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Abstract

We study optimal project management in a setting where random setbacks arise
naturally during development (e.g., software, construction, or manufacturing). The
contractor can shirk, and the sponsor cannot observe the occurrence of setbacks and
must rely on unverifiable reports. The optimal dynamic mechanism provides incentives
via a cost-plus-award-fee contract featuring a soft deadline or time budget and a termi-
nal payment that is linear in the time remaining on the schedule. Late-stage setbacks
require randomization between project cancellation and extension. Because random-
ization may happen repeatedly, the project can run far beyond its original expected
duration and budget and yet be canceled yielding no value. If commitment to ran-
domization probabilities is not possible, the sponsor optimally commits more time and
resources to the project, even though it is less valuable to her. Our analysis suggests
that although overruns and cancellations are commonly viewed as failures of project
governance, such outcomes are necessary features of optimal project management.
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Hofstadter’s Law: It always takes longer than you expect, even when you take
into account Hofstadter’s Law.

—Douglas Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid (1979)

1 Introduction

Broad and expanding swaths of the modern economy are dedicated to the planning and

execution of projects, “temporary endeavor[s] undertaken to create a unique product, service

or result . . . The development of software for an improved business process, the construction

of a building or bridge, the relief effort after a natural disaster, the expansion of sales into

a new geographic market all are projects.”1 Given the current and growing significance of

this mode of production, it is important to understand its intrinsic characteristics and – in

particular – how best to improve its efficacy. Indeed, the annals of project management

are rife with jobs that ran notoriously over time and over budget, some of which were

ultimately canceled by their sponsors resulting in little if any residual value. For example,

what might be “the most highly publicized software failure in history” (Goldstein, 2005)

is the FBI’s contracting debacle with the Science Applications International Corporation,

(SAIC) to develop a virtual-case-file-(VCF) system. Irigoyen (2017) summarizes the VCF

project failure as going through “significant management and implementation problems and

cost overruns, which culminated in the cancellation of the project in 2005, with little to

show for the USD170 million investment.” The FBI Director at the time, Robert S. Mueller,

III, testified before a Congressional subcommittee that he was disheartened by “the setbacks

which have plagued this program” but that he was confident that a future attempt to develop

a VCF system would be successful.2

The FBI is hardly alone in its project management woes. For instance, “According to a

2017 report from the Project Management Institute, 14 percent of IT projects fail. However,

that number only represents the total failures. Of the projects that didn’t fail outright, 31

percent didn’t meet their goals, 43 percent exceeded their initial budgets, and 49 percent

were late” (Greene, 2019). The same pattern exists in large scale construction and industrial

manufacturing, as illustrated by the high profile cases listed in Table 1.

1Excerpted from What is Project Management? (Project Management Institute, 2020)

2In his testimony, Mueller blamed the type of contract, saying “The contract [with SAIC] was based on
hours worked – cost plus an award fee. We now know these types of contracts are difficult to manage.”
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Table 1

Project Time Overrun Cost Overrun Source
Boston’s Big Dig 9 years 190% Haynes (2007)
Scottish Parliament Building 3 years 1000% Ahiaga-Dagbui and Smith (2014)
Sydney Opera House 10 years 1400% Wild (2015)
Boeing 787 DreamLiner 3 years 200% Shenhar et al. (2016)
Berlin’s Brandenberg Airport 10 years 300% Brandt (2020)

According to Lineberger and Hussain (2016), “The combined cost overrun for Major

Defense Acquisition programs in 2015 was $468 billion . . . with an average schedule delay of

29.5 months.” Importantly, “setbacks are a near-universal, and universally costly, experience

. . . large capital projects are typically 20 months late, and 80% over the original authorized

budget” (Billante, 2017). More, setbacks can cause a project to be canceled leaving the

sponsor with huge bills and often nothing else. A prime recent example is South Carolina’s

V.C. Summer nuclear power plant construction project, canceled in 2017 after a series of

major setbacks and cost overruns, saddling taxpayers with a bill of $9 billion and “nothing

to show for it” (Lacy, 2019).

In this paper we argue that project setbacks, overruns, and cancellations are not always

the product of incompetence or inattention, but – at least to some degree – are unavoidable

consequences of optimal project governance in the face of agency frictions. In particular, we

introduce a model of project development in which setbacks arise naturally as part of the

production process. Examples include discovering: adverse site conditions (construction), a

design feature won’t work as intended (manufacturing), or incompatibility of certain off-the-

shelf subroutines (software engineering). Due to unforeseeable contingencies such as these,

the amount of time and resources required to complete the project are necessarily uncertain.

Hence, the timeline as well as the initial budget consist of estimates rather than known

quantities. Indeed, the inherently random nature of project schedules and costs has been

recognized by planners and engineers for decades (Malcolm, Roseboom, Clark, and Fazar,

1959). For instance, PERT (Program Evaluation and Review Technique) is a still frequently

used method for project planning and management that was first developed in 1957 by the

U.S. Navy’s Special Projects Office to manage the scheduling and cost uncertainties of the

nascent Polaris nuclear submarine program (Navy, 1958a,b).

In our model, as in practice, the sponsor (the principal) must hire a contractor (the

agent) to run the project on her behalf. Both parties are risk-neutral, but the agent is

protected by limited liability. Setbacks arrive randomly according to a Poisson process with

known intensity. There is a flow cost of running the project, and the project is completed
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whenever a span of time X̄ passes without the arrival of a setback. The first-best policy in

this environment is straightforward. The project should be started and run until completed if

and only if the value of the finished project to the sponsor exceeds the flow cost of operation

times the expected duration.

The contractual setting we investigate is marked by both hidden actions and hidden

states. The principal is unable to observe the progress of the project or the occurrence of

setbacks herself, and must rely on unsubstantiated reports from the agent. However, delivery

of the completed and working project is verifiable – the principal can use the software, fly the

plane, or work in the building once it is complete. Because the principal cannot observe the

status of the unfinished project, the agent may surreptitiously divert the flow of operating

capital to garner private benefits instead of advancing the project.3 The combination of

hidden actions and hidden states gives the agent broad scope for committing moral hazard

without fear of detection. Specifically, he may cover up the interruption of progress associated

with resource diversion either by submitting false reports of setbacks or delaying the reports

of real ones. Thus, the principal’s problem is to write a contract, contingent only on the

passage of time and potential project delivery, that induces the agent to work efficiently and

report honestly.

The crucial incentive constraint is what we label the No-Postponed-Setbacks (NPS) con-

dition. This constraint requires that whenever a setback occurs, the agent prefer to report

it immediately rather than divert resources for any length of time and report it later. We

show that (NPS) always binds under an optimal incentive scheme for the principal. This has

several important implications. First, it implies that the agent also never prefers to cover

up resource diversion with claims of false setbacks; that is, binding (NPS) is necessary and

sufficient for incentive compatibility. Second, it allows us to fully characterize the optimal

contract. Interestingly, Director Mueller’s 2005 congressional testimony not withstanding,

the optimal incentive mechanism in this context can be implemented with a cost-plus-award-

fee contract of the kind the FBI signed with SAIC.4

Under the optimal contract, the principal gives the agent a soft deadline or time budget

3Interestingly, Project Management Institute identifies that “team member procrastination” accounts for
11% of all IT project failures.

4“A cost-plus-award-fee contract is a cost-reimbursement contract that provides for a fee consisting of
(a)a base amount (which may be zero) fixed at inception of the contract and (b) an award amount, based
upon a judgmental evaluation by the Government, sufficient to provide motivation for excellence in contract
performance.” (The U.S. General Service Administration FAR 16.401). We comment on this implementation
more formally in the discussion following Proposition 1 below.
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for delivering the completed project and commits to pay the flow cost of operation. The

contract ultimately ends for one of two reasons, either because the agent successfully delivers

the completed project or because it is canceled by the principal. If the agent delivers the

project prior to cancellation, then he is paid a linear reward consisting of a fixed fee and

an incentive award proportional to the time remaining before the soft deadline is exhausted.

If the time remaining on the soft deadline is greater than X̄ (the required uninterrupted

development time), the principal takes no action. If, the time remaining is less than X̄

and a setback occurs, then project completion before the clock runs out is impossible. At

this point, the contract calls for a random termination procedure under which the project is

either canceled with a terminal payment of zero to the agent or the deadline is extended to

X̄. All subsequent reports of setbacks are treated similarly.

Thus, while the optimal incentive contract induces the agent to work diligently and re-

port honestly, it may, nevertheless, result in the type of unfortunate outcomes observed in

our leading examples. In other words, schedule and cost overruns, and even cancellations

that yield no useful output, are features of an optimal contract. The feature exist because

randomization is necessary: if the contract had a deterministic deadline, then a late-stage

setback would render project completion impossible and the agent would shirk out the clock.

On the other hand, if there was some sequence of reports that enabled the project to run

indefinitely, then the agent would make those reports and shirk forever. The only solution

is random termination, which yields the possibility of both overruns and inefficient cancel-

lations.

Our analysis utilizes novel methods that do not involve the usual dynamic programming

and differential equation techniques to characterize the principal’s value function. In particu-

lar, we identify two fundamental martingales and invoke the optional stopping theorem. The

principal’s expected payoff equals the probability of project completion times the first-best

value of the project net of expected agency rents. The probability of project completion is

increasing, concave, and approaches 1 as the length of the soft deadline, S, tends to infinity.

On the other hand, agency rents increase linearly in S. Hence, there exists a unique optimal

initial time budget S∗ to assign to the agent at project inception. Except in the case when

S∗ = X̄ is optimal, the soft deadline is strictly longer than the expected duration of the

project. In other words, the principal builds in an allowance for some schedule slippage in

the initial contract.

Interestingly, the principal’s value function is a concave polynomial with kinks at S = nX̄.

These kinks imply that the optimal initial time budget S∗ is an integer multiple of X̄ for a
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non-negligible set of parameters – there are focal contract lengths that are multiples of the

best case duration. We use these observations to identify the conditions under which S∗ = X̄

is optimal; this is a short-leash contract in which the soft deadline equals the expected

duration of the project and every reported setback results in cancellation with positive

probability. Although a short-leash contract has expected duration of X̄, the support of the

stopping time is unbounded due to the probability of project extension. Hence, even when

the principal commits to keep the agent on a short leash, arbitrarily large cost and schedule

overruns occur with positive probability. Importantly, every optimal contract possesses a

short-leash phase that is triggered whenever a setback occurs sufficiently late in the schedule

(i.e., when St < X̄).

The optimal contract requires the principal to commit to randomized extension or can-

cellation with explicit probabilities that are a function of the time remaining when a setback

occurs. However, absent commitment, the principal would strictly prefer to keep the agent

working on the project by extending it rather than canceling it. So, we vary the baseline

model by relaxing the assumption of full commitment and investigate a setting in which

randomization is feasible but not verifiable. In this case, randomization by the principal is

incentive compatible if and only if the agent, upon receiving an extension, himself randomizes

between continuing to work and shirking out the clock.

