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Abstract

This paper integrates local temperature treatment effects and a quantitative macroe-
conomic model to evaluate the impact of climate change on sectoral reallocation
and aggregate productivity. First, I use firm-level data from a wide range of coun-
tries to estimate the effect of temperature on productivity in manufacturing and
services. Estimates suggest that extreme heat reduces non-agricultural produc-
tivity, but less so than in agriculture, implying that hot countries could adapt to
climate change by importing food and shifting labor toward manufacturing. Sec-
ond, I embed my estimates in an open-economy model of structural transforma-
tion covering 158 countries to investigate this possibility. Simulations suggest that
subsistence food requirements drive agricultural specialization more than com-
parative advantage, however, such that climate change perversely pulls labor into
agriculture where its productivity suffers most, limiting the gains from reallocation.
The productivity effects of climate change reduce welfare by 1.5-2.7% overall and
6-10% for the poorest quartile. Trade reduces the welfare costs of climate change
by only 7.4% under existing policy, but by 31% overall and 68% for the global poor
in a counterfactual scenario that assigns all countries the 90th percentile level of
trade openness.
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1 Introduction

Existing research suggests that climate change will cause large and heterogeneous
changes in agricultural productivity across the world during the 21st century. Fig-
ure 1 displays a representative example from this literature:!

Figure 1: Cline (2007) Projected Impact of Climate Change on
Agricultural Productivity, 2080-2099
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Notes: Figure shows the projected change in revenue per acre from producing grains, vegetables,
fruits, and livestock according to analysis by Cline (2007).

The pattern in Figure 1 suggests large potential gains from shifting the geogra-
phy of agricultural production. While climate change projects to reduce agricul-
tural productivity by 30-60% in hot, largely agrarian, regions such as Sub-Saharan
Africa and South Asia, colder locations such as Canada and northern Europe can
expect neutral or positive effects. These forecasts imply that sectoral reallocation
could substantially curtail climate change damages if agricultural activity moves
toward temperate climates while tropical regions shift production to other sectors.
Conversely, if the general equilibrium forces that cause equatorial regions to spe-
cialize heavily in agriculture at present persist, or strengthen, the gains from this
channel of adaptation will be limited.

Two key elements of sectoral allocation complicate the idea that the changes
in Figure 1 will push agriculture away from the equator. First, these estimates
show changes in the absolute advantage of agriculture, whereas comparative ad-
vantage across sectors drives international trade. Ricardian models of trade will
only predict that Canada will export more food and India will import more food
if the relative productivity of agriculture rises in Canada and falls in India. Given

T explain the methods used in Cline (2007) more in Section 7.1. The findings are broadly
consistent with a large body of economics research on the impacts of climate change in agriculture,
which includes Mendelsohn, Nordhaus and Shaw (1994), Deschenes and Greenstone (2007),
Schlenker and Roberts (2009), and Schlenker and Lobell (2010), among many others.
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existing evidence that temperature also affects non-agricultural productivity, the
change in comparative advantage is not immediately clear.?

Second, comparative advantage does not exclusively, or even primarily, deter-
mine sectoral specialization. Figure 2 shows that poor countries have high agri-
cultural GDP shares despite much lower relative value-added per worker in agri-
culture compared to non-agriculture. Lagakos and Waugh (2013) calculate that,
adjusting for prices, the gap in aggregate output per worker between the 90th to
10th percentile of the world’s income distribution is 45 to 1 in agriculture, but
just 4 to 1 in non-agriculture. Yet agriculture’s share of employment averages 65%
in 10th percentile countries and only 3% in 90th percentile countries. Projecting
the effects of climate change on sectoral reallocation requires accounting for the
forces that drive poor countries to specialize in agriculture despite low absolute
and relative productivity, a fact which the literature on the general equilibrium
effects of climate change has not yet confronted.

This paper addresses these challenges by integrating local temperature treat-
ment effect estimates and a quantitative macroeconomic model to evaluate the im-
pact of climate change on sectoral reallocation and global welfare. First, to project
changes in agricultural comparative advantage, I provide the first global micro es-
timates of the impact of climate change on productivity in manufacturing and ser-
vices using nationally representative firm-level panel data from 17 countries that
cover over half the world’s population and represent nearly the full range of temper-
atures and income levels. Using methods developed by Carleton et al. (2020), I use
the data to estimate plausibly causal treatment effects of extreme temperatures on
output-per-worker, and account for firm-level adaptation by allowing these treat-

Figure 2: Comparative Advantage and Specialization in Agriculture
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Notes: Figure shows data from Tombe (2015) that adjusts for prices
for the global cross-section in 2005. Poor countries specialize heavily
in agriculture despite low productivity relative to other sectors.

2This evidence includes work by Zhang, Deschenes, Meng and Zhang (2018) and Somanathan,
Somanathan, Sudarshan, Tewari et al. (2015).
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ment effects to vary with income and expectations of temperature.

Second, I construct a global open economy model of structural transforma-
tion that explains the existing distribution of sectoral specialization as a function
of sector-level productivities. The model incorporates two key features of con-
sumer preferences - nonhomothetic preferences and low substitutability across
sectors - that explain the high agricultural share of consumption in poor coun-
tries with high relative prices for food. Gollin, Parente and Rogerson (2007) re-
fer to the macro-development effects of these subsistence requirements as “the
food problem,” which drives developing countries to specialize in a relatively low-
productivity sector because people need food to survive. In principle, imports
could meet consumer needs for food, but in practice this channel is weak in devel-
oping countries. The average person in the poorest quartile of the world consumes
91% domestically produced food, compared with 45% in the richest quartile. In
these relatively closed economies, high agricultural production and labor shares
follow from the high consumption shares necessary for people with low incomes
to meet subsistence requirements for food.

Thus, the model shows that two competing effects govern the response of sec-
toral specialization to climate change. If the trade effect dominates, then countries
can dampen the effect of falling agricultural productivity by shifting production to
other sectors; exporting more manufactured goods and importing more food. To
the extent that climate change exacerbates ‘the food problem’ by reducing agricul-
tural productivity, however, the general equilibrium response could pull labor into
the sector suffering large declines in productivity, limiting the welfare gains from
reallocation.® To quantify the relative strengths of these mechanisms, I estimate
the model to match data on income levels, trade flows, and sectoral GDP shares for
158 countries covering over 99.9% of global GDP. I then embed the empirically es-
timated projected impacts of climate change on productivity in agriculture, man-
ufacturing, and services into the model, and conduct counterfactual simulations
that calculate the effects of climate change on sectoral specialization, trade, prices,
GDP, and welfare.

The paper has four key findings. First, I find that extreme temperatures have
substantial effects on non-agricultural productivity, but with strong evidence of
adaptation in rich countries and to temperatures with which agents are accus-
tomed. In poor countries with moderate climates, an extreme day with daily max-
imum temperature of 40°C or -5°C reduces annual output-per-worker by up to
0.4%, approximately the equivalent of one full working day.* Effects are about half

3While rural-urban migration within countries plays a key implicit role in my analysis of sectoral
reallocation, I do not incorporate international migration in the model. The results imply that
climate change raises the income gap between the richest and poorest quartile of the world from a
factor of 38 to a factor of 41, implying an increase in the shadow value of migration but also fewer
resources with which to pay the costs of migration for people in poor countries. I leave it to future
work to estimate the response to these changes.

41 find similar effects for manufacturing and services firms, though I lack data coverage for
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as large in middle-income countries, and smaller still in those places that expe-
rience given extremes more frequently. The effects of extreme days in rich coun-
tries are negligible, with some evidence of mild effects from unexpected extremes
caused by hot days in cold places and cold days in hot places.” I combine these
estimates of predicted temperature sensitivity with global climate model predic-
tions of future temperatures to project the country-level effects of climate change
on manufacturing and services productivity. The effects of climate change on non-
agricultural productivity are non-trivial (5-15%) in some poor countries, but are
generally small relative to estimated effects in agriculture. Thus, the change in the
global comparative advantage of agriculture is qualitatively similar to its change in
absolute advantage.

Second, model simulations suggest that ‘the food problem’ drives sectoral real-
location more than comparative advantage. Climate change raises the agriculture
share of GDP by 2.8 percentage points in the poorest quartile of the world even as
agricultural productivity decreases sharply. While net exports of agriculture rise
in colder countries and net imports generally rise in hot regions, most developing
countries are not sufficiently open to trade for this adjustment to play a primary
role in sectoral specialization. As a consequence of economic activity in many
countries shifting toward the sector where productivity falls most, global GDP as
measured by standard price indices declines by 12% more, and 52% more for the
poorest quartile of the world, than in a naive calculation with fixed sectoral shares.

Third, the productivity effects of climate change cause a net decline in global
welfare, with losses heavily concentrated in poor countries. The equivalent varia-
tion willingness-to-pay to avoid these impacts is between 1.5-2.7% of global GDP,
and between 6.2-10% of income for the average person in the poorest quartile of
the world.®

Fourth, simulations suggest that trade does little to cushion the effects of cli-
mate change under current policy, but that lowering trade barriers could substan-
tially reduce climate damages. The aggregate global willingness-to-pay to avoid
climate change is only 7.4% lower at estimated levels of trade costs than in autarky,
largely because those countries most susceptible to climate change also tend to be
least open to trade. However, in an alternative scenario that assigns all countries
to 90th percentile levels of trade openness, the global willingness-to-pay to avoid
climate change falls by 31%.” Trade liberalization is particularly valuable for cli-
mate change adaptation in poor countries. The welfare costs of climate change for

services firms in poor countries where the effects of temperature are most detectable.

°I find evidence that firms in rich countries mitigate the effect of extreme temperatures on
labor productivity through costly adaptation investments such as higher energy expenditures. I
use a revealed preference method to infer the magnitude of these costs and account for them in
calculating the welfare cost of climate change.

5Note that these estimates do not include other costs of climate change beyond the scope of this
paper, such as hurricanes, sea-level rise, or the health effects of extreme temperatures.

“Note that this calculation nets out the gains from trade unrelated to climate change adaptation.
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the poorest quartile of the world are 68% lower in the low trade cost counterfactual
because greater tradability makes specialization more responsive to comparative
advantage and eases the constraints of the food problem.

This paper relates to several literatures on climate change and macroeconomic
development. The two most similar papers are Costinot, Donaldson and Smith
(2016), who examine reallocation across crops but do not consider income effects
or cross-sector reallocation, and Desmet and Rossi-Hansberg (2015), who primar-
ily focus on the important role for international migration in climate change adap-
tation. The latter paper includes changes in the global distribution of sectoral
specialization in the model, but does not attempt to incorporate realistic trade
costs or the importance of ‘the food problem’ in the analysis. This paper is the
first to consider the effects of climate change on structural transformation.

My empirical work on temperature and productivity builds on country-level
estimates produced by Somanathan, Somanathan, Sudarshan, Tewari et al. (2015)
and Zhang, Deschenes, Meng and Zhang (2018) in India and China. The model
builds on the central insight of Matsuyama (1992) about structural transformation
in an open-economy setting and incorporates features from several recent related
papers including Tombe (2015), Uy, Yi and Zhang (2013), and Teignier (2018). I also
use a nonhomothetic CES specification for consumer preferences from Comin,
Lashkari and Mestieri (2015). My model counterfactuals relate to empirical work
by Colmer (2018) and Liu, Shamdasani and Taraz (2020) that examines the local re-
lationship between temperature and sectoral reallocation in Indian districts. This
research finds that adverse weather shocks drive labor out of agriculture under
some conditions, but raise the agriculture share of employment in remote locations
with weak road networks, consistent with my model predictions about tradability
and the food problem. Finally, some of my results about the role of trade and the
spatial correlation of shocks relate to the work of Dingel, Meng and Hsiang (2019).

More broadly, this paper advances the frontier of methods in climate change
economics by embedding credible empirical estimates into a general equilibrium
model. To date, the climate impacts literature has followed two primary tracks:
macroeconomic models in the spirit of Nordhaus (1992) and partial equilibrium
econometric estimates such as Deschenes and Greenstone (2007). The former group-
ing facilitates conclusions about policy and welfare at a global scale, but generally
adopts a stylized approach to quantification. In contrast, the latter branch es-
tablishes precise causal relationships between weather and specific outcome vari-
ables, but employs identification strategies that necessarily hold constant cross-
sector and cross-national interactions relevant to future projections. This paper
lays out a unifying approach that combines each of these strengths: quantitative
theory with empirical estimates that map directly into model parameters, allowing
the researcher to evaluate climate damages, adaptation, and policy counterfactuals
in a framework that captures equilibrium behavior and welfare.

The paper is structured as follows. Sections 2, 3, and 4 describe the data, em-
pirical strategy, and results for the estimation of the relationship between temper-
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ature and non-agricultural productivity. Section 5 lays out the model. Section 6
explains the model estimation and describes the model’s success in fitting the data.
Section 7 contains the counterfactual model simulations. Section 8 provides addi-
tional country-level panel regression evidence on the impact of agriculture-biased
productivity shocks on sectoral reallocation. Section 9 discusses implications for
policy and Section 10 concludes.

2 Data

Firm Data

I assemble a panel of firm-level microdata with broad global coverage to estimate
the relationship between temperature and productivity in manufacturing and ser-
vices. Table 1 lists the countries and years included in the dataset as well as the data
source for each country. The data combines surveys administered by national gov-
ernments with data acquired from the Amadeus database maintained by Bureau
van Dijk (BVD). BVD is a private company owned by Moody’s Analytics that col-
lects and distributes firm-level financial information from around the world. They
collect data both by acquiring administrative data directly from national business
registers and by conducting their own surveys.

I conduct analysis on countries for which I am able to obtain nationally rep-
resentative panels. This includes government surveys from India, Colombia, In-
donesia, China, and the United States, and Amadeus data from twelve European
countries with mandatory filing requirements according to BVD documentation.®
Bloom, Draca and Van Reenen (2016) report that the data in most of these Euro-
pean countries contains nearly the full population of public and private firms.®
Gopinath, Kalemli-Ozcan, Karabarbounis and Villegas-Sanchez (2017) also use data
from Amadeus and Alfaro and Chen (2018) use data from Orbis, a related firm
dataset produced by BVD.

The sample covers both manufacturing and services firms in developed and de-
veloping countries. While the government surveys cover only manufacturing firms,
the BVD data covers the entire spectrum of 2-digit industries. I report results for
the pooled sample of all firms, separately for manufacturing firms, and separately
for services firms, though the latter subset lacks developing country coverage.!°
BVD also reports additional branch locations and subsidiary ownership for many
firms. I drop all firms that list subsidiaries or additional branches so that reported

8Importantly, the online version of the Amadeus database does not maintain accurate historical
records. Thus, I download the data directly from the 2005, 2010, and 2015 vintages (CDs). Each
Amadeus vintage contains 10 years of historical data for each firm. I match firms across years using
BVD’s unique firm identification number, and drop a small subset of observations with inconsistent
data across vintages for the same firm-year.
9Denmark, Ireland, and Portugal also have mandatory reporting requirements, but were
unavailable to me due to data licensing restrictions and missing or outdated geographic identifiers.
19T drop firms marked mining, construction, utilities, and agriculture, though results are very
similar when including these firms in the pooled sample.
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Table 1: Global Firm-Level Panel Microdata

Country Data Source Dataset Years
Austria Bureau Van Dijk Amadeus 1995-2014

Belgium Bureau Van Dijk Amadeus 1995-2014
China National Bureau of Statistics Chinese Industrial Survey 2003-2012

National Administrative

Colombia Department of Statistics (DANE) Annual Manufacturing Survey 1977-1991
Finland Bureau Van Dijk Amadeus 1995-2014
France Bureau Van Dijk Amadeus 1995-2014
Germany Bureau Van Dijk Amadeus 1995-2014
Greece Bureau Van Dijk Amadeus 1995-2014
India Central Statistical Office Annual Survey of Industries 1985-2007
Indonesia Badan Pusat Statistik Annual Manufacturing Survey 1975-1995
Italy Bureau Van Dijk Amadeus 1995-2014
Norway Bureau Van Dijk Amadeus 1995-2014
Spain Bureau Van Dijk Amadeus 1995-2014
Sweden Bureau Van Dijk Amadeus 1995-2014
Switzerland Bureau Van Dijk Amadeus 1995-2014
United Kingdom Bureau Van Dijk Amadeus 1995-2014
Annual Survey of Manufacturers,
United States Census Bureau Census of Manufacturers 1976-2014

Notes: Data includes nationally representative samples of firm-level data on revenue
and number of employees, with varying coverage of capital stock (tangible fixed assets).
Amadeus data includes both manufacturing and services firms.

firm output aligns as closely as possible to the measure of temperature exposure at
the main location. I also drop firms containing fewer than three observations and
those with missing data for revenue or number of employees.

In total, the sample includes 17 countries that cover 59.4% of the world’s man-
ufacturing output and 51.1% of the global population.!! The dataset also spans
virtually the full range of climate and income levels in the global cross-section.
According to the Penn World Tables, PPP-adjusted GDP per capita in the sample
ranges from $1,137 in India in 1985 to $64,274 in Norway in 2014, which covers the
3rd to the 99th percentile of the global population in 2014. Similarly, country-level
average daily maximum temperature in the sample ranges from 8.5 C°in Norway
to 31.5 C°in India, covering the 1st to the 90th percentile of global population-
weighted long-run temperature. Thus, to the extent that income and average tem-

T cannot include the United States in the main pooled specification because I can only access
the data at a secure government facility. I also exclude the data from China from the main
specification for data quality reasons explained in Section 4.
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perature predict adaptation to extreme temperatures, the data contains informa-
tion about the full range of heterogeneity in the global temperature-productivity
relationship.

