty is small or absent, the designer can closely target a 50% vote share in favorable
districts by adjusting the shares of likely-favorable and likely-unfavorable voters, but
he cannot target a 0% vote share in unfavorable districts because every type of voter
votes for him with some positive probability.

When individual uncertainty vanishes,
∫
v(s, r0)dF (s) ≥ 1/2 iff x0 ≥ 1/2, and if

x0 < 1/2 then s∗ satisfies 1 − F (s∗) = 2x0. Thus, when x0 < 1/2, the optimal
plans characterized in Proposition 2 limit to a subset of the pack and crack plans
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characterized in Proposition 1. In particular, some of these optimal plans limit to
the pack and crack plans depicted in Figures 2(a), 2(b), and 2(c), but none of them
limits to the pack and crack plan depicted in Figure 2(d). Thus, plans of the forms
depicted in Figures 2(a), 2(b), and 2(c) can be optimal with individual uncertainty but
no aggregate uncertainty, while plans of the form depicted in Figure 2(d) cannot.

3.3. No Individual Uncertainty. We now turn to the case with aggregate uncer-
tainty but no individual uncertainty.

Proposition 3. Assume there is no individual uncertainty: v(s, r) = 1{s ≥ r} for
all (s, r). Denote the median voter type by sm = F−1(1/2). A districting plan is
optimal iff for each district P ∈ supp(H) there exists a voter type sP ≥ sm such that
PrP (s = sP ) = PrP (s < sm) = 1/2. Under such a plan, the designer wins district P

iff r ≤ sP .

That is, for each voter type s above the median, the designer creates a district consisting
of 50% voters with this type and 50% voters with below-median types. The intuition
is easy to see with a finite number N of districts. With no individual-level uncertainty,
the probability that the designer wins a given district is entirely determined by the
median voter type in that district.20 The strongest district the designer can possibly
create is formed by combining the 1/2N voters with the highest types with any other
voters: that is, it is impossible to create a district where the median voter type is above
the 1−1/2N quantile of the population distribution. Similarly, it is impossible to create
n districts where the median voter type is everywhere above the 1 − n/2N quantile
of the population distribution. But, by creating districts one at time according to the
greedy algorithm that always combines the 1/2N remaining voters with the highest
types with 1/2N voters with below-median types, the designer ensures that the median
voter type in the nth strongest district is exactly the 1− n/2N quantile. So this plan
is optimal.

The optimal plans in Proposition 3 are a subset of the classical pack and crack plans
characterized by Proposition 1. In particular, if sm ≥ r0 then PrP (s ≥ r0) ≥ 1/2

20This is no longer true once individual uncertainty is introduced. For example, if v(s, r) is linear in
s as in Section 4, then the probability that the designer wins a district is determined by the mean voter
type in that district, as in probabilistic voting models with uniform taste shocks (Hinich, Ledyard,
and Ordeshook, 1973).
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for every district P , so the optimal plans in Proposition 3 are optimal in Case (1)
of Proposition 1. If instead sm < r0, then PrP (s ≥ r0) = 1/2 for a set of districts
P of measure 2x0, so the optimal plans in Proposition 3 are optimal in Case (2) of
Proposition 1. For example, the pack and crack plan depicted in Figure 2(d) remains
optimal when v(s, r) = 1{s ≥ r} but r is not degenerate, while the plans depicted in
Figures 2(a), 2(b), and 2(c) are not optimal in this setting. In general, the optimal plans
in Proposition 3 have the feature that, for every realization of aggregate uncertainty r,
either the designer wins every district, or the designer wins some districts with exactly
50% of the vote and wins zero votes in all other districts. This is exactly the pack and
crack vote share pattern.

The main result of Friedman and Holden (2008) characterizes optimal districting plans
when individual uncertainty is sufficiently small (but non-zero), under some additional
assumptions which we discuss in Section 5. As individual uncertainty vanishes, the
plans they characterize limit to a subset of those characterized in Proposition 3, which
in turn are a subset of pack and crack plans. The optimal plans in Friedman and
Holden’s environment are thus a refinement of pack and crack.21

3.4. Majoritarian Objective. While the preceding benchmarks considered particu-
lar forms of designer uncertainty, the next two consider particular designer objectives,
starting with the majoritarian objective.

Proposition 4. Assume there exists k ∈ (0, 1) such that W (m) = 1{m ≥ k}. Let
sk = F−1(1 − k) and let rk be the unique solution to

∫ 1

sk
(v(s, rk) − 1/2)dF (s) = 0.

A districting plan is optimal iff it creates measure k of cracked districts satisfying
PrP (s ≥ sk) = 1 and

∫ 1

sk
v(s, rk)dP (s) = 1/2, and measure 1 − k of packed districts

satisfying PrP (s < sk) = 1. Under such a plan, the designer wins the cracked districts
iff r ≤ rk.

With the majoritarian objective, the designer maximizes the probability of winning
at least fraction k of the districts, or equivalently districts representing fraction k of
the voters. The designer thus concentrates the k most favorable voters in k districts;

21Note that in every optimal plan in Proposition 3, all voters with the highest type s are assigned to
the same district: in Friedman and Holden’s words, “one’s most ardent supporters should be grouped
together.” This is what Friedman and Holden mean when they write that “cracking is never optimal”
and summarize their findings as “sometimes pack, but never crack.”
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moreover, to ensure that he wins all of these districts for the widest possible range of
realizations of aggregate uncertainty, these districts should be equally favorable.22

3.5. Proportional Objective. Now consider the proportional objective.

Proposition 5. Assume that W (m) = m for all m ∈ [0, 1]. The designer’s problem
becomes

max
H∈∆∆[0,1]

∫
P

G(r∗(P ))dH(P )

s.t.
∫
P

PdH(P ) = F.

This follows because when W (m) = m the designer’s objective is a double integral over
r and P , and reversing the order of integration gives the desired formulation:∫

r

W

(∫
P

1{r ≤ r∗(P )}dH(P )

)
dG(r) =

∫
r

∫
P

1{r ≤ r∗(P )}dH(P )dG(r)

=

∫
P

∫
r

1{r ≤ r∗(P )}dG(r)dH(P )

=

∫
P

G(r∗(P ))dH(P ).

Note that the resulting program is linear in the probabilities dH(P ), unlike in the
general case with non-linear W . This is a substantial simplification, which we will
impose for the rest of the paper (except for Section 7, where we consider how our results
extend to more general designer objectives). Importantly, the designer’s problem is now
equivalent to a Bayesian persuasion problem, where the designer’s utility of inducing
posterior distribution P is G(r∗(P )).23 Much of the Bayesian persuasion literature gets
traction by assuming that the receiver’s utility depends on P only through its mean,
EP [s] (Gentzkow and Kamenica, 2016; Kolotilin, Mylovanov, Zapechelnyuk, and Li,
2017; Kolotilin, 2018; Dworczak and Martini, 2019). This corresponds to assuming
that v(s, r) is linear in s, as we do in Section 4.24

22Owen and Grofman (1988) established this result in the case of binary voter types. Proposition
4 of Gomberg, Pancs, and Sharma (2020) is a similar result in the case where v(s, r) is linear in s.

23From this perspective, it may be interesting to note that the designer’s problem with general,
non-linear W is equivalent to Bayesian persuasion where the sender has smooth ambiguity preferences,
as in Klibanoff, Marinacci, and Mukerji (2005), with ambiguity attitude captured by W .

24Without this additional assumption, the designer’s problem is essentially equivalent to the ca-
nonical Bayesian persuasion problem as defined by Kolotilin and Wolitzky (2020), which specializes
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3.6. Summary of Benchmark Cases and a Look Ahead. The benchmark cases
analyzed thus far reveal two forces that determine the structure of the optimal gerry-
mander: the familiar pack and crack force, which is clearest without aggregate uncer-
tainty; and an “assortative” force, which is clearest without individual uncertainty.

With only individual uncertainty, an optimal plan packs the most extreme opposing
voters in losing districts and cracks the remaining voters in barely winning districts
(as in Proposition 2 and Figures 2(a), 2(b), and 2(c)). There are many such optimal
plans, and the preceeding analysis does not indicate how to select among them once we
account for aggregate uncertainty. With only aggregate uncertainty, an optimal plan
matches each voter above the population median with some voter below the median
(as in Proposition 3 and Figure 2(d)). There are again many such optimal plans,
and the analysis so far does not indicate how to choose among them once individual
uncertainty is introduced.

In general, it can be shown that there always exists an optimal plan where each district
contains at most two voter types.25 There are thus three questions about how to refine
the optimal plans characterized in Propositions 2 and 3.

(1) How should the packed districts be broken up in Proposition 2?

(2) How should the cracked districts be broken up in Proposition 2?

(3) Which below-median types should be matched with which above-median types
in Proposition 3?

Assuming a proportional objective for the designer, linear vote shares, and a natural
condition on the distribution of the aggregate shock, Section 4 answers question 1: the
packed districts should be further segregated into districts that each contain a single
voter type. The intuition is that the designer’s expected seat share within districts
containing only unfavorable voters is maximized by segregating the different types
of unfavorable voters, so that the designer has a respectable chance of winning the
the general Bayesian persuasion problem of Kamenica and Gentzkow (2011) by assuming that the
state and the receiver’s action are one-dimensional, the receiver’s utility is supermodular and concave
in his action, and the sender’s utility is independent of the state and increasing in the action.

25Mathematically, every extreme point of the set of all districting plans has this property. Hence,
there always exists an optimal plan with this property; moreover, generically, every optimal plan has
this property. See Lemma 1 and Theorem ?? of Kolotilin and Wolitzky (2020) for a formal statement
of this result in the persuasion context.
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strongest of these districts. In particular, with individual uncertainty and a little
aggregate uncertainty, the plans depicted in Figures 2(b) and 2(c) can be optimal, but
the plan depicted in Figure 2(a) cannot.

Assuming non-linear vote shares under a natural curvature condition, Section 5 answers
questions 2 and 3: cracked districts should be broken up into districts that each contain
two voter types, where types are paired in a negatively assortative manner; similarly,
below-median and above-median types should be matched in a negatively assortative
manner. To see the intuition, consider two districts that are equally favorable for the
designer (in that he wins them with the same probability), of which one is evenly
divided between extreme supporters and extreme opponents, while the other consists
entirely of moderate voters. In the first district, the designer’s vote share will be close
to 50% with high probability; in the second, his vote share will fluctuate wildly with the
aggregate shock. On the margin, it is therefore optimal for the designer to allocate an
extra supporter to the first district (where she is pivotal with high probability) and an
extra opponent to the second district (where she is rarely pivotal), which strengthens
the first district and weakens the second. An optimal districting plan thus contains of
a mix of districts comprised of both extreme supporters and extreme opponents and
districts comprised of more moderate voters, where the designer wins districts with
more extreme voters with higher probability. In particular, among the plans depicted
in Figure 2, only the plan in Figure 2(c) can be optimal with individual uncertainty
and a little aggregate uncertainty; and only the plan in Figure 2(d) can be optimal
with aggregate uncertainty and a little individual uncertainty.26

Finally, note that the plan in Figure 2(d) is also an example of the segregate-pair
form depicted in Figure 2(c), where the interval of segregated types is empty. Indeed,
all optimal districting plans in the literature are examples of segregate-pair plans. In
Section 5, we also give an example where the unique optimal plan takes this form.

4. Linear Vote Shares

We now focus on the proportional-objective model of Section 3.5 (i.e., W (m) = m).
We maintain this assumption until Section 7, and will not bother re-stating it again.

26The plan in Figure 2(b) can thus be optimal with individual uncertainty and a little aggregate
uncertainty if v(s, r) is linear in s, but it cannot be optimal if v(s, r) is even slightly non-linear in s.
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In this section, we further assume that v(s, r) is linear in s:

v(s, r) = (1− s)v(0, r) + sv(1, r) for all (s, r).

This specification nests the case where voter types are binary, supp(F ) = {0, 1}. It
also nests the uniform partisan swing case where v(s, r) = (s−r+1)/2 with supp(G) ⊂
[0, 1], so that the aggregate shock shifts the vote share among all voters types equally;
this assumption is often used by political scientists to study how a given districting
plan would perform under different electoral outcomes.27 We also note that the linear
specification allows aggregate uncertainty to be small or absent (as in Section 3.2), but
it allows individual uncertainty to be small or absent (as in Section 3.3) only when
voter types are binary.28

The key simplification afforded by linear vote shares is that the threshold value of
the aggregate shock r∗(P ) below which the designer wins a district P depends only
on the mean voter type in the district, x = EP [s]. The designer can thus be viewed
as choosing a distribution H(x) over mean types x rather than a distribution H(P )

over distributions of types P . With this formulation, the constraint
∫
PdH(P ) = F

simplifies to the requirement that F is a mean-preserving spread of H, which we denote
by F % H.29

Slightly abusing notation, the designer wins all districts where the mean type is at
least x iff the aggregate shock is at most r∗(x). The probability of this event is

U(x) = G(r∗(x)).

Since r∗(x) = max {r : v(x, r) ≥ 1/2} and v is continuously differentiable and strictly
monotone, the implicit function theorem implies that U is continuously differentiable,
with non-negative derivative u; moreover, U(0) ≥ 0 and U(1) ≤ 1. We can interpret U
as the distribution of a re-scaled aggregate shock z such that the designer wins a district
with mean type x iff x ≥ z; this distribution is in principle empirically measurable and
can thus be viewed as an alternative model primitive.With the proportional objective,

27See, e.g., Katz, King, and Rosenblatt (2020) for a recent discussion of this methodology.
28One situation where linear vote shares may be especially realistic is when a “voter” in our model

corresponds to a small group of voters such as a census tract, individual voters’ types are binary, and
the type s of a group of voters is the share of its members with favorable types.

29One way to see this is by analogy to statistics, where if a state s is distributed according to F

then there exists an experiment such that the distribution of posterior expectations of s is given by
H iff F is a mean-preserving spread of H (e.g., Blackwell, 1953; Kolotilin, 2018).
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U(x) may also be viewed as the designer’s Bernoulli utility for creating a district with
mean type x. In total, the designer’s problem becomes

max
H∈∆[0,1]

∫
U(x)dH(x)

s.t. F % H.

We can immediately observe that uniform districting is optimal if U is concave and
segregation is optimal if U is convex. Note that the designer has Bernoulli utility
function U and chooses a lottery H over outcomes x ∈ [0, 1] subject to the constraint
that H is less risky than F . If U is concave, the designer is risk-averse, and thus
chooses the degenerate lottery that yields mean type EF [s] with certainty (i.e., uniform
districting). If instead U is convex, the designer is risk-loving, and thus chooses the
riskiest lottery F (i.e., segregation).

A more realistic assumption is that U is S-shaped, so the marginal impact of replacing a
less favorable voter with a more favorable one on the probability of winning a district is
first increasing and then decreasing: formally, this means that there exists an inflection
point xi ∈ [0, 1] such that U is convex on [0, xi] and concave on [xi, 1]. We say that U

is strictly S-shaped if it is strictly convex on [0, xi] and strictly concave on [xi, 1]; this
means that the distribution of the re-scaled aggregate shock is unimodal. For example,
any weighted average of the case with no aggregate uncertainty (where the marginal
impact is ∞ at xi such that v(xi, r0) = 1/2 and 0 elsewhere) and the case with uniform
aggregate uncertainty (where the marginal impact is constant) induces an S-shaped U .

4.1. Segregate-Pool Districting. We will see that U being S-shaped is closely re-
lated to the optimality of segregate-pool districting, where measure m∗ of voters with
the highest types are pooled in districts with the same mean type x∗ and measure
1 − m∗ of voters with the lowest types are segregated. That is, for m∗ ∈ [0, 1] the
cutoff type above which voters are pooled is s∗ = F−1(1−m∗), the mean type in the
pooled districts (the pool mean) is x∗ = EF [s|s ≥ s∗], and the distribution of district
mean types is

H∗(x) =


F (x), if x ∈ [0, s∗),

F (s∗), if x ∈ [s∗, x∗),

1, if x ∈ [x∗, 1].
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When the value of s∗ is 0 or 1, segregate-pool districting simplifies to uniform dis-
tricting or segregation, respectively; we thus refer to the case where s∗ ∈ (0, 1) as
non-trivial segregate-pool districting. Note that segregate-pool districting is optimal
in the classical case (Section 3.1) as well as in the cases with no aggregate uncertainty
(Section 3.2) and the majoritarian objective (Section 3.4): it is the plan illustrated in
Figure 2(b).

