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Abstract

Governments face a trade-off between insuring bondholders and taxpayers. If the government

fully insures bondholders by manufacturing risk-free zero-beta debt, then it cannot also insure

taxpayers against permanent macroeconomic shocks over long horizons. Instead, taxpayers

will pay more in taxes in bad times. Conversely, if the government fully insures taxpayers

against adverse macro shocks, then the debt becomes risky, at least as risky as unlevered equity

claim. As the world’s safe asset supplier, the U.S. appears to have escaped this trade-off thus

far, whereas the U.K. has not.
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In this paper, we show that governments face a trade-off between insuring its bondholders

by making its debt risk-free and insuring its taxpayers and transfer recipients against adverse

macroeconomic shocks. If a government provides more insurance to bondholders, who require

lower risk premia on the government debt as a result, then it can provide less insurance to tax-

payers. In other words, making government debt safer requires raising more tax revenue as a

fraction of GDP from taxpayers in bad times. The larger the sovereign debt burden, the steeper

this trade-off becomes.

A country’s government debt is risk-free if the government debt portfolio has a zero beta,

meaning that its valuation is immune to fluctuations in the economy and financial markets. Default-

free debt is not necessarily risk-free debt, as its valuation can still fluctuate before its expiration.

Manufacturing risk-free debt in the presence of permanent output shocks requires a non-trivial

feat of financial engineering. The Treasury’s bond portfolio is backed by a long position in a claim

to tax revenue and a short position in a claim to government spending. Both claims are exposed to

output risk, and we define these exposures as their respective betas. The Treasury’s long position

in the tax claim exceeds the short position in the spending claim by the value of outstanding debt.

To render the entire Treasury portfolio risk-free, the claim to tax revenues needs to have a lower

beta than the spending claim to ensure that the beta of the Treasury portfolio is exactly zero.

Recast in the language of Modigliani-Miller, the claim to tax revenue can be regarded as the

government’s unlevered asset, which is divided into the government debt and the claim to gov-

ernment spending. To manufacture risk-free debt, the spending claim has to be a levered version

of the government’s asset. Therefore, just as the equity has to be riskier than a typical firm’s asset

in order to generate risk-free debt, the government’s spending beta has to be higher than its tax

beta to ensure a zero debt beta.

The tax claim has a low beta if the present discounted value (PDV) of future tax revenues

increases in bad times, times in which the investor’s marginal utility is high. Since the taxpayers

pay the taxes, they take a short position on the tax revenue claim. From their perspective, a low-

beta tax claim is a risky tax liability. As a result, the government cannot insure taxpayers when

it insures bondholders by keeping the debt risk-free. The larger the amount of outstanding debt,

the more levered the government becomes, and the larger the gap between the tax beta and the

spending beta needs to be to keep the debt risk-free. As the debt grows, the beta of the tax claim

has to go to zero. The trade-off between insuring taxpayers and bondholders steepens.

Conversely, if the government insists on insuring the taxpayers by lowering tax rates in bad

times, then the tax beta is high and the government debt becomes risky for bondholders. The

bondholders now bear the macroeconomic risk. The empirical properties of tax now revenue and

spending are consistent with taxpayer insurance, and hence inconsistent with risk-free debt.

Our paper is the first one to analytically characterize the trade-off between insuring taxpayers

and bondholders at different horizons. We start with a special case where the government keeps
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the debt/output ratio constant. In this case, there is no scope for insurance of taxpayers. The tax

process has to be safer than the spending process at all horizons –short, intermediate and long

horizons. Next, we assume that the government can issue more debt in response to a negative

GDP growth shock rather than raise taxes. That is, it can run a deficit in recessions. In this case,

the tax claim is riskier than the spending claim over short horizons. Over intermediate and longer

horizons, the tax revenue claim has to become sufficiently safe for investors (risky for taxpayers).

When output shocks are permanent, the government can only escape the trade-off over short

horizons. This long-run risk in debt arises from the long-run risk in output, as along as debt and

output are co-integrated. This trade-off survives even when the risk-free rate is lower than the

average growth rate of the economy. How long the government can escape the trade-off depends

on the persistence of the debt/output ratio.

We quantify the trade-off under the assumption that the government commits to a counter-

cyclical debt issuance policy with AR(2) dynamics. In annual data, the U.S. government’s debt/GDP

dynamics over the post-war sample are well described by an AR(2) process with a negative ex-

posure to output shocks. We derive the restrictions that risk-free debt impose on the properties

of the surplus/output ratio. Given those AR(2) dynamics for debt, risk-free debt dictates that

the surpluses quickly revert back to the mean. The impulse response function (IRF) of the sur-

plus/output ratio can only remain negative for two years in response to a negative output shock.

After two years of deficits, the government must run a surplus for the next several years. The fast

mean-reversion of surpluses implied by risk-free debt is at odds with the observed persistence of

surpluses in the U.S. data.

In the post-war data, the U.S. appears to escape the trade-off we have derived: despite its low

government debt risk premium, the U.S. insures its taxpayers against output growth risk. The

sensitivity of federal government spending to GDP growth is much lower than the sensitivity of

federal tax revenues over horizons between one and ten years in the U.S. data. Tax revenues rise

and fall strongly with GDP growth. Spending moves inversely with GDP growth at short horizons

and mildly positively at longer horizons.1 The U.S. government appears to insure taxpayers at all

horizons by lowering their tax rates in recessions as well as by increasing the spending-to-output

ratio in recessions. In the language of asset pricing, the claim to tax revenues has a higher cash

flow beta than the claim to spending.