While relaxing commitment is clearly harmful to the principal, we are able to use our

methods for characterizing the value function to show that she optimally grants the agent

a longer initial schedule in this setting. Intuitively, she does so in order to raise the like-

lihood that the project will be completed before the short-leash phase of the schedule is

ever reached. Put differently, granting large S∗ not only increases the chance the agent

will successfully complete the project, it decreases the chance that lack of commitment will

ever come into play. Although this logic is compelling, one might easily have expected the

reverse finding. Absent commitment, the project is completed with lower probability under

any given schedule and is, therefore, worth less to the principal. Given this, it is somewhat

surprising that the principal optimally responds to her lack of commitment by devoting more

– rather than less – time and money to the less valuable endeavor.

The remainder of the paper is organized as follows. Related literature is reviewed below.

In Section 2 the model of setbacks is presented and the corresponding first-best policy is

characterized. The agency environment is described in Section 3. In Section 4 the optimal

contract is identified and the associated value function for the principal and its properties are

derived. We investigate the variant of the model under which randomization is not verifiable
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in Section 5. Section 6 contains some concluding remarks. The proofs of all results can be

found in the appendix.

Literature Review The literature on the optimal provision of incentives in dynamic en-

vironments is extensive and active. Pioneering articles responsible for moving it forward

at various stages include Green (1987), Spear and Srivastava (1987), Phelan and Townsend

(1991), Quadrini (2004), Clementi and Hopenhayn (2006), DeMarzo and Sannikov (2006),

Biais, Mariotti, Plantin, and Rochet (2007) and Sannikov (2008).

Bergemann and Hege (1998) investigate venture capital financing in a discreet-time model

where the arrival of revenues depend on whether the project is good or bad and whether the

entrepreneur (agent) works or shirks. The dynamic agency costs may be high and lead to an

inefficient early termination of the project. Biais et al. (2010) analyze a model in which large

observable losses may arrive via a Poisson process, and an agent must exert hidden effort

in order to minimize the likelihood of their arrival. Toxvaerd (2006) considers a setting in

which a finite number of observable arrivals are needed in order to complete a project. In

his setting, the agent is risk averse and the optimal contract trades off optimal risk-sharing

for incentive provision, but does not involve deadlines or inefficient termination. In contrast

with these papers, the Poisson shocks in our proposed model are privately observed by the

agent and arise as an unavoidable consequence of the production process – that is they are

discoveries. The potential for their occurrence essentially gives the agent cover to commit

moral hazard; i.e., to make plausible excuses for why project completion has been delayed.

Some other recent papers share features with the environment we study. Lewis (2012)

investigates a model of delegated search in which the agent is motivated by a hard deadline

and a reward that decreases over time. Mason and Välimäki (2015) study a dynamic moral

hazard model where the agent’s effort in each period corresponds to the probability that

the project succeeds in that period. Rahmani, Roels, and Karmarkar (2017) investigate

multi-agent collaboration in a discrete time model with a finite horizon where progress is

observable and contractible. Vasama (2017) analyze contracting in an environment where

the agent can secretly divert output for private benefit. The optimal contract relies on an

inefficient termination threat to give the agent incentives not to skim, which relaxes over

time following good performance. Varas (2018) studies a setting in which an agent chooses at

each instant between working to make a breakthrough that results in a high quality product

and shirking that results in a low quality one. The principal in his model optimally defers

compensation upon delivery in order to acquire evidence regarding product quality. In a

similar vein, Hoffmann, Inderst, and Opp (2020) consider a setting in which an agent takes
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a one-time action and the principal subsequently observes an informative dynamic process

that is used to determine his ultimate reward.

More closely related are four recent papers (one publication and three working papers)

that explore the optimal deadline for a project in the context of dynamic agency. The

published article is Green and Taylor (2016) who study a setting where a project must have

two Poisson breakthroughs in order to be completed. The agent hired to run the project

privately observes the occurrence of the first breakthrough, or what the authors call progress.

As in our setting, the agent can surreptitiously divert the principal’s flow of investment in

the project for private benefit, which delays project completion. However, once the agent

reports arrival of the first breakthrough in Green and Taylor (2016), there is no turning back,

which limits his scope for further manipulation. We consider a richer environment where

progress corresponds to a continuum of states and in which a potentially infinite number of

setbacks may occur in rout to project completion. Thus our agent may repeatedly report the

occurrence of false setbacks or repeatedly postpone reporting the occurrence of real ones, or

any combination of such behavior.

In an insightful working paper, Madsen (2020) studies how an organization should op-

timally manage a project of uncertain scope when advised by an expert with private infor-

mation about the project’s state who prefers to prolong his employment. In this model, a

project turns from “good” to “bad” stochastically over time. The agent is a “advisor”, who

possesses information regarding whether the project quality has changed. By contrast, in

the setting we investigate, it is common knowledge that the state of the project is “good”

from the outset, and never changes. Our agent is not an advisor hired to monitor whether

project quality has declined – His expertise resides in the ability to operate the project itself.

Mayer (2019) presents a dynamic contracting model in which a project succeeds if it

survives until the completion date. The completion date is the outcome of a random variable

that is unknown to both the principal and agent. While the project is in operation, the agent

exerts unobservable precautionary effort in order to reduce the arrival rate of a failure shock

that will kill the project before it reaches completion. Project completion is contractually

verifiable, but the arrival of the failure shock is privately observed by the agent. As in Madsen

(2020), the principal must provide incentives for the agent to report that the project has gone

bad and should be terminated. Our environment differs along a number of salient dimensions.

Rather than the arrival of a single failure shock, our agent may observe numerous setbacks,

none of which render project completion infeasible. Because the completion date in the

absence of setbacks is common knowledge in our setting, the agent is never rewarded for
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reporting one. Indeed, if a setback occurs in our model, then the agent will eventually have

to report it or he will otherwise be fired for not delivering the project when the principal

expects it to be finished.

Yet a third recent paper featuring a single privately observed transition is Sinander and

Curello (2020). Similar in spirit but opposite in application to Madsen (2020), in this model,,

a technological breakthrough occurs exogenously at some random time witnessed only by the

agent. The principal would like to adopt the innovation as soon as possible, but the agent

prefers the status quo technology, other things equal. Hence, the agent must be incentivized,

through non-monetary means, to disclose the arrival of the innovation. As in our setting,

a deadline can play an important part in inducing timely revelation. The environment we

investigate is, however, very different both in terms of application and technical details. The

agent in our model is a contractor hired to complete a project who may privately observe

numerous setbacks an who is tempted to use his informational advantage to cover up lack

of progress due to his own shirking.

2 The Model and The First-Best

2.1 The Project

A risk-neutral principal (she) hires a risk-neutral agent (he) over an infinite horizon to work

on a project. The principal has deep pockets, and the agent has no wealth and is protected by

limited liability. The project requires accumulated progress X̄ before it is completed; X̄ is the

project’s scope. As the agent works on the project, progress X accumulates deterministically.

However, setbacks occur, following a Poisson process with arrival rate λ, which is the setback

frequency. A setback at t resets progress from Xt to 0. When progress reaches X̄, the project

is complete and results in a monetary payoff of R to the principal. While the project is in

operation, the principal must pay a flow cost of c to keep it moving forward.

Two points are worth highlighting. First, for simplicity we assume that an incomplete

project has no value to the principal. Second, setbacks result naturally as a result of unfore-

seeable contingencies, and, in particular, setbacks are not due to the negligence or indolence

of the agent. Examples include discovering: adverse site conditions (construction), a design

feature won’t work as intended (manufacturing), or incompatibility of certain off-the-shelf

subroutines (software engineering). Such problems can be unearthed only through working

on the project.
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The potential for moral hazard in this setting stems from the ability of the agent to

surreptitiously divert the resource flow c to his own private benefit and cover the result-

ing cessation in progress by misinforming the principal about the occurrence of setbacks.

Formally, the project’s true progress follows

dXt = at(dt−XtdNt)

where at ∈ {0, 1} denotes the agent’s private action. at = 0 represents shirking, which

corresponds to diversion of the resource stream c, while at = 1 represents working, which

corresponds to using the funds to develop the project. Shirking yields the agent a private

flow benefit of b:

Assumption 1 b < c, so diverting funds (shirking) is socially inefficient.

Whenever the agent shirks, progress on the project remains constant; i.e., setbacks are

discovered only if the agent is working. Both the principal and agent are perfectly patient

and possess outside options of zero.5

2.2 The First-Best

We begin by characterizing the first-best policy and expected payoff for the principal. If the

agent’s actions are publicly observable, then the principal can induce his compliance without

incurring additional cost. Clearly, if it is worth starting the project in the first place, then

it is worth running it until it is eventually completed. Suppose that the project is operated

until completed and let FFB be the value to the principal at inception. Then we have

FFB =

∫ X̄

0

λe−λX(−cX + FFB)dX + e−λX̄(R− cX̄). (1)

The integral in this expression corresponds to the possibility that a setback occurs before

the project is finished, resetting progress X to 0, at which point the project must re-start.

The time between setbacks is exponentially distributed with intensity λ, with the principal

paying c for the duration of development. The project is completed without incurring a

5Our results hold if the principal and agent share subjective discount rate, r > 0. The optimal contract
is a time budget (soft deadline) with random extensions and termination, just as with r = 0. In fact, our
economy with r = 0, including the principal’s payoffs and policies, is attained as the limit of economies as
r → 0. These results are available upon request.
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setback with probability e−λX̄ , in which case the principal’s net payoff is R−cX̄. Performing

the integration and solving yields

FFB = R− c

λ

(
eλX̄ − 1

)
, (2)

This expression is easily interpreted. Because the project is operated until it is complete,

the principal eventually obtains R for sure. Her expected cost when initiating the project is

the flow cost c times the project’s total expected duration 1
λ

(
eλX̄ − 1

)
. It is straightforward

to verify that expected project duration is increasing in X̄ and λ and that

lim
λ→0

eλX̄ − 1

λ
= X̄.

Thus, a project with larger scope or higher frequency of setbacks has a longer expected

duration, while a project for which setbacks never occur has a deterministic duration of X̄.

It follows immediately that the first-best policy is to start the project and run it until

completed if and only if the right side of (2) is positive. However, in the second-best,

incentivizing the agent involves paying him rents, so a somewhat stronger assumption on the

gross value of the project to the principal is required:

Assumption 2

R >
c+ b

λ

(
eλX̄ − 1

)
(3)

As we shall see, this condition is both necessary and sufficient for the principal to be willing

to hire the agent to run the project. Interestingly, although Assumption 2 implies that the

principal is willing to incur the flow cost c+ b until the project is eventually completed, this

is not, in fact, the outcome implemented by an optimally designed contract.

3 Unobservable Progress and Incentive Compatibility

3.1 Contracts and Reports

The agent’s expertise and work on the project give him an ability to observe the project’s

status that the principal lacks. Instead, the principal must rely on status reports by the

agent. We assume:
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Assumption 3 The principal cannot observe the agent’s choice of action at ∈ {0, 1}, the

state of the project Xt, or the occurrence of setbacks. The principal can observe project

completion only upon delivery, which is contractually verifiable.