Under segregate-pool districting with cutoff s∗ and pool mean x∗ = EF [s|s ≥ s∗], the
designer’s expected seat share is∫ s∗

0

U(x)dF (x) + U(x∗)(1− F (s∗)).

The best segregate-pool districting plan is the one where s∗ is chosen to maximize
this expectation. When the optimal value of s∗ is interior, it is characterized by the
first-order condition

u(x∗)(x∗ − s∗) = U(x∗)− U(s∗).30 (1)

The intuition for this equation is that a marginal increase in s∗ increases the pool
mean, which increases the designer’s expected seat share by u(x∗)(1−F (s∗))dx∗/ds∗ =

u(x∗)(x∗ − s∗)f(s∗); however, it also decreases the mass of pooled voters, which de-
creases the designer’s expected seat share by (U(x∗) − U(s∗))f(s∗). The first-order
condition equates the marginal benefit and marginal cost. See Figure 3.

We now characterize when the best non-trivial segregate-pool districting plan is the
optimal plan overall.

Proposition 6. Assume that v is linear in s. Segregate-pool districting with cutoff
type s∗ ∈ (0, 1) is optimal iff

U(x) ≤ U(x∗) + u(x∗)(x− x∗) for all x ∈ [s∗, 1], with equality at x = s∗, (2)

and U is convex on [0, s∗]. (3)

Moreover, every optimal districting plan has the same distribution H∗ of district means
if the inequality is strict for all x ∈ (s∗, x∗)∪ (x∗, 1] and U is strictly convex on [0, s∗].

Intuitively, condition (3) implies that the designer is risk-loving in the pool mean x

for x ∈ [0, s∗], so voters with types below s∗ are segregated. In contrast, condition

30This equation is analogous to equation (12) of Gul and Pesendorfer (2010).
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Figure 3. Segregate-Pool Districting

(2) implies that the designer is “on average” risk-averse in x for x ∈ [s∗, 1], so voters
with types above s∗ are pooled in equally favorable districts. Condition (2) holds with
equality at x = s∗ by the first-order condition.

The following corollary links segregate-pool districting to unimodality of the re-scaled
aggregate shock distribution.

Corollary 1. Assume that v is linear in s. If U is S-shaped then segregate-pool
districting is optimal. Conversely, if U is not S-shaped then for some distribution
F ∈ ∆[0, 1] segregate-pool districting is suboptimal. Moreover, every optimal districting
plan has the same distribution of district means if U is strictly S-shaped.

The closest prior result to Proposition 6 and Corollary 1 is Theorem 1 of Gul and
Pesendorfer (2010).31 They consider a more complex model where two competing
designers each control districting in some area, but the translation of their Theorem
1 to our setting shows that if U is strictly S-shaped and symmetric about 1/2 then
segregate-pool districting is optimal, with pool mean given by (1).32 As compared to
their result, we exactly characterize when segregate-pool districting is optimal, showing

31There are also counterparts to these results in the persuasion literature (e.g., Kolotilin, 2018;
Kolotilin, Mylovanov, and Zapechelnyuk, 2019).

32Specifically, they assume that v(1, r) is concave in r for r ∈ [1/2, 1] and satisfies v(1, 1/2) = 1,
while v(0, r) = 1− v(1, 1− r) for all r ∈ [0, 1]. This assumption implies that r∗ is strictly concave on
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that U being S-shaped is sufficient but not necessary, and that symmetry about 1/2

plays no role. In addition, Lemma A2 in Appendix B characterizes optimal districting
even when segregate-pool districting is suboptimal.

In the limit as aggregate uncertainty vanishes, the best segregate-pool districting plan
converges to the optimal plan characterized in Proposition 2 in which the unfavorable
districts are segregated. Thus, districting plans of the form depicted in Figure 2(a)
(where unfavorable districts are pooled) and those of the forms depicted in Figures
2(b) and 2(c) (where unfavorable districts are segregated) are all optimal without
aggregate uncertainty, but only those in Figures 2(b) and 2(c) remain optimal with a
small amount of aggregate uncertainty. Note that as G converges to the step function
1{r ≥ r0}, U converges to the step function 1{x ≥ xi}, where xi is the solution
to v(xi, r0) = 1/2. The first-order condition (1) then reduces to the condition that
x∗ = xi, which yields the same condition for s∗ as in Proposition 2.

Note that the plans in Figures 2(b) and 2(c) induce the same distribution of district
mean types, and hence may both be optimal even when the optimal distribution of
means is unique. Here the designer’s indifference among different ways of creating
favorable districts with the same mean type rests on the assumption of linear vote
shares and is not robust to slight non-linearity, as we show in Section 5.

4.2. Binary Voter Types. We now discuss the important special case where voter
types are binary: supp(F ) = {0, 1}, with PrF (s = 1) = x0. In this case, the constraint
F % H simplifies to

∫
xdH(x) = x0, where H ∈ ∆[0, 1]. Moreover, segregate-pool

districting with pool mean x∗ ∈ [x0, 1] corresponds to packing measure 1 − x0/x∗ of
unfavorable voters into districts with mean type 0 and cracking the remaining x0/x∗

voters into districts with mean type x∗: thus, when supp(F ) = {0, 1} we use the term
pack and crack interchangeably with segregate-pool. Under this districting plan, the
distribution of the mean type is

H∗(x) =

1− x0

x∗ , if x ∈ [0, x∗),

1, if x ∈ [x∗, 1],

[1/2, 1] and symmetric about 1/2. Moreover, they assume that G is also strictly concave on [1/2, 1]

and symmetric about 1/2, and thus so is U(·) = G(r∗(·)).
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and the designer’s expected seat share is

U(0)

(
1− x0

x∗

)
+ U(x∗)

x0

x∗ .

In the best pack and crack plan, when the optimal value of x∗ is interior, it is charac-
terized by the first-order condition

u(x∗)x∗ = U(x∗)− U(0).33 (4)

This is simply equation (1) with s∗ = 0. For an illustration, refer back to Figure 1 in
the Introduction.

Proposition 6 and Corollary 1 specialize to the binary case as follows.

Corollary 2. Assume that supp(F ) = {0, 1} and PrF (s = 1) = x0. Pack and crack
with pool mean x∗ ∈ (x0, 1) is optimal iff

U(x) ≤ U(x∗) + u(x∗)(x− x∗) for all x ∈ [0, 1], with equality at x = 0.

Moreover, the optimal districting plan is unique if the inequality is strict for all x /∈
{0, x∗}. In particular, pack and crack is optimal if U is S-shaped, and it is uniquely
optimal if U is strictly S-shaped.

Corollary 2 is related to the analysis of Owen and Grofman (1988). They derive
equation (4) and argue that pack and crack is optimal in “clearly far and away the
most common case,” but do not formalize this point. In contrast, Corollary 2 provides
necessary and sufficient conditions for the optimality of pack and crack.

More generally, when voter types are binary optimal districting can be completely
characterized using the concavification approach of Aumann and Maschler (1995) and
Kamenica and Gentzkow (2011). The concave envelope U of U on [0, 1] is the pointwise
smallest concave function that is everywhere weakly greater than U . Uniform district-
ing is optimal iff U(x0) = U(x0). If instead U(x0) < U(x0) then the point (x0, U(x0))

lies on a linear segment of U that connects points (x∗
L, U(x∗

L)) and (x∗
H , U(x∗

H)), where
x∗
L < x0 < x∗

H , U(x∗
L) = U(x∗

L), and U(x∗
H) = U(x∗

H). Thus,

U(x0) = U(x∗
L)

x∗
H − x0

x∗
H − x∗

L

+ U(x∗
H)

x0 − x∗
L

x∗
H − x∗

L

,

33This equation is analogous to equation (17) of Owen and Grofman (1988).
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Figure 4. Beyond Pack and Crack with Binary Voter Types

and an optimal districting plan creates measure (x∗
H − x0)/(x∗

H − x∗
L) of districts with

mean type x∗
L and measure (x0 − x∗

L)/(x
∗
H − x∗

L) of districts with mean type x∗
H . Such

a plan coincides with pack and crack iff x∗
L = 0. Otherwise this plan takes the form of

crack and pack (0 < x∗
L < x∗

H = 1) or crack and crack (0 < x∗
L < x∗

H < 1), as shown in
Figure 4. The next result summarizes this discussion.

Corollary 3. Assume that supp(F ) = {0, 1} and PrF (s = 1) = x0. There are two
cases.

(1) Uniform districting is optimal iff

U(x) ≤ U(x0) + u(x0)(x− x0) for all x ∈ [0, 1].

It is uniquely optimal if the inequality is strict for all x ̸= x0.

(2) A districting plan that creates unfavorable districts with mean type x∗
L < x0 and

favorable districts with mean type x∗
H > x0 is optimal iff

U(x) ≤ U(x∗
L)

x∗
H − x

x∗
H − x∗

L

+ U(x∗
H)

x− x∗
L

x∗
H − x∗

L

for all x ∈ [0, 1].

It is uniquely optimal iff the inequality is strict for all x /∈ {x∗
L, x

∗
H}.

It may be instructive to consider a simple parameterized example.
24



1
2

1

1/2

1

0 x0

1− z

z

U(x0)

U

U

(a) small uncertainty, pack and crack

x

1
2

1

1/2

1

0 x0

1− z

z

U(x0)

U

U

(b) large uncertainty, crack and crack

x

Figure 5. An Example with Bimodal Aggregate Uncertainty

Example 1. Suppose the aggregate shock is binary and symmetric about 1/2 with
both realizations equally likely, so, for some z ∈ [1/2, 1],

U(x) =


0, if x ∈ [0, 1− z),

1
2
, if x ∈ [1− z, z),

1, if x ∈ [z, 1].

Assume that x0 < 1/2, so that uniform districting is never optimal. A simple applic-
ation of Corollary 3 shows that if z < 2/3 (so the amount of aggregate uncertainty
is fairly small) then the optimal districting plan is pack and crack with x∗

H = z. If
instead z > 2/3 then there are two cases: when x0 < 1 − z, the optimal plan is pack
and crack with x∗

H = 1− z; and when x0 > 1− z, the optimal plan is crack and crack
with x∗

L = 1−z and x∗
H = z. Intuitively, if aggregate uncertainty is small then creating

a “safe” district with x = z does not require many more supporters than creating a
“risky” district with x = 1 − z, so the designer chooses a conservative plan with only
safe districts and maximally unfavorable districts. If instead aggregate uncertainty is
large then safe districts require many more supporters than risky districts, so a de-
signer with few supporters creates a mix of risky districts and maximally unfavorable
districts, while a designer with more supporters creates a mix of risky districts and
safe districts. See Figure 5.
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An interesting feature of this example is that the designer’s expected seat share is
non-monotone in the amount of aggregate uncertainty z: it decreases with z when z

is small enough that the designer chooses a conservative plan (because creating safe
districts gets “more expensive” when z increases), but starts increasing with z once
z is large enough that the designer switches to a risky plan (because creating risky
districts gets “cheaper” when z increases). This property contrasts with Proposition
10 in Section 6, which shows that the designer’s expected seat share is monotone in
the amount of aggregate uncertainty when U is S-shaped.34

5. Non-Linear Vote Shares

The linear vote shares model considered in Section 4 is a natural and tractable bench-
mark, but it makes the counterfactual prediction that the “swingiest” voters—those
for whom v(s, r) changes the most in response to a given change in r—are always
those with extreme types: if v(s, r) and v(s, r′) are both linear in s ∈ [0, 1], then
maxs |v(s, r) − v(s, r′)| is always attained at s ∈ {0, 1}. In contrast, election fore-
casters (and, we would assume, modern gerrymanderers) take into account that mod-
erate voters are often swingier than extremists. As Nathaniel Rakich and Nate Silver
put it when describing the “elasticity scores” in the FiveThirtyEight.com forecasting
model, “Voters at the extreme end of the spectrum—those who have a close to a 0
percent or a 100 percent chance of voting for one of the parties—don’t swing as much
as those in the middle,” (Rakich and Silver, 2018). To capture this regularity, we
now relax the assumption that v(s, r) is linear in s, and instead impose a curvature
assumption on v consistent with moderate voters being swingier than extremists.

First, we assume that a type-s voter votes for the designer given aggregate shock r iff
s−r+e ≥ 0, where e ∈ R is a voter-specific additive noise term distributed according to
Q. An interpretation is that s is a signal of the voter’s preference parameter t = s+ e,
which is subject to additive noise. Mathematically, this assumption implies that Q(t|s)
is translation-invariant and thus can be written as Q(t− s).

34Since aggregate uncertainty is likely unimodal in most elections, we view Proposition 10 as the
more realistic case. The current example complements that result by showing that some unimodality-
type assumption is required, and by noting that the comparative static can go the other way in an
alternative case which is not totally implausible.
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Second, we assume that the probability density q of Q is strictly log-concave, in that the
derivative of ln q is strictly decreasing. This implies that the distribution of the noise
term e is unimodal—consistent with voters with intermediate types being swingier than
voters with extreme types—because every distribution with a strictly log-concave dens-
ity is strictly S-shaped. Many common distributions have strictly log-concave densities
(see, e.g., Table 1 in Bagnoli and Bergstrom 2005). Note that the linear specification
of Section 4 is a limit of distributions with strictly log-concave densities. Moreover, in
contrast to Section 4, the current setting allows not only aggregate uncertainty but also
individual uncertainty to be small or absent (as in Section 3.3), even with continuous
voter types.

5.1. Single-Dipped Districting. We show that these assumptions imply that every
optimal districting plan partitions voters in a negatively assortative pattern that we
call “single-dippedness.” A districting plan is single-dipped if each district consists of at
most two distinct voter types, and for each district P consisting of voter types s < s′′

and each district P ′ containing a voter type s′ ∈ (s, s′′), we have r∗(P ′) < r∗(P ). That
is, more extreme voters are assigned to districts that are more favorable, in that the
designer wins them with higher probability. Thus, whenever voters with types s and s′′

are assigned to the same district and s < s′ < s′′, the designer’s probability of winning
the district containing a type s̃ ∈ {s, s′, s′′} is single-dipped on {s, s′, s′′}.35

Proposition 7. If Q is translation-invariant with strictly log-concave density then
every optimal districting plan is single-dipped.

Proposition 7 implies that, when the taste-shock density q is strictly log-concave, the
designer should never pool more than two voter types in the same district. This
conclusion differs starkly from the optimality of pooling an interval of voter types in
Section 4, where Q is linear (so q is constant and thus weakly log-concave). If Q is
instead even slightly non-linear, the designer strictly prefers to break up any district
that pools an interval of voter types into districts consisting of at most two types in
such a way that districts with more extreme voter types are more favorable.

35Segregation is vacuously single-dipped because no district contains two types s < s′′. But neither
uniform nor segregate-pool districting is single-dipped, because the designer’s probability of winning
districts containing types s < s′ < s′′ cannot be constant under single-dipped districting.
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To see the intuition, note that if q is log-concave, then v(s, r) is more convex in s at
higher values of r. Hence, if there exists a district P containing voter types s < s′′

and a district P ′ containing a voter type s′ ∈ (s, s′′) such that r∗(P ) < r∗(P ′), then
by reallocating some voters with type s′ from district P ′ to district P and reallocating
some voters with types s and s′′ from district P to district P ′, the designer can keep
the total mass of voters in each district constant while increasing the threshold vote
share

∫
v(s, r∗(P̃ ))dP̃ (s) for both districts P̃ ∈ {P, P ′}. This in turn increases the

threshold aggregate shock for both districts, and hence increases the designer’s seat
share for every realized aggregate shock. Similarly, if r∗(P ) = r∗(P ′) for two districts
P and P ′ but district P consists of more extreme voter types, then r∗(P ) is more
sensitive to reallocating voter types than is r∗(P ′). So it is optimal for the designer to
reallocate less favorable voters from P to P ′ and more favorable voters from P ′ to P ,
thus strengthening the district with more extreme voters.36

Proposition 7 generalizes Lemmas 1 and 2 in Friedman and Holden (2008) and Pro-
position 2 in Kolotilin and Wolitzky (2020). It strengthens Kolotilin and Wolitzky’s
Proposition 2 by showing that every optimal districting plan is single-dipped when q is
strictly log-concave.37 In comparison, Friedman and Holden (2008)’s key assumption
is that, for all s < s′ and t < t′,

∂Q(t|s)
∂s

∂Q(t′|s′)
∂s

>
∂Q(t|s′)

∂s

∂Q(t′|s)
∂s

,

which is equivalent to strict log-concavity of q if Q(t|s) takes the form Q(t− s). Fried-
man and Holden (2008)’s Lemmas 1 and 2 are similar to Proposition 7, but they
consider a finite number of districts rather than a continuum and impose an additional
assumption that the mode of Q lies at the median.38

Single-dippedness is an important assortative feature of a districting plan, but many
plans can be single-dipped. Thus, we next consider refinements of single-dippedness.