Climate Data

[ use temperature data from Version 3 of the Global Meteorological Forcing Dataset
(GMFD) produced at Princeton University. The data covers the entire world at a
0.25°by 0.25°grid for the years 1948-2016. GMFD is a reanalysis dataset that recon-
structs historical temperature using a combination of observational data and local
climate models. Following Graff Zivin and Neidell (2014), I use daily maximum
temperature as the variable of interest to best approximate the temperature people
experience during working hours.

I match firm and climate data at the county level. The government surveys pro-
vide county location for each firm directly. The BVD data provides city name and
zip code, which I match to the county level using GeoPostcodes, a global geocoding
dataset provided by GeoData Limited.'? T apply nonlinear transformations to the
GMFD temperature variable at the pixel level, and then average across pixels to the
county level weighting by population.!®
Other Data
I use purchasing power parity adjusted GDP per capita data from the Penn World
Tables as a measure of the income level of each country-year in the sample.

3 Empirical Strategy

I start by laying out the following three objectives for the empirical results to allow
me to quantify the effects of climate change on sectoral reallocation and aggre-
gate productivity. First, I need to estimate the causal effect of temperature on
productivity in manufacturing and services. Second, I need to estimate the het-
erogeneity in that relationship such that I can predict the response to temperature
for every country in the world. The model counterfactuals in Section 7 require an
estimate of the response of manufacturing productivity to temperature in Algeria
without having data from Algeria. Third, the estimates should incorporate the
benefits and costs of adaptation. Future projections should reflect that the effects
of a given temperature realization will likely change as countries grow richer, firms
improve technology, and agents adjust expectations to the shifting distribution of
temperatures. To quantify the effects of climate change in Section 7, I need to make
projections not just for Algeria today, but for future Algerian firms experiencing
climate change in 2080.

12GeoData Limited estimates that their latitude and longitude coordinates for the center of each
zip code are precise to within 100 meters. I independently verify a subset of observations in each
country to ensure accuracy. I also hand-code a small number (under 1%) of unmerged observations
using city name, and drop those unmerged observations for which the city name is non-unique
within a country.

BFor some countries, the administrative unit to which I aggregate is more comparable to a town
than a county.
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3.1 Conceptual Framework

To motivate the estimation strategy I start with a version of the production function
from Burnside, Eichenbaum and Rebelo (1993) with variable labor effort:

Y = AK%(ex L)' *with0 <e <1 (1)

The parameter e governs effective units of labor input. Intuitively, temperature
could affect e through several channels. Extreme temperatures could cause illness
or physical fatigue, impair cognitive function, or increase the disutility of labor
such that workers reduce effort or minutes spent working.!

Rearranging the production function in terms of output per worker and taking

logs gives:
Zn(%) — In(e) + (1 i a)ln(A) + (1 (_X&)ln(g) )

Equation 2 provides the basis for using output per worker as the dependent
variable in the main specification. The change in output per worker equals the
change in e when the firm’s technology and capital-to-output ratio stay constant.
To gain further insight into the firm’s optimal response to climate conditions, I
model worker effort as a function of exposure to extreme heat (cooling degree days,
or CDD), extreme cold (heating degree days, or HDD), and adaptation investments
b, and b,

¢* =1—CDD x g(by) — HDD * go(b,) 3)
g>0,9<0,9">0

In this framework, the firm has access to separate technologies that mitigate the
impact of extreme heat and extreme cold on worker effort with diminishing returns
in each.!’ The first order conditions for a profit-maximizing firm yield the following
expression for the firm’s optimal investment in hot weather adaptation by,:

Cp * €

4
p* MPL+L*CDD 4

—gn(bn) =

The health effects of extreme temperatures have been widely documented, including in
Deschénes and Greenstone (2011). Several laboratory experiments, including Seppanen, Fisk and
Lei (2006) find evidence of reduced worker cognitive functioning. Graff Zivin and Neidell (2014)
use time-use surveys to show that people work fewer minutes per day in the presence of extreme
temperatures.

157Zhang, Deschenes, Meng and Zhang (2018) mention that capital equipment could also
perform poorly in extreme temperature conditions. If so, augmenting the production function
with variable effective capital utilization, u, as in Burnside and Eichenbaum (1996), would capture
this effect. In that case, the interpretation in Equation 2 would be that the reduction in £ was
attributable to a combination of declines in e and w.
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Since g is convex in b, Equation 4 predicts that firm adaptation investments will
be increasing in the firm’s exposure to extreme heat (CDD), the marginal product
of labor, the firm’s labor input, and the output price, and decreasing in the cost of
the adaptive technology, ¢, and the level of worker effort.'® Thus, the firm'’s optimal
condition predicts that worker effort will be less sensitive to temperature at more
productive firms with more expected exposure to extreme temperatures, but that
this reduced sensitivity comes at a cost.

To capture this heterogeneity, the empirical strategy focuses on modeling out-
put per worker, and consequently ¢, as a function of temperature realizations, the
level of productivity, and expectations over the distribution of temperature. By
measuring the effects of climate change on e, I can use the estimates to project
the change in the sector-by-country aggregate productivity parameters that govern
average output per worker in the model introduced in Section 5.

3.2 Causal Effect of Temperature

Following the framework outlined in Deryugina and Hsiang (2014), I start by noting
that workers experience daily realizations of weather. San Francisco and Washing-
ton D.C. have similar annual temperatures, but very different exposure to extremes.
To capture this logic, I treat daily output as a function of temperature on day d,
Y, = f(T,). To aggregate to annual output, the level of my data, I sum daily outputs
along with functions of daily temperature, f(7}), across all days experienced by
firm i in year ¢:

365 365
Yi=Y Ya=Y_ f(Tw)=F(T)a (5)
d=1 d=1

Thus, I treat nonlinear transformations of daily temperature summed over the
year as the primary independent variable of interest. Using annual data also has
the important advantage of allowing for intertemporal substitution of labor. If
workers produce less due to extreme temperatures on Tuesday but produce extra
on Saturday instead, annual data captures the effects of temperature net of this
reallocation.

For parsimony, my main specification uses a piecewise linear functional form
for temperature, where output is allowed to vary linearly with daily maximum tem-
perature above 30°C (CDD) and below 5°C (HDD):

Bl (5 - Tmax) imea:c < 5
Fry =<0 if0 < Tpow < 30 (6)
BZ(Tmax — 30) imeax > 30

160ptimal adaptation investment is decreasing in the level of worker effort because there are
concave returns to effort.
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This formulation allows cold and hot temperatures to have separately estimated
effects, 5, and f,, on labor productivity. I also conduct robustness checks with
more flexible functional forms such as a polynomial of degree four and bins of daily
maximum temperature.

Following other work in the climate impacts literature, I isolate the causal im-
pact of temperature by exploiting interannual variation in weather. In line with the
framework outlined in Section 3.1 the main specification models log output per
worker at firm 7 in year ¢ as a function of the vector of temperature effects, 3:

in (%) = ,BF(T>zt + (52 -+ Rt -+ €t (7)
it

I control for permanent firm-specific features such as technology and manage-
ment with firm fixed effects, ¢;, and for unobserved aggregate shocks such as tech-
nological progress and recessions with region (country or state) by year fixed ef-
fects, . I cluster standard errors at the firm and county-by-year level to account
for both serial and spatial correlation. Equation 7 allows for estimating the average
treatment effect of temperature realizations, which fulfills part of the purpose of
this section.

3.3 Heterogeneity and Adaptation

Following the strategy of Carleton et al. (2018), I allow for heterogeneity in the
effect of temperature on output per worker by interacting the vector of temperature
coefficients with income and long-run average temperature. This setup follows
from the prediction in Section 3.1 that more productive firms in high-income coun-
tries and those that expect to experience extremes more frequently will be better
adapted. I specify the interacted regression as follows:

Y;
it
+42.TMEAN; x F(T)i + 0; + kint + €it (8)

The interaction variables in Equation 8 are country-level annual GDP per capita
and long-run average daily maximum temperature in the county containing firm
i.17

Estimating Equation 8 allows me to predict the treatment effects of extreme
cold, 31, and extreme heat, (3, as a function of two factors - income and average cli-
mate. While there are certainly other variables that affect temperature sensitivity,
this parsimonious specification makes it feasible to predict the treatment effects

in any country for which I have data on GDP per capita and average temperature.

17T use country-level income because reliable global data on subnational income is unavailable.
Average temperature is calculated as a 40-year average in the county of firm ¢, which is the same
geographic scale at which contemporaneous temperature is measured.
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Given the existence of this data for the full range of countries in the global cross-
section, as well as of readily available plausible future projections of temperature
change and economic growth, this approach allows me to project the effects of
temperature both across space and over time. In line with the goals for this section,
the interacted model allows me to predict temperature sensitivity in Algeria today
and in Algeria in 2080.

The coefficients on the interaction terms in Equation 8 are identified using cross-
sectional, rather than panel, variation, but the identification assumption is also
weaker. Estimating the main causal effect of temperature relies on the standard
identification assumption - that the independent variable of interest is uncorre-
lated with omitted variables that affect output per worker conditional on the set of
controls. For the interaction variables, however, I am interested in how income and
climate predict temperature sensitivity, rather than in isolating their specific causal
effect. Thus, the identification assumption is not that income and climate are
uncorrelated with omitted variables affecting temperature sensitivity, but rather
that this correlation remains constant across space and over time. Indeed, the
aim is to use income and average climate as a proxy for the full set of underlying
mechanisms that govern adaptation. The cross-sectional approach will produce
valid predictions if the effects of temperature realizations on output per worker in
parts of the world with income levels and average temperatures similar to India are
similar to the effects measured in India.'®

Allowing the treatment effects of temperature to vary with long-run conditions
also bridges the gap between weather and climate. A primary concern with using
weather variation to inform estimates of the costs of climate change is that the
estimated treatment effects may change as agents adjust their expectations in the
long-run. I address this concern by explicitly modeling the treatment effects as a
function of those expectations, as represented by long-run average temperature.
In my formulation, climate is a distribution of temperatures and weather is a draw
from that distribution. By allowing the treatment effect of a draw to depend on the
distribution, the estimates for the effects of each draw remain valid as the distribu-
tion shifts. Intuitively, a hot day in Toronto could be more harmful than a hot day
in Texas because it is more unexpected, but becomes less so as Toronto warms and
its agents adapt. I capture this effect by assigning Toronto the estimated treatment
effect of Texas once it heats up to that level.

4 Empirical Results

4.1 Main Regression Results

Table 2 contains the main results from estimating Equations 7 and 8. Column 1
displays the treatment effect of extreme temperatures for the average unit of output

18Empirical estimation of adaptation in the climate impacts literature broadly relies heavily on
cross-sectional variation because of the inherent difficulty in finding quasi-experimental variation
in long-run conditions.
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in the countries in the sample by weighting observations by country-level GDP
and the inverse of each country dataset’s sample size. While the estimated aver-
age treatment effects show that the effects of temperature are statistically different
from zero, the magnitude of these coefficients is far too small to be economically
meaningful. The estimates in Column 1 imply that a day with maximum temper-
ature of either -5°C or 40°C would reduce annual output per worker by just 0.03%
relative to a day in the moderate range of 5°C to 30°C."°

Table 2: Effects of Daily Temperature on Annual Revenue per Worker

0 @ 3 4 ®)

Revenue/Worker  Revenue/Worker Revenue Employment  Revenue/Worker

TMax-30 -0.0000311 -0.00119 -0.00250 -0.00131 -0.00100
(-2.29) (-4.73) (-6.80) (-5.25) (-4.03)
5-TMax -0.0000315 -0.000956 -0.00180 -0.000842 -0.000452
(-2.15) (-2.15) (-2.91) (-1.92) (-2.07)
(TMax-30) X log(GDPpc) 0.0000715 0.000178 0.000107 0.0000595
(4.07) (6.79) (6.06) (3.65)
(TMax-30) X TMax 0.0000186 0.0000334 0.0000148 0.0000160
(4.85) (6.24) (3.93) (3.96)
(5-TMax) X log(GDPpc) 0.0000898 0.000167 0.0000769 0.0000416
(2.14) (2.85) (1.85) (2.02)
(5-TMax) X TMax -0.00000292 0.00000212 0.00000504 0.000000703
(-1.54) (0.93) (2.85) (0.59)
N 4125776 4125776 4125776 4125776 17938084
Manufacturing X X X X X
Services X
Firm FE X X X X X
Country X Year FE X X X X X
Inverse Sample Size Weights X
GDP Weights X
Countries Included 15 15 15 15 15

Notes: t-statistics in parentheses. Dependent variables all in logs. Standard errors are two-way
clustered at the firm and county-by-year level. Column 1 shows the coefficients from estimating
Equation 7 and Columns 2-5 show the results from Equation 8. Outcome variables come from
the data sources listed in Table 1 and temperature data is from GMFD. Countries included are
Austria, Belgium, Colombia, Finland, France, Germany, Greece, India, Indonesia, Italy, Norway,
Spain, Sweden, Switzerland, and the United Kingdom. Section 4.3 shows results for the United
States and Appendix C shows results for China.

YNote that the data contains information on revenues rather than physical output. The results
can be interpreted as the effect on physical labor productivity under the assumption that firms are
price-takers in the output market and the local shocks used to identify the effects do not affect
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Column 2 in Table 2 shows substantial heterogeneity in the effects of temper-
ature on annual output per worker. Note that I do not weight observations in
the regressions in which I model heterogeneity explicitly because the aim is to
understand how the treatment effect varies across the full range of the interaction
variables. The unweighted regression with differential sample sizes in different
places also effectively allows areas with more data, and consequently more pre-
cise estimates of the effect of temperature, to contribute more to estimating the
interaction terms.

The main effects of temperature in the unweighted interacted regression in Col-
umn 2 are large, negative, and precisely estimated, though the magnitudes cannot
be interpreted without considering the interaction terms. The coefficients on both
interaction terms for log GDP per capita are large and positive, indicating that
richer countries are insulated from the effects of both extreme heat and cold. Con-
sistent with intuition about adaptation to long-run conditions, the coefficient on
the interaction term for average long run temperature is positive for hot extremes
and negative for cold extremes, indicating that places are less susceptible to tem-
peratures which they experience more frequently. All four interaction coefficients
onincome and average temperature are consistent with the predictions from Equa-
tion 4 - more productive firms with more exposure to given extremes invest more
in adaptation.

Figure 3 shows the predicted effects of temperature from Column 2 of Table 2 at
points across the distribution of observed income and climate levels in the world.
Consistent with the results of the GDP-weighted regression in Column 1, the graphs
show that temperature has little effect on productivity in rich countries (top row),
with some effects from hot days in cold, rich places (top left cell) and mild effects
from cold days in hot, rich places (top right cell).

Conversely, extreme temperatures have very large effects on productivity in poor
countries (bottom row). Experiencing one day at -5°C or 40°C in a poor country
with moderate long-run temperatures (bottom middle cell) reduces annual output
per worker by about 0.4%. In a working year consisting of 50 work weeks of 5 days
each, this is equivalent to each worker reducing production on that day to zero
with no compensating substitution to other days. These effects in poor countries
imply potentially large productivity costs from climate change in hot parts of the
world in the absence of adaptation. In parts of Sub-Saharan Africa, climate change
projections imply an increase in extreme heat on the order of moving 100 days
per year from 30°C to 40°C by 2080, which would suggest substantial declines in
manufacturing productivity in poor countries.

Columns 3 and 4 of Table 2 separately estimate the effects of temperature on
revenue and employment. The effects of both hot days and cold days on revenue
are substantially larger than those on revenue per worker because firms adjust em-
ployment in response to extreme temperatures. As shown in Appendix Figures A-1

national or global product market prices.
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Figure 3: Predicted Heterogeneous Response of Annual Manufacturing Revenue
per Worker to Daily Maximum Temperature
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Notes: Figure shows the predicted effect of temperature on revenue per worker at varying levels of
income and long-run average temperature by evaluating the interacted regression from Column 2
of Table 2. 95% confidence intervals are shown in blue.

and A-2, which again evaluate the predicted coefficients throughout the covariate
space, these effects also primarily manifest only in poor countries. This finding is
consistent with the firm’s first order condition in the framework laid out in Section
3.1 - firms should be expected to reduce labor input in response to the fall in the
marginal product of labor driven by a decline in e. However, it is perhaps surprising
that firms in the sample do not face adjustment costs large enough to dissuade this
adjustment in response to the short-run variation used to identify these effects.

Column 5 of Table 2 shows the effects of temperature on a pooled sample of
manufacturing and services firms. The effects are very similar to the sample of
only manufacturing firms in both magnitude and patterns of adaptation, with the
exception of the finding that colder countries are less vulnerable to extremely cold
temperatures. The sample size increases substantially in this specification because
many of the firms in the data are services firms, though I do not have any services
coverage in low-income countries.
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4.2 Robustness

I conduct robustness checks with different ways to specify the functional forms of
temperature. Appendix Figures A-3 and A-4 show the predicted effects from the
main specification in Column 2 of Table 2 using bins and a polynomial of degree
four in daily maximum temperature, respectively. The results are qualitatively very
similar to the main specification.

I also show robustness to including more stringent state-by-year, rather than
country-by-year, fixed effects. The results are very similar for specifications that
use all the data (pooling manufacturing and services firms) with more flexible func-
tional forms such as bins or a polynomial of degree four. These two specifications
are shown in Appendix Figures A-6 and A-7. These results are sensitive to func-
tional form, however. The more parsimonious functional forms with a single pa-
rameter each governing the response to cold days and hot days show muted effects,
particularly in the specification with manufacturing firms only. This is consistent
with the fact that considerably less variation in temperature realizations remains
within states in a given year, so more data and flexible estimation is necessary to
recover the underlying pattern.