This assumption provides the agent with a great deal of latitude to commit malfeasance

without detection. For instance, he could shirk for some time and then falsely claim a

setback to cover up the lack of progress; or, following a real setback, the agent could shirk

for a time before reporting it.

However, the fact that the principal knows how long it takes to complete the project in

the absence of a setback and that a completed project is verifiable does place some discipline

on the agents actions and reports. We assume

Assumption 4 If the agent is verifiably detected misallocating resources or lying about the

project’s progress, then he is terminated at that point without severence.

In other words, if the agent deviates from the principal’s recommended actions, (shirks or

lies), then the outcome generated must be consistent with some feasible path under the

recommended actions. For example, the agent cannot shirk for an X̄-length of time without

reporting a false setback or he will be fired for not delivering the completed project.

The agent makes a report of the project’s current state, X̂t. Given the project’s true

evolution (1), reporting the path of X̂ implicitly reports actions (â) and setbacks (N̂), with

dX̂t = ât(dt− X̂tdN̂t) (4)

In fact, as long as the agent implicitly reports taking the recommended action, he needs

only report the occurrence of setbacks with the understanding that “no news is good news”

regarding project progress.

The principal possesses two instruments for providing incentives for the agent to faithfully

run the project and honestly report progress and setbacks. She can cancel the project prior

to completion (i.e., fire the agent), or she can provide the agent with a reward when the

project is complete. We also allow the principal to provide the agent with rewards based

on reported project status; however, we will show that because both parties are risk-neutral

and are equally patient, it is without loss of generality to backload all monetary payments

into a single reward granted upon successful completion.

Definition 1 (Contract) Denote the probability space as (Ω,F , P ), and the filtration as

{Ft}t≥0 generated by the history of reports {X̂t}t≥0. Contingent on the filtration, a contract
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specifies a stopping time τ when the contract is terminated, a terminal reward Kτ to the agent,

and cumulative intermediate rewards {C}t≥0. All quantities are assumed to be integrable and

measurable under the usual conditions.

Contracts are characterized using the agent’s continuation utility as the state variable.

Given a contract, the agent chooses actions {at}t≥0 and reports {X̂}t≥0. His continuation

utility is the expected value of the reward from project completion plus private benefits from

any shirking:

W a,X
t = Ea,X

[∫ τ

t

b(1− as)ds+

∫ τ

t

dCs +Kτ

∣∣∣∣Ft] , (5)

The principal’s objective function Ft is the expected value of the benefit from a completed

project net of the expected operating cost and the expected reward to the agent:

F a,X
t = Ea,X

[
−
∫ τ

t

cds+Rτ −
∫ τ

t

dCs −Kτ

∣∣∣∣Ft] , (6)

where Rτ = R if the project is completed and 0 if it is not.

Before we go on to characterize general incentive compatibility, we can simplify the

contracting space:

Lemma 1 (High Action and Prizes) The principal will always choose to implement the

high action (at = 1). The principal will reward the agent consumption only upon successful

completion of the project (Kτ > 0 iff success; dCt = 0).

The first result holds because it is always more efficient to award the agent intermediate

consumption than to implement inefficient diversion. The second result holds because both

the principal and agent are equally patient and so payments can always be delayed.

A contract is incentive compatible if the agent chooses the high action and accurately

reports the status of the project:

Definition 2 (Incentive Compatibility) A contract is incentive compatible if the agent

maximizes his objective (5) by choosing at = 1 and X̂t = Xt for all t ≥ 0.

Then, in an incentive compatible contract, the agent’s continuation utility is the expected

value of the terminal prize. The principal’s utility is the expected payoff of the project minus

the running cost and expected prize.

A contract is optimal if it maximizes the principal’s objective function within the class

of feasible, incentive compatible contracts:
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Definition 3 (Optimal Contract) A contract is optimal if it maximizes the principal’s

objective function (6) over the set of contracts that 1) are incentive compatible, 2) grant the

agent his initial level of utility W0, and 3) honor Wt ≥ 0.

3.2 Incentive Compatibility

In this subsection, we introduce a necessary incentive constraint, the No-Postponed-Setbacks

(NPS) constraint. This constraint provides the necessary incentives for the agent to report

any setbacks immediately, rather than delaying the report and shirking in the meantime.

Later, we will show that this constraint is also sufficient to prevent any other deviation.

We now summarize the evolution of the agent’s continuation utility, W :

Lemma 2 (Incentive Compatibility) Given any contract and any sequence of the agent’s

choices, there exists a predictable, finite, non-negative process Jt (0 ≤ t ≤ τ) such that Wt

evolves according to

dWt = Jt (λdt− dNt) (7)

Between setbacks, J is deterministic. A necessary condition for incentive compatibility is

that between setbacks, we have

−Jt ≥ bδ +

∫ δ

0

λJt+sds− Jt+δ, ∀δ ∈ (0, X̄ −X). (NPS)

The contract is terminated if Wt = 0.

The evolution of the agent’s continuation utility under an incentive compatible contract is

a martingale. Hence, it drifts up deterministically as the agent accumulates steady progress

toward project completion but jumps down by J whenever there is a setback.

To understand the (NPS) incentive constraint, suppose the project is in state Xt ∈ (0, X̄)

when a setback occurs. Consider two possible futures:

• [Work] The agent reports the setback immediately, and then works as desired.

• [Shirk] The agent delays reporting the setback and shirks for time δ ≤ X̄ −Xt. Then,

he reports a setback and works as desired.

A critical feature of this shirk path is that after the postponed setback is finally reported, the

agent has dissipated his persistent private information about the status of the project. The
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agent and the principal both believe that Xt is 0 and have the same information about the

project and contract going forward. Thus, the agent’s continuation utility and the principal’s

beliefs about it coincide.

Now, we compare the two paths, with working first. Since working is optimal, the agent’s

continuation utility is a martingale, and we have6

E [Wτ ]−Wt− = −Jt .

The only difference between the agents expected utility when the project ends and his utility

at t− is the jump down from reporting the setback.

Next, we consider shirking. In this case, the change in continuation utility is

E [Wτ ]−Wt− =

∫ δ

0

λJt+sds− Jt+δ , (8)

with an additional private benefit due to shirking of bδ. The first term accounts for the

upward drift in the principal’s beliefs about the agent’s continuation utility as he (falsely)

reports progress while shirking; and the second term captures the jump down in the princi-

pal’s beliefs about the agent’s continuation utility when he finally stops shirking and reports

a setback. Adding the private benefit bδ we obtain (NPS), which simply says that the value

from the working path is at least as high as the value from the shirk path.

The (NPS) constraint requires that the agent’s loss of utility between setbacks is at least

equal to the time he could have spent shirking between them. Thus, there is a round trip

penalty imposed on the agent between any two truthfully reported setbacks. We call this a

“round trip” because the agent goes from X = 0 through some path and back to X = 0. To

see the penalty, imagine that the agent starts at time t with Xt = 0 and works until t + δ

and Xt+δ = δ when he receives a setback. With truthful reporting, (NPS) implies that the

agent’s continuation utility is

Wt+δ =Wt +

∫ δ

0

λJsds− Jδ ≤ Wt − J0 − bδ = Wt − bδ (9)

where we have used in the final step that a setback at X = 0 has no effect and no penalty.

If the (NPS) constraint binds, then the agent’s utility-drop between setbacks grows linearly

6We adopt the standard convention of indexing the value of a process immediately prior to a jump with
t−.
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with time: after each setback, the agent is re-started with a continuation utility that is lower

by the amount of time he could have spent shirking.

3.3 Termination and Randomization

We now consider how the agent is terminated when the project is still incomplete.

First, termination is required. Imagine not; then, there is some path of X that would

result in the project being funded without end. However, the agent could simply mimic that

path with his reports while shirking, and thus obtain infinite utility. The agent would prefer

this to any incentive compatible path.

Put differently, the NPS round trip penalty implies that between any two setbacks, the

agent loses continuation value at least proportional to the elapsed time. However, termina-

tion must occur if Wt = 0 because, given limited liability, termination is the only way for

the principal to deliver Wt = 0. Because the agent’s initial utility W0 is finite, and he must

eventually report either a setback or succeed, then the agent must also eventually run out

of time.

Second, termination is random and not deterministic. We reason based on the NPS

round trip utility penalty (9) and the fact that the agent has limited liability. Imagine that

a setback occurs at t resulting in Wt ∈ (0, bX̄). In this case, if the agent continues to work

but then suffers another setback after making progress δ > Wt

b
, the drop in his continuation

utility required by the (NPS) constraint would result in Wt+δ < 0, which is not feasible.

The agent would prefer to shirk rather than to report the second setback. What can the

principal do about this? One option is simply to terminate the contract at t and give the

agent a severance payment of Wt. However, allowing the agent to shirk or giving the agent

a severance payment is never optimal (Lemma 1).

Instead, there is a better alternative: the principal can use randomization to either fire

the agent without severance (generating Wt = 0) or increase Wt enough to restore incentive

compatibility. Randomization preserves the agent’s expected continuation utility – and thus

the principal’s expected payout to the agent – but it allows for a positive probability that

the project will be completed.

To preserve consistency and incentive compatibility, the agent must be randomly assigned

a utility equal to 0 or greater than bX̄. We assume now (and verify in Proposition 3) that the

principal’s value function is concave so that she wishes to use the least disperse randomization

procedure possible.
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Lemma 3 If Wt < bX̄ following a reported setback, then incentive compatibility and con-

cavity of the principal’s value function require that the agent is assigned utility of bX̄ with

probability p = Wt

bX̄
or utility 0 with probability 1− p.

4 Optimal Contract: A Time Budget

4.1 The Principal’s Problem

As we demonstrate below, the concept of a time budget plays a crucial role in the implemen-

tation of an optimal contract. A time budget is a stochastic deadline that may either count

down deterministically or jump up or down randomly such that the expected value of the

jump is zero. Formally we have the following:

Definition 4 (Time Budget) A time budget St is a non-negative process St satisfying

E[dSt] = −dt (dSt = −dt, absent a setback). The principal initially grants the agent S0 and

then, if the project does not succeed, cancels the project iff St = 0.

A time budget creates a random stopping time τ when the contract is terminated (on the

event of success or cancellation). Define

τ(S) = Et [τ |St = S,Xt = 0] (10)

to be the expected time to contract termination, given that there is no intermediate progress

(Xt = 0). Notice that τ(S) is weakly less than S because the project can be completed early.

Our first result is that the NPS constraint is binding and sufficient, and thus the optimal

contract can be implemented as a time budget. In other words, the agent’s loss of utility

between setbacks grows linearly with time, and this is enough to generate full effort and

prevent any mis-reporting by the agent. Intuitively, the best the agent can do by lying

to the principal is to gain time to divert resources from the project (shirk), and reducing

the agent’s expected prize by the amount he could have diverted is enough to deter such

malfeasance. In turn, this means that the optimal contract can be implemented as a time

budget:

Proposition 1 The optimal contract has the following properties:
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i. The (NPS) constraint binds, and the agent’s utility penalty for reporting a setback Jt

is a function of Xt only:

Jt = J(Xt) =
b

λ

(
eλXt − 1

)
. (11)

ii. The contract can be implemented with a time budget which is set such that bS0 = W0

and the agent is terminated if St = 0. If St− < X̄ and a setback is reported, then St is

set to either 0 with probability 1− p or X̄ with probability p where

p =
St−
X̄
. (12)

iii. The agent’s continuation utility under the optimal contract is

Wt = bSt +
b

λ

(
eλXt − 1

)
. (13)

If the agent completes the project at time τ , he receives a reward of

Kτ = bSτ +
b

λ

(
eλX̄ − 1

)
(14)

This result says that it is optimal for the principal to assign the agent an expected amount

of time S0 to complete the project. The agent works on the project and makes continuous

progress reports including the occurrence of any setbacks. If St < X̄ remains on the clock

and a setback is reported, then there is not enough time remaining to complete the project.