36Symmetrically, if the taste shock density q is strictly log-convex, then every optimal districting
plan is single-peaked, so that more extreme voters are assigned to less favorable districts. This case
seems much less realistic, because it implies that the density of the noise term e = t−s is single-dipped,
rather than single-peaked, so that moderate voters are less swingy than extremists.

37It also establishes a stronger notion of single-dippedness which rules out districts P and P ′ such
that P contains types s < s′′, P ′ contains a type s′ ∈ (s, s′′), and r∗(P ) = r∗(P ′).

38With a finite number of districts, both Friedman and Holden’s Lemmas 1 and 2 and our Proposi-
tion 7 imply that every optimal districting plan satisfies a weaker notion of single-dippedness: for any
two districts P and P ′, r∗(P ) ̸= r∗(P ′), and if s, s′′ ∈ supp(P ) and s′ ∈ supp(P ′) then r∗(P ) > r∗(P ′).
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5.2. Matching Extremes Districting. Note that there is a unique single-dipped
districting plan among the optimal plans characterized in Proposition 3. This plan
takes the “matching extremes” form depicted in Figure 2(d): it assigns voters to dis-
tricts in a negatively assortative manner, so that the designer’s probability of winning
the district containing voter type s ∈ [0, 1] is single-dipped on the entire unit interval.
Specifically, the least favorable district segregates voters with the median type sm; the
most favorable district consists of 50% voters with type 0 and 50% voters with type 1;
and any other district consists of 50% voters with type s ∈ (0, sm) and 50% voters with
type s′ ∈ (sm, 1), where s′ satisfies F (s′) = 1− F (s).39 This characterization suggests
that, in the limit as individual uncertainty vanishes (i.e., Q(t−s) converges to the step
function 1{t ≥ s}), the optimal districting plan approximates matching extremes.

The matching extremes districting plan also plays a central role in Friedman and
Holden’s analysis. Their main results (Propositions 1 and 2) establish that, when
individual uncertainty is sufficiently small, the optimal districting plan approximates
a more permissive version of matching extremes, where multiple voter types may be
segregated.40

We now give conditions under which matching extremes is optimal away from the
small individual uncertainty limit. In particular, these conditions are satisfied if the
aggregate shock r is uniform (G is linear) and noise e = t − s is symmetric (Q is
symmetric about 0).

Corollary 4. Assume that Q is translation-invariant with strictly log-concave density,
the median of Q is weakly higher than the mode, and G is weakly concave. In every
optimal districting plan, every two districts P1 and P2 are nested, in that P1 consists
of voter types s1 ≤ s′1 and P2 consists of voter types s2 ≤ s′2 such that either s2 ≤ s1 ≤
s′1 ≤ s′2 or s1 ≤ s2 ≤ s′2 ≤ s′1.

39This plan approximates classical pack and crack when the support of F concentrates on {0, 1}
and aggregate uncertainty vanishes. When fraction x0 < 1/2 voters have types close to 1, the designer
assigns these voters to approximately 2x0 favorable districts, along with the x0 voters with the lowest
types. The remaining fraction 1 − 2x0 voters—those with the higher types among those voters with
types close to 0—are in turn assigned to the remaining 1− 2x0 unfavorable districts.

40Their discussion and examples focus on the case with only a single segregated “slice” of voter
types, but their results allow multiple segregated slices.

29



It is instructive to compare Corollary 4 with the results in Section 4 where Q is linear.
If Q is linear, translation-invariant, and symmetric about 0, then U = G and thus
uniform districting is optimal whenever G is weakly concave. Corollary 4 shows that,
if Q is even slightly non-linear, then the designer strictly prefers to break up uniform
districts into nested districts each containing two voter types in such a way that the
designer’s probability of winning the district that contains voters with type s ∈ [0, 1]

is single-dipped in s on the entire unit interval.

5.3. Segregate-Pair Districting. When the distribution of aggregate uncertainty
G is not concave, multiple voter types can be optimally segregated. The following
example shows that, when G is S-shaped, it may be uniquely optimal to segregate the
lowest voter types and pair the remaining types in a negatively assortative manner,
as in Figure 2(c). All optimal districting plans emphasized in this paper and the
prior literature are examples of such segregate-pair plans (or, in the case of segregate-
pool plans, are equivalent to segregate-pair plans once the pool is broken up).41 Note
that segregate-pair plans limit to the matching extremes plan when the interval of
segregated types shrinks to 0. Segregate-pair plans also yield approximately the same
expected seat share for the designer as segregate-pool plans when Q is approximately
linear. Thus, while it seems difficult to provide general conditions for the optimality of
segregate-pair plans outside of cases where matching extremes or segregate-pool plans
are also optimal, segregate-pair plans form a general class of districting plans that nest
all optimal plans in the literature and are sometimes uniquely optimal.

Example 2. Suppose that Q is symmetric about 0 and G(r) = Q(2r − 2/3) for all
r ∈ R: e.g., t ∼ N(s, σ2) and r ∼ N(1/3, (σ/2)2) for some σ > 0. Further, suppose
that f(s) = 3f(4/3− 3s) for all s ∈ [1/9, 1/3): e.g.,

f(s) =

9
5
, if s ∈ [0, 1

3
),

3
5
, if s ∈ (1

3
, 1].

In Appendix C, we establish that the unique optimal districting plan (see Figure 6)
segregates voters with types s ∈ [0, 1/9), so that r∗(s) = s, and creates districts

41 Formally, a segregate-pair districting plan H is a single-dipped districting plan where there exist
types s∗, s∗∗ ∈ [0, 1] and a strictly decreasing function m : [s∗, s∗∗] → [s∗∗, 1] such that for each P in
the support of H, the support of P consists either of a single type s ∈ [0, s∗] or of two types s and
m(s) with s ∈ [s∗, s∗∗].
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Figure 6. Optimal Segregate-Pair Districting in Example 2

consisting of 50% voters with type s and 50% voters with type s′ = 4/3− 3s for each
s ∈ [1/9, 1/3], so that r∗(s) = r∗(s′) = (s+ s′)/2.

A remarkable feature of this optimal plan is that the non-segregated districts all con-
tain the same share of favorable voters. The non-segregated districts that contain
more extreme voters are more favorable (r∗ is higher), but this pattern is achieved
entirely by making the favorable voters in more favorable districts more extreme than
the unfavorable voters in these districts, rather than by allocating a higher share of
favorable voters to these districts.42

6. Comparative Statics

We now consider some comparative statics of optimal districting. For simplicity, we
focus on the setting depicted in Figure 1: voter types are binary (i.e., supp(F ) =

{0, 1}), the designer has the proportional objective, and U is strictly S-shaped, so
optimal districting takes the form of pack and crack (by Corollary 2). Most results in
this section extend to the more general case of linear vote shares with continuous voter
types (where optimal districting takes the form of segregate-pool)—we describe these

42Friedman and Holden (2008) and Cox and Holden (2011) suggest that favorable districts optimally
contain a strict majority of favorable voters, and that the size of this majority is smaller in districts
containing more extreme voters. The current example shows that this is not always true.
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extensions as we proceed. We defer all proofs as well as detailed statements of some
results to Appendix D: some readers may thus prefer to view the propositions in this
section as “pseudo-propositions,” referring to Appendix D for the formal results.

Broadly speaking, we ask three questions:

(1) How do the designer’s popularity, the designer’s information about voter pref-
erences, and the amount of aggregate uncertainty affect the form of optimal
districting, and in particular whether the designer creates a small number of
very lopsided favorable districts (a more segregated districting plan) or many
less lopsided favorable districts (a less segregated plan)? (Section 6.1.)

(2) How does the amount of aggregate uncertainty affect the designer’s expected
seat share (i.e., his expected utility)? (Section 6.2.)

(3) How does the designer’s popularity affect the value of gerrymandering—the
designer’s benefit from controlling the districting process, relative to some al-
ternative such as uniform districting, segregation, or the districting plan that
would emerge if the other party controlled districting? (Section 6.3.)

6.1. Effects on Segregation. To define segregation, we again adopt the taste shock
interpretation of v. We say that a districting plan H is more segregated than another
plan H̃ if observing a voter’s district under H is Blackwell-more informative about her
preference parameter t. With binary voter types or linear vote shares, this condition is
equivalent to H being a mean-preserving spread of H̃ (Blackwell, 1953). Under pack
and crack or segregate-pool districting, voters are more segregated when the measure
of segregated districts is higher and the measure of pooled districts m∗ is lower, so
that the designer creates fewer, more lopsided favorable districts. In political science
terminology (Tufte, 1973; King and Browning, 1987; Cox and Katz, 2002), such a plan
has lower bias and lower responsiveness than a less segregated plan where favorable
districts are more numerous (so the seat share is “usually” more biased towards the
designer) but these districts are less secure (so the seat share is more responsive to
shifts in the vote share).

We first ask how the distribution of aggregate uncertainty U affects the extent of
segregation.

Proposition 8. The optimal districting plan becomes more segregated if
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Figure 7. Shifting or Stretching the Distribution of Aggregate Uncertainty

(1) Aggregate uncertainty becomes less favorable, in that U shifts to the right.

(2) Aggregate uncertainty increases, in that U stretches horizontally around its
mode.

Proposition 8 holds for both binary and continuous voter types. To see the intuition
for Part (1), note that when U shifts to the right, U(x) decreases for all x and u(x)

increases for all x above the mode of U . See Figure 7(a). The former effect decreases the
marginal cost of segregating unfavorable voters (as shifting voters from pooled districts
to segregated districts has a smaller effect on the probability of representing these
voters), while the latter effect increases the marginal benefit of segregating unfavorable
voters (as the probability of winning the pooled districts is more responsive to the mean
voter type in these districts). So the designer segregates more.43

The intuition for Part (2) is that an increase in aggregate uncertainty causes the de-
signer to resolve the tradeoff between maintaining a safer margin of support in favorable
districts and creating more such districts in favor of the former. See Figure 7(b). For
example, as aggregate uncertainty vanishes in that U converges to the step function
1{x ≥ xi}, the designer creates favorable districts with mean voter type xi and almost
always wins these districts. In contrast, the designer would win these districts only half

43This result adapts Theorem 3(ii) of Kolotilin, Mylovanov, and Zapechelnyuk (2019) and is similar
to Theorem 2 of Gul and Pesendorfer (2010) and Proposition 3 of Alonso and Câmara (2016).
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of the time when aggregate uncertainty is substantial and symmetrically distributed
around the mode xi. So the designer segregates more unfavorable voters to make the
favorable districts more secure. This result that the designer packs and cracks “more
conservatively” when facing greater aggregate uncertainty seems extremely natural,
but we are not aware of formal antecedents in the gerrymandering literature.44

We now turn to the effect of the designer’s information about voter preferences on
segregation. Improving the designer’s information about voter preference parameters
t is equivalent to taking a mean-preserving spread of F .

Proposition 9. The optimal districting plan becomes more segregated if the designer
becomes more informed about voter preferences.

To see the intuition, note that as the designer’s information improves, the unfavorable
voters become “more unfavorable” but the mean voter type remains unchanged. Thus,
segregating the same measure of unfavorable voters makes favorable cracked districts
stronger. Consequently, a better informed designer can increase the number of favor-
able districts and make them stronger at the same time. When U is S-shaped, the
designer indeed makes favorable districts stronger, which increases segregation.

Proposition 9 is not generally true with continuous voter types. For example, suppose
the improvement in the designer’s information is such that, for some voters who he
previously thought would vote for him with probability 25%, he receives either the
bad news that they will vote for him with probability 0% or the good news that they
will vote for him with probability 50%. The designer may respond to this information
by adding the new “50% favorable” voters to the favorable districts, so segregation
does not increase. However, the same logic as in the binary type case dictates that
segregation always increases if the designer’s new information takes the form of learning
whether some voters with intermediate types have either the lowest or highest possible
type. This situation may be realistic. For example, if the designer’s information is a
partition of voters into {Registered Democrat, Registered Republican, Unregistered},
then segregation increases when more voters register for a party.

44Friedman and Holden (2008) find a similar pattern in numerical examples of matching extremes
plans. Our formulation adapts Theorem 3(iii) of Kolotilin, Mylovanov, and Zapechelnyuk (2019) in
the persuasion literature.
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6.2. Effects on the Designer’s Seat Share. Recall from Section 2 that the de-
signer’s expected utility (with the proportional objective, his expected seat share)
increases when he becomes more popular or better-informed. We now ask how his
expected seat share depends on the amount of aggregate uncertainty.

Proposition 10. Assume that U(0) = 0. If aggregate uncertainty increases, in that U
stretches horizontally around its mode, then the designer’s expected seat share decreases.

The intuition is that greater aggregate uncertainty makes packing and cracking less
effective, because the designer must increase his margin of support in favorable districts
to maintain the same win probability. Note that the assumption that U(0) = 0 says
that aggregate uncertainty is not so great that the designer has some chance of winning
a district with no supporters whatsoever, so that he continues to lose “packed” districts
with probability 1.45

Recall from Section 4 that increasing aggregate uncertainty can increase the designer’s
expected seat share when aggregate uncertainty is bimodal rather than unimodal. For
example, the designer may then follow a “crack and crack” strategy where he wins
unfavorable districts in the event of a favorable aggregate shock, so greater aggregate
uncertainty helps the designer in unfavorable districts. In contrast, when aggregate
uncertainty is unimodal, the designer makes unfavorable districts as weak as possible,
in which case it is reasonable to assume that the win probability in such districts is
approximately 0 over any relevant range of aggregate uncertainty.

6.3. Effects on the Value of Gerrymandering. Finally, we ask whether a weaker
or stronger party benefits more from controlling the districting process. An important
motivation for this question is the observation that in recent decades the less popular
party in the United States (the Republicans) has pursued gerrymandering much more
aggressively than the more popular party (the Democrats).46

45Since stretching U around its mode has a discrete negative effect on the win probability in
favorable districts, Proposition 10 is robust to slightly relaxing the assumption that U(0) = 0, as in
the example illustrated in Figure 7(b). However, Proposition 10 is not generally true with continuous
voter types: for example, if almost all voter types lie below the mode xi then optimal districting
segregates most of these voters, and hence the positive effect of increasing U below its mode can
outweigh the negative effect of decreasing U above its mode.

46An alternative explanation for this pattern is that, since Democratic voters concentrate in cities,
they are easier to segregate. See McGann, Smith, Latner, and Keena (2016) for an interesting, largely
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We measure the value of gerrymandering as the ratio of the designer’s expected seat
share under an optimal districting plan to his expected seat share under one of three
benchmarks: uniform districting (or a single state-wide, multi-member district), se-
gregation (proportional representation with respect to voter types), and pessimal dis-
tricting (the plan that the other party would impose if it controlled districting). We
ask how the value of gerrymandering depends on the share of favorable voters x0.

(The choice to focus on the ratio of expected seat shares rather than the difference re-
quires explanation. For any benchmark plan, the value of gerrymandering as measured
by the seat share difference is mechanically non-monotone in x0, since the designer wins
U(0) seats under any plan when x0 = 0, and wins U(1) seats under any plan when
x0 = 1. So measuring by the seat share difference does not yield interesting results.
Moreover, measuring by the ratio is not inconsistent with our suggestion that a party
with a greater value of gerrymandering has a greater incentive to gerrymander: an
unpopular party that can increase its seat share by 20% by controlling districting may
well fight harder to control districting than a popular party that can increase its seat
share by 10% by controlling districting, even if these two increases correspond to the
same absolute number of seats. For example, this will occur if the benefits of other
activities that compete for party resources with attempts to control districting scale
with the party’s pouplarity x0, as seems likely.)