Figure A-8 shows robustness to including controls for capital. While the stan-
dard errors for this specification are somewhat larger because I lack data on capital
for approximately a quarter of the observations in the main specification, the pat-
tern of predicted effects is very similar.

4.3 U.S. Results

In this section, I use separate estimates of the effect of extreme temperatures on
manufacturing in the United States to externally validate the results in Section
4.1.%° Predictions using the global interacted regression suggest that temperature
has a negligible effect on manufacturing revenue per worker in rich, temperate
countries such as the U.S. (see the top middle cell of Figure 3). Figure 4 shows
the corresponding estimate for the treatment effect of temperature in the United
States using data from the U.S. Census Bureau.

Consistent with predictions from global data in Figure 3, I find a precisely es-
timated null effect of temperature on output-per-worker in the U.S.2! The U.S.
data also includes information on other inputs that I lack in the global sample,
allowing me to directly observe some of the adaptation costs incurred by U.S. firms.
Appendix Figure A-13 shows that the average U.S. plant increases expenditures on
electricity and other fuels by several thousand dollars for each extremely hot and

20The results in Section 4.1 do not include data from the United States due to physical constraints
on data access. Plant-level manufacturing data from the United States Census Bureau must be
analyzed at restricted access Federal Statistical Research Data Centers (RDC).

21The result displayed in Figure 4 uses a polynomial of degree four in daily maximum
temperature, but the null result is robust to choice of functional form. Appendix Table A-2 shows a
range of specifications, all of which are consistent with a null effect on output and employment.
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Figure 4: Estimated Response of U.S. Annual Manufacturing Revenue per Worker
to Daily Maximum Temperature
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Notes: Figure shows the response of annual revenue per worker to daily maximum
temperature estimated using Equation 7 with a polynomial of degree four. 95%
confidence interval is shown in blue. Outcome variable data comes from the Annual
Survey of Manufacturers and Census of Manufacturers from the U.S. Census Bureau.
Temperature data is from GMFD. Standard errors are two-way clustered at the firm and
county-by-year level.

cold day, presumably for cooling and heating expenses.?? These expenditures are
small in the context of U.S. plant size, however, such that temperature still has a
null effect on revenue total factor productivity, which accounts for expenditures
on energy and materials, as shown in Figure A-12.

4.4 Projected Global Sensitivity to Extreme Temperatures

To connect the regression results from this section with the model presented in
Section 5, I predict the effects of temperature in all 158 countries for which I es-
timate the model. Figure 5a shows the predicted effects of a day with maximum
temperature of 40°C on annual manufacturing revenue per worker and Figure 5b
shows the effect of a -5°C day. Consistent with intuition about adaptation and
the results displayed in Figure 3, poor countries and those which experience given
temperatures less frequently are more susceptible to extreme realizations.*
Projecting the impacts of climate change also requires accounting for adap-
tation by adjusting the temperature sensitivities shown in Figures 5a and 5b to
projected changes in long-run average temperature. The firm’s optimal adaptation
decision in Equation 4 implies that firms will increase investment in protection
from extreme heat as the climate warms. I account for the benefits of these in-
vestments by reevaluating predicted heat sensitivity at projected end-of-century

22Total energy expenditures are defined as the sum of electricity expenditures and the cost of
other fuels. Full results for this outcome variable are shown in Appendix Table A-3.

ZNote that following Carleton et al. (2018), these predictions define full adaptation as
productivity that is invariant to temperature, and thus do not allow the effect of extreme
temperatures to go above zero. The effects of extreme temperatures are weakly negative in the range
of incomes and climates in the sample used for estimation, and I maintain this pattern as incomes
and temperatures go out of sample.
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Figure 5: Predicted Effect of Extreme Temperatures on
Annual Manufacturing Revenue per Worker
(a) 40°C Day
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Notes: Maps show predicted annual percentage point loss in revenue per worker from a 40°C day
and -5°C day obtained by evaluating the interaction regression in Column 2 of Table 2 at each
country’s GDP per capita and long-run average temperature.

temperatures in Appendix Figure A-17.?* The results show noticeably muted effects
when allowing for expectations to adjust to future temperatures. The mean global
damage from a 40°C day is about 34% lower when evaluated at future temperatures
(0.067% of annual revenues versus 0.1%).

The adaptation benefits of adjusting to extreme heat come at a cost. If it were

24End-of-century temperature projections are the 30-year average of annual average maximum
temperature from the climate model predictions used in Section 7.1. In Section 7.6 I also allow
for economic growth to make countries richer in the future, further reducing their temperature
sensitivity.
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costless to protect production from extreme heat, no firms would show effects of
temperature on productivity. Instead, the results show that firms which experience
given extremes infrequently find it optimal to invest less in adaptation, implying
that the costs they would incur to achieve a marginal reduction in temperature
sensitivity exceed the benefits. I leverage this intuition combined with the firm’s
first order conditions in Section 3.1 to infer a revealed preference measure of these
adaptation costs following methods developed in Carleton et al. (2018). Appendix
D covers the details of this calculation.

Quantifying the aggregate productivity consequences of climate change also
requires projecting temperature sensitivity in services. I make projections for ser-
vices using the pooled sample of manufacturing and services firms due to the lack
of services data coverage in poor countries.>®> This choice follows from the esti-
mated strong gradient of temperature sensitivity with respect to income but very
similar coefficients between the manufacturing only and manufacturing/services
specifications in Columns 2 and 5 of Table 2.2° Intuitively, the results suggest that
manufacturing firms in India are a better proxy for services firms in India than ser-
vices firms in Germany would be. Appendix Figures A-20 and A-21 show predicted
current global sensitivity to hot and cold days in services using results from the
pooled regression. I follow the same procedure to account for future adaptation
benefits and costs as in manufacturing.

Overall, the results in this section allow me to predict the sensitivity of non-
agricultural firm output per worker to extreme temperatures in every country in the
world in the present and future. I use these results to project the impact of climate
change on global comparative advantage between agriculture and manufacturing
in Section 7.1, and to simulate the corresponding changes in sectoral allocation
and aggregate productivity.

5 Model

This section lays out a static general equilibrium model of global production, con-
sumption, and trade in agriculture, manufacturing, and services to analyze how
changes in sectoral productivity affect sectoral specialization, trade flows, aggre-
gate productivity, and welfare. I show that the model makes ambiguous predictions
about how reductions in agricultural productivity affect the employment share of
agriculture, and that openness to trade is a key determinant of the reallocation that

251 show results for regressions using only services firms in Appendix Figures A-9, A-10, and A-11.
The results for extreme heat with more flexible functional forms such as a fourth degree polynomial
are qualitatively similar to those of the pooled manufacturing and services regression, but these
specifications are sensitive to functional form. Furthermore, the predictions in poor countries are
extrapolating far out of the sample, which only includes European firms in a narrow range of high
income levels.

26A formal test shows that coefficients for manufacturing and services firms in the pooled
regression have statistically indistinguishable responses to extreme heat and marginally significant
evidence that services firms are less susceptible than manufacturing firms to extreme cold.
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follows from asymmetric sectoral productivity shocks.

5.1 Model Ingredients

Consumption

Following the demand system specified in Comin, Lashkari and Mestieri (2015),
consumers in each country gain utility from final goods in each of the three sectors
- agriculture, manufacturing, and services - according to the following implicitly
defined utility function:

WUTCr + QU Cr + QU7 Cor =1 9)

Here, {e,, €., €, } are utility elasticities for each sector that allow for nonhomothetic
preferences, {{2,,,,, s} are sectoral taste parameters, and o is the cross-sector
elasticity of substitution. I choose this nonhomothetic CES preference specifica-
tion because it can closely match the observed pattern of smooth structural trans-
formation out of agriculture.?’

Households consume their full wage, w, which varies at the level of country k.
The aggregate budget constraint, summed across the country-level population, L,
equates income to total expenditures across the three sectors:

P Cok + Pk Ok + PoCst = wi Ly, (10)

Solving the consumer’s problem gives the following expression for the expendi-
ture share, w;y, in sector j in country k:

P;1.Cg P\ 7w Ly \ 7T
ok wy Ly, T\ Py P ab
where the average cost index, P, = “’kL’“, satisfies:

1

1-0o e;j—(1—0o) 1o

Z (P 7) 7 (wim(wpLy)'=7) 5

jef{a,m,s}

P, = (12)

The household’s expenditure function for achieving utility U, at a given vector
of sectoral prices is as follows:

e

E(Ug|Pak, Pk, Psi) = [ Z QUGJPJIkU (13)

j€{a,m,s}

2"Nonhomothetic CES preferences improve model fit substantially compared to using general-
ized Stone-Geary preferences, another common specification used to represent nonhomotheticity
in the structural transformation literature, particularly in middle income countries. I show
robustness to using Stone-Geary preferences in Appendix E1.
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Production

The final good in sector j in country £ is a CES composite of intermediate varieties
indexed by i, where 7, represents the final goods producer’s demand for variety
from the country from which it is sourced:?®

1o, \ 7T
Y = (/ Ui dz’) (14)
0

Intermediate goods producers for each variety in each country receive a produc-
tivity draw, z;;;, drawn from a Frechet distribution with sector-specific shape pa-
rameter ¢; and sector-country specific start value Z;;. The production function for
intermediate goods is linear in labor:

Yijk = Zijk * lijk (15)
ziji ~ Fj, where Fji(2) = exp(—Z;,27%)
and Z, = f(ujk, Tjn, E(Tix)) (16)

The sector-country specific aggregate productivity parameters, Z;;, connect the
model to the empirical results in Section 4. In particular, I allow Z;; to be a func-
tion of temperature realizations, 7}, expectations over temperature, £(7};), and a
vector, j1;x, of country-sector specific features such as technology, institutions, and
human capital. In making future projections in Section 7, climate change enters
the model by perturbing the vector of Z,;, with empirically estimated productivity
impacts that vary at the country-sector level.
Trade
The trade portion of the model follows Eaton and Kortum (2002). When selling to
foreign countries, intermediate goods producers face an iceberg trade cost, 7jj,,
that varies by sector, j, exporter country, k, and importer country, n. So, intuitively,
shipping food from Canada to Malawi incurs a different trade cost than shipping
food from Malawi to Canada, and manufactured goods shipped between Canada
and Malawi have two separate trade costs of their own. Services are nontradable.
Intermediate goods producers price at marginal cost. Since labor is the only
input, the price of a domestically produced good in country & is given by p;;, = ka .
When selling to foreign country »n and incurring the cost of trade, the intermediate
goods producer in country & prices as follows:

Dijk = ' (17)

This representation of trade incorporates Ricardian comparative advantage both
within and across sectors. A producer’s ability to sell competitively priced exports

2The final good is non-tradable and only used in consumption so that Cj; = Yjj.
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depends both on their productivity and on the domestic wage. Low productivity
countries will have low wages in equilibrium, so their relatively productive produc-
ers will be able to export their products even if their absolute productivity is low.
Thus, relative productivity between sectors is the key determinant of net imports
and exports.

The final goods producer sources each variety from the lowest-priced producer.
The sectoral final goods prices are given by the CES price index of all intermediate
varieties used in that sector:

1

1 1-n
Py, = ( / piﬁﬁdi> (18)
0

The final goods producer’s demand function for variety i as a function of these
prices is given by:

Pijk\

— o i

= (B) o
Intuitively, the price of the final good in agriculture, P,;, can be thought of as a

price index for the complete basket of food items while the price of each individual

variety, p;qk, is the price of one particular food. 7 is the elasticity of substitution

between varieties.

Market-Clearing

The model has two market-clearing conditions. First, total income in country k is

the sum of all domestic and foreign sales in all three sectors.

N
wi Ly, = Z (ij:kpjkcjk + Z ijnPanjn> (20)

Here, 7, is the share of varieties from sector j consumed in country n that coun-
try k& produces. So country k receives income both from its production share of
domestic consumption in sector j, and from the share of consumption in every
foreign country comprised of its exports. Since consumption equals income in
each country, this condition also ensures that trade balances.

The second market-clearing condition concerns the labor market. The total
labor force is allocated across the three sectors:

Lj = Lok + Ly + L, (21)

In autarky, market-clearing requires that income equals expenditures in each sec-
tor, P;,Cjr = wiL,,, which means that the employment share, /;;, equals the ex-
penditure share, wj;. In the open-economy case, the employment share equals
the production share of revenues in each sector, incorporating net exports, which
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yields the following equation:*

Wy L,
l‘k = TikkWik + TiknWin———=— (22)
J J J ; J J kak

This condition illustrates the importance of both domestic consumer preferences
and international trade in determining the sectoral allocation of labor. Intuitively,
Equation 22 says that if country £ has agricultural consumption worth 30% of spend-
ing and agricultural net exports worth 10% of GDP, then 40% of its labor force will
be in agriculture.

Equilibrium

For a given set of preference parameters, {L;}, {Z;;}, and {7j,}, equilibrium is
given by a set of wages {w,}, variety level prices {p;;;} and demand {7,;,}, final
goods prices { P;; } and demand {C} }, average cost indices { P, }, expenditure shares
{wj}, and trade shares {r;;, } such that consumers and producers optimize (Equa-
tions 10, 11, 12, 14, 17, 18, and 19 hold) and trade balances (Equation 20 holds).
Willingness-To-Pay and Aggregate Productivity

I calculate the willingness-to-pay (WTP) to avoid climate change productivity im-
pacts as equivalent variation (EV) using the nonhomothetic measure of utility. In
particular, equivalent variation is defined as the change in nominal income from
the original level, v}, that would leave the agent able to achieve post-shock utility,
U}, at the pre-shock vector of prices, { P, PY,, P9 }. Since EV is negative when the

mk>

agent becomes worse off, willingness-to-pay has the opposite sign:
WTP, = —EV), = —[E(U}; Py, Py, P%) — wy] (23)

I also quantify the impact of sectoral productivity changes on measured GDP by
using a standard Térnqvist (1936) price index that uses sectoral expenditure shares
from before and after the shock, (w), and wj,), to construct an aggregate price index
with which to deflate nominal income:

wi Ly,
Pl

[ 2
This calculation captures the logic of Bagaee and Farhi (2019), who extend Hulten
(1978) to show that the aggregate productivity impact of a sectoral shock is given
by the weighted average of the pre and post-shock sectoral shares. While aggre-
gate productivity does not capture welfare in this setting with non-homotheticities,
showing how it varies across counterfactuals helps illustrate the key mechanism in
the model: trade barriers and subsistence requirements for food play a critical role
in determining the welfare consequences of climate change by forcing labor toward
agriculture rather than allowing it to reallocate to less affected sectors.

2This equation is also derived in Uy, Yi and Zhang (2013).
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5.2 Comparative Statics

I now use the model to characterize the factors that influence sectoral reallocation
in response to climate change. Consider a country that suffers an agriculture-
biased reduction in aggregate productivity, consistent with projections for hot parts
of the world made in Section 7. To see how the employment share in agriculture
changes in Equation 22, I start with a version of Equation 11 for agriculture’s ex-
penditure share expressed in logs:

log(war) = log(Q,) + (1 — o)log <@> + (e, — (1 — 0))log (%) (25)
Py Py
Substitu?iron Effect Incom:Eﬂect

The agriculture-biased reduction in productivity has two effects that appear in
Equation 25.3° First, the reduction in productivity drives down the equilibrium real
wage (7¢), making consumers poorer. If (¢, — (1 — 0)) < 0, as is the case with the
parameter estimates presented in Section 6, then the reduction in real wage drives
up the expenditure share on food, w,. This is the effect of nonhomotheticity. Food
is a larger share of consumption for poorer people, so climate change tends to drive
up the share of agricultural consumption by making people poorer.

Second, the relative decline in agricultural productivity will increase the domes-
tic price of agricultural goods relative to the aggregate price index (”PL:).H'1 Ifo <1,
as is also the case in Section 6, then the rising relative price of agricultural goods
raises the expenditure share on agriculture. Intuitively, if food is not substitutable
with other consumption, then its relative quantity falls less than the relative price
rises, and the share of spending on food goes up. This is the same logic that un-
derlies Baumol'’s cost disease (Baumol and Bowen, 1966), a theory that endeavors
to explain why low-substitutability service sectors with relatively low productivity
growth, such as health care and education, tend to rise as a share of expenditures
over time.

Together, nonhomotheticity and low substitutability at the sector level combine
to push up the expenditure share on agriculture in response to declines in agricul-
tural productivity. The macro-development literature on structural transformation
(see, for instance, Gollin, Parente and Rogerson (2007)) refers to these features of
consumer preferences as ‘the food problem’ - the explanation given to the large
share of the labor force in agriculture in most developing countries despite very
low absolute and relative productivity.

These features of the model also explain why its predictions about the protec-

30This equation also appears in Comin, Lashkari and Mestieri (2015). They estimate that
nonhomotheticities (the income effect) account for about 75% of observed historical structural
transformation, with changes in relative prices (the substitution effect) accounting for the rest.

311n a closed economy, relative sectoral prices are exactly proportional to sectoral productivities.
In an open economy, the domestic relative price of agriculture responds to domestic agricultural
productivity in proportion to the domestically produced share of consumption.
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tive effects of reallocation diverge from those of Costinot, Donaldson and Smith
(2016). Their paper finds that reallocating production across crops reduces the
aggregate damages from climate change by two-thirds. To capture reallocation at
the crop level, their model has no income effects and high substitutability across
products.?? This specification makes sense for capturing reallocation across crops,
but does not generalize to the cross-sector case where income effects become im-
portant and the elasticity of substitution is very low. Intuitively, if the productivity
of corn falls markedly relative to the productivity of wheat, consumers can respond
by eating more wheat. If the productivity of producing food falls relative to the
productivity of manufacturing, however, consumers cannot subsist by eating more
manufactured goods.