Over the last two decades, the beta of U.S. government debt has even turned negative (Camp-

bell, Pflueger, and Viceira, 2020). A negative debt beta strictly worsens the trade-off faced by the

U.S. government relative to the zero-beta case we consider. It deepens the puzzle.

We find that the U.K. looks quite different from the U.S. The U.K. government has not provided

nearly as much insurance to its taxpayers as the U.S. government. The U.K.’s beta of tax revenue

1The government spending/GDP ratio is well described by an AR(1) model with negative exposure to output
shocks.
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with GDP growth is 0.5, compared to 3 for the U.S. In the post-war era, the U.K. tax claim has a

smaller beta than the spending claim at longer horizons, consistent with risk-free debt. Prior to

WW-II, the U.K.’s spending policy was even pro-cyclical, and the tax claim had a smaller beta than

the spending claim at all horizons.

How can we reconcile the observed insurance of taxpayers with the low risk premia on gov-

ernment debt in the U.S. data? As the world’s safe asset supplier, unlike the U.K., the U.S. gov-

ernment may have been able to temporarily escape the trade-off if government debt earns large

and counter-cyclical convenience yields. We show how counter-cyclical convenience yields may

help to keep the debt risk-free, even when the government insures its taxpayers. However, the de-

mand curve for safe assets is downward sloping; as the supply increases, the convenience yields

are likely to disappear (Krishnamurthy and Vissing-Jorgensen, 2012). Using a no-arbitrage dy-

namic asset pricing model, Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019b) conclude that

the seigniorage from convenience yields is not quantitatively large enough to fully rationalize the

valuation of the U.S. public debt.

Related Literature Regarding the riskiness of government debt, the focus in the literature has

been mostly on countries’ willingness and ability to repay (see, e.g., Eaton and Gersovitz, 1981;

Bulow and Rogoff, 1989; Aguiar and Gopinath, 2006; Arellano, 2008; DeMarzo, He, and Tourre,

2019, for examples). The trade-off we focus on between bondholder and taxpayer insurance ap-

plies regardless of whether a country contemplates default and regardless of which securities

the country decides to issue (e.g., duration). By changing the maturity composition of debt, the

government may be able to get closer to the optimal tax policy when markets are incomplete, es-

sentially by making the debt riskier (Angeletos, 2002; Buera and Nicolini, 2004; Lustig, Sleet, and

Yeltekin, 2008; Arellano and Ramanarayanan, 2012; Bhandari, Evans, Golosov, and Sargent, 2017;

Aguiar, Amador, Hopenhayn, and Werning, 2019), and shifting risk from taxpayers to bondhold-

ers. Our work is not focused on how the maturity choice of the government informs the riskiness

of debt, but instead focuses directly on the fundamental cash flow determinants of the riskiness of

the government’s balance sheet. The fact that long-term government debt has a negative beta in

recent decades only reinforces our conclusions.

Our paper applies a basic insight from the asset pricing literature to the fiscal policy literature.

Modern asset pricing has consistently found that permanent shocks to output and consumption

account for most of the variance of the pricing kernel, and receive a high price of risk in securities

market (e.g., Alvarez and Jermann, 2005; Hansen and Scheinkman, 2009; Bansal and Yaron, 2004;

Borovička, Hansen, and Scheinkman, 2016; Backus, Boyarchenko, and Chernov, 2018). Models

without large permanent shocks produce bond risk premia that exceed equity risk premia.

If GDP growth has a permanent component, which modern macro and econometrics recog-

nizes to be the case, then the surplus process in levels St inherits that permanent component from
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Yt. Surpluses have long-run risk. Because of the exposure of the surplus to long-run GDP risk,

the claim to current and future surpluses will typically have a substantial risk premium. Since

the value of the surplus claim equals the market value of outstanding debt, the portfolio of gov-

ernment debt is generally a risky asset. The properties of the stationary surplus/output ratios,

which the literature focuses on, are irrelevant for the long-run discount rates of surpluses. For

long-run discount rates, only long-run risk matters (Backus et al., 2018). Therefore, even when

the entire debt portfolio is risk-free—in the sense that there is no news about current or future

surpluses—the risk-free rate is not the right discount rate for surpluses in the presence of perma-

nent output risk. In an economy with permanent GDP growth risk, comparing the risk-free rate

to the average growth rate of the economy, as in Blanchard (2019), sheds no light on the fiscal cost

of deficits. More recently, Barro (2020) makes a related point about dynamic efficiency, correctly

pointing out that the comparison of the risk-free rate to the average growth rate of the economy is

not informative about dynamic efficiency in a economy with growth risk.

There is an extensive literature which tests the government’s inter-temporal budget constraint.

Hansen, Roberds, and Sargent (1991); Hamilton and Flavin (1986); Trehan and Walsh (1988, 1991);

Bohn (1998, 2007) derive time-series restrictions on the government revenue and spending pro-

cesses that enforce the government’s inter-temporal budget constraint. This literature uses the

risk-free rate as the discount rate. This is the right discount rate only when the shocks to output

are temporary and the risk-free rate exceeds the growth rate of the economy.2

We derive restrictions on the surplus/output process that are compatible with the knife-edge

case of risk-free debt. The answer depends crucially on whether GDP has a permanent component

or not. In the realistic case where it does, the surplus/output ratio cannot be sufficiently persistent

to match the dynamics of the U.S. surpluses in the data. Further, we show analytically that the

substantial S-shaped impulse-responses of the surplus/output ratio discussed by Bohn (1998);

Canzoneri, Cumby, and Diba (2001); Cochrane (2019, 2020) are not consistent with risk-free debt.