Proposition 11. Assume that U(0) = 0. A less popular party benefits more from
gerrymandering (i.e., the value of gerrymandering is decreasing in x0), regardless of
whether the benchmark districting plan is uniform, segregated, or pessimal.47

The broad intuition is that, the fewer supporters a party has, the more carefully they
must be assigned to districts to translate into seats. The results reported in the pro-
position are easy to see graphically, given the following observations. The designer’s

skeptical, discussion of this alternative theory. Note also that one party having a greater incentive to
gerrymander does not necessarily make gerrymandering more likely to occur: indeed, since districting
is a zero-sum game, anything that makes one party exert more effort in gerrymandering also makes
the other party exert more effort in preventing gerrymandering.

47More precisely, the value of gerrymandering is strictly decreasing for x0 < x∗ and constant for
x0 > x∗ under the uniform districting benchmark; it is constant for x0 < x∗ and strictly decreasing for
x0 > x∗ under the segregation benchmark; and it is strictly decreasing for all x0 under the pessimal
districting benchmark.
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Notes: The value of gerrymandering (i.e., U(x0)/U(x0), U(x0)/x0U(1),
or U(x0)/U(x0)) is decreasing in the share of supporters x0.

expected seat share is the concave envelope U(x0) of U at x0 under optimal district-
ing; it is U(x0) under uniform districting; it is x0U(1) under segregation (given the
assumption that U(0) = 0); and it is the convex envelope U(x0) of U (i.e., the point-
wise largest convex function that is everywhere weakly smaller than U) at x0 under
pessimal districting. Focusing for example on the uniform districting benchmark, the
value of gerrymandering is thus the ratio of the concave envelope of U to U itself,
which is obviously decreasing in x0 when U is S-shaped. See Figure 8.48

7. General Designer’s Objective

We now discuss how our results in Sections 4–6 extend when the designer’s objective
W is non-linear. In general, most of the results in Section 5 hold for any objective W ,
while the results in Sections 4 and 6, which assume linear W and non-linear U , have
remarkably close analogues when U is linear and W is non-linear.

48If U(0) > 0 then Proposition 11 holds with the same proof if we replace expected seat shares
with excess expected seat shares above U(0), given by U(x0) − U(0), U(x0) − U(0), (1 − x0)U(0) +

x0U(1)−U(0), and U(x0)−U(0) for optimal districting, uniform districting, segregation, and pessimal
districting. Without normalizing the seat shares by subtracting off U(0), the value of gerrymandering
would be mechanically non-monotone in x0 because U(0) = U(0) and U(1) = U(1), while U(x0) >

U(x0) for all x0 ∈ (0, 1).
37



7.1. Non-Linear Vote Shares. First, consider the results of Section 5, where v(s, r)

is non-linear in s. The result that every optimal districting plan is single-dipped (Pro-
position 7) continues to hold for general W , with essentially the same proof. Indeed,
for any plan that is not single-dipped, the proof of Proposition 7 shows that there
exists a reallocation of voters that increases the measure of districts won for every
realization of aggregate uncertainty and thus increases the designer’s expected utility
for any W . Moreover, as we show in Appendix E, when G is weakly concave a “match-
ing extremes” plan remains optimal under the additional assumption that W is weakly
convex (which, as we will see, favors pooling over segregation).

7.2. Linear Vote Shares with Uniform Aggregate Uncertainty. Next, consider
the results of Section 4, where v(s, r) is linear in s. When both U and W are non-linear,
deriving conditions under which simple districting plans are optimal seems challenging,
as we highlight in Section 7.4. Here we consider the case where U is linear: that is,
U(x) = (1 − x)U(0) + xU(1) for all x ∈ [0, 1]. This condition means that aggregate
uncertainty is uniform, so the marginal impact of replacing a less favorable voter with
a more favorable one on the probability of winning a district is constant. We will
see that this assumption allows an analysis parallel to that of Section 4, where the
curvature of W plays an analogous role to the curvature of U in that section, up to a
“sign change”: while concavity of U favors pooling when W is linear (and convexity of
U favors segregation), we will see that convexity of W favors pooling when U is linear
(and concavity of W favors segregation).

The designer’s problem becomes

max
H∈∆[0,1]

∫
W (1−H(x))dx

s.t. F % H.

We first argue that the curvature of W determines the form of optimal districting.
Under uniform districting, all districts have the same mean type x0 = EF [x]; so, for
each realization of the aggregate shock, the designer wins either all districts or no
districts. This is the riskiest possible distribution of the measure of districts won m.
In contrast, segregation induces the safest possible distribution of m. Thus, if W is
convex—so the designer is risk-loving in m—he prefers uniform districting. If instead
W is concave—the designer is risk-averse in m—he prefers segregation.
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A more realistic assumption is that W is S-shaped, so the designer’s marginal utility for
winning an additional district is first increasing and then decreasing. For example, any
weighted average of the proportional and majoritarian objective functions is S-shaped.
We will see that W being S-shaped is closely related to the optimality of segregate-pool
districting (much as U being S-shaped relates to the optimality of segregate-pool in
Section 4).

Under segregate-pool districting with cutoff s∗, pool mean x∗ = EF [s|s ≥ s∗], and pool
measure m∗ = 1− F (s∗), the designer’s expected utility is∫ s∗

0

W (1− F (x))dx+W (m∗)(x∗ − s∗) +W (0)(1− x∗).

When the optimal value of s∗ is interior, it is characterized by the first-order condition

w(m∗)m∗ = W (m∗)−W (0). (5)

The intuition for this equation is that a marginal increase in s∗ increases the pool
mean, which increases the designer’s expected utility by (W (m∗) − W (0))dx∗/ds∗ =

(W (m∗)−W (0))(x∗−s∗)f(s∗)/m∗; however, it also decreases the share of pooled voters,
which decreases the designer’s expected utility by w(m∗)(x∗−s∗)f(s∗). The first-order
condition equates the marginal benefit and marginal cost. While this condition closely
parallels condition (1) in Section 4, it is important to bear in mind that these equations
involve different variables: the cutoff s∗ and pool mean x∗ in (1), and the pool measure
m∗ in (5).

We now characterize when the best non-trivial segregate-pool districting plan is the
optimal plan overall.

Proposition 12. Assume that v is linear in s. Segregate-pool districting with pool
measure m∗ ∈ (0, 1) is optimal iff

W (m) ≤ W (m∗) + w(m∗)(m−m∗) for all m ∈ [0,m∗], with equality at m = 0, (6)

and W is concave on [m∗, 1]. (7)

Moreover, every optimal districting plan has the same distribution H∗ of district means
if the inequality is strict for all m ∈ (0,m∗) and W is strictly concave on [m∗, 1].

Intuitively, condition (7) implies that the designer is risk-averse in the measure of won
districts m for m ∈ [m∗, 1], so voters with types below s∗ are segregated. In contrast,
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condition (6) implies that the designer is “on average” risk-loving in m for m ∈ [0,m∗],
so voters with types above s∗ are pooled in equally favorable districts. Condition (6)
holds with equality at m = 0 by the first-order condition.

Corollary 5. Assume that v is linear in s. If W is S-shaped then segregate-pool dis-
tricting is optimal. Moreover, every optimal districting plan has the same distribution
of mean types if W is strictly S-shaped.

When voter types are binary (supp(F ) = {0, 1}, with PrF (s = 1) = x0), segregate-
pool districting with pool measure m∗ ∈ [x0, 1] corresponds to packing measure 1−m∗

of unfavorable voters into districts with mean type 0 and cracking the remaining m∗

voters into districts with mean type x0/m∗. Under this districting plan, the designer’s
expected utility is

W (m∗)
x0

m∗ +W (0)

(
1− x0

m∗

)
.

In the best pack and crack plan, when the optimal value of x∗ is interior, it is again
characterized by the first-order condition (5). Proposition 12 and Corollary 5 specialize
to the binary case as follows.

Corollary 6. Assume that supp(F ) = {0, 1} and PrF (s = 1) = x0. Pack and crack
with pool measure m∗ ∈ (x0, 1) is optimal iff

W (m) ≤ W (m∗) + w(m∗)(m−m∗) for all m ∈ [0, 1], with equality at m = 0.

Moreover, the optimal districting plan is unique if the inequality is strict for all m ∈
(0,m∗) ∪ (m∗, 1]. In particular, pack and crack is optimal if W is S-shaped, and it is
uniquely optimal if W is strictly S-shaped.

As earlier papers focused exclusively on the majoritarian and proportional objectives,
there are no counterparts to Proposition 12 or Corollaries 5 and 6 in the literature.49

In addition, Lemma A11 in Appendix E characterizes optimal districting even when
segregate-pool districting is suboptimal.

49There are also no counterparts to these results in the persuasion literature, where non-linear W

corresponds to a form of non-expected utility for the sender, as observed in Footnote 23. Mathem-
atically, Proposition 6/Corollary 1 and Proposition 12/Corollary 5 are very different. As we show
in Appendix E.2, the latter results are related to Myerson (1981)’s ironing procedure and its recent
extension by Kleiner, Moldovanu, and Strack (2020).
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7.3. Comparative Statics. The comparative statics results of Section 6 also have
analogues in the non-linear W/linear-U case, which we summarize in Proposition 13
(see Appendix E.3 for formal statements of these results).

Proposition 13. Assume that supp(F ) = {0, 1}, U is linear, and W is strictly S-
shaped.

(1) The optimal districting plan becomes more segregated if

(a) The designer becomes more satisfied with fewer seats, in that W shifts to
the left.

(b) The designer’s objective becomes closer to majoritarian, in that W com-
presses horizontally around its mode.

(c) The designer becomes more informed about voter preferences.

(2) Assume that W (0) = 0. The designer’s expected utility increases if his objective
becomes closer to majoritarian.

(3) Assume that W (0) = 0. A less popular party benefits more from gerrymander-
ing, regardless of whether the benchmark districting plan is uniform, segregated,
or pessimal.

Notably, Parts (1a) and (1b) show that changing W in the same way U is changed
in Proposition 8 has the opposite effect on the degree of segregation of the optimal
districting plan. This sign change occurs because the pool measure m∗, determined by
the first-order condition on W , is inversely related to the pool mean x∗ = x0/m∗, de-
termined by the first-order condition on U . Intuitively, if the designer is more satisfied
with fewer seats or his objective is closer to majoritarian, he creates fewer favorable
districts but makes them more secure.

7.4. Non-Uniform Aggregate Uncertainty. Finally, consider the case where v(s, r)
is linear in s, but both U and W are non-linear. The form of optimal districting is
now driven by the curvatures of U and W . In particular, if U is convex and W is
concave, then segregation is optimal, whereas if U is concave and W is convex, then
uniform districting is optimal. More generally, the following proposition extends the
characterization of segregate-pool districting in Propositions 6 and 12.
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Proposition 14. If segregate-pool districting with pool mean x∗ ∈ [E[s], 1] is optimal
under both (Ũ(x), W̃ (x)) = (U(x), x) and (Ũ(x), W̃ (x)) = (x,W (x)), then it is also
optimal under (U(x),W (x)).

Moreover, restricting attention to segregate-pool districting, we can provide intuitive
bounds on the optimal pool mean when U and W are S-shaped.

Corollary 7. Suppose that U and W are strictly S-shaped. Let x∗
U ∈ [E[s], 1] and

x∗
W ∈ [E[s], 1] be the pool means of the optimal segregate-pool districting plans under

(Ũ(x), W̃ (x)) = (U(x), x) and (Ũ(x), W̃ (x)) = (x,W (x)). In the best segregate-pool
districting plan under (U(x),W (x)), the pool mean x∗ lies between x∗

U and x∗
W .

However, even when U and W are S-shaped, segregate-pool districting is not neces-
sarily optimal. The following example shows that when voter types are binary and U

and W are both S-shaped, an optimal districting plan may pack some districts with
unfavorable voters while creating multiple cracked districts with distinct mean types
that lie between x∗

U and x∗
W .

Example 3. Suppose that x0 = 3/8,

U(x) =


0, if x ∈ [0, 1

2
),

3
8
+ x, if x ∈ [1

2
, 5
8
),

1 if x ∈ [5
8
, 1],

and W (m) =

0, if m ∈ [0, 1
2
),

1
2
+ m

2
, if m ∈ [1

2
, 1].

It is not hard to show that, in the best pack and crack plan, the designer creates
measure 3/5 of cracked districts with mean voter type 5/8 and always wins these
districts, while always losing the remaining districts. But there exists a strictly better
plan (which is in fact optimal) that creates measure 1/2 of districts with mean type
5/8, measure 1/8 of districts with mean type 1/2, and measure 3/8 of districts with
mean type 0. Intuitively, the designer’s “top priority” is to win measure 1/2 of districts
for sure, which requires a mean type of 5/8 in these districts. But once this priority is
achieved, the designer’s next objective is to maximize his expected seat share, which
calls for creating as many districts as possible with mean type 1/2 from among the
remaining favorable voters.
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8. Conclusion

This paper has developed a simple and general model of optimal partisan gerryman-
dering. Our analysis unifies, clarifies, and generalizes the path-breaking but disparate
analyses of Owen and Grofman (1988), Friedman and Holden (2008), and Gul and
Pesendorfer (2010). We also establish a range of results without precedents in the lit-
erature, which address previously unexplored districting plans (such as segregate-pair
districting which nests all optimal plans considered in the literature), comparative stat-
ics, and designer objectives beyond maximizing expected seat share or the probability
of obtaining a legislative majority. Methodologically, we unite the gerrymandering
and information design literatures, showing how powerful results developed to study
information design can shed light on partisan gerrymandering.50

Since our results involve different combinations of assumptions, it may be valuable to
speculate as to which specifications are likely the most important in practice. We think
that the linear model of Section 4 is probably a reasonable first approximation (nesting
as it does the standard uniform swing case), but that one should also take into account
that moderate voters are swingier than extremists. Optimal districting plans may thus
be well-approximated by starting with the optimal plan under linearity (i.e., segregate-
pool districting) and then breaking up the pooled districts in a single-dipped manner,
which yields segregate-pair districting. The special case of segregate-pair districting
with an empty segregated interval—that is, matching extremes districting—can arise
when individual uncertainty is much smaller than aggregate uncertainty, but seems
like a fairly atypical case.51

50Conversely, information design can also learn from gerrymandering. In Kolotilin and Wolitzky
(2020), we develop a theory of assortative information disclosure related to the analysis of Section 5
in the current paper, which in turn builds on Friedman and Holden (2008). Similarly, the analysis of
gerrymandering with non-linear designer objectives developed here in Section 7 may hold insights for
information design with non-expected sender utility.