At this point, the randomization procedure is invoked in which the project is either canceled

with probability 1 − St−
X̄

or the schedule is extended to St = X̄ with the complementary

probability. Any subsequent setbacks are treated analogously, until the project is ultimately

either canceled or completed.

The payment to the agent for delivering the completed project at time τ consists of a fixed

component b
λ

(
eλX̄ − 1

)
plus a bonus that is proportional to the remaining time on the clock

bSτ . The bonus term is the inverse of the NPS constraint: because the agent’s utility declines

between setbacks, he must receive an incentive payment if the project succeeds before he

reports another setback. The fixed portion of the reward represents the value to the agent

of a fully mature project. It is calibrated so that he is just indifferent between delivering the

finished project and falsely reporting a last minute setback and then shirking (i.e., diverting
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resources) for a spell of time X̄ before making delivery. In particular, if the agent reports

a setback in state X, then his continuation utility drops by J(X) = b
λ

(
eλX − 1

)
because he

loses all accumulated progress.

As noted in the introduction, the implementation of the optimal incentive mechanism

characterized in Proposition 1 is a cost-plus-award-fee contract. In particular,the principal

commits: (i) to cover the operating cost of the project cτ , (ii) to pay a fixed fee b
λ

(
eλX̄ − 1

)
upon project completion, and (iii) to pay an incentive award bSτ for timely completion.

It is also worth noting that optimal incentives can be implemented with less stringent

reporting requirements than the ones assumed. Rather than requiring continuous progress

reports, at project inception the principal can announce a soft deadline T = S0 − X̄ and

then commit to fund the project until this date no-questions-asked. If the agent delivers

the completed project at τ ≤ T then he receives Kτ as given in the proposition. Once the

soft deadline has passed, the principal requires setbacks to be reported, and she follows the

random termination procedure specified in Proposition 1 from that point on.

4.2 Initial Value of the Project

Given the form of the optimal contract, we can now write the principal’s value function

F (S,X). We are most interested in her valuation of a given time budget when starting from

scratch: F (S, 0). This is summarized in the following proposition: 7

Proposition 2 The principal’s initial valuation of a given time budget S is

F (S, 0) =

(
λR

eλX̄ − 1
− c
)
τ(S)− bS (15)

where τ(S) is defined in (10). F (S, 0) is concave and hump-shaped in S.

More, the probability that the project is completed as a function of S, given Xt = 0, is

P (S) =
λτ(S)

eλX̄ − 1
. (16)

This result has an intuitive interpretation. Using the first-best value (2), we can write

F (S, 0) = P (S)FFB − bS , (17)

7For X > 0 we have F (S,X) =
∫ X̄−X

0
λe−λt (F (S − t, 0)− ct) dt+ e−λ(X̄−X)(R− c(X̄ −X)).
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Written this way, we see that asymmetric information harms the principal for two related

reasons. First, P (S) is the probability that the agent eventually delivers a completed project

starting with an initial time budget of S – the probability that the project is not inefficiently

canceled. The second way in which the principal is harmed is that she has to pay an expected

agency rent of Wt = bSt to induce the agent to work and report honestly.

Intuitively, the larger the time budget S, the more likely it is that the agent will complete

the project; i.e., P (S) is increasing and limS→∞ P (S) = 1. But, of course the principal will

not commit to pay the agent an unboundedly large rent to obtain a payoff bounded by FFB.

In particular, she faces a tradeoff when setting the initial time budget S0 between higher

probability of project completion, P (S0), and paying higher agency rents, bS0. This tradeoff

manifests in the hump shape of the value function F (S, 0). At low levels of S both the

principal and agent prefer a larger time budget. However, as S grows, diminishing marginal

returns to the probability of project completion P (S) are eventually dominated by the linear

agency cost bS, and F (S, 0) peaks at some critical value S∗ beyond which it decreases.

Interestingly, we can derive the formula for the principal’s value function given in (15)

without using the usual techniques involving ODEs, PDEs, and dynamic programming.

Instead, we accomplish this by use of two martingales. This allows for a more fundamental

understanding of the contracts and the associated characteristics. The goal is to evaluate

the principal’s expected welfare (6), which is the payoff to a completed project minus the

running cost:

F (S, 0) =P (S)E
[
R−K|St = S, Xτ = X̄

]
− cτ(S) (18)

=P (S)E

[
R− b

λ

(
eλX̄ − 1

)
− bSτ

∣∣∣∣St = S, Xτ = X̄

]
− cτ(S) (19)

To compute this, we need to pin down P (S) and E
[
Sτ |St = S, Xτ = X̄

]
, the probability of

success and the expected time budget remaining after success.

First, since dXt = dt−XtdNt, we have that eλXt − λt is a martingale:

d[eλXt − λt] = (1− eλXt)(dNt − λdt) (20)
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Then, using the optional stopping theorem, the definition of τ(S) (10), and X0 = 0, we have

1 =E
[
eλXτ − λτ

]
=P (S)E

[
eλXτ |St = S, Xτ = X̄

]
+ (1− P (S))E

[
eλXτ |St = S, Xτ = 0

]
− λτ(S)

=P (S)eλX̄ + (1− P (S))− λτ(S) (21)

where we have used the fact that Xτ ends on X̄ after success and 0 after failure. Solving for

P (S) yields the probability of success (16).

Second, since St declines deterministically on average (Proposition 1), we have that St+ t

is a martingale. Again using the optional stopping theorem, we have

S0 =E [Sτ + τ ] (22)

=P (S)E
[
Sτ |St = S, Xτ = X̄

]
+ (1− P (S))E [Sτ |St = S, Xτ = 0] + τ(S) (23)

=P (S)E
[
Sτ |S, Xτ = X̄

]
+ τ(S) (24)

where we have used the fact E [Sτ |St = S, Xτ = 0] = 0: if the project ends in failure and

the agent is fired, the time budget has been exhausted. Solving for E
[
Sτ |St = S, Xτ = X̄

]
and substituting that into the principal’s welfare (19) yields the statement of the proposition

(15).

4.3 Value Function Characterization

In the randomization region, where St ≤ X̄, we can calculate τ(S) and F (S, 0) explicitly,

yielding the following result:

Corollary 1 For S ≤ X̄,

τ(S) = S (25)

F (S, 0) = S

(
λR

eλX̄ − 1
− c− b

)
. (26)

Thus, in the randomization region the principal’s expected payoff following any setback

is proportional to the time remaining on the clock. Also, observe that – as indicated earlier –

F (S, 0) ≥ 0 if and only if Assumption 2 holds. In other words, the principal must be willing

to incur the flow cost c+ b as if the project were being run until completed, even though the

expected duration of the contract in this region is only τ(S) = S ≤ X̄.
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It is also possible to solve explicitly for τ(S) if S > X̄ by applying an iterative procedure.

Using (15), we can then obtain the principal’s value function in closed form as a piecewise

polynomial in S. The important properties of τ(S) are summarized as follows:

Proposition 3 (Value Function Properties) τ(S) is continuous in S. For all n ≥ 1,

we have

(i) For S ∈ ((n− 1)X̄, nX̄], τ(S) is a concave, increasing polynomial of order n.

(ii) limS→∞
∂
∂S
τ(S) = 0 and limS→∞ τ(S) = 1

λ

(
eλX̄ − 1

)
.

(iii) limS↑nX̄
∂
∂S
τ(S) > limS↓nX̄

∂
∂S
τ(S) > 0.

The first observation is a straightforward implication of the iterative procedure detailed

in the appendix: each round adds a higher order term but the function is always concave

and increasing. Combining this observation with Corollary 1 we see that

τ(S)

 = S, if S ≤ X̄

< S, if S > X̄.

In other words, the expected duration of the project at inception, τ(S0), is weakly less than

the initial time budget, S0, allotted to the agent. τ(S0) < S0 means that the principal builds

some slack or slippage time into the contract: she initially gives the agent more expected

time to complete the project than its actual expected duration. This implies that whenever

the project is extended such that τ > S0, a schedule and cost overrun must have happened.

That is, the project runs longer than it’s initial expected duration of τ(S0) and costs more

than the initial estimate of cτ(S0) + bS0.

The second observation in Proposition 3 is a restatement of the fact that the marginal

benefit from increasing S becomes arbitrarily small as P (S) goes to 1. This along with the

fact that the marginal cost remains constant at b implies that there exists a unique schedule

S∗ at which F (S, 0) is maximized.

The third observation identifies kinks in the value function at positive integer multiples of

X̄. One implication is that it is optimal for the principal to assign an initial time budget equal

nX̄ for a non-negligible set of parameters. We illustrate this possibility for an important

case in the following subsection.
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4.4 A Short-Leash Project

Here we use the first kink in the principal’s value function identified in part (iii) of Proposi-

tion 3 to derive conditions under which it is optimal for her to set an initial time budget of

S0 = X̄. Applying the iterative procedure in the appendix gives

lim
S↑X̄

∂

∂S
τ(S) = 1 > 1− e−λX̄ = lim

S↓X̄

∂

∂S
τ(S). (27)

Using these observations to evaluate the derivative of the value function in (15) directly

yields the following result:

Corollary 2 The optimal contract involves a minimal time budget of S0 = X̄ and a fixed

prize of b
λ

(
eλX̄ − 1

)
iff

c+ b

λ

(
eλX̄ − 1

)
< R <

c+ b
1−e−λX̄

λ

(
eλX̄ − 1

)
(28)

The first inequality in (28) is a restatement of Assumption 2 (that the project is feasible),

and it ensures that F (S, 0) is increasing for S < X̄ . The second inequality then ensures

that F (S, 0) is decreasing for S > X̄. Hence, when (28) holds, the kink in the value function

at S = X̄ corresponds to the peak and it is optimal for the principal to set an initial time

budget of S0 = X̄. In other words, she should keep the agent on a short leash, granting him

in expectation only the minimal amount of time necessary to complete the project, requiring

him to report every setback, and canceling the project with positive probability each time

one is reported. The key parameter in (28) is b, the agent’s per-period benefit from shirking.

If b is too large, then the left inequality fails and moral hazard precludes the project from

ever getting off the ground. On the other hand, if b is too small, then the right inequality

fails. In this case, moral hazard is less concerning, and the principal prefers to give the agent

more than the minimal expected time to complete the project.