Those require a debt/output ratio that has dynamics of a higher order than those observed for

debt/output in U.S. data.

The U.S. government debt earns returns close to the risk-free rate, but the cash flow dynamics

do not bear this out: the surpluses are too persistent, not predicted by the debt/GDP ratio and

too risky. We call this the U.S. government risk premium puzzle. The U.S. government debt

risk premium puzzle we document in this paper is distinct from, but related to the government

debt valuation puzzle discussed by Jiang et al. (2019b), because the risk premium puzzle does not

pertain to the first moments of future surpluses.

Our results may help explain why emerging economies with more sovereign risk typically

have more pro-cyclical fiscal policies (Bianchi, Ottonello, and Presno, 2019). These countries

2These authors really test the joint hypothesis that both the government budget constraint and the measurability
condition—to render the debt risk-free—are satisfied.
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do not benefit from the convenience yields, and hence cannot escape the trade-off. In interna-

tional economics, there is a growing literature that emphasizes the U.S. role as the world’s safe

asset supplier (see Gourinchas and Rey, 2007; Caballero, Farhi, and Gourinchas, 2008; Caballero

and Krishnamurthy, 2009; Maggiori, 2017; He, Krishnamurthy, and Milbradt, 2018; Gopinath and

Stein, 2018; Krishnamurthy and Lustig, 2019; Jiang, Krishnamurthy, and Lustig, 2018a, 2019a; Liu,

Schmid, and Yaron, 2019; Koijen and Yogo, 2019). Liu et al. (2019) provide a structural model of

convenience yields and fiscal policy. Government debt can only earn safe asset convenience yields

if it is in fact risk-free. Our paper is the first to show how convenience yields may have helped to

keep the U.S. government debt risk-free.

Our paper contributes to the normative literature on optimal government taxation and debt

management, starting with Barro (1979)’s seminal work on tax smoothing. In the literature af-

ter Barro (1979), starting with Lucas and Stokey (1983), the risk-return trade-off we highlight is

present in the background, but is not explicitly analyzed. Importantly, most of these models do

not have plausible asset pricing implications because they do not have permanent output risk.

When markets are complete, the planner favors shifting the risk from taxpayers to bond investors

(Lucas and Stokey, 1983). We do not derive the optimal tax rate, but show that, for any tax pol-

icy, the government can only truly insure taxpayers over short horizons, while keeping the debt

risk-free. When the government accumulates assets rather than have debt, it can implement the

complete markets Ramsey allocation, as shown by Aiyagari, Marcet, Sargent, and Seppälä (2002).

Insuring taxpayers at all horizons against adverse macro shocks always comes at a large debt

service cost to the Treasury in a model with plausible asset prices.

Brunnermeier, Merkel, and Sannikov (2020) link incomplete risk sharing between agents to

a bubble component in debt. Other equilibrium models that generate violations of the TVC are

Samuelson (1958); Diamond (1965); Blanchard and Watson (1982). Such violations typically show

up in all long-lived assets, including stocks, not just government debt. As our paper shows, it

is not easy to generate violations from transversality when there is enough permanent output

risk in the economy to match the equity risk premium. Put differently, violations of the TVC for

government debt may also result in violations of the TVC for the stock market.

In recent work, Mian, Straub, and Sufi (2020a,b) examine the distributional implications of

government debt issuance, pointing out that the wealthy buy a large share of government (and

private) debt. To the extent that the Gini coefficient of government debt holdings exceeds that of

taxes, the government is trading off insuring the rich versus insuring the middle class.

The paper is organized as follows. Section 1 derives the general trade-off between the insur-

ance of bondholders and taxpayers. When the government commits to plausible spending and

tax revenue policies, the debt will generally be risky. We characterize these risk premia in closed

form. Section 2 develops a simple model with permanent shocks to output and to the investor’s

marginal utility. The governments commits to a spending policy and a debt policy. We solve for
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the tax policy that keeps the debt risk-free. We start with the case of constant debt/output ratios.

Section 3 introduces time-varying debt/output ratios. Section 4 characterizes the trade-off faced

by the government at different horizons. Section 5 explores convenience yields as a resolution of

the U.S. puzzle. Appendix A contains the proofs. Appendix B develops a model without perma-

nent shocks. With only transitory shocks to output and marginal utility, the government is able

to insure taxpayers over longer horizons. However, this model has counterfactual asset pricing

implications. The only model in which the government can insure taxpayers at all horizons is one

in which the output shocks are transitory, but they are priced as if they are permanent.