In contrast to the food problem, the Ricardian comparative advantage effects of
falling relative productivity in agriculture will tend to push labor into other sectors.
Returning to Equation 22, shifting comparative advantage away from agriculture
will tend to push up food imports (7. falls for country &) and push down food
exports (7., falls). Equation 26 captures the horserace between the food problem
and international trade that drives general equilibrium sectoral reallocation in re-
sponse to climate change.®
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In autarky, falling relative agricultural productivity would drive up the employment
share in agriculture. In an economy with costless trade, climate change would
dramatically shift the global geography of agricultural production and trade flows,
substantially limiting the impact on welfare. To quantify the relative strength of
these effects in practice, I need to estimate the parameters of the model and sim-

ulate the general equilibrium response to the estimated impacts of climate change
on productivity at the country-sector level.

6 Model Calibration

I solve the model presented in Section 5 by computing the equilibrium numerically.
By simulating the model in levels and explicitly computing all moments — wages,
sectoral consumption and output shares, sectoral bilateral trade flows, and sectoral
price indices — for all countries, [ am able to estimate key model parameters using
simulated method of moments (SMM), assess the quality of the model’s fit across a
wide range of empirical moments, and disentangle competing mechanisms in the

32They estimate an elasticity of substitution of 5.4 across varieties of the same crop and 2.8 across
crops. I estimate an elasticity of 0.27 between sectors.

3The importance of trade for promoting structural transformation out of agriculture has been
previously emphasized by Tombe (2015), Teignier (2018), and Uy, Yi and Zhang (2013).
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counterfactual simulations.3*

6.1 Parameter Estimates

Iinfer model parameters from the data using a combination of calibration and esti-
mation. Table 3 shows a list of the data sources and target moments corresponding
to each parameter. I choose sector-country productivities, non-homothetic CES
preference parameters, and bilateral trade costs to match sectoral value-added
per worker, GDP shares, and bilateral trade flows for 158 countries. Appendix E.1
contains details about data construction and the SMM procedure.

Table 4 displays the estimates of the preference parameters for the nonhomoth-
etic CES utility specification. The values are estimated using a simulated annealing
procedure to minimize the sum of squared errors between simulated and empirical
sectoral GDP shares across all countries, conditional on all other parameters.>®
Intuitively, each preference parameter corresponds to a key feature of the sectoral
share data used in the estimation. The utility elasticities, ¢,, ¢,,, and ¢,, that govern

Table 3: Model Parameters and Target Moments

Parameters Data Moment Data Source

o Sectoral GDP Shares World Bank

Qur Qs Qs Sectoral GDP Shares World Bank

€ar €my €s Sectoral GDP Shares World Bank

O O, Calibrated from Tombe (2015)

Tjkn Trade Flows UN Comtrade

Z; Sectoral Value-Added per Worker ~ World Bank

Ly, Population World Bank

Notes: Table shows the data sources for moments targeted in the
simulated method of moments procedure to estimate parameters for the
model presented in Section 5. Data is for the global cross-section in 2011,
accessed from the World Bank Databank.

34Solving the model in changes following Dekle, Eaton and Kortum (2007) is not feasible for the
key results presented in Section 7.6 because doing so would require data that does not exist for the
future baseline global equilibrium. In particular, implementing the climate change counterfactuals
in relative changes would require information about the future levels of sectoral expenditure shares
and trade flows without climate change. By simulating the model in levels, both the baseline (no
climate change) and counterfactual (with climate change) values of all endogenous moments can
be computed by allowing the productivity parameters to evolve using projections of future baseline
economic growth and the estimated sectoral impacts of climate change.

35Given that the simulations incorporate trade, sectoral GDP shares translate directly into
sectoral expenditure shares once net exports are subtracted. Thus, production shares from the data
can be used to infer the parameters that govern consumption shares.
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Table 4: Consumption Parameter Estimates

Parameter Description Estimate
o Cross-Sector Elasticity of Substitution 0.27
(0.21)
€q Agriculture Utility Elasticity 0.29
(0.39)
€m Manufacturing Utility Elasticity 1.00
(0.27)
€s Services Utility Elasticity 1.15
(0.41)
Qg Agriculture Taste Parameter 11.73
(0.51)
Qm Manufacturing Taste Parameter 3.70
(0.35)
Qs Services Taste Parameter 10

)

Notes: Parameters estimated using simulated method of moments. Standard
errors in parentheses calculated following Gourieroux, Monfort and Renault
(1993) with derivatives simulated numerically. 2, is normalized to 10 as
only relative values of ; affect consumer choices. Within sector elasticity of
substitution across varieties, 7, is calibrated to 1.

non-homotheticity in the model are inferred from the pattern by which sectoral
shares vary with income across countries. The sectoral taste parameters, 2,, (2,
and (2, follow from the average level of each sector’s shares across countries. Fi-
nally, o is inferred from the degree to which sectoral shares vary as a function of
relative prices, conditional on income.3®

Two points about these estimates are worth noting. First, I estimate a cross-
sector elasticity of substitution, o = 0.27, of substantially less than one, indicating
that the expenditure share in a sector sharply increases with its relative price. My
estimate of o to target the global cross-section of sectoral shares matches up well
with that of Comin, Lashkari and Mestieri (2015), who use various historical panel
datasets to estimate o between 0.2 and 0.6.%"

36While I do not use the data on prices directly in estimation, sectoral relative prices in the model
follow from domestic relative productivities and trade costs, which are inferred from sectoral value-
added per worker and observed trade flows, respectively. Figure 7 shows that the pattern of relative
prices in the model is similar to that of the data.

371 estimate consumption parameters separately rather than calibrating to the values they
estimate for three reasons. First, their paper does not present estimates of 2., €2,,,, and ;. Second,
point estimates vary somewhat across specifications in their analysis so independent estimation
provides an alternative to arbitrary designation of a preferred specification. Third, the fact that
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Second, I estimate that ¢, — (1 — o) = —0.44, which implies from Equation 25
that the consumption share of agriculture is strongly diminishing in real income.
The estimates of ¢,, ¢,,, and ¢, also align closely with those of Comin, Lashkari
and Mestieri (2015). In particular, the estimates in Table 4 imply sectoral income
elasticities of 0.48 for agriculture, 0.98 for manufacturing, and 1.09 for services,
whereas those presented in their paper range from 0.37 to 0.56 for agriculture, 0.83
to 1.03 for manufacturing, and 1.14 to 1.20 for services.® Thus, referring back
to Equation 25, the parameter estimates imply clearly that an agriculture-biased
decline in productivity will raise the expenditure share of agriculture through both
the income and substitution effect.

6.2 Model Fit

The model closely matches the features of the data most relevant to the counter-
factual simulations of the impacts of climate change. Table 5 summarizes the cor-
relation between key simulated moments in the model and their empirical coun-
terparts. The simulations match the income level of each country almost exactly

Table 5: Summary of Model Fit

€] 2 3)
Data log(GDP per capita)  Data Ag Share of GDP Data mq 5k

(Ag Domestic Production Share)

Simulated log(GDP per capita) 1.006
(0.00251)
Simulated Ag Share of GDP 0.866
(0.0563)
Simulated 7, 1.009
(Ag Domestic Production Share) (0.0392)
Observations 158 158 158
R2 0.999 0.603 0.809

Notes: Table shows the results from regressing empirical moments in the data on their simulated
counterparts. Data on nominal income levels and the agriculture share of GDP are from the World
Bank. Data on the domestically produced share of expenditures in agriculture is constructed using
Comtrade data. A coefficient of 1 with R? = 1 would constitute a perfect fit. The fit for other
moments in the model is displayed in Appendix E.2 Figures A-27, A-28, and A-29.

using indirect inference to match sectoral shares in the global cross-section produces very similar
estimates to those that they generate from historical panel data using instruments for prices and
expenditures lends an additional dimension of support to the parameter values used in the analysis.

38The formula for the income elasticity in sector j in the non-homothetic CES specification is
givenby o + (1 — o) x €; x 3, ; wje; where w; is the expenditure share. I report income elasticities
for the expenditure shares of the average country in my sample.
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through the calibration of the country-level aggregate productivity parameters. Sim-
ilarly, the simulations closely match the domestic production share of agricultural

consumption since I choose exporter-importer-sector-specific trade costs, 7, to

match all observed bilateral trade flows. As shown in Appendix Figure A-30, most

developing countries import little of their food. In the data, the average person

in the poorest quartile of the world consumes 91.3% domestically produced food

(89.4% in the simulation) compared to 45.1% in the richest quartile (52.4% in the

simulation). I present suggestive evidence on some of the underlying causes of

these high barriers to trade in poor countries in Section 9.

The model also explains most of the variation in the global agriculture share of
GDP. I slightly under-predict agricultural shares on average, but overall the model
explains 60.3% of the variation in the data. This is a relatively strong fit considering
that only the seven free parameters in Table 4 were chosen to match 316 target
moments consisting of GDP shares for agriculture, manufacturing, and services in
158 countries. As shown in Figure 6, the nonhomothetic CES demand specification
enables the simulation to closely mirror the smooth decline of agricultural GDP
with log income per capita.®

The model also reproduces the general pattern of high relative prices for agri-

Figure 6: Agriculture Share of GDP - Data vs. Simulation
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log(GDP per capita)

® Agriculture Share of GDP ® Simulated Agriculture Share of GDP ‘

Notes: Graph shows the fit of simulated agriculture share of GDP in the model to data
from the World Bank. The simulation explains over 60% of the variation in the data,
and reproduces the smooth pattern of non-homotheticity observed in the empirical
relationship between agricultural shares and income.

39For comparison, the best fit using a Stone-Geary utility specification has an R? of 0.43 and
predominantly underpredicts the agriculture share as shown in Appendix Figure A-31.
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Figure 7: Relative Price of Food - Data vs. Simulation
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The graph on the left shows the ratio of a country-level food price index to an
aggregate price index using data from the International Comparison Program.
The graph on the right shows an analogous moment in the model - the ratio
of the aggregate agricultural and manufacturing price indices, P, and P,,. The
model reproduces the empirical relationship that poor countries tend to have
higher relative prices for food - a moment I do not target in the estimation.

cultural consumption in poor countries - a moment I do not target in the esti-
mation. In Figure 7, I compare the simulated pattern of the relative price of agri-
cultural and manufacturing consumption, P,; and P,,;, to an empirical analogue
constructed using aggregate sectoral price indices from the World Bank’s Inter-
national Comparison Program. While the simulated and empirical price indices
have different units that prevent direct comparison, they share the same pattern of
high relative prices for food in developing countries with low relative agricultural
productivity.

Overall, the model matches the existing global pattern of sectoral specializa-
tion through a combination of consumer preferences and barriers to trade. Low
incomes and the high relative price of food drive up agriculture’s share of expendi-
tures in poor countries through the nonhomotheticity and low elasticity of sub-
stitution in the preference specification. High estimated trade costs chosen to
rationalize observed trade flows tightly link domestic consumption to domestic
production, causing many developing countries to specialize in agriculture despite
its low productivity.*’ In the next section, I use the model to investigate projected
sectoral reallocation in response to climate change and its welfare consequences.

40As discussed in Section 5, this explanation is consistent with the work of Tombe (2015), Gollin,
Parente and Rogerson (2007), and the broader literature on structural transformation.
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7 Model Counterfactuals

This section uses the estimated model to project the impacts of climate change on
trade flows, sectoral specialization, prices, GDP, and welfare.

7.1 Estimated Productivity Impacts

I start by projecting the impacts of climate change on country-sector level produc-
tivity. For agricultural productivity effects, I use the estimates from Cline (2007)
displayed in Figure 1. As I explain in Appendix E.3, I choose these projections for
two reasons. First, they use globally representative data to produce results broadly
consistent with the literature on climate and agricultural production. Second, they
represent the most comprehensive available source of global impact estimates that
account carefully for adaptation and crop-switching within the agricultural sector.

To project the impact of climate change on productivity in manufacturing and
services, I combine the country-sector specific temperature sensitivities estimated
in Section 4.4 with projections of the future distribution of temperature in 2080-
2099.41 T obtain future temperature predictions from the CSIRO-MK-3.6.0 model
produced by Jeffrey et al. (2013), one of the climate models used by Cline (2007),
for consistency with the projected changes in agricultural productivity.*? The pro-
jected changes in manufacturing and services productivity are shown in Figure 8a
and Appendix Figure A-24 respectively. Figure 8b brings together the estimated
impacts on agricultural productivity from Cline (2007) with my estimates of the
change in manufacturing productivity to show the change in the relative produc-
tivity of the model’s tradable sectors for every country.

The pattern in Figure 8b shows clearly that climate change shifts comparative
advantage in agriculture toward colder countries far from the equator on average.
While the negative effects of climate change on manufacturing productivity are
concentrated in similar parts of the world to agricultural productivity, they are
generally smaller in magnitude. Every country in Africa, South Asia, and Latin
America (with the exception of Egypt) has larger estimated productivity losses in
agriculture than manufacturing. Thus, to the extent that specialization follows
Ricardian comparative advantage, we would expect to see agricultural production
move toward colder places away from the equator in response to climate change.

Next, I integrate these empirically estimated productivity changes into the model
by applying them to the sector-country specific aggregate productivity Z;;, and re-
calculating equilibrium wages, prices, and trade flows.

41T use the estimates that allow for firms to adjust adaptation investments to their end-of-century
temperatures. I account for the costs of this adaptation in Section 7.6.

#2The estimates from the interacted model in Section 4 give me an estimate of the reduction in
annual manufacturing and services output per worker for each degree-day above 30°C and below
5°C. The CSIRO model projections give me population-weighted change in degree-days above 30°C
and below 5°C for every country in the world in 2080-2099, which are shown in Appendix Figures
A-22 and A-23. I multiply the country-level coefficients by the projected changes in hot and cold
temperatures to get the impacts shown here.
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Figure 8: Projected Impact of Climate Change on Productivity
(a) Manufacturing
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Notes: Panel A shows the projected impact of climate change on manufacturing productivity
in 2080-2099 obtained by multiplying predicted temperature sensitivities by CSIRO-MK-3.6.0
global climate model predictions of changes in exposure to extreme heat and cold. Temperature
sensitivities are calculated by evaluating the interaction regression from Column 2 of Table 2 at each
country’s income and end-of-century long-run average temperature. Panel B shows the change
in agricultural productivity from Cline (2007) minus my estimate of the change in manufacturing
productivity, shown above, in percentage points.

7.2 Comparative Advantage and Trade

Figure 9 shows the projected equilibrium change in agricultural net exports in re-
sponse to climate change. Consistent with the estimated change in comparative
advantage, the predominant pattern is that hotter countries experiencing large
declines in agricultural productivity import more food, while cooler countries with
neutral or improving agricultural productivity export more food. For instance, Den-
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Figure 9: Projected Impact of Climate Change on Agricultural Net Exports
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Notes: Map shows model simulations of the change in agricultural net exports as a share of GDP
driven by the effects of climate change on sector-level productivity and comparative advantage
shown in Figure 8b.

mark and Canada roughly double agricultural net exports, from 1.9% to 3.8% and
0.5% to 1.2% of GDP respectively. Conversely, most of Sub-Saharan Africa and
South Asia increase imports of food. The few exceptions to this finding are those
hot countries for whom the change in agricultural productivity is not large relative
to the change in manufacturing productivity, particularly in relation to their close
trading partners.

The magnitudes of the projected change in trade flows are generally modest as a
share of the economy. No country increases agricultural net exports by more than
6% of GDP, and only 12 out of 158 countries decrease agricultural net exports by
more than 10% of GDP.

7.3 Sectoral Reallocation

As shown in Section 5.2, the change in trade flows is only a partial summary of the
change in sectoral specialization. Agriculture’s share of GDP (and consequently the
labor force) depends on both the change in net exports and the change in the ex-
penditure share on food. I reproduce Equation 26 summarizing labor reallocation
in response to an agriculture-biased decline in productivity here for convenience:
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The change in net exports shown in Figure 9 captures the first and third effects
in the above equation. Given the strong nonhomotheticity and low cross-sector
substitutability implied by the estimates of ¢, and ¢ in Section 6, the change in the
agriculture expenditure share, w,;, is also likely to be substantial.

The horserace between these two competing effects - comparative advantage
and ‘the food problem’ - that govern sectoral reallocation in response to climate
change plays a critical role in the aggregate productivity and welfare consequences.
As discussed in Section 5, the simple logic formalized by Baqaee and Farhi (2019) is
that production moving toward the sector suffering a larger decline in productivity
exacerbates the aggregate consequences of a given shock.

I decompose the competing effects of climate change on the agriculture share of
GDP by running separate counterfactuals with and without trade. In autarky, the
change in a sector’s relative price equals the change in that sector’s productivity.
Thus, I start by applying country-sector level price changes equal to the inverse
of the projected change in productivity and calculating the change in expenditure
shares. This gives me the change in w,;, which in autarky equals the change in
agriculture’s share of GDP. In contrast, the standard counterfactual incorporating
trade gives me the full effect of both types of reallocation. Table 6 displays the base-
line, autarky counterfactual, and trade-inclusive counterfactual agriculture shares
of GDP for a selection of countries.