At inception of a short-leash project, the expected duration is τ(S = X̄) = X̄, and the

expected cost to the principal is (c + b)X̄. However, if the agent reports a setback with St

left on the schedule, then he is granted an extension of X̄ −St− (i.e., the clock is reset) with

probability St−
X̄

. Hence, the support of the stopping time τ is unbounded, implying that the

project may run arbitrarily long, incur arbitrarily large costs, and yet may still be canceled.

In fact, it is possible to determine explicitly the probability of an overrun, Pr{τ > X̄},
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under a short-leash contract.8 Define µ ≡ λX̄ to be the expected number of setbacks

experienced while the project is in operation. Figure 1 plots the probabilities of three

exhaustive events:

1. PEC(µ) is the probability that the project is canceled early, before its initial expected

duration of X̄, (left panel, blue solid curve).9 It is zero when µ = 0 because no

setbacks are possible in this case. It is increasing because as the expected number of

setbacks rises, it becomes ever more likely that the project will not survive the requisite

randomizations before time X̄ has elapsed. Indeed, limµ→∞ PEC(µ) = 1 because a

steady stream of setbacks must result in early project cancellation for any X̄ > 0.

2. POT(µ) = e−µ is the probability that the project is completed on time (left panel, red

dotted curve). This function is obviously one when µ = 0 because the project is always

completed on time when setbacks are not possible (the agent has no plausible excuse

for late delivery). It is decreasing because as the expected number of setbacks rises, the

probability that none occur falls. Indeed, limµ→∞ POT(µ) = 0 because when setbacks

are a virtual certainty, the project cannot be completed on time.

3. POR(µ) = 1−PEC(µ)−POT(µ) is the probability of an over run (right panel). It is low

for small values of µ because the project will most likely be completed on time. It rises

until achieving a maximum of approximately 0.39 when µ = 3.34 and then decreases

as the probability of early cancellation becomes ever more likely.

4.5 The Value of Randomization

We can now address the value to the principal of the reporting process: why not simply

assign a deadline of S0 and stick with it? The answer is that the value of reporting derives

directly from application of the randomization procedure once the contract enters the short-

leash phase, St ≤ X̄. Assume instead that the principal does offer a fixed deadline of S0 and

the prize (14) upon completion, and then does not solicit or review reports. The agent will

8Note that we define an overrun to be the event that the project ends, either from completion or cance-
lation, after the initial expected duration of the project has elapsed. An alternative common usage of the
term refers to only those projects that are completed late.

9This can be obtained analytically from PEC(µ) = p(x = 1;µ), where p(x;µ) is the solution to the second-
order ODE p′′(x;µ) + µp′(x;µ) + µp(x;µ) = µ with boundary conditions p(x = 0;µ) = p′(x = 0;µ) = 0.
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Figure 1: Probability of an Overrun Under a Short-leash Contract

The left panel of this figure plots the probability of early cancellation (PEC, blue solid line) and the probability

of on-time completion (POT, red dash-dot line). The right panel of this figure plots the probability of an

overrun (POR) µ ≡ λX̄ is the expected number of setbacks experienced while the project is in operation.

use high effort until experiencing a setback at St < X̄ and will then shirk for the remainder

of the contract, only reporting the setback at the last possible second.

Under the optimal contract, when St ≥ X̄, the time budget behaves just like a deadline,

counting down naturally (i.e. dSt = −dt), and the principal effectively ignores all reports.

In fact, the (NPS) constraint binds, implying that the agent is always indifferent between

working or shirking, and hence, willing to work for St ≥ X̄. However, if a setback occurs at

St < X̄ and the deadline is fixed, then it is impossible for the agent to complete the project

and receive payment in the remaining time. Because he can only realize any positive utility

through the final reward at the time of project completion if he chooses to work, he prefers

to shirk out the clock and report a last-second setback to obtain bSt at this point.

In other words, a fixed deadline and prize can be used to induce full effort until the

short-leash phase of the contract. At that point, there isn’t enough time left to complete the

project if a setback occurs, and the agent postpones reporting the setback until the end of

the contract and shirks. The reports are useful precisely because they enable the principal to

create a soft deadline instead of a hard one: the principal stochastically extends the agent’s

time or terminates him, in place of inefficient shirking.
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5 The Role of Commitment

A potential shortcoming of the optimal contract characterized in Proposition 1 is that it

involves the principal committing to randomly cancel the project if a setback is reported when

St < X̄. In particular, if the agent will continue to work after receiving an extension, then

the principal strictly prefers extending the project to canceling it, and – lacking commitment

to randomize – she will grant an extension with probability 1. On the other hand, if the agent

believes that the project will always be extended, then he will shirk and report false setbacks

ad infinitum, leading the principal to prefer project cancellation. This is the familiar logic

underpinning a mixed-strategy equilibrium. To relax the required level of commitment, we

modify the baseline model in this section by assuming that randomization by either party is

possible but not contractually verifiable. All other aspects of the environment remain intact.

Consider again the situation in which a setback results in Wt ∈ (0, bX̄). As we noted in

subsection 3.3, one way to give the agent his promised continuation utility is simply to cancel

the project and make a severance payment. This option has value −Wt to the principal.

We showed that the principal could do better by randomizing between project cancellation

without severance (Wt = 0) and the minimally feasible project extension (Wt = bX̄). Indeed,

because the agent continues to work if granted an extension, this randomization has strictly

positive net value to the principal. However, as per the argument in the previous paragraph,

this scenario can only be implemented when randomization is verifiable.

Nevertheless, it is possible to implement an outcome that delivers expected value of zero

to the principal, which still dominates payment of severance. To see how, suppose that rather

than working with probability 1 when granted an extension, the agent randomizes at that

moment between continuing to work and shirking out the clock, two options over which he is

indifferent. If the agent randomizes such that the principal’s expected value from extending

the project is 0, then she will be indifferent between canceling the project and extending it,

and will be willing to randomize herself. In terms of payoffs, the only difference between this

setting and the baseline model is that the occurrence of a setback inside the randomization

region drops the principal’s value function down to zero. The agent’s continuation utility

Wt is still a martingale and (NPS) still binds.

Proposition 4 (Non-verifiable Randomization) If randomization is not verifiable, then

the optimal contract for the principal can still be implemented with a time budget and the

same prize structure Kτ . If St− < X̄ and a setback is reported, then the principal extends

the schedule to X̄ with probability St−
X̄

and cancels the project with probability 1− St−
X̄

. Upon
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receiving an extension, the agent randomizes between shirking out the clock with probability

q = F̂ (X̄,0)

F̂ (X̄,0)+cX̄
, and continuing to work with probability 1− q, where

F̂ (S = X̄, 0) ≡ Re−λX̄ − c+ b

λ

(
1− e−λX̄

)
. (29)

Note that this version of the contract need not specify specific probabilities of cancellation

or extension – it need only specify that the principal has the right to cancel or extend the

project at will. This is somewhat more realistic than the contract characterized in Proposition

1 where the exact probabilities of cancellation and extension were necessarily an explicit

part of the agreement. Of course, the inability to commit to explicit probabilities harms the

principal. In particular, F̂ (S = X̄, 0) is the value she derives from a short-leash contract

when she cannot commit and

F̂ (S = X̄, 0) = F (S = X̄, 0)

(
1− e−λX̄

λX̄

)
. (30)

The fraction on the right side of this equation is evidently less than 1 for λX̄ > 0. This

makes sense: a setback during the course of a short-leash contract under full commitment

still leaves the principal with a positive expected payoff as shown in Corollary 1, whereas

a setback in the randomization region absent commitment results in an expected payoff of

zero for the principal.

Note that while we specified that the agent randomizes between continuing to work and

shirking out the clock after receiving an extension, there are other strategies the agent could

pursue that are expected payoff equivalent for both parties. For example, while shirking

the agent could mimic nature by randomly reporting setbacks at rate λ, continuing to shirk

after each and every extension. Relative to shirking out the clock, this would increase the

variance of τ , though not its expected value.

Intriguingly, the lack of commitment to randomize leads the principal to grant the agent

more initial time:

Proposition 5 (Optimal Initial Time Budget) Define S∗ to be the principal’s optimal

initial time budget when the randomization is verifiable, and Ŝ∗ to be the principal’s optimal

initial time budget when the randomization is not verifiable. Assume that the agent’s initial

outside option value is sufficiently low such that his participation constraint is met in both

economies. Then, S∗ ≤ Ŝ∗.
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Because the inability to commit to explicit randomization harms the principal (i.e.

F̂ (S, 0) < F (S, 0)), a reasonable conjecture is that she would prefer to grant the agent

less time. After all, for any given value of S, lack of commitment implies lower probability

of project completion and reduces the value of the project to the principal. It is, therefore,

somewhat surprising that she responds by devoting more time and money to the less valuable

project. (Note that the agent benefits from the principal’s lack of commitment because his

expected payoff is proportional to schedule length.)

The intuition is actually straightforward. Lack of commitment power only harms the

principal if a setback occurs in the short-leash randomization region, St < X̄. By granting

the agent a longer initial time budget, the principal raises the probability that the project

will be completed before the schedule enters this problematic phase. That is, she reduces

the likelihood that her inability to commit will even come into play. In a sense, the principal

doubles down on the part of the contract to which she can commit (the length of the schedule)

in order to reduce the impact of the part to which she cannot (explicit probabilities of

project cancelation and extension). Put differently, granting large Ŝ0 not only increases the

chance the agent will successfully complete the project, it decreases the chance that lack of

commitment will become a problem.

Finally, we point out that fully renegotiation-proof contracts are not reasonable in our

setting. To be renegotiation-proof, the principal must not gain from a one-time grant of

utility to the agent, meaning that the principal’s value function must be decreasing in the

agent’s utility. However, the agent has his lowest utility (zero) when he is terminated and the

project fails. Thus, without additional assumptions or explicit commitment mechanisms, a

fully renegotiation proof contract requires that the principal attains her highest utility when

the project fails.

6 Conclusion

At a very general level, projects are usually viewed as possessing three defining features,

scope, schedule, and budget – the so-called “iron triangle.” (Wyngaard et al., 2012) The

scope of a project is the quality of the deliverable, be it a software application, a power plant,

or a doctoral thesis; The schedule is the time allotted to production of the deliverable; and

the budget is the monetary or other physical resources committed to it. However, because

projects are by definition – at least somewhat – unique, their implementation typically

involves considerable uncertainty. In this paper we held scope fixed, and presented a model
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of project implementation focussing on what appears to be the most common sources of

project uncertainty, schedule setbacks and the concomitant cost overruns.

Whether a project is under taken in-house (e.g., the Boeing Dreamliner) or outsourced

(e.g., South Carolina’s V.C. Summer nuclear plant or the FBI’s virtual-case-file system),

its progress will almost surely be hampered to some degree by agency frictions. To study

this, We embedded a natural model of production with random setbacks into a dynamic

agency environment and solved for the optimal contract from the principal’s perspective.

This analysis yielded a number of novel insights and conclusions. Among the most robust

are: 1) an optimal contract can always be implemented with a time budget and a linear

terminal payment corresponding to a cost-plus-award-fee contract; 2) penalties for reports

of setbacks or delays are generally more severe the later they occur in project development;

and 3) mishaps that are reported near the end of the allotted schedule either result in project

cancelation or minimally feasible project extension.