1 The General Trade-off between Insuring Bondholders and Taxpayers

We use Tt to denote government revenue, and Gt to denote government spending. Mt denotes the

stochastic discount factor. We assume that debt is fairly priced and does not earn any convenience

yields. Let Bt denote the market value of outstanding government debt at the beginning of period

t, before expiring debt is paid off and new debt is issued. The debt can be long-term or short-term,

and it can be nominal or real. In fact, it can be any contingent claim. Jiang et al. (2019b) show

that the value of the government debt equals the sum of the expected present values of future tax

revenues minus future government spending:

Bt = Et

[
∞

∑
j=0

Mt,t+j(Tt+j − Gt+j)

]
, (1)

provided that there are no arbitrage opportunities in the bond market and a transversality con-

dition holds limk→∞ Et Mt,t+kBt+k = 0. This result does not rely on complete markets, and still

applies even when the government can default on the debt. Let PT
t = Et

[
∑∞

j=0 Mt,t+jTt+j

]
and

PG
t = Et

[
∑∞

j=0 Mt,t+jGt+j

]
denote the present values of the “cum-dividend” tax claim and spend-

ing claim. Value additivity then implies that Bt = PT
t − PG

t . The value of a claim to surpluses

equals the value of a claim to taxes minus the value of a claim to spending.

1.1 The Government Debt Risk Premium

For notational convenience, let Dt = Bt − St denote the difference between the market value of

outstanding government debt and the government surplus. By the government budget condition,

Dt is the market value of outstanding government debt at the end of period t, after expiring debt

is paid off and new debt is issued.

Let RD
t+1, RT

t+1 and RG
t+1 denote the holding period returns on the bond portfolio, the tax claim,
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and the spending claim, respectively:

RD
t+1 =

Bt+1

Bt − St
, RT

t+1 =
PT

t+1

PT
t − Tt

, RG
t+1 =

PG
t+1

PG
t − Gt

.

In Jiang et al. (2019b), we show that the government debt portfolio return is the return on a

portfolio that goes long in the tax claim and short in the spending claim:

Et

[
RD

t+1 − R f
t

]
=

PT
t − Tt

Dt
Et

[
RT

t+1 − R f
t

]
− PG

t − Gt

Dt
Et

[
RG

t+1 − R f
t

]
. (2)

This result only relies on equation (1) and additivity.

The government bond risk premium varies dramatically across countries. In some countries,

such as the U.S., this risk premium Et

[
RD

t+1 − R f
t

]
is small. Hall and Sargent (2011) compute a

real return of 168 basis points on all U.S. Treasuries. Jiang et al. (2019b) update this calculation

and compute a risk premium of 111 basis points. The returns on debt issued by peripheral or

developing countries are estimated to be much higher. Using EMBI indices on a short sample,

Borri and Verdelhan (2011) estimate annual excess returns between 4% and 15%. On a much

longer sample going back to the 19th century, Meyer, Reinhart, and Trebesch (2019) estimate excess

returns of around 4% above U.S. and U.K bond returns, taking into account defaults.

1.2 Characterizing the Trade-Off with Return Betas

By rearranging equation (2), we derive the following expression for the risk premium on the tax

claim:

Et

[
RT

t+1 − R f
t

]
=

PG
t − Gt

Dt + (PG
t − Gt)

Et

[
RG

t+1 − R f
t

]
+

Dt

Dt + (PG
t − Gt)

Et

[
RD

t+1 − R f
t

]
. (3)

Governments typically want a counter-cyclical spending claim, i.e. they want to spend more

in recessions. On the other hand, they also want a risky tax claim, because they want to reduce

the tax burden in recessions. As a result, the tax claim’s risk premium Et

[
RT

t+1 − R f
t

]
is high and

the spending claim’s risk premium Et

[
RG

t+1 − R f
t

]
is low. When the debt value Dt is positive, the

fraction PG
t −Gt

Dt+(PG
t −Gt)

is between 0 and 1. Then, for equation (3) to hold, it requires a high risk pre-

mium Et

[
RD

t+1 − R f
t

]
on the government debt portfolio. As the debt risk premium is a measure of

the risk premium or insurance premium charged by bondholders, the government’s debt portfolio

has to be risky.

According to equation (3), the tax revenue claim is the unlevered version of the spending

claim, or, equivalently, the spending claim is the levered version of the tax claim. This result is

analogous to the Miller-Modigliani relation between the unlevered return on equity (the return on
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the tax claim) and the levered return on equity (the return on the spending claim).

We define the beta of an asset i as:

βi
t =

−covt
(

Mt+1, Ri
t+1

)
vart(Mt+1)

.

By the investor’s Euler equation, βi
tλt determines the conditional risk premium of this asset

Et

[
Ri

t+1 − R f
t

]
= βi

t · λt,

where the market price of risk is λt = R f
t · vart(Mt+1).

Let βD
t , βT

t and βG
t denote the beta of the bond portfolio, the tax claim, and the spending claim,

respectively. We assume βY
t > 0, so that the output claim has a positive risk premium. The

following proposition characterizes the relationship of these risk exposures.

Proposition 1. The beta on the tax claim is a weighted average of the beta of the spending claim and the

beta of the debt:

βT
t =

PG
t − Gt

Dt + (PG
t − Gt)

βG
t +

Dt

Dt + (PG
t − Gt)

βD
t .

The proof is in Appendix A.2. Governments want to provide insurance to transfer recipients

by choosing βG
t < βY

t , but they also want to provide insurance to taxpayers by choosing βT
t > βY

t .

However, the following corollary states that βG
t < βY

t < βT
t is impossible if the government debt

is risk-free.

Corollary 1. In order for debt to be risk-free (βD
t = 0), the beta of the tax claim needs to equal the unlevered

beta of the spending claim:

βT
t =

PG
t − Gt

Dt + (PG
t − Gt)

βG
t .