51The issue of whether or not matching extremes districting represents a realistic case is important
for interpreting the implications of the Voting Rights Act in the United States. Many political
scientists believe that the rise of majority-minority districts following the Voting Rights Act benefitted
Republicans by packing Democratic voters. Cox and Holden (2011) challenge this view, arguing that
if matching extremes districting is optimal then mandating the creation of districts packed with
strong Democratic supporters actually constrains Republican designers and thus benefits Democrats.
If instead optimal districting takes the form of segregate-pair with a non-empty segregated interval,
then this critique fails and the standard political science view is borne out.
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We hope our model can serve as a basis for research on various aspects of redistricting.
What are the implications of our general gerrymandering model for political compet-
ition and the resulting public policies? What are the comparative statics of popular
measures of gerrymandering, such as partisan bias, mean-median gap, or efficiency
gap—and can our model be used to suggest new gerrymandering measures? What are
the effects of introducing additional, realistic constraints on gerrymandering, such as
geographic constraints or legal constraints to provide representation for communities
of interest? How does competitive gerrymandering—where each party controls dis-
tricting in some areas—play out? Finally, and perhaps most importantly, how should
society best regulate gerrymandering?
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Table 1: Summary of Main Results on the Form of Optimal Districting Plans
Result v(s, r) W (m) F G Characterization
Prop 1 1{s ≥ r} ∅a ∅ Dirac “Unrestricted” pack and crack

Prop 2 ∅ ∅ ∅ Dirac
Pack least favorable voters,
crack most favorable voters

Prop 3 1{s ≥ r} ∅ ∅ ∅
Pack and crack, where cracked districts
contain exactly one above-median type
and an equal mass of below-median types

Prop 4 ∅ 1{m ≥ k} ∅ ∅
Pack and crack with measure-k cracked
districts, which are equally favorable and
contain the measure-k most-favorable voters

Prop 6, Cor 1 Lb m ∅ U -Sc Segregate-pool
Cor 2 L m Bd U -S Pack and crack
Prop 7 Qe m ∅ ∅ Single-dipped
Cor 4, Cor A4 Q∗f Convex ∅ Concave Matching extremes
Prop 12, Cor 5 L Sg ∅ U -Lh Segregate-pool
Cor 6 L S B U -L Pack and crack

a ∅: Unrestricted, except that v is increasing in s and decreasing in r, and that W is increasing.
b L: v(s, r) is linear in s.
c U -S: U(s) = G(r∗(s)) is S-shaped (a sufficient condition; the formal result gives necessary and sufficient condi-

tions).
d B: F has binary support.
e Q: v(s, r) = 1−Q(r − s), with q = Q′ log-concave.
f Q∗: v(s, r) = 1−Q(r − s), with q = Q′ log-concave and median of Q weakly higher than the mode.
g S: W is S-shaped (a sufficient condition; the formal result gives necessary and sufficient conditions).
h U -L: U(s) = G(r∗(s)) is linear.
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ONLINE APPENDIX (NOT FOR PUBLICATION)

Appendix A. Proofs for Section 3

Proof of Proposition 1. (1) This case is trivial, as the designer wins all districts if he
creates measure 1 of districts satisfying PrP (s ≥ r0) ≥ 1/2 and loses some positive
measure of districts otherwise.

(2) Since the designer wins a district P iff PrP (s ≥ r0) ≥ 1/2, a districting plan can be
described by a distribution H ∈ ∆[0, 1] over x = PrP (s ≥ r0). The designer’s utility
for any feasible H is

W

(∫
1{x ≥ 1

2
}dH(x)

)
≤ W

(∫
2xdH(x)

)
= W (2x0), (A1)

where the inequality holds because W (m) is increasing in m and 1{x ≥ 1
2
} ≤ 2x for all

x ∈ [0, 1], and the equality holds because
∫
xdH(x) = x0 for any feasible H, by the law

of iterated expectations. Thus, any plan that creates measure 2x0 of cracked districts
satisfying PrP (s ≥ r0)r0) = 1/2 and measure 1 − 2x0 of packed districts satisfying
PrP (s < r0) = 1 is optimal. Moreover, any other plan creates a positive measure of
districts with PrP (s ≥ r0) /∈ {0, 1/2} (i.e., supp(H) * {0, 1/2}), so that the inequality
in (A1) is strict, because W is strictly increasing and 1{x ≥ 1

2
} = 2x iff x ∈ {0, 1/2}.

So any such plan is suboptimal. �

Proof of Proposition 2. (1) This case is trivial, as the designer wins all districts if he
creates measure 1 of districts satisfying

∫
v(s, r0)dP (s) ≥ 1/2 and loses some positive

measure of districts otherwise.

(2) Since v(s, r0) is continuously differentiable and strictly increasing in s, without loss
of generality, we can redefine s as v(s, r0). (With this change of variables, the density
of F may not be strictly positive on [0, 1], but this is irrelevant for our proof.) Since
the designer wins a district P iff EP [s] ≥ 1/2, a districting plan can be described by a
distribution H ∈ ∆[0, 1] over x = EP [s]. The designer’s utility for any feasible H is

W

(∫
1{x ≥ 1

2
}dH(x)

)
= W

(
1−H(1

2−)
)
,

where H(1/2−) is the left limit of H at 1/2. Since W (m) is strictly increasing in m,
the proposition will follow easily from the following lemma.

A1



Lemma A1. Let s† ∈ (0, 1) and define x† = EF [s|s ≥ s†]. For any feasible H, we
have 1−H(x†

−) ≤ 1− F (s†) with equality iff

H(x) =

F (s†), if x ∈ [s†, x†),

1, if x ∈ [x†, 1].
(A2)

Proof. For any feasible H, the distribution F is a mean-preserving spread of H (see
Footnote 29), so ∫ 1

s†
(1− F (x))dx ≥

∫ 1

s†
(1−H(x))dx. (A3)

Note that ∫ 1

s†
(1− F (x))dx = −(1− F (s†))s† +

∫ 1

s†
sdF (s)

= (1− F (s†))(x† − s†),

(A4)

where the first equality is by integration by parts and the second equality is by EF [s|s ≥
s†] = x†. Since H is a distribution function, we have∫ 1

s†
(1−H(x))dx =

∫ x†

s†
(1−H(x))dx+

∫ 1

x†
(1−H(x))dx

≥
∫ x†

s†
(1−H(x†

−))dx+

∫ 1

x†
(1−H(1))dx

= (1−H(x†
−))(x

† − s†),

(A5)

with equality iff H(x) = H(x†
−) for x ∈ [s∗, x†) and H(x) = 1 for x ∈ [x†, 1]. Combining

(A3)–(A5) proves the lemma. �

Lemma A1 evaluated at s† = s∗ such that x† = EF [s|s ≥ s∗] = 1/2 implies that H

is optimal iff it satisfies (A2), which means that a districting plan creates measure
1− F (s∗) cracked districts satisfying EP [s] = 1/2. �

Proof of Proposition 3. For a districting plan H, define H as H(r) = PrH(r∗(P ) ≤ r)

for all r. That is, the designer wins measure 1 −H(r−) of districts when the realized
aggregate shock is r. For each realization r, the designer wins a district P iff it
contains at least measure 1/2 voters with types s ≥ r (i.e., PrP (s ≥ r) ≥ 1/2). Since
the population has measure 1−F (r) voters with types s ≥ r, the designer wins at most
measure 2(1− F (r)) districts, so 1−H(r−) ≤ 2(1− F (r)). Taking into account that
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the designer can win at most measure 1 districts implies that any feasible H satisfies
H(r−) ≥ H⋆(r) where

H⋆(r) =

0, if r ≤ sm,

1− 2(1− F (r)), if r > sm.

Thus, the designer’s expected utility for any feasible H is∫
W (1−H(r−)) dG(r) ≤

∫
W (1−H⋆(r)) dG(r),

with strict inequality if H(r) ̸= H⋆(r) for some r (and thus on some interval (r, r′)
with r′ > r by right-continuity of H), because W (m) is strictly increasing in m and
G(r) is strictly increasing in r. Thus, a districting plan H is optimal iff it induces H⋆,
which means that (almost) every district P that the designer wins iff the aggregate
shock is at most r satisfies PrP (s = r) = PrP (s < sm) = 1/2. �

Proof of Proposition 4. Since v(s, rk) is continuously differentiable and strictly increas-
ing in s, without loss of generality, we can redefine s as v(s, rk), similarly to the variable
change in the proof of Proposition 2. Also, for a districting plan H, let H ∈ ∆[0, 1]

denote the induced distribution over x = EP [s]. By Lemma A1 evaluated at s† = sk

and x† = 1/2, for any feasible H, when the realized aggregate shock is rk, the designer
wins at most measure 1−F (sk) = k districts, and he wins exactly measure k districts
iff H satisfies (A2). Moreover, since v(s, r) is strictly decreasing in r, the designer
wins a strictly smaller measure than k when the realized aggregate shock is r > rk.
Finally, since the designer cares only about winning measure k districts, it follows that
H is optimal iff it satisfies (A2), which means that a districting plan creates measure
k cracked districts satisfying EP [s] = 1/2. �

Appendix B. Details and Proofs for Section 4

This appendix contains the proofs of the results in Section 4. It also generalizes some
of these results, and in particular characterizes optimal districting when it does not
take the form of segregate-pool districting.

We first present an important duality result, established by Dworczak and Martini
(2019) and Dizdar and Kováč (2020) in the persuasion context, which provides neces-
sary and sufficient conditions for the optimality of a candidate districting plan.
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Lemma A2. Assume that F ∈ ∆[0, 1]. A distribution of district mean types H ∈
∆[0, 1], such that F % H, is optimal iff there exists a continuous convex function Û

such that Û(x) ≥ U(x) for all x ∈ [0, 1], and∫
U(x)dH(x) =

∫
Û(x)dF (x). (A6)

Proof. The “if” part of the result is straightforward: if such a function Û exists then,
for any feasible distribution of district mean types H̃, we have∫

U(x)dH̃(x) ≤
∫

Û(x)dH̃(x) ≤
∫

Û(x)dF (x) =

∫
U(x)dH(x), (A7)

and hence H is optimal. (Here the first inequality follows because U(x) ≤ Û(x) for all
x, and the second follows because Û is convex and F is a mean-preserving spread of
any feasible distribution H̃.) Theorem 1 in Dizdar and Kováč (2020) establishes the
converse under regularity conditions on U weaker than those we have imposed. �

We will also use the following result, which is an immediate implication of Proposition
2 in Dworczak and Martini (2019).

Lemma A3. Assume that F ∈ ∆[0, 1] has a strictly positive density on [0, 1]. Let
Û ≥ U be a continuous convex function that satisfies (A6) for some H ∈ ∆[0, 1] such
that F % H. If Û is strictly convex on [0, s∗] for some s∗ ∈ (0, 1], then H(x) = F (x)

for all x ∈ [0, s∗].

Proof. First note that all inequalities in (A7) must hold with equality for H̃ = H; so
integrating (A7) by parts twice yields

0 =

∫ 1

0

Û(x)dF (x)−
∫ 1

0

Û(x)dH(x) =

∫ 1

0

(∫ x

0

F (s)ds−
∫ x

0

H(s)ds

)
dÛ ′(x), (A8)

where Û ′ is the right derivative of Û , which is non-decreasing given that Û is convex.
Next, note that the integrand in (A8) is non-negative,∫ x

0

F (s)ds ≥
∫ x

0

H(s)ds for all x ∈ [0, 1],

because F is a mean-preserving spread of H. Thus, for (A8) to hold, the integrand
must be zero almost everywhere where Û ′ is strictly increasing. Since Û is strictly
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convex on [0, s∗] and F has a density, this implies that∫ x

0

F (s)ds =

∫ x

0

H(s)ds for all x ∈ [0, s∗],

and thus H(x) = F (x) for all x ∈ [0, s∗]. �

We are now ready to establish a generalized version of Proposition 6, which character-
izes conditions for the optimality of trivial and non-trivial segregate-pool districting
plans. This result is a slight generalization of Proposition 3 in Kolotilin (2018) in the
persuasion context, which does not provide conditions for the optimal H to be unique.

Proposition A6. Assume that F ∈ ∆[0, 1] has a strictly positive density on [0, 1].

(1) Segregate-pool districting with cutoff type s∗ ∈ (0, 1] is optimal iff

U(x) ≤ U(x∗) + u(x∗)(x− x∗) for all x ∈ [s∗, 1], with equality at x = s∗,

and U is convex on [0, s∗].

(2) Uniform districting (i.e., s∗ = 0) is optimal iff

U(x) ≤ U(x∗) + u(x∗)(x− x∗) for all x ∈ [0, 1].

Moreover, every optimal districting plan has the same distribution H∗ of mean types if
the inequality is strict for all x ∈ (s∗, x∗) ∪ (x∗, 1] and U is strictly convex on [0, s∗].

Proof. To prove the “if” part, consider the function

Û(x) =

U(x), if x ∈ [0, s∗),

U(x∗) + u(x∗)(x− x∗), if x ∈ [s∗, 1].
(A9)

It is easy to see that Û is a continuous convex function that satisfies Û ≥ U . Moreover,
(A6) holds because Û(x) = U(x) for all x ≤ s∗ and

U(x∗)(1− F (s∗)) =

∫ 1

s∗
Û(x)dF (x). (A10)

Thus, by Lemma A2, segregate-pool districting H∗ is optimal.

To prove the “only if” part, suppose that H∗ is optimal. Then, by Lemma A2, there
exists continuous convex Û such that Û ≥ U , U(x) = Û(x) for x ∈ [0, s∗), and (A10)
holds. Since Û ≥ U , Û is convex, and F has a strictly positive density on [s∗, 1],
Jensen’s inequality applied to (A10) implies that Û(x) is linear in x on [s∗, 1] and
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Û(x∗) = U(x∗), so Û is given by (A9). This, in turn, implies that U must satisfy the
conditions of Proposition A6.

Finally, to show that H∗ is uniquely optimal under the strict conditions, notice that we
have shown that H∗ and Û satisfy the conditions of Lemma A3. Thus, every optimal
distribution H satisfies H(x) = F (x) for all x ∈ [0, s∗]. Taking into account that every
optimal H satisfies all inequalities in (A7) with equality gives∫ 1

s∗
U(x)dH(x) =

∫ 1

s∗
Û(x)dF (x),

which implies that the support of H does not contain any x in (s∗, x∗)∪(x∗, 1], because
U(x) < Û(x) for any such x and H has the same mean as F on [s∗, 1], given that F % H

and H(s∗) = F (s∗). Thus, H = H∗, completing the proof of Proposition A6. �

Corollary 1 follows easily from our Proposition A6 and Theorem 1 in Kolotilin, Mylovanov,
and Zapechelnyuk (2019). If U is S-shaped, then it is easy to see from Figure 3 that
there exists a cutoff type s∗ ∈ [0, 1] that satisfies the conditions of Proposition A6, so
segregate-pool districting is optimal. Moreover, the induced distribution H∗ of mean
types is uniquely optimal if U is strictly S-shaped, because the strict conditions of
Proposition A6 are satisfied. Finally, if U is not S-shaped, then there exist non-empty
intervals (s1, s2) and (s3, s4) with s3 ≥ s2 such that U is strictly concave on [s1, s2],
linear on [s2, s3], and strictly convex on [s3, s4]. Then, as Kolotilin, Mylovanov, and
Zapechelnyuk show, there exists a distribution F ∈ ∆[s1, s4] such that the uniquely op-
timal distribution H corresponds to non-trivial pool-segregate districting, where meas-
ure m ∈ (0, 1) of voters with the lowest types are pooled in districts with the same
mean type and the remaining voters are segregated.

Corollary 2 is a straightforward adaptation of Proposition 6 and Corollary 1 to the
binary case. A couple remarks about uniqueness are in order. First, with binary voter
types, the distribution H∗ uniquely determines the districting plan H∗. Second, the
optimal distribution H∗ is unique because the strict conditions of Corollary 2 together
with (A6) imply that the support of H∗ belongs to {0, x∗}, which uniquely determines
H∗.

Corollary 3, except for the uniqueness part, follows immediately from the discussion
preceding it. In Case (1), if the inequality is strict for all x ̸= x0, then supp(H∗) = {x0}
which uniquely determines H∗. Similarly, in Case (2), if the inequality is strict for
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all x /∈ {x∗
L, x

∗
H}, then supp(H∗) = {x∗

L, x
∗
H}, which again uniquely determines H∗.

Conversely, if the inequality holds with equality at some other x∗
O /∈ {x∗

L, x
∗
H}, then

there exists an optimal distribution H∗
O with supp(H∗

O) = {x∗
L, x

∗
H , x

∗
O}.

Appendix C. Details and Proofs for Section 5

This appendix contains the proofs of the results in Section 5. For simplicity, some
proofs in this Appendix are written for the case of discrete voter types.

Proof of Proposition 7. The proposition rests on the following two lemmas.

Lemma A4. No optimal districting plan has districts P and P ′ such that district
P contains voter types s < s′′, district P ′ contains a voter type s′ ∈ (s, s′′), and
r∗(P ) < r∗(P ′).

Proof. Suppose for contradiction that such districts P and P ′ exist and let r∗(P ) = r

and r∗(P ′) = r′, with r′ > r. Consider a perturbation that shifts mass α = (v(s′′, r)−
v(s′, r))ε of voters with type s and mass γ = (v(s′, r)− v(s, r))ε of voters with type s′′

from P to P ′ and shifts an equal mass β = α+ γ = (v(s′′, r)− v(s, r))ε of voters with
type s′ from P ′ to P , for a sufficiently small ε > 0. Since v(s, r) is strictly increasing in
s, these masses are strictly positive and thus the perturbation is well-defined. Since this
perturbation does not change the mass of voters in P and P ′, to show that it strictly
increases the designer’s expected utility, it suffices to show that r∗(P ) does not change
and r∗(P ′) strictly increases. First, r∗(P ) does not change because

∫
v(s, r)dP (s) does

not change, as

−v(s, r)α + v(s′, r)β − v(s′′, r)γ = 0.