The results in Table 6 show that the consumption response and trade response
both have substantial effects on specialization in agriculture, with significant het-
erogeneity across countries. In Ethiopia and India the ‘food problem’ effect domi-
nates and the agriculture share of GDP rises in response to climate change despite

Table 6: Counterfactual Agriculture GDP Shares - Selected Countries

Country Ag Productivity Manufacturing No Reallocation Autarky With Trade
Change Productivity
Change
Argentina -.111 0 .065 .067 .07
Canada -.022 -.007 .019 .019 .026
China -.072 -.036 .064 .068 074
Denmark .109 .006 .033 .032 .051
Ethiopia -.313 -.102 .359 437 .409
India -.381 0 .161 224 .194
Kenya -.054 -.044 .156 .16 .185
Mozambique -.217 -.104 .367 426 451
Rwanda -.601 -.058 409 .678 351
Poorest Quartile -.319 -.02 .199 .256 227
World -.101 -.01 .038 .044 .043

Notes: Table shows model simulations of the change in agriculture share of GDP driven by the
effects of climate change.
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Figure 10: Projected Impact of Climate Change on Agricultural GDP Share

Notes: Map shows the model simulations of the change in the agriculture share of GDP driven by
climate change.

large relative declines in agricultural productivity. In contrast, the trade effect dom-
inates in Rwanda, where the domestic production share of agricultural expendi-
tures falls from 85% to 54%. Other countries, such as Canada, Denmark, Kenya, and
Mozambique see an increase in agricultural specialization because of increased
exports driven by improvements in relative agricultural productivity compared to
their trading partners.

Figure 10 shows the worldwide change in agriculture’s share of GDP. On average,
the global agriculture share of GDP rises from 3.8% to 4.3% because agricultural
productivity falls in more places than it rises, raising w,;, and net exports for the
world are zero. The dominance of the ‘food problem’ is particularly relevant in
poor countries disproportionately suffering from extreme heat. The population-
weighted average change in agriculture’s share of GDP in the poorest quartile of
the world is +2.8 percentage points. Thus, simulations suggest that climate change
will push more people in poor countries into farming as the productivity of those
farms declines dramatically.

7.4 Aggregate Productivity and Willingness-to-Pay

The estimated sectoral productivity effects combined with the changes in sectoral
specialization map directly into changes in aggregate productivity. Table 7 shows
the change in real GDP for each counterfactual in select countries, deflating nomi-
nal income at the country level using the Tornqvist price index from Equation 24.
The results make clear that projected reallocation exacerbates the impact of
climate change on aggregate productivity in most countries, as well as globally
on average. Global GDP declines 1.9% in the counterfactual that holds sectoral
shares fixed, but declines 2.1% when allowing for reallocation. GDP in the poor-
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Table 7: Counterfactual Percent Change in GDP - Selected Countries

Country Ag Productivity Manufacturing No Reallocation Autarky With Trade
Change Productivity
Change
Argentina -.111 0 -.002 0 .001
Canada -.022 -.007 -.018 -.018 -.016
China -.072 -.036 -.043 -.045 -.045
Denmark .109 .006 0 0 .005
Ethiopia -.313 -.102 -.163 -.218 -.217
India -.381 0 -.074 -.131 -.127
Kenya -.054 -.044 -.037 -.038 -.034
Mozambique =217 -.104 -.14 -.192 -.199
Rwanda -.601 -.058 -.334 -.557 -.508
Poorest Quartile -.319 -.02 -.083 -.132 -.126
World -.101 -.01 -.019 -.023 -.021

Notes: Table shows model simulations of the change in GDP driven by the effects of climate change.

est quartile of countries falls by 8.3% in the no reallocation counterfactual, and
falls 12.6% with reallocation. This happens for two reasons. First, as discussed in
Section 7.3, the ‘food problem’ pushes up the labor share of agriculture in many
countries while agricultural productivity declines dramatically. Second, as Dingel,
Meng and Hsiang (2019) have shown, the spatial correlation of the productivity
impacts heighten their importance. Since food prices in Rwanda are a function of
agricultural productivity in Rwanda and its closest trading partners, the losses to
Rwanda intensify when accounting for shocks that hit their neighbors.

How can reallocation that worsens aggregate productivity and measured GDP
be consistent with optimizing behavior? In Table 8, I calculate the willingness-to-
pay (WTP) to avoid climate damages under each counterfactual as the equivalent
variation loss in income at the baseline equilibrium set of wages and prices, as
shown in Equation 23. The results show that the full reallocation counterfactual
reduces the welfare consequences of climate change, as captured by willingness-
to-pay, even while increasing the impact on GDP. The WTP under the no reallo-
cation counterfactual is particularly dramatic because it forces agents to deviate
from optimal consumer behavior. This highlights that the no reallocation coun-
terfactual is actually an unrealistic scenario. In the presence of declining income
and large projected increases in food prices, keeping fixed the expenditure share
on food would require declines in the quantity of food consumed that are strongly
inconsistent with the observed low substitutability between food and non-food. To
summarize the intuition, people are willing to sacrifice income (GDP) to reallocate
expenditures toward food when food prices rise because they need food to survive.

Figures 11 and 12 show the global distribution of willingness-to-pay to avoid
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Table 8: Equivalent Variation Change in Welfare (Share of GDP)
- Selected Countries

Country Ag Productivity Manufacturing No Reallocation Autarky With Trade
Change Productivity
Change

Argentina -111 0 -.008 -.002 0
Canada -.022 -.007 -.018 -.016 -.014
China -.072 -.036 -.057 -.04 -.04
Denmark .109 .006 .003 0 .005
Ethiopia -.313 -.102 -.364 -.171 -.169
India -.381 0 -.311 -.085 -.082
Kenya -.054 -.044 -.052 -.035 -.031
Mozambique -.217 -.104 -.279 -.143 -.147
Rwanda -.601 -.058 -.725 -.434 -.387
Poorest Quartile -.319 -.02 =277 -.092 -.088
World -.101 -.01 -.04 -.018 -.017

Notes: Table shows model simulations of the willingness-to-pay to avoid the productivity effects of
climate change using the non-homothetic CES measure of utility.

Figure 11: Equivalent Variation Change in Welfare from Climate Change
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Notes: Map shows model simulations of the willingness-to-pay to avoid the effects of climate
change as a share of GDP.

climate change, and the change in food prices, P,;, which comprise a key driver
of the welfare losses. Food prices rise in 156 of the 158 countries, and rise by at
least 25% in 41 countries containing over 32% of the world’s population.*® Climate

#3The large changes in food prices also imply that the incidence of these losses may fall on
urban consumers more than on farmers suffering lost productivity. I investigate the distributional
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Figure 12: Projected Percentage Change in Food Prices
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Notes: Map shows model simulations of the change in the aggregate food price index, P,;, driven
by climate change.

change does net damage as measured by WTP in 150 countries, and causes welfare
losses exceeding 8% of GDP in 32 countries covering 27% of the world’s population.
Because the losses are concentrated in poor countries, global willingness-to-pay
is only 1.7% of GDP. However, the population-weighted average global losses are
4.7% of GDP, and the population-weighted average for countries in the bottom
quartile of income is 8.8% of GDP. The interpretation of this number is that climate
change will cost the average person in the poorest quartile of the world nearly 9%
of their income. Note that these results account neither for the costs of firm-level
adaptation investments nor for the benefits of anticipated economic growth, both
of which will be examined in Section 7.6.

7.5 Low Trade Cost Counterfactual

The analysis of sectoral reallocation and aggregate productivity in Sections 7.3 and
7.4 demonstrates that openness to trade mitigates the harm from climate change
by counteracting ‘the food problem.” To further investigate the importance of trade
policy, I run an additional counterfactual exercise in which I replace all bilateral
trade costs, 7, for manufacturing and agriculture with a 100% tariff (- = 2), repre-
senting approximately the 90th percentile of trade openness.** I choose this num-
ber rather than 0% to acknowledge the fact that some level of shipping costs, regu-
latory discrepancies, and language barriers are inherent to cross-country trade, so
no amount of policy change could make trade perfectly costless. A 100% tariff-

consequences of climate change within countries further in Appendix E3.
“The 10th percentile of bilateral tariff-equivalent trade costs in my estimates is 122% in
agriculture and 85% in manufacturing.
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equivalent trade cost is approximately equal to the cost I estimate for shipping
food from Belgium to Australia; representing an ambitious, yet realistically feasible,
change in global trade policy.

To disentangle the benefits of trade for climate change adaptation from the
more general gains from trade, I rescale each country’s vector of sectoral produc-
tivity parameters, Z;;, such that I continue to match the baseline levels of GDP
per capita in the initial equilibrium. Note, however, that without the estimated
high barriers to trade in developing countries the model can no longer match the
observed global pattern of the agriculture share of GDP. In this hypothetical world
of increased openness, developing countries import substantially more food from
richer countries with high relative productivity in agriculture even in the absence
of climate change.

Table 9 shows the WTP to avoid climate change under different trade cost sce-
narios for a select subset of countries especially vulnerable to climate change. Two
things about these results are worth noting. First, as shown in Table 9, reducing
trade barriers dramatically reduces the costs of climate change in the hardest-hit
countries. Overall, the WTP for the average person in the lowest quartile of global
income is only 2.9%, relative to 8.8% in the estimated trade cost case.

Second, the effects of openness to trade vary substantially across countries. For
40 countries representing 15.1% of the global population, WTP to avoid climate
change as a share of GDP is higher in the low trade cost scenario.*® The intuition

Table 9: Equivalent Variation Change in Welfare (Share of GDP)
Alternative Trade Cost Cases

Country Autarky Estimated Trade Cost Case Low Trade Cost Case
Rwanda -.434 -.387 -.086
Central African Republic -.428 -.356 -.037
Chad -.25 -.226 -.032
Malawi -.225 -.225 -.119
Zimbabwe -.223 -.212 -.074
Zambia -.208 -.199 -.001
Ethiopia -.171 -.169 -.091
Sierra Leone -.13 -.164 -.105
India -.085 -.082 -.013
Poorest Quartile -.092 -.088 -.029
World -.018 -.017 -.013

Notes: Table shows model simulations of the willingness-to-pay to avoid the effects of climate
change under different scenarios - autarky, estimated global barriers to trade, and an alternative
scenario setting all bilateral trade costs to approximately the 90th percentile level of trade openness.

45To be clear, these countries still experience overall gains from trade. But once those general
gains are netted out, they suffer larger climate change damages in this scenario.
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for this result is as follows. When trade barriers are high and local consumption
depends mostly on local production, the effects of deteriorating productivity are
also concentrated locally. Conversely, more trade makes the world more interde-
pendent and dilutes the effects of alocal shock across many countries. If consump-
tion in Austria is more linked to production in Zimbabwe, then Austrian consumers
suffer more from shocks that hit Zimbabwe. Conversely, Zimbabwean consumers
insulate themselves from the local shock by consuming a more diversified global
portfolio of products.

Overall, trade reduces the aggregate global willingness-to-pay to avoid climate
change by 7.4% relative to autarky under existing global trade policy, and by 30.7%
under the specified alternative assumption of freer trade. This pattern holds much
more starkly in poor countries. For the average person in the poorest quartile of
the world, trade reduces WTP by 4.5% relative to autarky under existing policy, but
by 68.2% under freer trade. I discuss possible policy mechanisms to realize these
gains in Section 9.

7.6 Future Income Baseline

The results in Sections 7.1 to 7.5 use projections for future temperature change,
but hold the baseline global economy fixed at the present day equilibrium. In this
section, I endeavor to account for the effects of anticipated economic growth by
allowing global income levels to evolve according to an example set of projections
from the Shared Socioeconomic Pathway (Scenario Three) developed by Cuaresma
(2017) of the International Institute for Applied Systems Analysis.*®

Allowing for economic growth to take place has two important effects on the
aggregate consequences of climate change. First, the agriculture share of GDP
declines as countries grow richer due to nonhomothetic preferences for food, re-
ducing the aggregate consequences of agriculture-specific productivity shocks. I
capture this effect in the model by applying projected income growth to 2080 as
sector-neutral increases in the baseline values of Z;;. Second, the results from Sec-
tion 4 imply that sensitivity to temperature for manufacturing and services firms
declines markedly as countries become richer. I capture this by re-evaluating the
sensitivity to temperature shown in Figures 5a and 5b at 2080 levels of log GDP per
capita. Appendix Figures A-25 and A-26 show that the effects of temperature on
non-agricultural productivity accounting for adaptation are substantially muted,
even in this relatively low growth scenario that projects only slightly more than a
doubling of global income between 2015 and 2080.

Table 10 shows the impact of expected economic growth on the agriculture
share of GDP and expected willingness-to-pay. The willingness-to-pay numbers
in Columns 5 and 6 of Table 10 also incorporate the firm-level adaptation costs
calculated in Appendix D, thus accounting more comprehensively for the costs
as well as benefits of adaptation. This particular future scenario includes little to

46se of the Shared Socioeconomic Pathways in future projections of climate change damages
follows from the work of Carleton et al. (2018) and many others.
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Table 10: Equivalent Variation Change in Welfare (Share of GDP)
Accounting for Economic Growth and Adaptation Costs and Benefits

Country Projected Ag GDP Ag GDP Ag GDP EVWTP EVWTP
GDP Share Share 2080 Share 2080 Losses from  Losses from
Per-Capita Baseline Baseline Counterfac- Present 2080
2080 / tual Baseline Baseline
Present
Central African Republic 1.47 .299 .287 .094 -.436 -.316
Rwanda 1.14 1409 .39 .322 -.394 -.366
Zimbabwe 4.17 .302 122 .14 -.248 -.111
Malawi 2.84 436 .309 .357 -.244 -.167
Zambia 1.52 .36 .28 318 -.233 -.181
Chad 1.13 257 213 .243 -.226 -.221
Sierra Leone 1.49 .139 177 173 -.204 -.146
Ethiopia 1.23 .359 .333 .376 -.19 -.182
India 3.24 161 .087 .106 -.082 -.045
Poorest Quartile 3.05 199 .126 .144 -.10 -.062
World 2.2 .038 .025 .028 -.027 -.015

Notes: Table shows model simulations of the effects of projected economic growth on the
agriculture share of GDP and the willingness-to-pay to avoid climate change in select countries.
Example economic growth projections come from Cuaresma (2017).

no projected growth for many currently poor countries, allowing for contrast with
those that grow faster. This comparison shows the importance of economic growth
in reducing climate change damages. Table 10 shows that Zimbabwe and Malawi
get substantially richer in this projection and their agriculture share of GDP and
welfare losses decline markedly. In contrast, climate change continues to be very
harmful to countries that grow slowly, such as Rwanda and Chad.

The results in Table 10 show that the aggregate global WTP for climate change
is 2.7% of GDP at current global income levels and 1.5% at future projected in-
comes. The average WTP for a person in the bottom quartile of the world is 10.0%
from the present baseline and 6.2% from the future baseline. To summarize the
importance of the distributional consequences of climate change, I follow Jones
and Klenow (2016) to calculate the willingness-to-pay of a Rawlsian social plan-
ner taking the certainty equivalent of being any person in the world with random
probability.*” The Rawlsian welfare losses from climate change are 6.2% of global
GDP from the present income baseline and 3.6% of global GDP from the future
baseline, more than twice as high as the aggregate willingness-to-pay calculated
by summing across agents.

4"Following Jones and Klenow (2016) I use log utility in this calculation.
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7.7 Model Robustness

I consider robustness to three alternative model assumptions in Appendix F. In Ap-
pendix E1 I represent subsistence requirements for food using generalized Stone-
Geary preferences instead of the nonhomothetic CES specification in the base-
line model. In Appendix E2 I use lognormal, rather than Frechet, distributions
for sector-country productivities across varieties. The numerical solution method
described in Appendix E.1 allows for solving the model for an arbitrary range of
productivity distributions and demand systems within and across sectors.*® In
Appendix E3 I relax the assumption that all workers within a country have the
same wage by laying out a version of the model with heterogeneous workers by skill
type. This extension allows for capturing an additional feature of the data; agricul-
tural workers generally have lower wages than non-agricultural workers. Appendix
Table A-4 shows that the main counterfactual simulation results are very similar
under the first two alternative modeling assumptions. The third extension with
heterogeneous workers is not amenable to quantification, but I demonstrate the
qualitative robustness of the main results and use the extension to explore addi-
tional dimensions of the implications of climate change for comparative advantage
across sectors and the distributional impact on low and high skill workers.

8 Supporting Empirical Evidence

In this section, I present country-level panel regression evidence consistent with
the model counterfactuals. In particular, the results in Section 7 suggest that the
‘food problem’ outweighs the trade response, on average, in driving sectoral reallo-
cation due to climate change. This finding is supported by the simulated method of
moments inference that underlies my parameter estimates, is consistent with both
cross-sectional and historical patterns of sectoral specialization in the world, and
is further bolstered by existing empirical evidence that aims to isolate the causal ef-
fect of agricultural productivity on structural transformation. In particular, Gollin,
Hansen and Wingender (2018) proxy for improvements in agricultural productivity
using variation in the development, diffusion, and climatic suitability for high-
yielding crop varieties and Bustos, Caprettini and Ponticelli (2016) study the in-
troduction of genetically engineered soybean seeds in Brazil. Both papers find that
rising agricultural productivity drove labor out of agriculture and into industry.
More recent work by Fiszbein and Johnson (2020) provides evidence that the
relationship between agricultural productivity and structural change varies with
trade openness as predicted by the model in Section 7. They use a similar high-
yielding crop variety instrument to show that agricultural productivity growth re-
duces agriculture’s employment share in more closed economies, but raises it in a

8By avoiding the need for analytical expressions for key model components, this method
offers flexibility similar to the procedure of Adao, Costinot and Donaldson (2017) while preserving
representation of all components of the competitive equilibrium with no restrictions on the
counterfactual exercises that can be considered.
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subset of countries sufficiently open to trade. Since only a minority of countries
meet their threshold of openness, their results further support the conclusion that
the food problem’ dominates comparative advantage in driving reallocation when
agricultural productivity improves. Here, I present evidence relevant to the con-
verse more representative of climate change - that exogenous declines in agricul-
tural productivity increase the agriculture share of GDP and labor on average.