If the government has a positive amount of risk-free debt Dt > 0, there is no scope to insure

taxpayers. Instead, the taxpayers provide insurance to the rest of the economy.

Consider the first case in which the spending claim has a positive beta (βG
t > 0). Then, the

government engineers risk-free debt by lowering the beta of the tax claim relative to that of the

spending claim: βT
t < βG

t . A low beta for the tax claim means that tax revenue must fall by less

than GDP in a recession. Tax rates must rise in recessions. The more debt there is outstanding,

the lower the beta of the tax claim needs to be relative to that of the spending claim. With more

debt, the trade-off between insuring bondholders and taxpayers becomes steeper. The restriction
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on the betas holds true regardless of the specific dynamics of the tax and spending process. In the

next sections, we will derive restrictions on the underlying cash flows by committing to particular

processes for debt/output and spending/output.

The only way the government can provide insurance to debt holders, while keeping the debt

risk-free, is by saving—choosing Dt < 0. In other words, the government can only insure taxpay-

ers at the expense of bondholders.3

Consider the second case in which the spending claim has a negative beta (βG
t < 0). To ensure

risk-free debt, the tax claim must also have a negative beta when Dt > 0 (βT
t < 0). The taxpayers

have large tax payments during recessions; they are insuring the bondholders.

This discussion implicitly assumes that taxpayers are long-lived households who value a dol-

lar in each aggregate state in the same way as the marginal investor in Treasury markets. When

markets are incomplete, agents may have different IMRS. However, even when markets are in-

complete, the aggregate component of households’ IMRS will be common.4 The trade-off we

analyze applies equally to incomplete markets settings.

1.3 Characterizing the Trade-Off with Cash Flow Betas

Thus far, we have characterized the return betas of the tax and spending claims. We can get further

insight on what restrictions risk-free debt imposes on surplus dynamics by studying cash-flow

betas for the surplus claim.

Proposition 2. When the debt is risk-free, the present discounted value of future government surpluses is

measurable in the previous period:

(Et+1 −Et)
∞

∑
j=1

Mt+1,t+jSt+j = 0.

The proof is in Appendix A.3. This expression implies a similar restriction of the “cash flow

betas” of future discounted surpluses:

−covt

(
Mt+1, (Et+1 −Et)

∞

∑
j=1

Mt+1,t+jSt+j

)
= 0.

That is, for the government debt to be risk-free, the cash flow beta of the entire discounted surplus

3Aiyagari et al. (2002) show that it is optimal for a government issuing only risk-free one period debt to accumulate
savings Dt � 0 in the limit. This makes perfect sense, because that allows the government to choose βT

t � βG
t and

insure taxpayers against macro shocks. In the limit, by accumulating sufficient assets, the government can implement
the Lucas and Stokey (1983) complete markets allocation.

4Krueger and Lustig (2010); Werning (2015) show that risk premia are identical to those in the equivalent represen-
tative agent economy, as long as the conditional distribution of idiosyncratic risk does not depend on the aggregate
state of the economy. The only effect from incomplete markets is that the risk-free rate is lower due to a precautionary
savings effect.
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stream must be zero. This result follows directly from the fact that the debt Dt equals the present

discounted value of all future surpluses, and that risk-free debt imposes a zero return beta of debt

(βD
t = 0). For debt to be risk-free, the discounted sum of surpluses must not respond to any future

shock.

This proposition implies a restriction on the dynamics of future surpluses in response to any

shock that arrive at time t + 1. If this shock raises the future surpluses in the short term, either the

future surpluses in the long term or the discount rates have to adjust. Below, we consider models

with simple discount rate dynamics, and focus on the joint restriction on future surpluses.

2 The Insurance Trade-off in a Benchmark Economy

We characterize the trade-off between insuring debtholders and taxpayers in a canonical macro-

finance model in the tradition of Breeden (2005); Lucas (1978); Rubinstein (1974). We reverse-

engineer the revenue process T that keeps the debt risk-free. We do so under simple spending and

debt policies in this section and more complex policies in the next section.

2.1 Characterizing the Trade-off

Consider an economy with permanent output shocks and a homoscedastic stochastic discount

factor (SDF):

Assumption 1. (a) Let Yt and yt = log Yt denote output and its log. All output shocks are i.i.d. and

permanent:

yt+1 = µ + yt + σεt+1,

where εt+1 denotes the innovation to output growth that is i.i.d. normally distributed with mean zero and

standard deviation one.

(b) The log SDF is given by:

mt,t+1 = −ρ− 1
2

γ2 − γεt+1.

(c) The government only issues one-period real risk-free debt.

Note that the one-period risk-free rate in this model is constant and equal to ρ.

To build intuition for the general trade-off between insurance of bondholders and taxpayers,

we start by considering the simplest case of constant spending/output and debt/output ratio

policies.
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Assumption 2. (a) The government commits to a constant spending/output ratio x = Gt/Yt.

(b) The government commits to a constant debt/output ratio d = Dt/Yt.

Under Assumption 2, the government budget constraint implies a counter-cyclical process for

tax revenue-to-GDP (the tax rate):

Tt

Yt
=

Gt

Yt
− Dt

Yt
+ R f

t−1
Dt−1

Yt−1
= x− d (1− exp {−(µ− ρ + σεt)}) .