Second, r∗(P ′) strictly increases because
∫
v(s, r′)dP ′(s) strictly increases, as

v(s, r′)α− v(s′, r′)β + v(s′′, r′)γ

= [(v(s′′, r′)− v(s′, r′))(v(s′, r)− v(s, r))− (v(s′′, r)− v(s′, r))(v(s′, r′)− v(s, r′))]ε

=

[∫ s′′

s′

∫ s′

s

∂v(s̃′, r′)

∂s

∂v(s̃, r)

∂s
ds̃ds̃′ −

∫ s′′

s′

∫ s′

s

∂v(s̃′, r)

∂s

∂v(s̃, r′)

∂s
ds̃ds̃′

]
ε

=

[∫ s′′

s′

∫ s′

s

(
∂v(s̃′, r)

∂s

∂v(s̃, r′)

∂s
− ∂v(s̃′, r)

∂s

∂v(s̃, r′)

∂s

)
ds̃ds̃′

]
ε > 0,
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where the inequality holds because the integrand is strictly positive for r′ > r and
s̃′ > s̃ by strict log-supermodularity of ∂v(s, r)/∂s. �

Lemma A5. No optimal districting plan has a district that contains voter types s <

s′ < s′′.

Proof. Suppose for contradiction that there exists a district P that has a strictly pos-
itive mass of voters with each of the types s < s′ < s′′. Let r∗(P ) = r. Suppose
we split district P into two identical equal-sized districts P1 and P2. Then consider a
perturbation that shifts mass α = (v(s′′, r)− v(s′, r))ε of voters with type s and mass
γ = (v(s′, r)− v(s, r))ε of voters with type s′′ from P1 to P2 and shifts an equal mass
β = α+ γ = (v(s′′, r)− v(s, r))ε of voters with type s′ from P2 to P1, for a sufficiently
small ε > 0. Notice that r∗(P2) = r∗(P1) = r because

v(s, r)α− v(s′, r)β + v(s′′, r)γ = 0.

Consider now an additional perturbation that moves an infinitesimal mass dm of voters
with type s from P2 to P1 and moves the same mass dm of voters with type s′′ from
P1 to P2.

By the Implicit Function Theorem, r∗(P2) = r+dr2+o(dr2) and r∗(P1) = r−dr1+o(dr1)

where

dr2 =
(v(s′′, r)− v(s, r))

−
∫ ∂v(s̃,r)

∂r
dP2(s̃)

dm and dr1 = −(v(s′′, r)− v(s, r))

−
∫ ∂v(s̃,r)

∂r
dP1(s̃)

dm.

To show that this perturbation strictly increases the designer’s expected utility, it
suffices to show that dr2 > dr1 or equivalently −

∫ ∂v(s̃,r)
∂r

dP2(s̃) < −
∫ ∂v(s̃,r)

∂r
dP1(s̃),
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which holds because

−∂v(s, r)

∂r
α +

∂v(s′, r)

∂r
β − ∂v(s′′, r)

∂r
γ

=
[
− ∂v(s, r)

∂r
(v(s′′, r)− v(s′, r)) +

∂v(s′, r)

∂r
(v(s′′, r)− v(s, r))

−∂v(s′′, r)

∂r
(v(s′, r)− v(s, r))

]
ε

= [(
∂v(s′, r)

∂r
− ∂v(s, r)

∂r
)(v(s′′, r)− v(s′, r))

−(
∂v(s′′, r)

∂r
− ∂v(s′, r)

∂r
)(v(s′, r)− v(s, r))]ε

=

[∫ s′

s

∂2v(s̃, r)

∂s∂r
ds̃

∫ s′′

s′

∂v(s̃′, r)

∂s
ds̃′ −

∫ s′′

s′

∂2v(s̃′, r)

∂s∂r
ds̃′

∫ s′

s

∂v(s̃, r)

∂s
ds̃

]
ε

<
∂2v(s′,r)
∂s∂r

∂v(s′,r)
∂s

[∫ s′

s

∂v(s̃, r)

∂s
ds̃

∫ s′′

s′

∂v(s̃′, r)

∂s
ds̃′ −

∫ s′′

s′

∂v(s̃′, r)

∂s
ds̃′

∫ s′

s

∂v(s̃, r)

∂s
ds̃

]
ε = 0,

where the inequality follows from strict log-supermodularity of ∂v(s, r)/∂s, which re-
quires that ∂ ln(∂v(s, r)/∂s)/∂r is strictly increasing in s and thus

∂2v(s̃′,r)
∂s∂r

∂v(s̃′,r)
∂s

>
∂2v(s′,r)
∂s∂r

∂v(s′,r)
∂s

>
∂2v(s̃,r)
∂s∂r

∂v(s̃,r)
∂s

for s̃ < s′ < s̃′. �

By Lemmas A4 and A5, to show that every optimal districting plan is single-dipped
it suffices to show that for each district P consisting of voter types s < s′′ and each
district P ′ containing a voter type s′ ∈ (s, s′′), we have r∗(P ′) ̸= r∗(P ). Suppose for
contradiction that r∗(P ′) = r∗(P ). Then merging districts P and P ′ into one district
would also be optimal, but the merged district would contain voter types s < s′ < s′′,
contradicting Lemma A5. �

Proof of Corollary 4. The corollary rests on the following two lemmas.

Lemma A6. If a single-dipped districting plan has a district that consists of voter
types s < s′, then there is a segregated type s∗ ∈ (s, s′).

Proof. Let H be a single-dipped districting plan that has a district consisting of voters
with types s < s′. Suppose first that there exists a district P1 ∈ supp(H) such that
supp(P1) = {s1, s′1} and s < s1 < s′1 < s′. Let P ∗ ∈ supp(H) be a district that
minimizes r∗(P ) over all districts P ∈ supp(H) such that supp(P ) ⊂ [s1, s

′
1]. We claim
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that supp(P ∗) = s∗ for some s∗ ∈ [s1, s
′
1]. Indeed, if instead supp(P ∗) = {s∗, s∗′} with

s1 ≤ s∗ < s∗′ ≤ s′1, then any district P2 ∈ supp(H) such that s2 ∈ supp(P2) for some
s2 ∈ (s∗, s∗′) would satisfy supp(P2) ⊂ [s∗, s∗′] and r∗(P2) < r∗(P ∗), because H is
single-dipped, contradicting the definition of P ∗.

Suppose now that there does not exist P1 ∈ supp(H) such that supp(P1) = {s1, s′1}
and s < s1 < s′1 < s′. Thus, any P ∗ ∈ supp(H) such that s∗ ∈ supp(P ) for some
s∗ ∈ (s1, s2) satisfies supp(P ∗) ⊂ {s, s∗, s′}, because H is single-dipped. Since the
distribution F of s has a density, it follows from Bayes’s rule that for (almost) all such
P ∗, we have supp(P ∗) = s∗. �

Lemma A7. If for all s < s′ there exists p ∈ (0, 1) such that

G(r∗(pδs + (1− p)δs′)) > pG(r∗(δs)) + (1− p)G(r∗(δs′)), (A11)

then every optimal districting plan segregates at most one voter type.

Proof. If (A11) holds then the designer’s expected seat share is strictly higher if she
creates a district P = pδs+(1−p)δs′ rather than segregates voters with types s < s′. �

Remark 1. Condition (A11) holds if G is weakly concave and for all s < s′,
v(s′, r∗(δs′))− v(s, r∗(δs′))

−∂v(s′,r∗(s′))
∂r

(r∗(δs′)− r∗(δs))
< 1.

Proof. Condition (A11) for p = dp takes the form

[G(r∗(δs′))−G(r∗(δs))]dp− g(r∗(δs′))dr > 0, (A12)

where
dr =

v(s′, r∗(δs′)− v(s, r∗(δs′)

−∂v(s′,r∗(s′))
∂r

dp. (A13)

Condition (A12) holds because
G(r∗(δs′))−G(r∗(δs))

g(r∗(δs′))(r∗(δs′)− r∗(δs))
≥ 1 >

v(s′, r∗(δs′))− v(s, r∗(δs′))

−∂v(s′,r∗(s′))
∂r

(r∗(δs′)− r∗(δs))
. �

Since the optimal districting plan is single-dipped by Proposition 7, it suffices to show
that there are no districts P1 and P2 such that supp(P1) = {s1, s′1}, supp(P2) = {s2, s′2},
and s1 ≤ s′1 ≤ s2 ≤ s′2 with at least one inequality being strict. If there were such
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districts, then there would exist segregated types s∗1 < s∗2 by Lemma A6, contradicting
Lemma A7. �

Proof of Example 2. We first present a weak duality result, established in Lemma 1 of
Kolotilin (2018) in the persuasion context. This result provides sufficient conditions
for the optimality of a candidate districting plan. To state it, we represent a districting
plan as a joint distribution J of voter type s and a threshold aggregate shock r below
which the designer wins the district containing voter type s.

Let S = [0, 1] denote the set of voter types. Also, let R = [0, 1] denote the set of
feasible threshold aggregate shocks: for each P ∈ ∆[0, 1], the value r∗(P ) belongs to
[r∗(δ0), r

∗(δ1)], which is equal to [0, 1] because Q is symmetric about 0. Thus, any
feasible joint distribution J belongs to ∆(S ×R).

Lemma A8. A joint distribution J ∈ ∆(S × R) of voter type s and the threshold
aggregate shock r, such that

the marginal distribution of s is F , and (A14)∫
S×R̃

(v(s, r)− 1/2)dJ(s, r) = 0 for every measurable set R̃ ⊂ R, (A15)

is optimal if there exist bounded measurable functions η and ν such that

η(s)− (v(s, r)− 1/2)ν(r) ≥ G(r) for all (s, r) ∈ S ×R, and (A16)∫
S×R

G(r)dJ(s, r) =

∫
S

η(s)dF (s). (A17)

A joint distribution J is feasible iff it satisfies (A14) and (A15), where (A14) re-
quires that the population distribution of s is given by F , and (A15) requires that
the threshold aggregate shock in each district P is r∗(P ).

A11



The proof of the lemma is simple: if such functions η and ν exist then, for any feasible
joint distribution J̃ , we have∫

S×R

G(r)dJ̃(s, r) ≤
∫
S×R

(η(s)− (v(s, r)− 1/2)ν(r))dJ̃(s, r)

=

∫
S

η(s)dF (s)−
∫
S×R

(v(s, r)− 1/2)ν(r)dJ̃(s, r)

=

∫
S

η(s)dF (s)

=

∫
S×R

G(r)dJ(s, r),

(A18)

and hence J is optimal. Here the inequality follows from (A16), whereas the equalities
follow from (A14), (A15), and (A17).

To simplify notation, we redefine s as s − 1/3 and r as r − 1/3, so that S = R =

[−1/3, 2/3] and G(r) = Q(2r) for all r ∈ R. With this notation, our candidate dis-
tricting plan J segregates voter types s ∈ [−1/3,−2/9), and pairs each voter type
s ∈ [−2/9, 0] with s′ = −3s ∈ [0, 2/3], so that

r∗(s) =


s, if s ∈ [−1

3
,−2

9
),

−s, if s ∈ [−2
9
, 0),

s
3
, if s ∈ [0, 2

3
].

The optimality of J will follow easily from the following lemma.

Lemma A9. Functions η and ν given by

η(s) =

Q(2s), if s ∈ [−1
3
, 0),

3Q(2
3
s)− 1, if s ∈ [0, 2

3
],

and ν(r) =


2q(2r)
q(0)

, if r ∈ [−1
3
, 0),

2, if r ∈ [0, 2
3
].

satisfy (A16) with equality for (s, r) ∈ Y and with strict inequality for (s, r) /∈ Y where

Y = {(s, r∗(s)) : s ∈ [−1
3
, 2
3
]} ∪ {(s, s) : s ∈ [−1

3
, 0]}.

Proof. Denote the excess share (above 1/2) of type-s voters who vote for the designer
when the aggregate shock is r by

V (s− r) = Q(s− r)− 1
2
,
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where the equality holds because v(s, r) = 1−Q(r − s) and Q is symmetric about 0.
Clearly, V is also symmetric about 0, so that V (e) = −V (−e) for all e ∈ R.

It is easy to see that η and ν satisfy (A16) with equality for all (s, r) ∈ Y . Indeed, for
s ∈ [−1/3, 0], we have

η(s)− V (0)ν(s) = Q(2s) = G(s).

Similarly, for s ∈ [−2/9, 0], we have

η(s)− V (s− r∗(s))ν(r∗(s)) = 1
2
+ V (2s)− 2V (2s) = Q(−2s) = G(r∗(s)).

Finally, for s ∈ [0, 2/3], we have

η(s)− V (s− r∗(s))ν(r∗(s)) = 1
2
+ 3V (2

3
s)− 2V (2

3
s) = G(r∗(s)).

We now verify that η and ν satisfy (A16) with strict inequality for all (s, r) /∈ Y . There
are a few cases to consider.

(1) For r ∈ [0, 2/3] and s ∈ [r, 2/3], the condition (A16) simplifies to

3V (2
3
s) ≥ 2V (s− r) + V (2r),

which holds with strict inequality for s ̸= 3r because V is strictly concave on (0,∞).

(2) For r ∈ [0, 2/3] and s ∈ [0, r), the condition (A16) simplifies to

3V (2
3
s) + 2V (r − s) ≥ V (2r) + 4V (0),

which always holds with strict inequality because V is strictly concave on (0,∞).

(3) For r ∈ [0, 2/3] and s ∈ [−1/3, 0), the condition (A16) simplifies to

2V (r − s) ≥ V (2r) + 4V (−2s),

which holds with strict inequality for s ̸= −r because V is strictly concave on (0,∞).

(4) For r ∈ [−1/3, 0) and s ∈ [0, 2/3], the condition (A16) simplifies to

3V (2
3
s) + V (−2r) ≥ ν(r)V (s− r) + 2V (0),

which always holds with strict inequality because ν(r) < 2 and V is strictly positive
and strictly concave on (0,∞).

(5) For r ∈ [−1/3, 0) and s ∈ (r, 0), the condition (A16) simplifies to

V (−2r) ≥ V (−2s) + ν(r)V (s− r),
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which is equivalent to
Q(−2r)−Q(−2s)

q(−2r)(2s− 2r)
≥ Q(s− r)−Q(0)

q(0)(s− r)
.

This always holds with strict inequality because Q is strictly concave on (0,∞) and
thus the left-hand side is strictly greater than one whereas the right-hand side is strictly
less than one.

(6) For r ∈ [−1/3, 0) and s ∈ [−1/3, r), the condition (A16) simplifies to

V (−2r) + ν(r)V (r − s) ≥ V (−2s),

which is equivalent to
Q(r − s)−Q(0)

q(0)(r − s)
≥ Q(−2s)−Q(−2r)

q(−2r)(2r − 2s)
.

This always holds with strict inequality because

Q(−2s)−Q(−2r)

q(−2r)(2r − 2s)
=

1

2r − 2s

∫ 2(r−s)

0

q(y − 2r)

q(−2r)
dy

<
1

2r − 2s

∫ 2(r−s)

0

q(y)

q(0)
dy

=
Q(2r − 2s)−Q(0)

q(0)(2r − 2s)

<
Q(r − s)−Q(0)

q(0)(r − s)
,

where the first inequality holds because q(y + c)/q(y) is strictly decreasing in c for a
strictly log-concave q, and the second inequality holds because Q is strictly concave on
(0,∞). �

By Lemma A9, η and ν satisfy (A16) with equality for all (s, r) ∈ supp(J), which
consists of points (s, r∗(s)) for s ∈ S. Taking into account (A18) implies that (A17)
holds, and thus J is optimal by Lemma A8.

Moreover, by (A18), any optimal plan J̃ must satisfy∫
S×R

(η(s)− (v(s, r)− 1/2)ν(r)−G(r))dJ̃(s, r) = 0.