Table 11 summarizes the data sources used in this part of the analysis.*® Fol-
lowing Schlenker and Roberts (2009), I use “growing degree days” (GDD) between
0°C and 29°C and “killing degree days” (KDD) above 29°C as temperature trans-
formations representing positive and negative shocks to agricultural productivity
respectively. I aggregate GDD and KDD to the country level for each year weighting
by each pixel’s share of cropland.®

Table 11: Country-Level Panel Data

Variable Data Source
Temperature Berkeley Earth Surface Temperature Dataset
Ag Share of GDP World Bank
Ag Share of Labor Force International Labour Organization
Food Share of Imports UN Comtrade
GDP World Bank

Notes: Data covers 164 countries from 1960-2012 with varying coverage by
country and dataset. Economic data from all sources above are retrieved from
the World Bank Databank.

I estimate the following panel regression with observations at the country-year
level for four separate outcome variables - log GDP, food share of imports, agricul-
tural share of GDP, and agricultural share of labor:

Yii = B1GDD; + Bo K DDy + 0; + ke + €3t (27)

The regression exploits idiosyncratic variation in weather controlling for country
fixed effects, ¢;, and year fixed effects, x;, to estimate the plausibly causal effect
of shocks to agricultural productivity. I weight observations by their share of the

91 use BEST temperature data with a 1°global grid in this specification because aggregating
GMFD temperature data from a 0.25°grid for every country worldwide exceeds my available
computational resources.

S0Following standard procedure in estimating temperature effects on agricultural productivity,
degree days are calculated by fitting a sinuisoidal curve through daily minimum and maximum
temperature, and then integrating the proportion of each day above a certain threshold.
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global agricultural labor force to recover expected reallocation for the average farm
worker in the world.

The results in Table 12 are broadly consistent with the model simulations in
Section 7. The composition of imports shifts toward food in response to negative
agricultural productivity shocks (KDD), and away from food in response to positive
shocks (GDD), but the magnitudes of these changes are small. Consistent with
an important role for ‘the food problem,” the agriculture share of GDP and labor
rise with KDD and fall with GDD, with magnitudes roughly similar to those in the
model. In the regression, the agriculture share of GDP rises by slightly under 1
percentage point for an agriculture-biased shock that reduces GDP by 12%. Simi-
larly, in the model simulations, the agriculture share of GDP rises by 2.1 percentage
points in countries suffering large declines in agricultural productivity (<10 per-
centage points) from an average agricultural productivity fall of 29.5%.

Table 12: Country-Level Panel Regression

(1) ) 3) (4)
log(GDP) Food Share of Imports Ag Share of GDP Ag Labor Share

KDD X 100 -0.121 0.00258 0.00875 0.00991
(-2.31) (0.64) (1.08) (1.55)
GDD X 100 0.0505 -0.00429 -0.00140 -0.00138
(1.64) (-2.45) (-1.54) (-0.38)
Observations 3602 2916 3171 3715
Country FE X X X X
Year FE X X X X
Ag Labor Weights X X X X

Notes: t-statistics in parentheses. Reported Driscoll and Kraay (1998) standard errors are robust
to heteroskedasticity, spatial correlation, and autocorrelation of up to 5 lags. Results come from
estimating Equation 27 with crop-area weighted growing and killing degree days. Data covers 164
countries from 1960-2012 with varying coverage by country and outcome variable. Economic data
from all sources above are retrieved from the World Bank Databank.

The results from the country-level regressions are imprecise and insufficient
in isolation to make full general equilibrium projections or welfare calculations
relating to sectoral reallocation in response to climate change.”! Taken together
with the analysis in Sections 6 and 7 and the existing body of evidence, however,

51T show results for the unweighted regressions in Appendix Table A-1. I gain precision in the
unweighted specification because the agriculture labor share weights are missing for a nontrivial
share of the observations, but have a less interesting interpretation of the coefficients as effects on
the average country in the world rather than on the average unit of agricultural labor.
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these results reinforce the important role of the ‘food problem’ in mediating the
aggregate consequences of climate-driven agricultural productivity shocks.

9 Discussion

This paper has three sets of implications relevant to policy on climate change and
development. First, the results inform cost-benefit analysis on policies to reduce
greenhouse gas emissions and mitigate climate change. These results are not a
comprehensive evaluation of the costs of climate change - I omit international
migration, uncertainty, health effects, and non-temperature effects such as storms
and sea-level rise, among other topics, from the analysis. I do, however, address an
existing challenge in the literature by estimating the welfare consequences of the
global change in aggregate productivity in a framework that accounts for realloca-
tion of production between agriculture and non-agriculture.

Second, the results inform decisions about the best way to channel efforts to
adapt directly to the consequences of climate change. If it were true that agri-
cultural activity is likely to shift substantially away from hot developing countries,
optimal investments in adaptation might focus on retraining farm workers to tran-
sition to non-agricultural occupations. Instead, the finding that climate change is
more likely to increase specialization in agriculture in hot countries underscores
the urgent need to reduce the temperature-sensitivity of production through tech-
nology, irrigation, heat-resistant crop varieties, or other means. The agricultural
productivity consequences projected by Cline (2007) will take place gradually and
worsen far into the future, and need not be invariant to efforts to reduce them.

Third, and perhaps most importantly, the results speak to the importance of re-
ducing barriers to trade in developing countries as a mechanism for climate change
adaptation. The results in Section 7.4 show that increasing trade openness could
dramatically reduce exposure to climate damages in the poorest countries in the
world. Reducing tariffs would be one place to start, but tariffs account for a rel-
atively small proportion of estimated trade costs. As Tombe (2015) documents
at length, red tape barriers appear to be a far more important deterrent in many
places. Figures 13a and 13b show data from the World Bank Ease of Doing Business
Indicators on fees and delays associated with importing a container.

The average country in Sub-Saharan Africa requires 9 documents and over $2700
in fees for customs clearance, document processing, customs brokerage, terminal
handling, and inland transport to import a 20-foot container of goods, exclusive of
tariffs and unofficial payments. Importing a shipment to Sub-Saharan Africa also
requires waiting an average of 37 days upon arrival at the border for compliance
with customs clearance, inspection procedures, and document preparation, likely
a prohibitive length of time for many food imports. Such patterns help clarify the
statistic presented in this paper that the domestic production share of agricultural
consumption ranges around 90% in much of this part of the world. Given that
these types of trade barriers do not involve international negotiations or physi-
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Figure 13: Non-Tariff Barriers to Trade
(a) Direct Costs to Import a 20-Foot Long Container (USD)
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Notes: Panel A shows the direct cost to import one container of goods. Costs include documents,
administrative fees for customs clearance, terminal handling charges, and inland transport, but not
tariffs or taxes. Panel B shows the average number of days required to import a container. Delays
include customs clearance, government inspection procedures, and documentary compliance
requirements. Data comes from the World Bank Ease of Doing Business Index.

cal constraints to shipping over long distances, they could represent a relatively
tractable target for reforms that could make a substantial impact on climate change
adaptation.

10 Conclusion

Standard intuition suggests that reallocation should improve outcomes. Falling
productivity raises prices and encourages substitution to other products. But this
logic does not hold for broad categories of necessary consumption, such as food.
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If a fall in productivity causes the price of corn to rise sharply, people can adapt by
eating more rice. But when people become poorer and the relative price of food
rises, they cannot compensate by substituting away from food.

This paper investigates the importance of subsistence requirements for food
for the general equilibrium and welfare consequences of climate change. I show
that climate change predominantly shifts comparative advantage in agriculture
away from the equator as the effects of extreme temperatures on non-agricultural
productivity are generally smaller than those in agriculture. On average, however,
the effect of declining agricultural productivity moves specialization toward, rather
than away from, agriculture because of the special properties of consumer prefer-
ences for food. Countries experiencing large climate change losses in agriculture
that are more open to trade suffer less because they are more able to increase im-
ports of food and shift production toward other sectors. Overall, reducing barriers
to trade could decrease the losses from climate change by more than half for the
poorest quartile of the world’s population.

I conclude with several suggestions for future research. First, while my work is
informative for cost-benefit analysis of climate change mitigation, additional effort
is required to integrate these general equilibrium effects directly into calculating
the social cost of carbon. Second, while my analysis shows that reducing barriers to
trade is a necessary condition to induce sectoral reallocation that curtails the costs
of climate change, I cannot conclude that it is sufficient. A low trade cost counter-
factual in which specialization in agriculture shifts away from the equator still relies
on assumptions about diminishing returns to producing tradable manufactured
goods in developing countries, as well as on the availability of complementary
inputs such as soil quality necessary to expand agricultural production in colder
countries. A final topic concerns the political economy of trade policy regarding
food. Policymakers often prioritize “food security” as a stated aim, implying a pref-
erence for domestic food production secure from interference by foreign countries.
To the extent that this goal conflicts with adaptation to climate change in light
of large declines in agricultural productivity in certain regions, it may be worth
examining this tradeoff more closely, both in practice and in perception.



48 NATH 2020

References

Adao, Rodrigo, Arnaud Costinot, and Dave Donaldson, “Nonparametric coun-
terfactual predictions in neoclassical models of international trade,” American
Economic Review, 2017, 107 (3), 633-89.

Alfaro, Laura and Maggie X Chen, “Selection and market reallocation: Productivity
gains from multinational production,” American Economic Journal: Economic
Policy, 2018, 10 (2), 1-38.

Baqaee, David Rezza and Emmanuel Farhi, “The macroeconomic impact of
microeconomic shocks: beyond Hulten’s Theorem,” Econometrica, 2019, 87 (4),
1155-1203.

Baumol, William ] and William G Bowen, “Performing Arts: The Economic
Dilemma (New York: The Twentieth Century Fund),” 1966.

Bloom, Nicholas, Mirko Draca, and John Van Reenen, “Trade induced technical
change? The impact of Chinese imports on innovation, IT and productivity,” The
Review of Economic Studies, 2016, 83 (1), 87-117.

Burnside, Craig and Martin Eichenbaum, “Factor Hoarding and the Propagation of
Business Cycle Shocks,” American Economic Review, 1996.

_, _, and Sergio Rebelo, “Labor hoarding and the business cycle,” Journal of
Political Economy, 1993, 101 (2), 245-273.

Burstein, Ariel and Jonathan Vogel, “International trade, technology, and the skill
premium,” Journal of Political Economy, 2017, 125 (5), 1356-1412.

Bustos, Paula, Bruno Caprettini, and Jacopo Ponticelli, “Agricultural productivity
and structural transformation: Evidence from Brazil,” American Economic
Review, 2016, 106 (6), 1320-65.

Carleton, Tamma A, Amir Jina, Michael T Delgado, Michael Greenstone, Trevor
Houser, Solomon M Hsiang, Andrew Hultgren, Robert E Kopp, Kelly E McCusker,
Ishan B Nath et al., “Valuing the global mortality consequences of climate change
accounting for adaptation costs and benefits,” Technical Report, National
Bureau of Economic Research 2020.

Carleton, Tamma, Michael Delgado, Michael Greenstone, Trevor Houser, Solomon
Hsiang, Andrew Hultgren, Amir Jina, Robert E Kopp, Kelly McCusker, Ishan Nath,
James Rising, Ashwin Rode, Hee Kwon Seo, Justin Simcock, Arvid Viaene, Jiacan
Yuan, and Alice Zhang, “Valuing the Global Mortality Consequences of Climate
Change Accounting for Adaptation Costs and Benefits,” 2018.



CLIMATE CHANGE & AGGREGATE PRODUCTIVITY 49

Chen, Wei, Xilu Chen, Chang-Tai Hsieh, and Zheng Michael Song, “A Forensic
Examination of China’s National Accounts,” 2019.

Cline, William R, Global warming and agriculture: End-of-century estimates by
country, Peterson Institute, 2007.

Colmer, Jonathan, “Temperature, labor reallocation, and industrial production:
Evidence from India,” American Economic Journal: Applied Economics, 2018.

Comin, Diego A, Danial Lashkari, and Marti Mestieri, “Structural change with long-
run income and price effects,” National Bureau of Economic Research Working
Paper, 2015.

Costinot, Arnaud, Dave Donaldson, and Cory Smith, “Evolving comparative
advantage and the impact of climate change in agricultural markets: Evidence
from 1.7 million fields around the world,” Journal of Political Economy, 2016, 124
(1), 205-248.

Cuaresma, Jesus Crespo, “Income projections for climate change research: A
framework based on human capital dynamics,” Global Environmental Change,
2017, 42, 226-236.

Dekle, Robert, Jonathan Eaton, and Samuel Kortum, “Unbalanced trade,” American
Economic Review, 2007, 97 (2), 351-355.

Deryugina, Tatyana and Solomon M Hsiang, “Does the environment still matter?
Daily temperature and income in the United States,” National Bureau of
Economic Research Working Paper, 2014.

Deschenes, Olivier and Michael Greenstone, “The economic impacts of climate
change: evidence from agricultural output and random fluctuations in weather,”
American Economic Review, 2007, 97 (1), 354-385.

Deschénes, Olivier and Michael Greenstone, “Climate change, mortality, and
adaptation: Evidence from annual fluctuations in weather in the US,” American
Economic Journal: Applied Economics, 2011, 3 (4), 152-85.

Desmet, Klaus and Esteban Rossi-Hansberg, “On the spatial economic impact of
global warming,” Journal of Urban Economics, 2015, 88, 16-37.

Dingel, Jonathan I, Kyle C Meng, and Solomon M Hsiang, “Spatial Correlation,
Trade, and Inequality: Evidence from the Global Climate,” National Bureau of
Economic Research Working Paper, 2019.

Driscoll, John C and Aart C Kraay, “Consistent covariance matrix estimation with
spatially dependent panel data,” Review of Economics and Statistics, 1998, 80 (4),
549-560.



50 NATH 2020

Eaton, Jonathan and Samuel Kortum, “Technology, geography, and trade,”
Econometrica, 2002, 70 (5), 1741-1779.

Fiszbein, Martin and Will Johnson, “Agricultural Productivity, International Trade,
and Structural Change,” 2020.

Gollin, Douglas, Casper Worm Hansen, and Asger Wingender, “Two blades of grass:
The impact of the green revolution,” National Bureau of Economic Research
Working Paper, 2018.

_, Stephen L Parente, and Richard Rogerson, “The food problem and the evolution
of international income levels,” Journal of Monetary Economics, 2007, 54 (4),
1230-1255.

Gopinath, Gita, Sebnem Kalemli-Ozcan, Loukas Karabarbounis, and Carolina
Villegas-Sanchez, “Capital allocation and productivity in South Europe,” The
Quarterly Journal of Economics, 2017, 132 (4), 1915-1967.

Gourieroux, Christian, Alain Monfort, and Eric Renault, “Indirect inference,”
Journal of applied econometrics, 1993, 8 (S§1), S85-S118.

Hicks, Joan Hamory, Marieke Kleemans, Nicholas Y Li, and Edward Miguel,
“Reevaluating agricultural productivity gaps with longitudinal microdata,”
National Bureau of Economic Research Working Paper, 2017.

Hulten, Charles R, “Growth accounting with intermediate inputs,” The Review of
Economic Studies, 1978, 45 (3), 511-518.

Jeffrey, Stephen, Leon Rotstayn, MA Collier, Stacey Dravitzki, Carlo Hamalainen,
Chris Moeseneder, KK Wong, and Jozef Syktus, “Australia’s CMIP5 submission
using the CSIRO-Mk3. 6 model,” Aust. Meteor. Oceanogr. ], 2013, 63, 1-13.

Jones, Charles I and Peter ] Klenow, “Beyond GDP? Welfare across countries and
time,” American Economic Review, 2016, 106 (9), 2426-57.

Lagakos, David and Michael E Waugh, “Selection, agriculture, and cross-country
productivity differences,” American Economic Review, 2013, 103 (2), 948-80.

Liu, Maggie, Yogita Shamdasani, and Vis Taraz, “Climate Change, Structural
Transformation, and Infrastructure: Evidence from India,” 2020.

Lyu, Changjiang, Kemin Wang, Frank Zhang, and Xin Zhang, “GDP management to
meet or beat growth targets,” Journal of Accounting and Economics, 2018, 66 (1),
318-338.

Matsuyama, Kiminori, “Agricultural productivity, comparative advantage, and
economic growth,” Journal of Economic Theory, 1992, 58 (2), 317-334.



CLIMATE CHANGE & AGGREGATE PRODUCTIVITY 51

Mendelsohn, Robert, William D Nordhaus, and Daigee Shaw, “The impact of global
warming on agriculture: a Ricardian analysis,” The American Economic Review,
1994, pp. 753-771.

Nordhaus, William D, “An optimal transition path for controlling greenhouse
gases,” Science, 1992, 258 (5086), 1315-1319.

Schlenker, Wolfram and David B Lobell, “Robust negative impacts of climate
change on African agriculture,” Environmental Research Letters, 2010, 5 (1),
014010.

_ and Michael ] Roberts, “Nonlinear temperature effects indicate severe damages
to US crop yields under climate change,” Proceedings of the National Academy of
sciences, 2009, 106 (37), 15594-15598.

Seppanen, Olli, William ] Fisk, and QH Lei, “Effect of temperature on task
performance in office environment,” 2006.

Somanathan, E, Rohini Somanathan, Anant Sudarshan, Meenu Tewari et al., “The
impact of temperature on productivity and labor supply: Evidence from Indian
manufacturing,” 2015.

Teignier, Marc, “The role of trade in structural transformation,” Journal of
Development Economics, 2018, 130, 45-65.

Tombe, Trevor, “The missing food problem: Trade, agriculture, and international
productivity differences,” American Economic Journal: Macroeconomics, 2015, 7
(3), 226-58.

Torngvist, Leo, “The Bank of Finland’s consumption price index,” 1936.

Uy, Timothy, Kei-Mu Yi, and Jing Zhang, “Structural change in an open economy,”
Journal of Monetary Economics, 2013, 60 (6), 667-682.