To perfectly insure the bondholders by keeping the debt risk-free, the government must make

the tax revenue claim counter-cyclical: ∂(T/Y) ∂ε < 0. When the growth rate of output is low

(ε < 0), tax revenue needs to increase as a fraction of GDP. Tax rates must rise in recessions. The

magnitude of the counter-cyclical exposure is increasing in the debt-to-GDP ratio d.

Similarly, the primary surplus/output ratio is counter-cyclical:

st =
St

Yt
=

Tt − Gt

Yt
= −d (1− exp {−(µ− ρ + σεt)}) . (4)

We have that ∂st/∂εt < 0. When the unconditional growth rate of output exceeds the risk-free rate

(µ > ρ), the government runs a primary deficit on average. But when shocks are negative enough

(µ− ρ < −σε), the government must run a primary surplus.

This simple model places tight restrictions on the persistence of surpluses. The conditional

auto-covariance of the surplus/output ratio is zero: covt(st, st−1) = 0. The government cannot

run persistent deficits. When σ→ 0, the government always runs deficits. But µ > ρ now implies

a violation of the TVC, as we show below. This result is more general. With risk-free debt, the

autocorrelation of surpluses tends to zero as the persistence of the debt/output ratio tends to one.

The restrictions on the surplus and tax processes described above were independent on the

SDF model. Next, we turn to valuing the debt as the expected present-discounted value of future

surpluses.

Proposition 3. Under Assumptions 1 and 2, if the transversality condition holds and the primary surplus

satisfies (4), the government debt value is the sum of the values of the surplus strips:

Dt = Et

[
∞

∑
k=1

Mt,t+kSt+k

]
= dYt.

The proof is in Appendix A.4. This proposition confirms that the (ex-dividend) value of out-

standing debt in period t is indeed a constant fraction of output. The proof solves for the price

of a claim to a single future surplus realization (a surplus strip), and adding up the surplus strip

prices at all horizons. The result implies that there is no news about the present discounted value

of future surpluses since output is already known at time t.5

5Hansen et al. (1991) discuss a version of this condition that uses the risk-free rate when devising an econometric
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Note that in this equation, the government surpluses are not discounted at the risk-free rate

even though the debt is risk-free. To see why, consider the valuation equation for debt as a function

of surplus/output ratios:

Dt = Et

[
T

∑
j=0

Mt,t+jYt+jst+j

]
+ Et

[
Mt,t+TYt+T

Dt+T

Yt+T

]
.

The debt/output ratio Dt+T
Yt+T

= d in the second term is constant. The correct TVC for government

debt in this model is given by:

lim
T→∞

Et [Mt,t+TDt+T] = lim
T→∞

exp
{

T(µ− ρ +
1
2

σ2 − γσ)

}
dYt. (5)

This TVC is satisfied if and only if−ρ+ µ+ 1
2 σ2− γσ < 0. The textbook condition ρ < µ is neither

necessary nor sufficient for a TVC violation. A necessary and sufficient condition is that there is

enough permanent, priced risk in output: γσ > µ− ρ + 1
2 σ2. The output risk premium (unlevered

equity risk premium) must be high enough. This ensures that This term Et [Mt,t+TYt+T] → 0 as

T → ∞. So, it is not the case that the government can always run deficits when ρ < µ, at least not

without violating the TVC.6 Note that ρ < µ implies a violation of TVC only as σ→ 0. In general,

the output risk premium matters even when debt is risk-free. The risk-free rate is not the correct

discount rate for surpluses even when the debt is risk-free, in the presence of permanent output

shocks.

Next, we turn to the main result characterizing the expected return and beta of the tax claim.

Proposition 4. (a) The ex-dividend values of the spending and revenue claims are given by:

PG
t − Gt = x

ξ1

1− ξ1
Yt,

PT
t − Tt =

(
d + x

ξ1

1− ξ1

)
Yt,

with ξ1 = exp
{
−ρ− γσ + µ + 1

2 σ2}.

(b) The risk premia and betas on the tax claim and the spending claim satisfy:

Et

[
RT

t+1 − R f
t

]
=

x ξ1
1−ξ1

d + x ξ1
1−ξ1

Et

[
RG

t+1 − R f
t

]
, (6)

approach to testing the budget constraint: (Et+1 −Et)
[
∑∞

k=1 exp(−r f
t,t+k)St+k

]
= 0. However, this condition is equiv-

alent to the one in the Proposition, only if the risk-free rate exceeds the growth rate of the economy. If not, this equation
may fail even when the condition in Proposition 3 holds.

6See Bohn (1995) for an early reference on why discounting at the risk-free may fail. However, Bohn (1995) refers to
this case as one in which the government runs persistent deficits, while the deficits really are uncorrelated over time. In
recent work, Barro (2020) points out that comparing µ to ρ is not informative about dynamic efficiency, consistent with
our result, unless σ = 0.
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βT =
x ξ1

1−ξ1

d + x ξ1
1−ξ1

βG < βG. (7)

The proof is in Appendix A.5. The constant ξ1 is the price/dividend ratio of a one-period

output strip, a claim to GDP next year. The expected return on this output strip is given by

Et
[
RY

t+1

]
= exp(µ+0.5σ2)

exp(−ρ−γσ+µ+0.5σ2)
= exp(ρ + γσ). Hence, the (log of the multiplicative) output risk

premium is constant and equal to γσ. Since spending is a constant fraction of output, the risk

premium on the spending claim equals that of the output claim: E[RG − R f ] = E[RY − R f ]. The

beta of the spending claim equals the beta of the output claim: βG = βY > 0.