There are a number of open avenues for future research. First, it would be edifying

(albeit technically demanding) to investigate a setting where partial setbacks were possible.

Such an environment would endow the agent with yet another dimension of private informa-

tion, further exacerbating the principal’s problem of designing an optimal dynamic incentive

scheme. Also, expanding our current treatment to incorporate common strategies for dealing

with the time pressure created by unanticipated setbacks seems promising. After all, the

completion of projects is frequently especially time-sensitive. For example, Lewis and Bajari

(2011) investigate the procurement of highway construction projects where completion delays

can have large social costs. In this vein, exploring the possibility of speeding up produc-

tion through fast-tracking (running several phases in parallel) or crashing (deploying more

resources) to make up for unanticipated setbacks is a potentially important consideration

(Monnappa, 2020). Finally, there is the question of scope itself. Throughout we supposed

that the project was either incomplete (worth zero to the sponsor) or complete (worth a

fixed amount). In reality, the ultimate quality of many projects varies along a continuum.

Indeed, scope creep on the part of sponsors (demanding a higher quality deliverable than

originally specified) is often cited as a contributing factor to project failure.10 We leave

these considerations and others for future work, having judged this particular project to be

deliverable as complete.

10Ely and Szydlowski (2020) considers a dynamic moral hazard problem in which the principal uses scope
creep to entice the agent to exert effort on a project that he would not have agreed to work on if he had
known the full scope of the project at the outset.
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Appendix – Proofs and Derivations

A Proof of Lemmas 1, 2, and 3

A.1 Proof of Lemma 1

First, the principal always induces the high action (at = 1). Imagine there is an interval of
time in which the principal induces shirking. The project does not advance, nor is there a
setback. The principal can award the agent intermediate consumption during the shirking
interval without changing the agent’s continuation utility. This makes the agent indifferent
and the principal better off, because c > b implies that assigning the agent any positive
amount of utility by allowing shirking is more costly for the principal than directly paying
the agent.

Second, any contract with intermediate payment can be weakly improved by one without.
Because the principal and the agent share the same discount rate (0), the principal can simply
delay any intermediate payments until the end, leaving both participants indifferent.

Third, any contract with severance pay upon termination can be (weakly) improved by
one that pays only on the event of success. Notice that the principal can re-start any existing
contract and both participants will have positive value going forward. Any contract that
ends with a severance payment can be replaced with one that randomizes between re-starting
the contract and termination with zero payment. The probability of re-starting the project
can be set to make the agent indifferent to the randomization. The principal is better off
because she receives zero (termination) or a positive value (re-start) instead of making a
severance payment.

A.2 Proof of Lemma 2

First, by Lemma 1, dCt = 0 for all t < τ . Therefore (5) becomes

W a,X
t = Ea,X

[∫ τ

0

b(1− as)ds+Kτ |Ft
]
,

where Ft is the filtration generated by the agent’s report {X̂t}t∈[0,τ ]. Note that Wt is an
Ft-martingale. Thus, by the martingale representation theorem for jump processes, there
exists a Ft-predictable, integrable process J such that

dW a,X
t = Jt(λdt− dN̂t) (31)

If the contract is incentive compatible, the agent will exert high effort and report the setback
Nt truthfully. In this case, the analysis following the statement of Lemma 2 applies, and the
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(NPS) condition

−Jt ≥ bδ +

∫ δ

0

λJt+sds− Jt+δ, ∀δ ∈ (0, X̄ −X). (32)

must hold as a necessary condition.
Next, Jt must be weakly positive. If not, then the agent would gain from falsely reporting

a setback.�

A.3 Proof of Lemma 3

Suppose Wt < bX̄ following a reported setback. Then randomization between Wt′ = 0 and
WT ′ ≥ bX̄ is necessary. To see why, suppose that immediately after randomization (including
degenerate randomization) or at the beginning of a phase of Poisson termination, the agent’s
continuation utility is Wt′ ∈ (0, bX̄). Imagine the agent continues to work for δ ∈ (Wt′/b, X̄)
and then suffers a setback which he truthfully reports. By the round-trip property of (NPS)
we have

Wt′+δ = Wt′ +

∫ δ

0

λJsds− Jδ (33)

≤ Wt′ − J0 − bδ = Wt′ − bδ < 0, (34)

which violates limited liability. Finally, concavity of the principal’s value function (es-
tablished in Proposition 3) implies that randomization should involve minimal dispersion.
Hence, to deliver Wt to the agent, he should receive Wt′ = 0 with probability (1 − p) and
Wt′ = bX̄ with probability p = Wt

bX̄
. �

B Proof of Proposition 1

The proof of Proposition 1 consists of four parts. Part 1 demonstrates that the (NPS)
constraint can be re-written in a more tractable way. Part 2 shows that (NPS) binds with
equality in an optimal contract. Part 3 shows that if (NPS) holds with equality, then the
optimal contract can be implemented with a simple time budget. Part 4 shows that a simple
time budget is sufficient to make truthful reporting optimal for the agent. We will also take
as given that the principal’s value function is concave with respect to W (or, S), which is
verified in Proposition 2 and the analysis in Section 4.2.

We begin with the following lemma which is helpful several times:

Lemma 4 (Lower bound for the marginal value of agent’s utility) Let F (W,X) be
the principal’s value function (6), then FW (W,X) ≥ −1.

Proof: Imagine not: FW (W,X) < −1. Then the principal would gain by giving the agent
intermediate consumption. But this cannot be the case (Lemma 1).�
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B.1 Re-writing (NPS)

An important fact is that J can only vary with time (or, the progress of X) between t and
t + δ. Because no setbacks are being reported, the passage of time is the only thing the
principal can observe. Thus, we can write J as a function of current project progress and
all of history prior to the previous setback, J(X, ·). We will suppress the (·) notation for
convenience. Then, (NPS) becomes

J(Xt) ≤ −bδ −
∫ δ

0

λJ(Xt + s)ds+ J(Xt + δ), ∀Xt ∈ [0, X̄) and δ > 0 (35)

First, we reformulate (NPS) so that J can be written as the sum of its minimum, binding
value and a term capturing the excess. If (NPS) binds everywhere, (35) holds with equality
and we can take the derivative with respect to δ to obtain

0 = −b− λJ(X + δ) + J ′(X + δ) (36)

This has the (general) solution J(X) = C1e
λX− b

λ
, where C1 is a constant. Because J(X) ≥ 0,

the minimum value of C1 is β
λ
. Thus, the minimum, binding value of J(X) is

Jmin(X) =
b

λ
eλX − b

λ
(37)

Next, we define the functions f(X) and g(X) such that

f(X) =
1

b

[
J(X)− Jmin(X)

]
(38)

g(X) = f(X)−
∫ X

0

λf(u)du (39)

So, f ≥ 0 captures the difference between J and its minimum, and g is a convenient sum-
marizing function. Notice that f(0) = g(0), so f(X) can be fully recovered if we know
g(X).

Second, we show that (NPS) is satisfied if and only if g(X) ≥ 0 and f and g are weakly
increasing. Substituting the definition of f(X) into (35) yields

f(X) ≤ −
∫ δ

0

λf(X + u)du+ f(X + δ), ∀Xt ∈ [0, X̄) and δ > 0 (40)
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Then, from the definition of g, we have

g(X + δ)− g(X) = f(X + δ)−
∫ X+δ

0

λf(u)du− f(X) +

∫ X

0

λf(u)du (41)

= f(X + δ)−
∫ X+δ

X

λf(u)du− f(X) (42)

≥ 0 (43)

where (40) shows that (42) is non-negative, so g(X) is weakly increasing. More, f(0) = g(0)
and g weakly increasing imply g(X) ≥ 0. Then, using the definition of g and f ≥ 0, we see
that we must also have f weakly increasing. Using the definitions of f and g, we see that
f and g positive and weakly increasing are also sufficient to show (35). Thus, we can use f
and g instead of (40) to characterize (NPS).

We can now write the change in the agent’s continuation utility as X starts at Xt = 0
and progresses until a setback is experienced at X = Xt+s. Using Xt+u = u and the f and
g notation, we have∫ s

0

λJ(Xt+u)du− J(Xt+s) =

∫ s

0

beλudu− bX̄ − b

λ
eλs +

b

λ
− bg(Xt+s)

=
b

λ

(
eλs − 1

)
− bs− b

λ
eλs +

b

λ
− bg(Xt+s)

= −bs− bg(Xt+s) (44)

Similarly, we can write down the prize the agent receives, given that the agent starts at time
t with Wt and Xt = 0 and progresses to project completion:

Wt +

∫ X̄

0

λJ(x)dx = Wt +

∫ X̄

0

beλxdx− bX̄ + b

∫ X̄

0

λf(x)dx (45)

B.2 The Optimality of Binding the (NPS)

We show that the optimal contract has f = g = 0. To proceed, using (44 and 45), and
that the probability that any particular try at the project is successful is e−λX̄ , we have that
F (W,X = 0) can be written as

F (W,X = 0) =e−λX̄

[
R− b

λ

(
eλX̄ − 1

)
+ (b− c)X̄ −W − b

∫ X̄

0

λf(u)du

]
(46)

+

∫ X̄

0

λe−λuF (W − bu− bg(u), X = 0)du (47)

with constraints g′(u) ≥ 0 and g(u) ≥ 0. We will use the Hamiltonian maximization method
with ζ(u) = g′(u) as the control variable, f(u) and g(u) as the state variables, and f ′(u) =
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λf(u) + ζ(u) and g′(u) = ζ(u) as the laws of motion. The constraints are ζ(u) ≥ 0 and
g(u) ≥ 0. The objective function, ignoring constant terms, is

max

∫ X̄

0

[
λe−λuF (W − bu− bg(u), X = 0)− bλe−λX̄f(u)

]
du (48)

Then, the Hamiltonian is

H =e−λuλF (W − bu− bg,X = 0)− bλe−λX̄f (49)

+ γ1(λf + ζ) + γ2ζ + η1(ζ − 0) + η2(g − 0)

The optimality conditions are

0 =
∂H
∂ζ

= γ1 + γ2 + η1 (50)

−γ′1 =
∂H
∂f

= −bλe−λX̄ + γ1λ (51)

−γ′2 =
∂H
∂g

= −e−λXbλFW (W − bu− bg,X = 0) + η2 (52)

We can solve for γ1(u) directly:

γ1(u) = k1e
−λu + be−λX̄ (53)

for some constant k1.
We now work through the various cases with respect to η1 and η2:

• Imagine that neither constraint binds for some X, so η1 = η2 = 0. Then, γ2 = −γ1 =
−k1e

−λu + be−λX̄ and so −γ′2 = −λk1e
−λu. Plugging that back in (52), we obtain

bFW (W − bu− bg,X = 0) = k1 which implies u + g is a constant, which violates g
weakly increasing.

• Imagine that g′ ≥ 0 binds but g ≥ 0 does not, so η1 > 0 and η2 = 0. Then, −γ′2 =
γ′1 + η′1 = −λk1e

−λu + η′1. This is a valid differential equation solution.