Zhang, Peng, Olivier Deschenes, Kyle Meng, and Junjie Zhang, “Temperature
effects on productivity and factor reallocation: Evidence from a half million
Chinese manufacturing plants,” Journal of Environmental Economics and
Management, 2018, 88, 1-17.

Zivin, Joshua Graff and Matthew Neidell, “Temperature and the allocation of time:
Implications for climate change,” Journal of Labor Economics, 2014, 32 (1), 1-26.



52 NATH 2020

Appendix A: Additional Regression Results

Figure A-1: Predicted Heterogeneous Response of Annual Manufacturing Revenue
to Daily Maximum Temperature
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Notes: Figure shows the predicted effect of temperature on the log of manufacturing revenues at
varying levels of income and long-run average temperature by evaluating the interacted regression
from Column 3 of Table 2. 95% confidence intervals are shown in blue. Outcome variables come
from data sources listed in Table 1 and temperature data is from GMFD.

Figure A-2: Predicted Heterogeneous Response of Annual Manufacturing
Employment to Daily Maximum Temperature
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Notes: Figure shows the predicted effect of temperature on the log of manufacturing employment at
varying levels of income and long-run average temperature by evaluating the interacted regression
from Column 4 of Table 2. 95% confidence intervals are shown in blue. Outcome variables come
from data sources listed in Table 1 and temperature data is from GMFD.
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Figure A-3: Predicted Heterogeneous Response of Annual Manufacturing Revenue
Per Worker to Bins of Daily Maximum Temperature
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Notes: Figure shows the predicted effect of temperature on manufacturing revenue per worker
at varying levels of income and long-run average temperature using bins of daily maximum
temperature in the specification from Equation 8. Days are grouped into 5°C bins. 95% confidence
intervals are shown in blue. Outcome variables come from data sources listed in Table 1 and
temperature data is from GMFD.

Figure A-4: Predicted Heterogeneous Response of Annual Manufacturing Revenue
Per Worker to Polynomial of Degree 4 of Daily Maximum Temperature
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Notes: Figure shows the predicted effect of temperature on manufacturing revenue per worker at
varying levels of income and long-run average temperature using a polynomial of degree four in
daily average temperature in the specification from Equation 8. 95% confidence intervals are shown
in blue. Outcome variables come from data sources listed in Table 1 and temperature data is from
GMEFD.
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Figure A-5: Predicted Heterogeneous Response of Annual Manufacturing
Revenue Per Worker to Daily Maximum Temperature - State-by-Year FE
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Notes: Figure shows the predicted effect of temperature on manufacturing revenue per worker at
varying levels of income and long-run average temperature using the specification from Equation
8 with state-by-year fixed effects and a polynomial of degree four in daily maximum temperature.
95% confidence intervals are shown in blue. Outcome variables come from data sources listed in
Table 1 and temperature data is from GMFD.

Figure A-6: Predicted Heterogeneous Response of Annual Manufacturing/Services
Revenue Per Worker to Daily Maximum Temperature - State-by-Year FE
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Notes: Figure shows the predicted effect of temperature on revenue per worker at varying levels
of income and long-run average temperature for a pooled sample of manufacturing and services
firms using the specification from Equation 8 with state-by-year fixed effects and a polynomial of
degree four in daily maximum temperature. 95% confidence intervals are shown in blue. Outcome
variables come from data sources listed in Table 1 and temperature data is from GMFD.
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Figure A-7: Predicted Heterogeneous Response of Annual Manufacturing/Services
Revenue Per Worker to Daily Maximum Temperature - State-by-Year FE
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Notes: Figure shows the predicted effect of temperature on revenue per worker at varying levels of
income and long-run average temperature for a pooled sample of manufacturing and services firms
using the specification from Equation 8 with state-by-year fixed effects and bins of daily maximum
temperature. 95% confidence intervals are shown in blue. Outcome variables come from data
sources listed in Table 1 and temperature data is from GMFD.

Figure A-8: Predicted Heterogeneous Response of Annual Manufacturing Revenue
Per Worker to Daily Maximum Temperature - Controls for Capital
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Notes: Figure shows the predicted effect of temperature on manufacturing revenue per worker at
varying levels of income and long-run average temperature using the specification from Equation
8 with controls for capital. 95% confidence intervals are shown in blue. Outcome variables come
from data sources listed in Table 1 and temperature data is from GMFD.
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Figure A-9: Predicted Heterogeneous Response of Annual Services Revenue Per
Worker to Polynomial of Degree 4 of Daily Maximum Temperature
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Notes: Figure shows the predicted effect of temperature on services revenue per worker at varying
levels of income and long-run average temperature using the specification from Equation 8 with
a polynomial of degree four in daily maximum temperature. 95% confidence intervals are shown
in blue. Outcome variables come from data sources listed in Table 1 and temperature data is from
GMED.

Figure A-10: Predicted Heterogeneous Response of Annual Services Revenue Per
Worker to Bins of Daily Maximum Temperature
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Notes: Figure shows the predicted effect of temperature on services revenue per worker at varying
levels of income and long-run average temperature using the specification from Equation 8 with
bins of daily maximum temperature. 95% confidence intervals are shown in blue. Outcome
variables come from data sources listed in Table 1 and temperature data is from GMFD.
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Figure A-11: Predicted Heterogeneous Response of Annual Services Revenue Per
Worker to Daily Maximum Temperature

9 g 9
.8 .8 -1
_ £o el fol— =
GDPpc = $50,000 3 3 3
38 38 38
~USA 38 38 38
£ £ £
5 5 5
40 0 10 20 30 40 0 0 10 20 30 40 40 0 10 20 30 40
Dally Maximum Temperature Dally Maximum Temperature Dally Maximum Temperature
8 8
-8 8 <
1 Sole=— = £=
GDPpc=3%10,000 | 5 &°|— = 3° ol A
; £ 58 38 2
~ Indonesia S g8 E £8
e < L3 &7
40 0 10 20 30 40 40 0 10 20 30 40 40 0 10 20 30 40
Dally Maximum Temperaure Dally Maximum Temperature Dally Maximum Temperature
£ -
[eX-1 o
GDPpc = $1,000 — il Z & /
~ Malawi £s £g
3 g
f0 6 {0 20 30 4o 0 0 10 20 30 40 0 0 10 20 30 4o
Daily Maximum Temperature Daily Maximum Temperature Daily Maximum Temperature

Hotter

Annual Avg Tmax = 10 Annual Avg Tmax =20 Annual Avg Tmax = 30
~ Sweden ~ Greece ~ India

Notes: Figure shows the predicted effect of temperature on services revenue per worker at varying
levels of income and long-run average temperature using the specification from Equation 8. 95%
confidence intervals are shown in blue. Outcome variables come from data sources listed in Table
1 and temperature data is from GMFD.

Table A-1: Country-Level Panel Regression

1) ) 3) 4)
log(GDP) Food Share of Imports Ag Share of GDP Ag Labor Share

KDD X 100 -0.0223 0.00638 0.0165 0.00483
(-0.55) (1.80) (3.92) (3.14)
GDD X 100 0.00251 -0.00191 -0.00165 -0.00113
(0.44) (-2.87) (-1.53) (-1.74)
Observations 7561 5775 5522 3718
Country FE X X X X
Year FE X X X X
Ag Labor Weights

Notes: t-statistics in parentheses. Reported Driscoll and Kraay (1998) standard errors are robust
to heteroskedasticity, spatial correlation, and autocorrelation of up to 5 lags. Results come from
estimating Equation 27 with crop-area weighted growing and killing degree days. Data covers 164
countries from 1960-2012 with varying coverage by country and outcome variable. Economic data
from all sources above are retrieved from the World Bank Databank.
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Appendix B: U.S. Results

Figure A-12: Estimated Response of U.S. Annual Manufacturing TFPR to Daily
Maximum Temperature
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Notes: Figure shows the estimated effect of temperature on manufacturing TFPR using the
specification from Equation 7 with a polynomial of degree four in daily maximum temperature.
95% confidence interval is shown in blue. Outcome data comes from the Annual Survey of

Manufacturers and Census of Manufacturers from the U.S. Census Bureau. Temperature data is
from GMFD.

Table A-2: U.S. Productivity Results

Revenue/Worker  Revenue  Employment TFPR Revenue/Worker  Revenue/Worker
TMax-30 -0.0000109 0.0000220 0.0000330 0.00000134 -0.0000422 0.0000110
(-2.21) (2.01) (3.49) (0.33) (-2.97) (0.46)
5-TMax 0.0000365 0.0000338  -0.00000269  -0.00000685 -0.0000226 0.000154
(5.65) (2.65) (-0.26) (-1.30) (-1.71) (3.56)
Observations 2852000 2852000 2852000 2852000 2852000 2852000
Firm FE X X X X X X
Country X Year FE X X X X X X
State X Year FE X
Sales Weighting X

Notes: t-statistics in parentheses. Dependent variables all in logs. Standard errors two-way
clustered at the firm and county-by-year level. Estimates use the regression model from Equation 7
with outcome variable data from 1976-2014 from the Annual Survey of Manufacturers and Census
of Manufacturers from the U.S. Census Bureau and temperature data from GMFD.
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Figure A-13: Estimated Response of U.S. Annual Manufacturing
Plant-Level Energy Expenditures to Daily Maximum Temperature
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Notes: Figure shows the estimated effect of temperature on manufacturing energy expenditures
using the specification from Equation 7 with a polynomial of degree four in daily maximum
temperature. 95% confidence interval is shown in blue. Energy expenditures are the sum of
cost of fuels and electricity expenditures in the Annual Survey of Manufacturers and Census of
Manufacturers from the U.S. Census Bureau. Temperature data is from GMFD.

Table A-3: U.S. Energy Results

log(Energy Expenditure)  Energy Expenditures log(Energy Expenditures)  Energy Expenditures

TMax-30 0.0000822 0.0000890 251.1 6056

(6.03) (3.24) (4.45) (1.32)

5-TMax 0.0000108 0.00000184 490.8 13840

(0.78) (0.04) (3.57) (1.69)

Observations 2852000 2852000 2852000 2852000

Firm FE X X X X
Country X Year FE X X X X
Sales Weighting X X

Notes: t-statistics in parentheses. Standard errors two-way clustered at the firm and county-by-
year level. Estimates use the regression model from Equation 7 with outcome variable data from
1976-2014 from the Annual Survey of Manufacturers and Census of Manufacturers from the U.S.
Census Bureau and temperature data from GMFD. Dependent variable is the sum of electricity
expenditures and cost of fuels, in logs or levels.
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Appendix C: China Results

This section explains the data quality issues that lead me to estimate the results in
Section 4.1 excluding data from China. At a high level, I find evidence consistent
with the conclusions of Chen, Chen, Hsieh and Song (2019) that Chinese micro-
data after 2007 are unreliable due to systematic manipulation by local officials. The
details are as follows.

To start with, Zhang, Deschenes, Meng and Zhang (2018) analyze data from
China for the years 1998-2007 and find that both cold and hot temperatures harm
output and productivity, consistent with my findings. Using the overlapping subset
of years from my data, which goes from 2003-2012, I am able to replicate their
findings fairly closely, as shown in Appendix Figure A-14. Notably, I am also able to
use my main results from the rest of my global data in Figure 3 to closely predict
the response of output to temperature in China based on their income level and
average climate. My prediction and the estimates from Zhang, Deschenes, Meng
and Zhang (2018) are shown in Figure A-15. While I slightly overpredict sensitivity
to cold and underpredict sensitivity to heat, my results are broadly consistent with
their findings, lending external validity to my work.

However, when I estimate the response to temperature in my full sample of
Chinese firms from 2003-2012, I produce the highly anomalous results shown in
Figure A-16. This estimate using my full sample of Chinese data implies that ex-
treme temperatures sharply and statistically significantly increase output, a finding
inconsistent with my results from any other country in the world. Notably, this
anomalous result begins to appear by including later years starting with 2008 in
the regression, the same year Chen, Chen, Hsieh and Song (2019) start to find
discrepancies in the data. They state that “local statistics increasingly misrepresent
the true numbers after 2008” and “the micro-data of the ASIF [have] overstated
aggregate output.”

A somewhat puzzling fact is that my results suggest that this documented ma-
nipulation of data in China is systematically correlated with temperature. One
plausible hypothesis is that Chinese provincial officials inflate reported manufac-
turing output to meet GDP targets in response to declines in other sectors more
susceptible to temperature, such as agriculture. These targets have historically
played a central role in the evaluation and promotion of government officials, and
Lyu, Wang, Zhang and Zhang (2018) demonstrate that reported provincial GDP just
barely hits target thresholds with implausible frequency. I cannot provide further
evidence on the particular sources and methods of manipulation, but given the
widespread external documentation of problems with this subset of the Chinese
firm data and my very short panel that would remain when excluding these years
in China, I exclude this dataset entirely from my main analysis. Still, I view the
consistency of both my replication and predictions with the results of Zhang, De-
schenes, Meng and Zhang (2018) as validating my central analysis.
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Figure A-14: China Replication - Overlapping Years
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Notes: Left panel of the figure shows the effect of temperature on annual manufacturing output
in China estimated by Zhang, Deschenes, Meng and Zhang (2018) using data from the Chinese
Industrial Survey of the National Bureau of Statistics from 1998-2007. Right panel shows my
replication of their result using data from the same source for 2003-2007 - the overlapping years
of my data coverage. Temperature data is from GMFD.

Figure A-15: China Manufacturing Temperature Sensitivity
- Estimated and Predicted

Estimated - Deschenes, Meng, Zhang, Zhang (2017) Predicted - Interacted Global Model Nath (2019)
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Notes: Left panel of the figure shows the effect of temperature on annual manufacturing output
in China estimated by Zhang, Deschenes, Meng and Zhang (2018) using data from the Chinese
Industrial Survey of the National Bureau of Statistics from 1998-2007. Right panel shows the
predicted effect of temperature in China from evaluating my global interacted specification from
Column 2 of Table 2 at China’s income and average long-run temperature from 1998-2007. I do not
use any data from China in my estimation or prediction, but replicate the pattern closely.
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Figure A-16: China Replication - Different Years
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Notes: Left panel of the figure shows the effect of temperature on annual manufacturing output
in China estimated by Zhang, Deschenes, Meng and Zhang (2018) using data from the Chinese
Industrial Survey of the National Bureau of Statistics from 1998-2007. Right panel shows my
replication of their result using data from the same dataset for 2003-2012 - the years of my data
coverage. Temperature data is from GMFD.

Appendix D: Adaptation Benefits and Costs

In this section I explain how I use revealed preference methods developed by Car-
leton et al. (2018) to infer the costs firms incur from reducing the sensitivity of
their production to extreme temperatures. To build intuition start by considering
a simple example of otherwise identical firms in two cities, Seattle and Houston.
Houston is hotter than Seattle, but Seattle heats up over the course of the century
such that its exposure to CDD in 2100 is that of Houston in 2020. Let /3 repre-
sent lost annual revenues from exposure to a cooling degree day, a function of the
adaptation investments the firm chooses to make. The annual costs of extreme
heat to a firm in Seattle are given by C'D Dg u11e * Bseatrie- Since Seattle suffers little
exposure to extreme heat, its firms choose a lower (more negative) J than firms
in Houston, as I find in my empirical estimates. If Seattle firms had chosen the
Houston g associated with greater expected exposure to heat, the marginal benefits
they would obtain are as follows:

MB = CDDSeattle * (5H0uston - ﬁSeattle)

Given that Seattle firms do not choose Sx,uston, We know that the marginal costs
of this incremental reduction in temperature sensitivity must exceed the marginal
benefits. By repeating this logic for the firm’s estimated temperature sensitivity
for every year of warming from Seattlesgay to Seattles oo, we can construct the full
marginal cost curve for the Seattle firm’s projected change in chosen g from 2020
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to 2100:
2099 2099
TC= Y MCi= Y CDD*(Bi1—f) (28)
t=2020 t=2020

Note that the continuous version of Equation 28 also follows straight from the
firm’s first-order condition in the framework in Section 3.1. The firm’s lost revenues
from extreme heat are CDD x  so the marginal benefit the firm receives from
a reduction in § is given by CDD. Since the firm’s optimal choice of § equates
marginal benefit to marginal cost, we have marginal cost c; = C'DD for the full
range of CDDs.

The total benefits of future adaptation for firms in Seattle are given by the change
in damages from choosing their optimal level of adaptation for expected heat ex-
posure in 2100 rather than remaining at the adaptation level they choose in 2020:

TB = CDDasig0 * (2100 — P2020) (29)

Because CDDs are increasing as countries become hotter, the benefits of adap-
tation in Equation 29 exceed the costs in Equation 28. Figure A-17 shows predicted
manufacturing sensitivity to a hot day at end-of-century temperatures, which is
substantially muted relative to the sensitivities at current temperatures shown in
Figure 5a. Figure A-18 show the costs of achieving this reduced sensitivity, as cal-
culated using Equation 28, and Figure A-19 show the net benefits of firms adapting
to changes in expected exposure to extreme heat.

Figure A-17: Predicted Effect of a 40°C Day on
Annual Manufacturing Revenue per Worker
At 2080 Average Temperatures
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Notes: Map shows the predicted annual percentage point loss in revenue per worker from a 40°C
day obtained by evaluating the interaction regression in Column 2 of Table 2 at each country’s level
of income and end-of-century long-run average temperature. Temperature sensitivities are lower
in this figure than in Figure 5a because my results predict that firms will adapt to hot temperatures
as the world warms.
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Figure A-18: Firm-Level Adaptation Costs
(Share of Manufacturing Output)

Notes: Map shows my calculations of the costs firms pay to achieve the lower temperature
sensitivity shown in Appendix Figure A-17 compared to Figure 5a. I infer these costs using a
revealed preference approach developed by Carleton et al. (2018) that infers adaptation costs from
the foregone benefits firms would have attained by reducing their heat sensitivity. The procedure is
detailed in Appendix D.