By (A16), the integrand is non-negative, so, for the equality to hold, supp(J̃) must be
a subset of Y , where the integrand is zero. But it is easy to see that J is the unique
plan satisfying this property. Indeed, since (s′, r′) ∈ Y for s′ ∈ [0, 2/3] iff r′ = s′/3,
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the plan J̃ must allocate each voter with type s′ to a district where the threshold
aggregate shock is r∗(s′) = s′/3. Moreover, since (s̃, s′/3) ∈ Y , for s′ ∈ [0, 2/3], iff
s̃ = s′ or s̃ = −s′/3, each district of the plan J̃ where the threshold aggregate shock is
s′/3 must consist of f(s′) voters with type s′ and f(s′) voters with type −s′/3. Since,
by assumption, |f(−s′/3)d(−s′/3)| = f(s′)ds′ for s′ ∈ [0, 2/3], the plan J̃ must match
all existing voters with types s′ and −s′/3. Finally, the plan J̃ must segregate the
remaining voters with types s ∈ [−1/3,−2/9) because (s, r) ∈ Y for s ∈ [−1/3,−2/9)

iff r = s. So J̃ must coincide with J . �

Appendix D. Details and Proofs for Section 6

We assume that U is a continuously differentiable and weakly increasing function from
R to [0, 1]. To allow for the possibility that the designer loses “packed” districts with
certainty (as in Propositions 9 and 11), we assume that U(x) = 0 for all x ≤ x and
some x < 1. Finally, we assume that U is strictly S-shaped on (x,∞). Specifically,
there exists an inflection point xi ∈ (x, 1) such that U is strictly convex on (x, xi) and
strictly concave on (xi,∞).

We first note that a simple generalization of Corollary 1 gives the existence of a unique
optimal plan that takes the form of pack and crack if supp(F ) = {sL, sH} with sH > x,
which is assumed in all propositions in this appendix. Moreover, we henceforth also
assume, except in Proposition A9, that supp(F ) = {0, 1} with PrF (s = 1) = x0.

We now present a simple condition that in the binary case is equivalent to the statement
that one districting plan is more segregated than another.

Lemma A10. Let distributions H and H̃ have the same mean x0 and at most binary
supports {xL, xH} and {x̃L, x̃H}, with xL ≤ xH and x̃L ≤ x̃H . Then H is a mean-
preserving spread of H̃ iff xL ≤ x̃L ≤ x̃H ≤ xH .

Proof. By definition, H is a mean-preserving spread of H̃ iff∫ x

−∞
(H(s)− H̃(s))ds ≥ 0 for all x ∈ R with equality at x → ∞. (A19)

Thus, xL ≤ x̃L, otherwise∫ x

−∞
H(s)ds = 0 <

∫ x

−∞
H̃(s)ds for all x ∈ (x̃L, xL),
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and, similarly, xH ≥ x̃H . Conversely, let xL ≤ x̃L ≤ x̃H ≤ xH . Then (A19) holds with
equality for x ≥ xH , because H and H̃ have the same mean. Moreover, (A19) holds
for x ≤ x̃L, because H(x) ≥ H̃(x) = 0 for x < x̃L. Similarly, (A19) holds for x ≥ x̃H ,
because H(x) ≤ H̃(x) = 1 for x ≥ x̃H and (A19) holds with equality for x ≥ xH .
Finally, (A19) holds for x ∈ (x̃L, x̃H) because

∫ x

−∞(H(s) − H̃(s))ds is linear in x on
(x̃L, x̃H) and (A19) holds for x ∈ {x̃L, x̃H}, as shown above. �

A formal version of Proposition 8 takes the following form.

Proposition A8.

(1) Let x∗
λ be the pool mean of the optimal pack and crack plan under Uλ(x) =

U(x−λ) where λ < 1−x. Then x∗
λ is increasing in λ, strictly so if x∗

λ ∈ (x0, 1).

(2) Let x∗
ζ be the pool mean of the optimal pack and crack plan under Uζ(x) =

U(xi + (x − xi)/ζ) where ζ > 0. Then x∗
ζ is increasing in ζ, strictly so if

x∗
ζ ∈ (x0, 1).

In the persuasion context, Kolotilin, Mylovanov, and Zapechelnyuk (2019) establish
Proposition 8 for a general F ∈ ∆[0, 1]. To see why Part (1) holds, consider x∗

λ ∈ (x0, 1)

and notice that by Corollary 2, we have

Uλ(0) = Uλ(x
∗
λ)− uλ(x

∗
λ)x

∗
λ.

Because U is strictly S-shaped on (x,∞), it is easy to see that for λ′ < λ and x′ ≥ x∗
λ,

Uλ′(0) < Uλ′(x′)− uλ′(x′)x′.

Thus, the equality can be restored only at x∗
λ′ < x∗

λ. The argument for Part (2) is
analogous, except that the corresponding strict inequality holds for ζ ′ ∈ (0, ζ) and
x′ ≥ x∗

ζ , because U is both strictly S-shaped and increasing on (x,∞).

A formal version of Proposition 9 takes the following form.

Proposition A9. Let distributions F and F̃ have the same mean x0 and binary
supports {sL, sH} and {s̃L, s̃H} with sL < s̃L < s̃H < sH and s̃H > x. Moreover, let
x∗ and x̃∗ be the pool mean of the optimal pack and crack plan under F and F̃ . Then
x∗ > x̃∗, unless x∗ = x̃∗ = x0.
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Proof. The proposition trivially holds if x∗ = sH . By Corollaries 2 and 3, if x∗ < sH ,
then

U(x) ≤ U(x∗) + u(x∗)(x− x∗) for all x ∈ [sL, sH ].

Because U is strictly S-shaped on (x,∞), it is easy to see that for x̃ ≥ x∗ and s̃L ∈
(sL, x̃), we have

U(s̃L) < U(x̃) + u(x̃)(s̃L − x̃).

Thus, in the optimal pack and crack plan, either x̃∗ < x∗ or x̃∗ = x∗ = x0. �

A formal version of Proposition 10 takes the following form.

Proposition A10. Let U ζ(x
0) be the expected seat share of the optimal pack and crack

plan under Uζ(x) = U(xi + (x − xi)/ζ) where ζ ∈ (0, xi/(xi − x)], so that Uζ(0) = 0.
Then U ζ(x

0) is strictly decreasing in ζ.

Proof. In the optimal pack and crack plan under ζ, the pool mean is x∗
ζ > xi and

U ζ(x
0) = Uζ(0)

x∗
ζ − x0

x∗
ζ

+ Uζ(x
∗
ζ)
x0

x∗
ζ

= Uζ(x
∗
ζ)
x0

x∗
ζ

.

Then for ζ ′ ∈ (0, ζ), we have

U ζ′(x
0) ≥ Uζ′(0)

x∗
ζ − x0

x∗
ζ

+ Uζ′(x
∗
ζ)
x0

x∗
ζ

= Uζ′(x
∗
ζ)
x0

x∗
ζ

> Uζ(x
∗
ζ)
x0

x∗
ζ

= U ζ(x
0),

where the first inequality is by definition of U ζ′ , and the second is by x∗
ζ > xi and strict

monotonicity of U on (xi,∞). �

A formal version of Proposition 11 takes the following form.

Proposition A11. Assume that x ≥ 0, so that U(0) = 0.

(1) U(x0)/U(x0) is decreasing in x0, strictly so if x0 ≤ x∗.

(2) U(x0)/(x0U(1)) is decreasing in x0, strictly so if x0 ≥ x∗.

(3) U(x0)/U(x0) is strictly decreasing in x0 for all x0.
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Proof. Since U is strictly S-shaped on (x, 1) and U(0) = 0,

U(x0) =

x0

x∗U(x∗), if x0 ≤ x∗,

U(x0), if x0 > x∗,

U(x0) =

U(x0), if x0 < x∗,

1−x0

1−x∗
U(x∗) +

x0−x∗
1−x∗

U(1), if x0 ≥ x∗,

where x∗ > xi and x∗ < xi are uniquely determined by

x∗ = arg max
x∈[xi,1]

x0

x
U(x),

x∗ = arg min
x∈[0,xi]

1− x0

1− x
U(x) +

x0 − x

1− x
U(1).

(1) Clearly, U(x0)/U(x0) = 1 for x0 ∈ [x∗, 1). Moreover, for x0 ∈ (0, x∗],

U(x0)

U(x0)
=

U(x∗)

x∗
x0

U(x0)

is strictly decreasing in x0, because U is strictly S-shaped.

(2) Clearly, U(x0)/(x0U(1)) = U(x∗)/(x∗U(1)) is constant for x0 ∈ (0, x∗]. Moreover,
for x ∈ [x∗, 1),

U(x0)

x0U(1)
=

1

U(1)

U(x0)

x0

is strictly decreasing in x0, because U is strictly S-shaped.

(3) First, U(x0)/U(x0) = U(x0)/U(x0) is strictly decreasing in x0 for x0 ∈ (0, x∗], by
Part (1). Next, for x0 ∈ [x∗, x

∗],

U(x0)

U(x0)
=

x0

x∗U(x∗)
1−x0

1−x∗
U(x∗) +

x0−x∗
1−x∗

U(1)

is strictly decreasing in x0 because x∗U(1) > U(x∗) = U(x∗) by definition of the convex
envelope. Finally, for x0 ∈ [x∗, 1),

U(x0)

U(x0)
=

U(x0)
1−x0

1−x∗
U(x∗) +

x0−x∗
1−x∗

U(1)
=

U(x0)
x0

x∗U(x∗)

x0

x∗U(x∗)
1−x0

1−x∗
U(x∗) +

x0−x∗
1−x∗

U(1)

is strictly decreasing in x0 because both terms are strictly decreasing in x0, as shown
above. �
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Appendix E. Details and Proofs for Section 7

E.1. Details for Section 7.1. Corollary 4 generalizes as follows.

Corollary A4. Assume that W is weakly convex, q is strictly log-concave, G is weakly
concave, and the median of Q is weakly higher than the mode. In every optimal
districting plan, every two districts P1 and P2 are nested, in that P1 consists of voter
types s1 ≤ s′1 and P2 consists of voter types s2 ≤ s′2 such that either s2 ≤ s1 ≤ s′1 ≤ s′2

or s1 ≤ s2 ≤ s′2 ≤ s′1.

The proof again rests on Lemmas A6 and A7. The proof of Lemma A6 is the same.
To see heuristically why Lemma A7 holds, suppose that there exist two districts P1

and P2 that segregate voters with types s1 < s2 and consider a perturbation that
pools mass dm2 of voters with type s1 and mass dm of voters with type s2. This
perturbation decreases H(r) for r ∈ [r∗(δs1), r

∗(δs2) − dr] by dm2 and increases H(r)

for r ∈ [r∗(δs2)−dr, r∗(δs2)] by dm where dr is given by (A13). Thus, this perturbation
increases the designer’s expected utility by[∫ r∗(δs2 )

r∗(δs1 )

w(1−H(r))dG(r)

]
dm2 − w(1−H(r∗(δs2))g(r

∗(δs2))dmdr

≥ w(1−H(r∗(δs2)) [(G(r∗(δs2))−G(r∗(δs1)))dm− g(r∗(δs2))dr] dm > 0,

where the first inequality is by convexity of W , so w(1 − H(r)) ≥ w(1 − H(r∗(δs2)))

for r < r∗(δs2), and the second inequality is by (A12).

E.2. Proofs for Section 7.2. We first fully characterize the optimal districting plan.
For simplicity, we state the result for the case where F has a strictly positive density,
but it is straightforward to extend it to the general case (see, e.g., Corollary A6 for
the binary case). This result uses Myerson (1981)’s ironing procedure and is similar
to a recent and independent result of Kleiner, Moldovanu, and Strack (2020) (their
Proposition 2). Let W denote the concave envelope of W .

Lemma A11. Assume that F ∈ ∆[0, 1] has a strictly positive density. Let {(si, si)}i∈I
be a collection of disjoint nonempty intervals such that W (m) is linear in m on each
interval (1−F (si), 1−F (si)) and W (m) = W (m) elsewhere. A districting plan H that
pools voters with types s ∈ (si, si), for each i ∈ I, in districts with the same mean type
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xi = EF [s|s ∈ (si, si)] and segregates the remaining voters is optimal. The designer’s
expected utility under this plan is∫

W (1−H(x))dx =

∫
W (1− F (x))dx. (A20)

Proof. For any H̃ ∈ ∆[0, 1], define the right-continuous inverse of H̃ as

H̃−1(p) =

inf{x ∈ [0, 1] : p < H̃(x)}, if p ∈ [0, 1),

1, if p = 1.

By definition, H̃−1 is a non-negative, non-decreasing, and right-continuous function
that satisfies H̃−1(1) = 1, so H̃−1 ∈ ∆[0, 1]. Moreover, H̃−1 % F−1 iff F % H̃, because

F % H̃ ⇐⇒
∫ p

0

F−1(p̃)dp̃ ≤
∫ p

0

H̃−1(p̃)dp̃ for all p ⇐⇒ H̃−1 % F−1, (A21)

where the equivalences are by Theorems 3.A.5 and 3.A.1 in Shaked and Shanthikumar
(2007).

For any feasible H̃, we have∫
W (1− H̃(x))dx ≤

∫
W (1− H̃(x))dx =

∫
W (1− p)dH̃−1(p)

≤
∫

W (1− p)dF−1(p) =

∫
W (1− F (x))dx,

(A22)

where the equalities are by variable change, the first inequality is by W ≥ W , and the
second inequality is by concavity of W and H̃−1 % F−1. Thus, to verify the optimality
of H, it suffices to show that (A20) holds. Note that H is given by

H(x) =


F (s), if x /∈ ∪i∈I(si, si),

F (si), if x ∈ (si, xi),

F (si), if x ∈ [xi, si).

Denote X = [0, 1] \ ∪i∈I(si, si), mi = 1− F (si), and mi = 1− F (si), so∫
W (1−H(x))dx =

∫
X

W (1−F (x))dx+
∑
i∈I

(W (mi)(xi − si) +W (mi)(si − xi)).

Notice that ∫
X

W (1− F (x))dx =

∫
X

W (1− F (x))dx,
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because W (1− F (x)) = W (1− F (x)) for all x ∈ X. Moreover, for each i ∈ I,∫ si

si

W (1− F (x))dx =

∫ si

si

[
W (mi)

mi − (1− F (x))

mi −mi

+W (mi)
1− F (x)−mi

mi −mi

]
dx

= W (mi)(si − xi) +W (mi)(xi − si), (A23)

where the first equality holds because W (m) is linear in m on [mi,mi] with W (m) =

W (m) for m ∈ {mi,mi}, and the second equality holds by integration by parts,∫ si

si

(1− F (x))dx = (1− F (x))x|sisi +
∫ si

si

xdF (x) = misi −misi + (mi −mi)xi.

So H satisfies (A20) and is thus optimal. �

We will also use the following result, which is analogous to Lemma A3.

Lemma A12. Assume that F ∈ ∆[0, 1] has a strictly positive density on [0, 1]. If
W is strictly concave on [m∗, 1] for some m∗ ∈ [0, 1), then every optimal H satisfies
H(x) = F (x) for all x ∈ [0, s∗], where s∗ = F−1(1−m∗).

Proof. Note that all inequalities in (A22) must hold with equality for every optimal
H; so integrating (A22) by parts twice yields

0 =

∫ 1

0

W (1− p)dF−1(p)−
∫

W (1− p)dH−1(p)

=

∫ 1

0

(∫ p

0

H−1(p̃)dp̃−
∫ p

0

F−1(p̃)dp̃

)
dW

′
(1− p),

(A24)

where W
′
(1 − p) is the right derivative of W at 1 − p, which is non-decreasing in p

given that W is concave. The integrand in (A24) is non-negative by (A21). Thus, for
(A8) to hold, the integrand must be zero almost everywhere where W

′
(1−p) is strictly

increasing in p. Since W is strictly concave on [m∗, 1] and F has a density, this implies
that ∫ p

0

H−1(p̃)dp̃ =

∫ p

0

F−1(p̃)dp̃ for all p ∈ [0, 1−m∗],

and thus H(x) = F (x) for all x ∈ [0, s∗]. �

We are now ready to establish a generalized version of Proposition 12, which charac-
terizes when trivial and non-trivial segregate-pool districting plans are optimal.