The investor in government debt is long in a tax revenue claim and short in a spending claim.

To make the debt risk-free, as long as the debt/output ratio d is positive, we need to render the

government tax revenue process safer than the spending process. A positive d implies the fraction
x ξ1

1−ξ1

d+x ξ1
1−ξ1

is between 0 and 1, which requires the return on the tax claim to be less risky than the

return on the output claim: 0 < βT < βY. When output falls, tax revenues must fall by less. The

tax rate increases. In other words, there is no scope to insure taxpayers. As the debt/output ratio d

increases, the government needs to make the tax revenue increasingly safe. The tax claim is really

a portfolio of a claim to government spending and risk-free debt. The larger the debt/output ratio

d, the safer the tax claim needs to be. As the debt/output ratio approaches infinity, the beta of the

tax claim tends to 0.

2.2 Quantifying the Trade-off

Panel A of Table 1 proposes a calibration of the model that matches basic features of post-war U.S.

data. We set γ to 1. This parameter measures the maximum Sharpe ratio in the economy. A long

asset pricing literature suggests that this is a reasonable value given high average excess returns

on a broad set of risky assets. The standard deviation of output is set to σ = 0.05. The growth rate

of real GDP is set to its observed value: µ = 3.1%. The real risk-free rate ρ is set to 2%. Spending

accounts for 10% of GDP in post-war data: x = 0.10.

Note that this calibration features a risk-free rate below the growth rate of output. However,

per our discussion above, the TVC is satisfied because−ρ + µ + 1
2 σ2− γσ = log(ξ1) = −0.0418 <

0. The government cannot simply roll over the debt. The surpluses need to satisfy tight restric-

tions.

Figure 1 plots the risk premia on the tax and the spending claim as we vary the debt/output

ratio d. The risk premium on the spending claim is 5% per annum. This is also the output risk

premium, which we can think of as an unlevered equity premium. By Corollary 4, the risk pre-

mium on the tax claim is given by (6). The risk premium on the tax claim is 5% when d = 0. It

falls to 4% when d = 1, and close to 3% when d = 2. As the government becomes more levered,
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Table 1: Benchmark Calibration for U.S.

Panel A: Preferences and Output Dynamics
γ 1 maximum annual Sharpe ratio
ρ 2.0% real risk-free rate
µ 3.1% mean of growth rate of output
σ 5.0% std. of growth rate of output

Panel B: Debt/Output Ratio Dynamics
λ 1.94× σ sensitivity of debt/output to output innovations
d = exp {φ0/(1− φ1 − φ2)} 0.43 mean of debt/output
φ1 1.40 AR(1) coeff of debt/output
φ2 -0.48 AR(2) coeff of debt/output

Panel C: Government Spending/Output Ratio Dynamics
βg 1.53× σ sensitivity of spending/output to output innovations
ϕ

g
1 0.88 AR(1) coeff of spending/output

x = exp
{

ϕ
g
0/(1− ϕ

g
1)
}

0.10 mean of govt. spending/output

the tax claims needs to become safer for debt to remain risk-free. The scope for taxpayer insurance

disappears. This trade-off steepens when we increase the maximum Sharpe ratio γ from 1 to 2.

When γ = 2, the risk premium on the spending claim is 10% per annum. The risk premium on

the tax claim falls to 6% when d = 1 and close to 4% when d = 2.

Figure 1: Risk Premium of T and G Claims with γ = 1 or 2

The figure plots the implied risk premium of the T and G claims when the debt/output ratio and spending/output ratio are constant.
The figure plots two values for the maximum Sharpe ratio γ of 1 (left panel) and γ of 2 (right panel). The other parameters are given
in Table 1.
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3 Model with State-Contingent Debt/Output

The previous section showed that there is no scope for insuring taxpayers at any horizon in the

presence of permanent output shocks when the debt/output ratio is constant. Next, we allow

the government to introduce state-contingent variation in the debt/output ratio. This will create

limited opportunities for the government to temporarily insure taxpayers over short horizons.

3.1 Characterizing the Trade-Off with Counter-cyclical Debt/Output

We allow the government to vary the debt/output ratio counter-cyclically.

Assumption 3. The government commits to a policy for the debt/output ratio dt = Dt/Yt given by:

log dt =
P

∑
p=1

φp log dt−p + φ0 − λεt −
1
2

λ2,

where λ > 0 so that the debt-output ratio increases in response to a negative output shock εt.

The results in Section 1 still apply and are a straightforward generalization of the results from

the simple benchmark model of Section 2. The value of the spending is unchanged and the value

of the tax claim now depends on the time-varying debt/output ratio dt:

PG
t − Gt = x

ξ1

1− ξ1
Yt, PT

t − Tt =

(
dt + x

ξ1

1− ξ1

)
Yt.

The tax claim’s conditional beta satisfies:

βT
t =

x ξ1
1−ξ1

dt + x ξ1
1−ξ1

βG
t .

Can the government systematically issue more risk-free debt, instead of raising taxes, when

the economy is hit by a permanent, adverse shock, in order to break the restriction on insurance

of taxpayers? We consider two special cases for the debt/output dynamics.