• Imagine that g′ ≥ 0 does not bind but g ≥ 0 does, so η2 > 0 and η1 = 0. This is the
solution in which g(u) = 0 and is valid.

Thus, we need only to consider the case in which g(u) = g(0) is constant and optimize over
that constant.

To proceed, we differentiate the definition of g and solve for f to obtain

f(u) = eλu
[
g(0) +

∫ u

0

e−λvg′(v)dv

]
(54)
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If g is constant, we have f(u) = eλug(0). Using the definition of g(u) to show that∫ u
0
λf(v)dv = g(X̄)− f(X̄), the objective function for the principal can be written as

max

∫ X̄

0

[
λe−λuF (W − bu− bg(0), X = 0) du

]
+ b(g(X̄)− f(X̄)) (55)

= max

∫ X̄

0

[
λe−λuF (W − bu− bg(0), X = 0) du

]
+ bg(0)(1− eλX̄) (56)

Given the concavity of F in W , the first-order condition for g(0) is

−
∫ X̄

0

[
λe−λubFW (W − bu− bg(0), X = 0) du

]
− b(eλX̄ − 1) (57)

By Lemma 4, FW (·, X = 0) > −1, then this expression is negative and the optimal value of
g(0) is 0. Since g is constant, we also have f = g = 0, so

J(X) = Jmin =
b

λ

(
eλX − 1

)
(58)

B.3 Implementation

The optimal contract can be implemented with a time budget with the following properties:

1. S0 = W0/b

2. dSt = −dt −MtdNt. Mt = 0 if St ≥ X̄. If St < X̄, Mt is a binary random variable
that takes value X̄ − St with probability p = St/X̄ and −St with probability 1− p.

3. The contract ends at t = τ if Sτ = 0.

Part I and II of the proof shows that if a setback is reported at any time t, the agent’s
continuation utility is Wt = W0−bt. Therefore, Wt = b(S0−t) = bSt, where the first equality
comes from Properties 1 above and the second equality utilizes Property 2, respectively.
Randomization occurs when a setback is reported and Wt < bX̄ where Wt jumps to bX̄ with
probability p = Wt/bX̄ or 0 with probability 1− p. Because Wt = bSt following any setback,
randomization occurs if St < X̄, and St jumps to X̄ with probability p = bSt−/bX̄ = St−/X̄
or 0 with probability 1− p (Property 2 and 3). Finally, combining (44) and (45) and using
the fact that f = g = 0, the prize for project completion is

Kτ = W0 − bτ +
b

λ

(
eλX̄ − 1

)
(59)

= bSτ +
b

λ

(
eλX̄ − 1

)
(60)
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B.4 Truthful Reporting

Next we show that the linear time-budget is sufficient to induce the agent to report truthfully
and take the high action. The agent’s objective is to solve (5), subject to the evolution of
state variables:

dXt = at(dt−XtdNt) (61)

dSt = −dt−MtdN̂t (62)

where

Mt =


0 if St− ≥ X̄

X̄ − St− if St− < X̄ , with probability St−
X̄

−St− if St− < X̄ , with probability 1− St−
X̄

(63)

Let U(X,S) denote the agent’s value function. Then U(X,S) satisfies

0 = max

{
EU(X,S −M)− U(X,S),

UXa+ (1− a)b− US

+ λmax {EU(0, S −M)− U(X,S), U(0, S)− U(X,S)}
}

(64)

plus the following boundary conditions:

U(X̄, S) = bS +
b

λ

(
eλX̄ − 1

)
(65)

U(X, 0) = 0 (66)

The first line of (64) represents the change of utility from reporting a false setback or not.
The second line represents the flow utility from working or shirking, and the third line
represents the change of utility from postponing the report of a true setback or not. The
two boundary conditions come from project completion and termination, respectively, both
of which are verifiable events for the principal.

The idea behind (64) is that the agent is making a branched choice. The first max is over
whether to announce a false setback or not to do that and instead to see what happens over
dt. If there is no false setback, the agent chooses to work or shirk, and whether to postpone
the report of a setback when one occurs.

Outside the randomization region, M = 0 which implies U(X,S −M) − U(X,S) = 0.
That is, the agent does not benefit from falsely reporting a setback. Furthermore, when
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M = 0, (64) implies

0 ≥ max
a

[UXa+ (1− a)b− US + λmax (U(0, S)− U(X,S))] (67)

where the equality is achieved when a = 1 and

U(X,S) = bS +
b

λ

(
eλX − 1

)
(68)

Moreover, (68) satisfies the boundary conditions (65) and (66). Therefore, the agent achieves
the highest utility from exerting the high effort and reporting actual setbacks immediately
outside the randomization region.

Inside the randomization region, Mt equals X̄ − St− with probability St−/X̄ and equals
−St− with probability 1− St−/X̄. Then equation (64) becomes

0 = max

{(
1− S

X̄

)
U(X, 0) +

S

X̄
U(X, X̄)− U(X,S), (69)

UXa+ (1− a)b− US

+ λmax

{(
1− S

X̄

)
U(0, 0) +

S

X̄
U(0, X̄)− U(X,S), U(0, S)− U(X,S)

}}
(70)

With boundary conditions U(X, 0) = 0 and U(X, X̄) = bX̄ + b
λ

(
eλX − 1

)
(from (68) at

S = X̄). Replacing U(X, 0) and U(X, X̄) in (70) with these boundary conditions and
substituting in U(X,S) = bS + b

λ

(
eλX − 1

)
yields

0 = max

{(
S

X̄
− 1

)
b

λ

(
eλX − 1

)
, b
(
eλX − 1

)
(a− 1)

}
(71)

where we have used the fact that S/X̄ < 1 inside the randomization region. Equation (71)
implies that the agent prefers working if X > 0 and is indifferent if X = 0. The agent strictly
prefers not announcing a false setback, and is indifferent between postponing the report of
a setback or not when one actually occurs. �

C Proof of Proposition 3

Recall the definition of τ(S) from (10). From the randomization for S ∈ [0, X̄], we have
τ(S) = S

X̄
τ(X̄) for S ∈ [0, X̄].

We will use an iterative procedure to find τ(S) = τn(S) on interval S ∈ (X̄ + nX̄, X̄ +
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(n+ 1)X̄] for n ≥ 0. We start by observing that for any S ≥ X̄,

τ(S) =

∫ X̄

0

λe−λt(t+ τ(S − t))dt+ e−λX̄X̄ (72)

Further define

φn(ν) =

∫ X̄

ν−nX̄
λe−λtτn−1(ν − t)dt (73)

ξ =

∫ X̄

0

λe−λttdt+ e−λX̄X̄ =
1

λ

(
1− e−λX̄

)
(74)

To continue,

τ(S) =

∫ S−nX̄

0

λe−λt(t+ τ(S − t))dt+

∫ X̄

S−nX̄
λe−λt(t+ τ(S − t))dt+ e−λX̄X̄

=

∫ S−nX̄

0

λe−λtτ(S − t)dt+

∫ S−nX̄

0

λe−λttdt

+

∫ X̄

S−nX̄
λe−λt(t+ τ(S − t))dt+ e−λX̄X̄

=

∫ S−nX̄

0

λe−λtτ(S − t)dt+

∫ X̄

0

λe−λttdt+

∫ X̄

S−nX̄
λe−λtτ(S − t)dt+ e−λX̄X̄

=

∫ S−nX̄

0

λe−λtτ(S − t)dt+ φn(S) + ξ (75)

Differentiating with respect to S and then integrating by parts yields

τ ′(S) = λφn(S) + φ′n(S) + λξ (76)

So,

τ(S) = τ(nX̄) +

∫ S

nX̄

τ ′(ν)dν = τ(nX̄) +

∫ S

nX̄

(λφn(ν) + φ′n(ν) + λξ)dν (77)

where ν − t ≤ nX̄ and τ(ν), ν ≤ X̄ is known from iteration in the previous round.
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C.1 Part (i)

First, τ(S) is increasing. For S ≤ X̄, we have τ(S) = τ1(X̄)

X̄
S, and hence τ ′(S) > 0. For

S > X̄,

τ(S) =

∫ X̄

0

λe−λt(t+ τ(S − t))dt+ e−λX̄X̄ (78)

and taking the derivative yields

τ ′(S) =

∫ X̄

0

λe−λtτ ′(S − t)dt (79)

Hence τ ′(S) > 0 because τ ′(S − t) < 0 for ∀0 < t < S.

Second, τ(S) is concave for S ∈ (nX̄, (n + 1)X̄]. When n = 1, we have τ1(S) = τ1(X̄)

X̄
S,

which is weakly concave in S. Then, suppose concavity holds for n−1, we show that it holds
for n as well. Since

τ ′n(S) = λφn(S) + φ′n(S) + λξ (80)

differentiating yields

τ ′′n(S) = λφ′n(S) + φ′′n(S) (81)

Differentiating φ yields

φ′n(S) =− λe−λ(S−nX̄)τn−1(nX̄) +

∫ X̄

S−nX̄
λe−λtτ ′n−1(S − t)dt (82)

φ′′n(S) =λ2e−λ(S−nX̄)τn−1(nX̄)− λe−λ(S−nX̄)τ ′n−1(nX̄) (83)

− λe−λ(S−nX̄)τ ′n−1(nX̄) +

∫ X̄

S−nX̄
λe−λtτ ′′n−1(S − t)dt (84)

and

τ ′′n(S) = λφ′n(S) + φ′′n(S)

= λ

∫ X̄

S−nX̄
λe−λtτ ′n−1(S − t)dt− 2λe−λ(S−nX̄)τ ′n−1(nX̄) + λe−λtτ ′′n−1(S − t)dt

≤ λ

∫ X̄

S−nX̄
λe−λtτ ′n−1

(
S − (S − nX̄)

)
dt− 2λe−λ(S−nX̄)τ ′n−1(nX̄) + 0

= −λe−λX̄τ ′n−1(nX̄)− λe−λ(S−nX̄)τ ′n−1(nX̄) < 0 (85)

The last step is from the fact that τn−1 is a increasing function. So, by induction we have
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τn(S) is concave on interval S ∈ (nX̄, (n+ 1)X̄] for every n.
Third, we show that τn(S) is a polynomial of order n. We have

λφn(S) + φ′n(S) = λ

∫ X̄

S−nX̄
λe−λtτn−1(S − t)dt− λe−λ(S−nX̄)τn−1(nX̄) (86)

+

∫ X̄

S−nX̄
λe−λtτ ′n−1(S − t)dt

= λ

∫ X̄

S−nX̄
λe−λtτn−1(S − t)dt− λe−λ(S−nX̄)τn−1(nX̄)

+ λe−λ(S−nX̄)τn−1(nX̄)− λe−λX̄τn−1(S − X̄)

− λ
∫ X̄

S−nX̄
λe−λtτn−1(S − t)dt

= −λe−λX̄τn−1(S − X̄) (87)

and therefore (77) implies

τn(S) = τ(nX̄) +

∫ S

nX̄

(
λξ − λe−λX̄τn−1(S − X̄)

)
dν (88)

since τ1 is linear and hence polynomial of order 1, by (88) τ2 is quadratic and τn is polynomial
of order n.