Proposition A12. Assume that F ∈ ∆[0, 1] has a strictly positive density on [0, 1].
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(1) Segregate-pool districting with pool measure m∗ ∈ [0, 1) is optimal iff

W (m) ≤ W (m∗) + w(m∗)(m−m∗) for all m ∈ [0, 1], with equality at m = 0,

and W is concave on [m∗, 1].

(2) Uniform districting (i.e., m∗ = 1) is optimal iff

W (m) ≤ W (0)(1−m) +W (1)m for all m ∈ [0, 1].

Moreover, every optimal districting plan has the same distribution H∗ of mean types if
the inequality is strict for all m ∈ (0,m∗) and W is strictly concave on [m∗, 1].

Proof. It is easy to see that in Case (1) the concave envelope of W is

W (m) =

W (m∗) + w(m∗)(m−m∗), if m ∈ [0,m∗),

W (m), if m ∈ [m∗, 1],
(A25)

and in Case (2) it is

W (m) = W (0)(1−m) +W (1)m for all m ∈ [0, 1].

Thus, by Lemma A11, segregate-pool districting H∗ is optimal.

Conversely, suppose that H∗ is optimal. Then, by Lemma A11, all inequalities in (A22)
must hold with equality for H = H∗, so that∫ s∗

0

W (1−H∗(x))dx =

∫ s∗

0

W (1− F (x))dx =

∫ s∗

0

W (1− F (x))dx (A26)

and∫ 1

s∗
W (1−H∗(x))dx = W (m∗)(x∗− s∗)+W (0)(1−x∗) =

∫ 1

s∗
W (1−F (x))dx. (A27)

Clearly, (A26) implies that W (1−F (x)) = W (1−F (x)) for all x ∈ [0, s∗] or equivalently
W (m) = W (m) for all m ∈ [m∗, 1], since F has a density. By definition, W is
concave and thus so is W on [m∗, 1]. Moreover, (A27) holds with equality if W (m) =

W (0)(1 − m) + W (m∗)m for all m ∈ [0,m∗] by (A23). This implies that W (m) ≤
W (0)(1 − m) + W (m∗)m for all m ∈ [0,m∗], otherwise the right-hand side in (A27)
would be strictly larger than the left-hand side, given that F has a density.
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Finally, under the strict conditions, W satisfies the conditions of Lemma A12. Thus,
every optimal H satisfies H(x) = F (x) for all x ∈ [0, s∗]. Taking into account that
every optimal H satisfies all inequalities in (A22) with equality gives∫ 1

s∗
W (1−H(x))dx =

∫ 1

s∗
W (1− F (x))dx,

which implies that 1−H(x) ∈ {1−F (s∗), 0} for all x ∈ [s∗, 1], because W (m) < W (m)

for all m ∈ (0,m∗). Taking into account that F % H and H(x) = F (x) for all x ∈ [0, s∗]

yields H = H∗. �

Corollary 5 follows easily from Proposition A12. If W is S-shaped, then it is easy to
see that there exists m∗ ∈ [0, 1] that satisfies the conditions of Proposition A12, so
segregate-pool districting is optimal. Moreover, the induced distribution H∗ of mean
types is uniquely optimal if W is strictly S-shaped, because the strict conditions of
Proposition A12 are satisfied.

Corollary 6 is a special case of the following result which fully characterizes optimal
districting in the case of binary voter types.

Corollary A6. Assume that supp(F ) = {0, 1} and PrF (s = 1) = x0.

(1) If W (x0) < W (x0), so that there exist mL,mH ∈ [0, 1] such that mL < x0 < mH

and

W (m) ≤ W (mL)
mH − x0

mH −mL

+W (mH)
x0 −mL

mH −mL

for all m ∈ [0, 1], (A28)

then, and only then, a districting plan that creates measure 1−mH of districts
with mean type xL = 0, measure mH − mL of districts with mean type xM =

(x0 −mL)/(mH −mL), and measure mL of districts with mean type xH = 1 is
optimal.

(2) If W (x0) = W (x0), so that

W (m) ≤ W (x0) + w(x0)(m− x0) for all m ∈ [0, 1], (A29)

then, and only then, segregation (i.e., mL = mH = x0) is optimal.

Moreover, the optimal districting plan is unique if the inequality is strict for all m /∈
{mL,mH}. In particular, pack and crack (i.e., mL = 0) is optimal if W is S-shaped,
and it is uniquely optimal if W is strictly S-shaped.
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Proof. Notice that the proof that (A22) holds for any feasible H holds for a general F .
The distribution of mean types in Case (1) is

H(x) =


1−mH , if x ∈

[
0, x0−mL

mH−mL

)
,

1−mL, if x ∈
[

x0−mL

mH−mL
, 1
)
,

1, if x = 1,

and it is H = F in Case (2). In Case (1), we have∫
W (1−H(x))dx = W (mH)

x0 −mL

mH −mL

+W (mL)
mH − x0

mH −mL

= W (x0) =

∫
W (1− F (x))dx,

showing that H is optimal. Similarly, H is optimal in Case (2), because∫
W (1−H(x))dx = W (x0) = W (x0) =

∫
W (1− F (x))dx.

Conversely, if H is optimal, then the above equalities hold, which implies inequalities
(A28) and (A29). Moreover, if the inequalities are strict for all m /∈ {mL,mH}, then
every H̃ that satisfies the above equalities must satisfy 1 − H̃(x) ∈ {mL,mH} for all
x ∈ [0, 1), implying that H is uniquely optimal and that that the optimal districting
plan is unique, given that voter types are binary. Finally, the part with S-shaped and
strictly S-shaped W holds by the same argument as in Corollary 5. �

E.3. Proofs for Section 7.3. We assume that U is linear on its domain, and W is
a continuously differentiable and weakly increasing function from R to [0, 1]. Further,
we assume that W (m) = 0 for all m ≤ m and some m < 1. Finally, we assume that W
is strictly S-shaped on (m,∞). Specifically, there exists an inflection point mi ∈ (m, 1)

such that W is strictly convex on (m,mi) and strictly concave on (mi,∞).

We first note that a simple generalization of Corollary 6 gives that there exists a
unique optimal plan that takes the form of pack and crack if supp(F ) is binary, which
is assumed throughout this appendix. Moreover, we henceforth also assume, except in
Part (1c), that supp(F ) = {0, 1} with PrF (s = 1) = x0.

A formal version of Proposition 13 takes the following form.

Proposition A13.
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(1) (a) Let m∗
λ be the pool measure of the optimal pack and crack plan under

Wλ(m) = W (m−λ) where λ < 1−m. Then m∗
λ is increasing in λ, strictly

so if m∗
λ ∈ (x0, 1).

(b) Let m∗
ζ be the pool measure of the optimal pack and crack plan under

Wζ(m) = W (mi + (m−mi)/ζ) where ζ > 0. Then m∗
ζ is increasing in ζ,

strictly so if m∗
ζ ∈ (x0, 1).

(c) Let distributions F and F̃ have the same mean x0 and binary supports
{sL, sH} and {s̃L, s̃H} with sL < s̃L < s̃H < sH . Moreover, let x∗ and x̃∗

be the pool mean of the optimal pack and crack plan under F and F̃ . Then
x∗ > x̃∗, unless x∗ = x̃∗ = x0.

(2) Let W ζ(x
0) be the concave envelope of Wζ on [0, 1] at x0 where Wζ(m) =

W (mi + (m − mi)/ζ) with ζ ∈ (0,mi/(mi − m)], so that Wζ(0) = 0. Then
W ζ(x

0) is strictly decreasing in ζ.

(3) Assume that m ≥ 0, so that W (0) = 0.

(a) W (x0)/W (x0) is decreasing in x0, strictly so if x0 ≤ x∗.

(b) W (x0)/(x0W (1)) is decreasing in x0, strictly so if x0 ≥ x∗.

(c) W (x0)/W (x0) is strictly decreasing in x0 for all x0.

The proofs of all parts, except Part (1c), are the same as the proofs of Propositions A8–
A11. In Part (1c), the optimal plan pools measure m† of voters with the highest types
and segregates the remaining voters where m† ∈ [0, 1] is such that W (m) < W (m)

for all m ∈ (0,m†) and W (m) = W (m) for all m ∈ [m†, 1]. Taking into account that
PrF (s = sH) = (x0 − sL)/(sH − sL) gives

x∗ =


x0−(1−m†)sL

m† , if x0−sL
sH−sL

∈ [0,m†),

sH , if x0−sL
sH−sL

∈ [m†, 1],

and similarly for x̃∗. Thus, x∗ > x̃∗, unless m† = 1, so that x∗ = x̃∗ = x0.

Part (2) implies that the designer’s expected utility U(0)Wζ(1)+ (U(1)−U(0))Wζ(x
0)

is strictly decreasing in ζ, because Wζ(1) is strictly decreasing in ζ. Similarly, if
U(0) = 0, Part 3 implies that the ratio of the designer’s expected utility under an
optimal districting plan to his expected utility under any of the three benchmarks (i.e.,
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(a) segregation, (b) uniform districting, and (c) pessimal districting) is decreasing in
the share of favorable voters.

E.4. Proofs for Section 7.4.

Proof of Proposition 14. To simplify notation, without loss of generality, we normalize
U(0) = W (0) = 0 and U(1) = W (1) = 1.

Consider first the case where uniform districting (i.e., H∗ assigns probability one to
x∗ = EF [s]) is optimal under both (Ũ(x), W̃ (x)) = (U(x), x) and (Ũ(x), W̃ (x)) =

(x,W (x)). Then by Part (2) of Proposition A6,

U(x) ≤ U(x∗) + u(x∗)(x− x∗) for all x ∈ [0, 1], (A30)

and by Part (2) of Proposition A12,

W (m) ≤ m for all m ∈ [0, 1]. (A31)

For any feasible H, we have∫
W (1−H(x))dU(x) ≤

∫
(1−H(x))dU(x)

=

∫
U(x)dH(x)

≤ U(x∗)

=

∫
W (1−H∗(x))dU(x),

The inequalities are by (A31) and (A30). The first equality is by integration by parts.
The last equality is by definition of H∗. So H∗ is optimal.

Consider now the case where segregate-pool districting with pool mean x∗ ∈ [E[s], 1]
is optimal under both (U(x), x) and (x,W (x)). Then by Part (1) of Proposition A6,
U(x) ≤ Û(x) for all x ∈ [0, 1] where Û is a convex function given by (A9). Moreover,
by Part (1) of Proposition A12, W (m) ≤ W (m) for all m ∈ [0, 1] where W is a concave
function given by (A25).
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For any feasible H, we have∫
W (1−H(x))dU(x) ≤

∫
W (1−H(x))dU(x)

≤
∫

W (1−H(x))dÛ(x)

=

∫
W (1− p)dÛ(H−1(p))

≤
∫

W (1− p)dÛ(F−1(p))

=

∫
W (1− F (x))dÛ(x)

=

∫ s∗

0

W (1− F (x))dU(x) +W (m∗)(U(x∗)− U(s∗))

=

∫
W (1−H∗(x))dU(x).

The first inequality holds because W ≤ W . The second inequality holds because
W (1− p) is decreasing in p and U ≤ Û (i.e., U first-order stochastically dominates Û).
The first and second equalities hold by variable change. The third inequality holds
because W (1−p) is decreasing and concave in p and Û ◦H−1 is higher than Û ◦F−1 in
the increasing convex order by Theorem 4.A.8(a) in Shaked and Shanthikumar (2007),
given that Û is an increasing convex function and H−1 % F−1 by (A21). The third
equality holds because Û is given by (A9) with u(x∗)(x∗− s∗) = U(x∗)−U(s∗) and W

is given by (A25) with W (0) = W (0). The last equality holds by definition of H∗. So
H∗ is optimal. �

Proof of Corollary 7. In the best segregate-pool districting plan under (U(x),W (x)),
the cutoff type is

s∗ ∈ arg max
s†∈[0,1]

∫ s†

0

W (1− F (x))dU(x) +W (m†)(U(x†)− U(s†)),

where x† = EF [s|s ≥ s†] and m† = 1− F (s†). The derivative of the objective function
with respect to s† is

W (m†)u(x†)
f(s†)

m† (x† − s†) + w(m†)(−f(s†))(U(x†)− U(s†))

= f(x†)w(m†)u(x†)(x† − s†)

[
W (m†)

w(m†)m† −
U(x†)− U(s†)

u(x†)(x† − s†)

]
.
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Since U is strictly S-shaped,

U(x†)− U(s†)

u(x†)(x† − s†)
≷ 1 ⇐⇒ x† ≷ x∗

U .

Similarly, since W is strictly S-shaped,

W (m†)

w(m†)m† ≶ 1 ⇐⇒ x† ≷ x∗
W .

Thus, the objective function is strictly increasing in x† for x† ≤ min{x∗
U , x

∗
W} and

is strictly decreasing in x† for x† ≥ max{x∗
U , x

∗
W}, showing that the optimal x∗ lies

between x∗
U and x∗

W . �

Proof of Example 3. Since U and W are S-shaped, pack and crack is optimal under
both (Ũ(x), W̃ (x)) = (U(x), x) and (Ũ(x), W̃ (x)) = (x,W (x)). The corresponding
optimal pool means are x∗

U = 1/2 and x∗
W = 3/4. Thus, in the best pack and crack

plan, the pool mean is x∗ ∈ [1/2, 3/4]. In fact, we can narrow down the range of x∗

further to the interval [1/2, 5/8], because the aggregate shock never exceeds 5/8. Thus,
the pool mean of the best pack and crack plan solves

max
x∈[ 1

2
, 5
8
]
(1
2
+ 1

2
3/8
x
)(3

8
+ x) = 3

8
+ 1

2
max
x∈[ 1

2
, 5
8
]
(x+ (3

8
)2 1

x
)

It is easy to see that the objective function is convex and is thus maximized at either
x∗ = 1/2 or x∗ = 5/8. Since the designer’s expected utility is higher under x∗ = 5/8,

(1
2
+ 1

2
3/8
5/8

)(3
8
+ 5

8
) = 4

5
> (1

2
+ 1

2
3/8
1/2

)(3
8
+ 1

2
) = (7

8
)2,

the optimal pool mean is x∗ = 5/8. Thus, in the best pack and crack plan, the designer
always wins measure m∗ = 3/5 of districts with mean voter type x∗ = 5/8, while always
losing the remaining districts.

There exists a strictly better plan that creates measure m2 = 1/2 of districts with
mean type x2 = 5/8, measure m1 = 1/8 of districts with mean type x1 = 1/2, and
measure m0 = 3/8 of districts with mean type x0 = 0. Under this plan, the designer
wins measure m2 +m1 = 5/8 of districts with probability U(1/2) = 7/8 and measure
m2 = 1/2 of districts with probability U(5/8) − U(1/2) = 1/8. Thus, the designer’s
expected utility is strictly higher under this plan than the best pack and crack plan,

(1
2
+ 1

2
5
8
)7
8
+ (1

2
+ 1

2
1
2
)1
8
= 103

128
> 4

5
.
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Finally, we outline the proof that this plan is optimal. Since the designer always loses
districts with mean type below 1/2 and always wins districts with mean type above 5/8,
an optimal districting plan never creates districts with mean types in (0, 1/2)∪(5/8, 1].
Let x† ∈ [1/2, 5/8] be the maximum district mean type of an optimal districting plan,
so that H(x†) = 1. Since the designer gets zero utility from winning less than measure
1/2 of districts, the mean type should be at least x† in at least measure 1/2 of districts,
so that H(x†

−) ≤ 1/2. Now for a fixed such x† ∈ [1/2, 5/8], a constrained optimal plan
solves a linear program. Since the ratio of the probability of winning a district to
the district mean type x (given by (3/8 + x)/x) is decreasing in x on [1/2, x†], the
constrained optimal plan creates as many districts as possible with mean type 1/2.
Thus, it creates measure 1/2 of districts with mean type x†, measure 3/4 − x† of
districts with mean type 1/2, and measure x†−1/4 of districts with mean type 0. The
designer’s expected utility under this plan is

(1
2
+ 1

2
(5
4
− x†))7

8
+ (1

2
+ 1

2
1
2
)(x† − 1

2
) = 39

64
+ 5

16
x†.

Since this value is increasing in x†, the unconstrained optimal plan has x† = 5/8. �
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