Figure A-19: Firm-Level Adaptation Net Benefits
(Share of Manufacturing Output)
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Notes: Map shows my calculations of the net benefits firms receive by investing to reduce their
heat sensitivity as the climate warms. The benefits come from reducing heat sensitivity to the level
shown in Appendix Figure A-17 compared to the original level in Figure 5a. The inferred costs are
shown in Appendix Figure A-18. The procedure to calculate these costs and benefits is detailed in
Appendix D.
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Figure A-20: Predicted Effect of a 40°C Day on Annual Services
Revenue per Worker

% Points of Annual Output
m(.4,.5]
H(.3,.4]
=(.2,.3]
B(.1,.2]
B10,.1]
ONo data

Notes: Map shows the predicted annual percentage point loss in revenue per worker from a 40°C
day obtained by evaluating the interaction regression for a pooled sample of manufacturing and
services firms in Column 5 of Table 2 at each country’s level of income and long-run average
temperature.

Figure A-21: Predicted Effect of a -5°C Day on Annual Services
Revenue per Worker
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Notes: Map shows the predicted annual percentage point loss in revenue per worker from a -
5°C day obtained by evaluating the interaction regression for a pooled sample of manufacturing
and services firms in Column 5 of Table 2 at each country’s level of income and long-run average
temperature.
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Figure A-22: Projected Change in Exposure to Extreme Heat
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Notes: Map shows projections from the CSTRO-MK-3.6.0 global climate model of future exposure to
extreme heat as measured by the change in cooling degree days above 30°C from 2015 to 2080-2099.

Figure A-23: Projected Change in Exposure to Extreme Cold
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Notes: Map shows projections from the CSIRO-MK-3.6.0 global climate model of future exposure to
extreme cold as measured by the change in heating degree days below 5°C from 2015 to 2080-2099.
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Figure A-24: Projected Impact of Climate Change on Services Productivity
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Notes: Map shows the projected impact of climate change on services productivity in 2080-2099
obtained by multiplying predicted temperature sensitivities by CSIRO-MK-3.6.0 global climate
model predictions of changes in exposure to extreme heat and cold. Temperature sensitivities
are calculated by evaluating the interaction regression from Column 5 of Table 2 at each country’s
income and end-of-century long-run average temperature.

Figure A-25: Projected Impact of Climate Change on Manufacturing Productivity
Accounting for Economic Growth and Adaptation
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Notes: Map shows the projected impact of climate change on manufacturing productivity in 2080-
2099 obtained by multiplying predicted temperature sensitivities by CSIRO-MK-3.6.0 global climate
model predictions of changes in exposure to extreme heat and cold. Temperature sensitivities are
calculated by evaluating the interaction regression from Column 2 of Table 2 at each country’s
end-of-century long-run average temperature and 2080 income as projected by Cuaresma (2017).
These estimates that account for economic growth show reduced losses relative to those in Figure
8a because my empirical results suggest that firms in richer countries have reduced exposure to
extreme temperatures.
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Figure A-26: Projected Impact of Climate Change on Services Productivity
Accounting for Economic Growth and Adaptation

Notes: Map shows the projected impact of climate change on services productivity in 2080-2099
obtained by multiplying predicted temperature sensitivities by CSIRO-MK-3.6.0 global climate
model predictions of changes in exposure to extreme heat and cold. Temperature sensitivities are
calculated by evaluating the interaction regression from Column 5 of Table 2 at each country’s end-
of-century long-run average temperature and 2080 income as projected by Cuaresma (2017). These
estimates that account for economic growth show reduced losses relative to those in Appendix
Figure A-24 because my empirical estimates suggest that firms in richer countries have reduced
exposure to extreme temperatures.

Appendix E: Model Estimation
Appendix E.1: Solution Algorithm & Simulated Method of Moments

I solve the model presented in Section 5 numerically by directly simulating each
component. I draw productivities, z;;x, from Frechet distributions for 20,000 vari-
eties for each sector for each country. I assign production of each variety in each
country to the world’s lowest cost producer based on wages, trade costs, and the
productivity draw z;;,. This allows me to calculate prices, revenues, and bilateral
imports and exports for each sector and country. I start by guessing a vector of
wages across all countries and then iterate until the equilibrium conditions hold
and national income equals national expenditures for each country.

[ use a combination of calibration and estimation to set the model parameters.
I set the trade elasticities to the values estimated by Tombe (2015); 6, = 4.06,
and 6,,, = 4.63. I calibrate the relative levels of Z;;, to match relative value-added
per worker in agriculture, manufacturing, and services, and the overall level of
{Z oty Zmis Zsi} to match country-level nominal GDP? I estimate the consumption
parameters to minimize the sum of squared distance from sectoral share data, and
choose bilateral trade costs to match the data on bilateral trade flows by sector.

For the trade moments, [ obtain data from UN Comtrade and classify HS 1988/92

52Gince trade flows are in nominal terms, I match nominal GDP in the model for consistency. The
nonhomothetic price index deflates nominal income to a measure of welfare.
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codes 1-24 as agriculture and 28-97 as manufacturing to best approximate food and
non-food imports. Since trade data is reported in gross output terms but GDP is in
value-added, I follow Tombe (2015) and deflate the trade data by country-sector-
level value-added to output ratios obtained from the United Nations Statistical
Division. Following recommendations from UN Comtrade documentation, I use
importer-reported trade data where possible, but default to exporter-reported data
for smaller developing countries with large discrepancies between importer and
exporter reported data.

Appendix E.2: Additional Model Fit Figures

Figure A-27: Sectoral GDP Shares - Data vs. Simulation
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Notes: Left graph shows the fit of simulated manufacturing share of GDP in the model to data from
the World Bank. Right graph shows the same comparison for services share of GDP.
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Figure A-28: GDP Per Capita and Agriculture Share of GDP - Data vs. Simulation
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Notes: Left graph shows another view of the fit of simulated agriculture share of GDP in the model
to data from the World Bank also shown in Figure 6. Right graph shows the same comparison for
GDP per capita. A perfect fit would have all data points be on the 45°line such that the simulated
and actual values are equal. The simulation explains over 60% of the variation in the agriculture
share of GDP and over 99% of the variation in per capita income.

Figure A-29: Domestic Production Share of Expenditures - Data vs. Simulation
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Notes: Graph shows the fit of simulated domestic production share of agricultural (left) and
manufacturing (right) consumption in the model to data from Comtrade. As shown in Section 5.2,
openness to food imports is a crucial parameter governing the response of labor reallocation to
climate change. The simulation explains over 80% of the variation in the data for this moment.
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Figure A-30: Domestic Production Share of Expenditures in Agriculture - Model
Simulation
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Notes: Figure shows that the share of expenditures on domestically produced goods in agriculture
is very high in many developing countries with high barriers to trade. Table 5 shows that these
simulated values track closely to the data.

Appendix E.3: Cline Productivity Estimates

The analysis in Cline (2007) uses micro-data from 18 countries in Africa, North
and South America, and Asia representing over 35% of the world’s agricultural pro-
duction to estimate Ricardian cross-sectional regressions of agricultural output (in
dollars) from grains, fruits, vegetables, and livestock as a function of temperature,
precipitation, and irrigation. Because we expect farmers to optimize crop choice
and land use decisions in response to local long-run climate conditions, I interpret
the estimated effects of temperature and precipitation from these cross-sectional
regressions as net of adaptation through choice of crops and livestock. Projec-
tions using the empirical estimates are averaged with projections from leading crop
models from agronomy, which also account for adaptation through crop-switching
and adjusted farming techniques. The crop model projections in Cline (2007) ac-
count for reallocation across crop types within country, shifting planting dates, and
increased irrigation and fertilizer use. None of the estimates in the analysis account
for any response of international trade.

Appendix F: Model Robustness

In this section, I evaluate the robustness of the counterfactual model simulations
presented in Section 7 to three sets of different assumptions - an alternative spec-
ification for nonhomothetic consumer preferences, an alternative functional form
to represent sector-country level productivity distributions, and a version of the
model that allows for heterogeneous workers in each country.
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Appendix E1: Stone-Geary Preferences

I test that the model predictions are robust to the way nonhomothetic consumer
preferences are specified by estimating a version of the model in which the repre-
sentative agent in country k has the following generalized Stone-Geary preferences
over the sectoral final goods in agriculture, manufacturing, and services:>

—1 o—1

U(Cras Ciom, Ci) = (w; (Cro — Ti) = + wh (Chon — Ty
Fwd (Chs — o_,gs)"zl) B (30)

This specification is ubiquitous in the literature on structural transformation
and has the advantage of intuitively capturing subsistence requirements for food
by specifying a level of consumption below which people cannot survive. However,
the model fit to the data is much weaker with Stone-Geary preferences than with
the primary nonhomothetic CES specification, as shown in Figure A-31.

Table A-4 shows that the results in this version of the model are very similar
to the baseline specification. For the poorest quartile of the global population,
climate change increases agriculture’s share of the labor force by 2.8 percentage
points, reduces GDP by 10.7 percentage points, reduces welfare (as captured by
willingness-to-pay) by 7 percentage points, and raises food prices by 37%. These
results are very similar to the results in the baseline specification.

Appendix E2: Lognormal Productivity Distributions

I estimate a version of the model with lognormal, rather than Frechet, sector-country
productivity distributions to test robustness to functional form. In this specifica-
tion the productivity draw, z;;;, received by each intermediate goods producer is
drawn from a lognormal distribution with sector-specific variance parameter ¢,
and sector-country specific mean parameter Z,;:

Zijk ™ ij where ij(zz) = @(W)

I estimate ¢; to match the standard deviation of the productivity distributions
in the Frechet case, which yields estimates of ¢, = 0.337 and ¢,, = 0.398. I estimate
Z;i, to match both the ratio of value-added per worker across sectors and the overall
level of value-added per worker in each country, as in the Frechet case.

Table A-4 shows that the results with lognormal productivity distributions are
very similar to the baseline specification, with slightly larger declines in GDP and

5The consumption parameter estimates from applying the simulated method of moments
procedure to this version of the model are o = 0.89, w, = 0.020, w,,, = 0.141, w, = 0.839, C, = 75.5.
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Figure A-31: Agriculture Share of GDP - Data vs. Simulation
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Notes: Graph shows the fit of simulated agriculture share of GDP to data from the World Bank with
an alternative model specification using Stone-Geary preferences over sectoral consumption. The
best fit with Stone-Geary preferences has an R? of only 0.43 and dramatically underpredicts the
agriculture share in middle-income countries especially. In contrast, the chosen nonhomothetic
CES preferences from Comin, Lashkari and Mestieri (2015) explain over 60% of the variation.

Table A-4: Climate Change Counterfactual Results Summary
Alternative Model Assumptions

Country A Ag Labor A GDP Willingnessto A Food Prices
Share Pay

Baseline

World .005 -.021 -.017 .223

Poorest Quartile .028 -.126 -.088 377

Lognormal Productivity

World .005 -.023 -.018 .209

Poorest Quartile .022 -.131 -.09 .338

Stone-Geary Preferences

World .003 -.018 -.015 219

Poorest Quartile .028 -.107 -.07 371
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welfare, and slightly smaller changes in food prices and agricultural labor shares in
low-income countries.

Appendix E3: Heterogeneous Workers

The baseline model makes the assumption that each country contains a popula-
tion of representative agents that each receive the same wage. In practice, we ob-
serve that wages differ substantially across sectors. Agricultural workers have lower
wages than non-agricultural workers in most parts of the world, and especially so
in poor countries.

In this section, I specify a version of the model with heterogeneous worker skill
levels and explore how this extension affects the primary comparative statics of
interest in the paper.>* While an alternative model specification with adjustment
costs that impede moving across sectors could also replicate the pattern in the
macro data, recent empirical evidence points to worker heterogeneity as the cen-
tral force underlying sectoral wage differences. In particular, Hicks, Kleemans,
Li and Miguel (2017) find that workers experience only small gains in wages by
moving from agriculture to non-agriculture when controlling for individual-level
fixed effects. This suggests that low wages in agriculture stem from the different
characteristics of the people working in that sector, rather than from barriers that
prevent them from realizing large productivity and wage gains from a potential
move into non-agricultural sectors.

In the version of the model with worker heterogeneity I start by assuming that
each country has a fixed endowment of high-skill and low-skill workers, Ly and
L;. Intermediate goods producers in each of the three sectors employ workers of
both types and have sector-specific CRS production functions with varying skill-
intensity (for simplicity I assume that manufacturing and services have the same
skill-intensity):

1—
Yio = Zialgialmaﬂ
Yim = Zimlim! Lim (31)

_ «@ 11—«
YviS = Zis Hileis

a>f

Manufacturing and services are more high-skill intensive than agriculture, as
reflected by the high-skill labor production elasticities « > /. Solving the firm’s
problem gives the following optimal ratio of high-skill and low-skill workers em-
ployed in each sector as a function of the production elasticities and relative wages:

54Note that I do not estimate this version of the model because the simplified framework with
two types of workers does not straightforwardly correspond to the data. In addition, it is not obvious
how to estimate separate production elasticities by sector and skill-level, even if high-skill and low-
skill workers were well-defined in practice.
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With a > §, these conditions imply that manufacturing and services firms will
employ a higher share of high-skill workers than agricultural firms for any set of
relative wages. The relative wage will adjust to satisfy both these conditions as well
as the labor market clearing conditions in both sectors - total employment by skill
type across the three sectors must add up to the country-level endowment of each
skill type - such that wages respond both to productivity and to the relative scarcity
of each type of worker.

This version of the model leaves several predictions of the baseline specification
unchanged, and makes two distinct predictions worth highlighting. The predic-
tions of the baseline model that carry through in this extension concern the ba-
sic dynamics of sectoral reallocation in response to a productivity shock. As in
the baseline model, a decline in agricultural productivity (7, falls) will raise the
marginal cost of production for firms in agriculture, forcing them to raise prices in
a competitive market. The variety-level increases in p, will raise the corresponding
aggregate price index for the final good in agriculture, P,. Consumer preferences
remain as in the baseline specification, so Equation 25 governing the expenditure
share in agriculture will continue to dictate that w,; rises in response to the rise in
P, and the decline in real wages associated with the productivity shock. As in the
baseline model, Equation 26 shows that agriculture’s share of GDP will rise with
the expenditure share if the response of net exports to the change in comparative
advantage is not sufficiently large. Thus, the competing forces of subsistence food
requirements and international trade that govern the primary sectoral reallocation
comparative statics are qualitatively robust to the extension with worker hetero-
geneity.

The model extension adds two dimensions of richness to our understanding
of sectoral reallocation following a productivity shock in agriculture: more infor-
mation about the distributional consequences of climate change and a more nu-
anced representation of comparative advantage. First, incorporating heteroge-
neous workers into the model allows me to examine the distributional consequences
of climate change within, in addition to across, countries. On this point, the model
predicts that the relative wage of low-skill workers to high-skill workers rises with
the revenue share of agriculture.> Since agriculture is the less skill-intensive sector,
the food problem’ actually works to partially insulate farmers from the welfare

%5The outline of the proof of this statement is as follows. In a perfectly competitive market with
low-skill and high-skill workers as the only inputs to production, each sector’s revenues are split
between their workers according to their Cobb-Douglas production elasticities. So total income for
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costs of declining agricultural productivity. Intuitively, inelastic demand for the
sectoral output good causes a strong response of the output price that raises the
relative wages of the low-skill workers disproportionately employed in that sector.
So while the relationship between greater openness to international trade, sectoral
reallocation, and aggregate productivity remains similar in the case of heteroge-
neous workers, the extended model suggests that the adaptation gains from trade
will likely be smaller for agricultural and other low-skill workers if trade moves
domestic production away from that sector and dampens the increase in its output
price.

The second insight of the model with heterogeneous workers is that compar-
ative advantage depends not only on the relative aggregate productivities in each
sector, but also on the relative scarcity of high-skill and low-skill workers. Burstein
and Vogel (2017) use a very similar model to specify a generalized definition of
comparative advantage that incorporates both these Ricardian and Heckscher-Ohlin
forces. In this framework, comparative advantage evolves endogenously with sec-
toral reallocation as relative wages shift with labor demand. Movement into (away
from) agriculture raises (lowers) the relative wage of low-skill workers and shifts
comparative advantage further toward (away from) manufacturing. For the pri-
mary climate change counterfactuals of interest in the paper, this additional chan-
nel would have the effect of attenuating the degree of sectoral reallocation in both
directions. If the ‘food problem’ shifts production toward agriculture when its pro-
ductivity falls, the resulting increase in the relative wage of low-skill workers pushes
comparative advantage further toward manufacturing and endogenously strength-
ens the importance of the trade response pulling labor away from agriculture. Sim-
ilarly, in the case of relatively free trade, production moving away from agriculture
would reduce the relative wage of low-skill workers and endogenously dampen the
movement of comparative advantage away from agriculture.

Overall, extending the model to represent workers of heterogeneous skill type
leaves the fundamental predictions about climate change and sectoral realloca-
tion unchanged, but sheds additional light on the forces underlying comparative
advantage and the distributional consequences of climate change.

each category is given by:

wrLy = (1= B)Ry + (1 —a)R,, + (1 — )Ry
wrLg = BRe + aRy + aR,

Consider a 1% increase in the revenue share of agriculture, r,, and a 1% decline in the revenue share
of manufacturing, r,,,. The change in low-skill share of total income is given by o — 8 and the change
in the high-skill share of total income is given by 5—«. With « > (3 the low-skill share of total income
rises. Since the total number of low-skill and high-skill workers is fixed, /= also rises.
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