C.2 Parts (ii) and (iii)

Because

τ(S) =
1

λ

[
1− P (S)eλX̄ − (1− P (S))

]
<∞ (89)

τ(S) is a bounded function. Since every monotone and bounded function in R converges, let
the limit be

τ(∞) = lim
S→∞

τ(S) (90)

Since

τ(S) =

∫ X̄

0

λe−λt(t+ τ(S − t))dt+ e−λX̄X̄ (91)
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taking S →∞ yields

τ(∞) =

∫ X̄

0

λe−λt(t+ τ(∞))dt+ e−λX̄X̄ =
1

λ
(1− e−λX̄) + τ(∞)(1− e−λX̄) (92)

hence we have

τ(∞) =
eλX̄ − 1

λ
(93)

Moreover, by the convergence of τ(S), we have

lim
S→∞

τ ′(S) = lim
S→∞

lim
∆S→0

τ(S + ∆S)− τ(S)

∆S
= 0 (94)

Then, at S = nX̄, the left slope is

τ ′n−1(nX̄) = λφn−1(nX̄) + φ′n−1(nX̄) + λξ

= λ

∫ X̄

X̄

λe−λtτn−1(nX̄ − t)dt− λe−λX̄τn−1(nX̄)

+

∫ X̄

X̄

λe−λtτ ′n−1(nX̄ − t)dt+ λξ

= −λe−λX̄τn−1(nX̄) + λξ (95)

The right slope is

τ ′n(nX̄) = λφn(nX̄) + φ′n(nX̄) + λξ

= λ

∫ X̄

0

λe−λtτn−1(nX̄ − t)dt− λτn−1(nX̄) + λξ (96)

Hence

τ ′n−1(nX̄)− τ ′n(nX̄) = −λe−λX̄τn−1(nX̄)− λ
∫ X̄

0

λe−λtτn−1(nX̄ − t)dt+ λτn−1(nX̄)

> −λe−λX̄τn−1(nX̄)− λ
∫ X̄

0

λe−λtτn−1(nX̄)dt+ λτn−1(nX̄)

= −λe−λX̄τn−1(nX̄)− λτn−1(nX̄) + λτn−1(nX̄)− λτn−1(nX̄)

= 0

where the inequality comes from the fact that τn−1 is a (strictly) increasing function. �
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D Proof of Proposition 4 and Proposition 5

D.1 Value Function Without Commitment to Randomization

The same steps used to prove Proposition 1 apply in this setting, except that upon receiving
an extension the agent must randomize between working and shirking such that the princi-
pal’s expected payoff from granting the extension is the same as from canceling the project,
namely 0.

First observe that the agent’s expected utility from working immediately following an
extension is bX̄, which is the same as his utility from shirking out the clock – so he is willing
to randomize at this point. Now, suppose the agent receives an extension and works. Let
s ∈ [0, X̄] be the amount of time since the extension was granted. Any setback during the
extension will reset the principal’s expected utility to 0. Therefore her expected utility when
the agent works as a function of s is

(
R− c(X̄ − s)

)
e−λ(X̄−s) −

∫ X̄−s

0

ctλe−λtdt (97)

= Re−λ(X̄−s) − c

λ

(
1− e−λ(X̄−s)

)
≡ F̂ (X̄ − s, s), (98)

where R ≡ R− b
λ

(
eλX̄ − 1

)
is the principal’s surplus at the completion of the project.

Let q be the probability the agent shirks out the clock following an extension. Then
randomization between cancelation and granting an extension is incentive compatible for
the principal iff

(1− q)F̂ (X̄, 0)− qcX̄ = 0, . (99)

Solving for q yields the formula given in the claim.
There is one further item that must be checked: the principal must be willing to continue

the contract if the agent does not report a setback. This must be checked because the
principal does not know if the agent is working or shirking out the clock and shirking does
not generate setbacks. The probability that the principal believes the agent is shirking
conditional on having reported no setbacks by s is

q(s) =
F̂ (X̄, 0)

F̂ (X̄, 0) + cX̄e−λs
.

42



Then, the principal is willing to let the clock run during the extension iff for all s ∈ [0, X̄],

(1− q(s))F̂ (X̄ − s, s)− q(s)c(X̄ − s) ≥ 0

⇐⇒ X̄e−λsF̂ (X̄ − s, s) ≥ (X̄ − s)F̂ (X̄, 0)

⇐⇒ X̄e−λX̄
(
Re−λ(X̄−s) − c

λ

(
1− e−λ(X̄−s)

))
≥ (X̄ − s)

(
Re−λX̄ − c

λ

(
1− e−λX̄

))
⇐⇒ c

λ

(
X̄ − s+ se−λX̄ − X̄e−λs

)
≥ −sRe−λX̄ .

The right side is non-positive, so the claim will hold if the left side is non-negative for
s ∈ [0, X̄]:

X̄ − s+ se−λX̄ − X̄e−λs ≥ 0.

At s ∈ {0, X̄} the inequality above evidently binds. For s ∈ (0, X̄), differentiating the left
side w.r.t. s yields −1 + e−λX̄ + λX̄e−λs. This is positive at s = 0, negative at s = X̄, and
0 at a single point between 0 and X̄.�

D.2 Optimal Initial Time Budget

Define P̂ (S0) to be the probability that the project succeeds given an initial time budget S0

and initial progress X0 = 0. Then, the principal’s value function can be written

F̂ (S0, X = 0) = P̂ (S0)E

[
R− bSτ̂proj −

b

λ
(eλX̄ − 1)

∣∣∣∣S0, Xτ̂proj = X̄

]
− cE[τ̂ proj|S0]

(100)

The first term is the expected reward minus payment, the second term is expected running
cost.

Define τ̂work as the random time the agent stops working (either by completion of project,
or by the agent shirking) and τ̂ proj as the random time the project stops (either by completion
of project, or by termination of project). Both τ̂work and τ̂ proj are FNt − stopping times, and
τ̂work ≤ τ̂ proj.

Next, we continue with the martingale analysis, following the main text. For t ≤ τ̂work,
we have that dXt = dt − XtdNt implies d(eλXt − λt) = (1 − λeλXt)(dNt − λdt), which is a
martingale. Otherwise, for τ̂work < t ≤ τ̂ proj, we have dXt = 0, which implies that eλXt − λt
is not a martingale. Applying the optional stopping theorem regarding eλXt − λt, we have

1 = E[eλXt − λt|S0, t = τ̂work]

= P̂ (S0)E[eλXτ̂work |S0, Xτ̂work = X̄] + (1− P̂ (S0))E[eλXτ̂work |S0, Xτ̂work = 0]− λE[τ̂work|S0]

= P̂ (S0)eλX̄ + (1− P̂ (S0))− λE[τ̂work|S0] (101)

Notice that we have used the fact that success or failure of the project is fully determined
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at t = τ̂work – one does not have to wait until t = τ̂ proj. Solving, we have

P̂ (S0) =
λ

eλX̄ − 1
E[τ̂work|S0] (102)

Next, apply the optional stopping theorem regarding St + t

S0 = E[St + t|S0, t = τ̂ proj]

= P̂ (S0)E[Sτ̂proj |S0, Xτ̂proj = X̄] + (1− P̂ (S0))E[Sτ̂proj |S0, Xτ̂proj = 0] + E[τ̂ proj|S0]

= P̂ (S0)E[Sτ̂proj |S0, Xτ̂proj = X̄] + E[τ̂ proj|S0] (103)

The third line follows from that E[Sτ̂proj |S0, Xτ̂proj = 0] = 0. If the project has ended and it
is incomplete, there must not be any time remaining.

Examining the terms in the principal’s value function one at a time, we have

P̂ (S0)R =
Rλ

eλX̄ − 1
E[τ̂work|S0] (104)

−P̂ (S0)E[bSτ̂proj |S,Xτ̂proj = X̄] = bE[τ̂ proj|S0]− bS0 (105)

−P̂ (S0)
b

λ
(eλX̄ − 1) = −bE[τ̂work|S0] (106)

−cE[τ̂ proj|S0] = −cE[τ̂ proj|S0] (107)

Adding these up and re-arranging, we obtain

F̂ (S0, X = 0) = R
λE[τ̂work|S0]

eλX̄ − 1
− cE[τ̂ proj|S0]− bS0 + b

(
E[τ̂ proj|S0]− E[τ̂work|S0]

)
F̂ (S0, X = 0) =

(
Rλ

eλX̄ − 1
− c
)

E[τ̂ proj|S0]− bS0 +

(
Rλ

eλX̄ − 1
+ b

)(
E[τ̂work|S0]− E[τ̂ proj|S0]

)
Next, we observe that upon entering the short-leash region, we have E[τ̂ proj|S = X̄,X =

0] = E[τ |S = X̄,X = 0] = X̄. This means that commitment does not change the average
project duration. In addition, outside the short-leash region, the agent is not shirking, and
the evolution of X and S are the same with and without commitment. Thus, we have
E[τ̂ proj|S0] = E[τ |S0], and we can write the principal’s value function without commitment
as

F̂ (S0, X = 0) = F (S0, X = 0)−
(

Rλ

eλX̄ − 1
+ b

)(
E[τ̂ proj|S0]− E[τ̂work|S0]

)
(108)

As a reminder, F is the principal’s value function with commitment. We want to show that(
E[τ̂ proj|S0]− E[τ̂work|S0]

)
is decreasing in S0.

Next, we will use the fact that outside of the short-lease region, the agent never shirks.
Thus, if the project succeeds before entering the short-lease region, we have τ̂work = τ̂ proj.

44



Then, we can write the difference between E[τ̂ proj|S0] and E[τ̂work|S0] entirely as a function
of the probability of entering the short-lease region and the expected time spent there:

E[τ̂ proj|S0]− E[τ̂work|S0] = (1− Pr(Xτ̂proj = X̄, Sτ̂proj > X̄))

×
(
E[τ̂ proj|Sτ̂proj ≤ X̄]− E[τ̂work|Sτ̂work ≤ X̄]

)
(109)

where (1−Pr(Xτ̂proj = X̄, Sτ̂proj > X̄)) = (1−Pr(Xτ̂work = X̄, Sτ̂work > X̄)) is the probability
of entering the short lease region. Then we notice: E[τ̂ proj|Sτ̂proj ≤ X̄]−E[τ̂work|Sτ̂work ≤ X̄],
the difference in the expected time taken by the end of work and the end of the project in
the short leash region, does not depend on the starting value of S0.

Since the probability that the agent does not succeed before the short-leash region is
decreasing in S, we must have E[τ̂ proj|S0] − E[τ̂work|S0] is decreasing in S0. Thus, from
(108), the principal’s value function without commitment is equal to the value function
with commitment minus a term that is decreasing in S0; without-commitment and with-
commitment have increasing differences in S0. Both value functions are bounded from above
and are −∞ for S0 →∞. By the standard logic of increasing differences, we must have that
the optimal S0 without commitment is weakly larger than the optimal S0 with commitment.
�
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