Case 1: AR(1) Assume that the debt/output ratio evolves according to an AR(1)-process:

log dt = φ0 + φ1 log dt−1 − λεt −
1
2

λ2.

There are two sub-cases. First, when 0 < φ1 < 1, the debt/output process is stationary. Second,

when φ1 = 1 and φ0 = 0, the debt/output process is a martingale (non-stationary). In both cases,

a positive λ means that the debt/output ratio increases when the shock εt is negative, implying a

counter-cyclical debt policy.
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First, we need to make sure the transversality (TVC) is satisfied. How persistent can debt be

without violating TVC?

Proposition 5. Under Assumptions 1 and 3 with the maximal lag P = 1, (a) when 0 < φ1 < 1, the TVC

condition is satisfied if and only if:

log(ξ1) = −ρ + µ +
1
2

σ(σ− 2γ) < 0.

(b) When φ1 = 1 and φ0 = 0, then the TVC condition is satisfied if and only if:

log(ξ1) + λ(γ− σ) = −ρ + µ +
1
2

σ(σ− 2γ) + λ(γ− σ) < 0.

The proof is in Appendix A.6. For the case of 0 < φ1 < 1, the TVC is satisfied whenever the

price-dividend ratio of a claim to next period’s output is less than one. That is, when investors

are willing to pay less than Yt today for a claim to Yt+1. This requires the discount rate to exceed

the growth rate of GDP (modulo a Jensen adjustment). This condition can be satisfied even when

ρ < µ, as long as the risk premium γσ is large enough.

For the random walk case in which φ1 = 1, the same condition ensures that the TVC is satisfied

when the government does not pursue counter-cyclical stabilization (λ = 0). If the government

does pursue counter-cyclical stabilization (λ > 0), then the TVC is only satisfied if

γσ− λ(γ− σ) > −ρ + µ +
1
2

σ2 ⇔ λ <
ρ + γσ− µ− 1

2 σ2

γ− σ
.

The left-hand side of the first inequality is now lower than before when the Sharpe ratio of the

economy exceeds the volatility of output (γ > σ). When debt issuance is sufficiently counter-

cyclical, λ > σ, the expression on the left-hand side is decreasing in the economy’s maximum

Sharpe ratio γ. For high enough γ, the TVC is violated. Intuitively, when investors are risk averse

enough, the insurance provided by the counter-cyclical debt issuance policy is so valuable that

the price of a claim to the debt outstanding in the distant future dt+TYt+T fails to converge to zero.

This claim is a terrific hedge. This is the first important insight contributed by asset pricing theory.

If output is subject to permanent, priced risk and we want to rule out arbitrage opportunities then

there have to be limits to the government’s ability to pursue counter-cyclical debt issuance. This

bound on λ is shown in the second inequality. When the government exceeds this bound, it has

granted itself an arbitrage opportunity.
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Case 2: AR(2) As we show below, a better description of the debt/output ratio is the data is an

AR(2) process:

log dt = φ0 + φ1 log dt−1 + φ2 log dt−2 − λεt −
1
2

λ2. (8)

When the roots of the characteristic equation 1− φ1z − φ2z2 = 0 lie outside the unit circle, the

debt/output process is mean-reverting. The result of part (a) of Proposition 5 applies. If one or

both roots are smaller than one, the result in part (b) of Proposition 5 applies.

Response of the Surplus to Adverse Shock We can compute the impulse-response functions

(IRF) of the surpluses with respect to an output shock in closed form when the government is-

sues risk-free debt. These moments are particularly powerful because they do not depend on the

properties of the SDF.

We start from the expression for the surplus/output ratio in period t + j for j ≥ 1:

st+j =
St+j

Yt+j
= dt+j−1 exp(ρ− µ− σεt+j)− dt+j.

If we assume that the risk-free rate equals the growth rate of the economy (µ = ρ), we obtain

closed-form expression for the IRF of the surplus with respect to an output shock. Specifically, the

IRF is evaluated at ετ = 0 for all τ, and hence dt = exp( φ0− 1
2 λ2

1−φ1
) = d.

Proposition 6. If Assumptions 1 and 3 hold, the TVC is satisfied, and ρ = µ,

(a) when the debt/output ratio follows an AR(1) process, the IRF of the surplus/output ratio is given by:

∂
St+j
Yt+j

∂εt+1
= (λ− σ)d, for j = 1,

= λφ
j−1
1 (φ1 − 1)d, for j > 1.

(b) when the debt/output ratio follows an AR(2) process, the IRF of the surplus output ratio is given by:

∂
St+j
Yt+j

∂εt+1
= (λ− σ)d, for j = 1,

= λ(φ1 − 1)d, for j = 2,

= λ(ψj−1 − ψj−2)d, for j > 2.

where ψj = φ1ψj−1 + φ2ψj−2, j > 2; ψ2 = φ2 + φ1ψ1; ψ1 = φ1.
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(c) When the debt/output ratio follows an AR(3) process, the IRF of the surplus output ratio is given by:

∂
St+j
Yt

∂εt+1
= (λ− σ)d, for j = 1,

= λ(φ1 − 1)d, for j = 2,

= λ(ψ2 − ψ1)d, for j = 3,

= λ(ψj−1 − ψj−2)d, for j > 3.

where ψj = φ1ψj−1 + φ2ψj−2 + φ3ψj−3, j > 3; ψ3 = φ3 + φ2ψ1 + φ1ψ2; ψ2 = φ2 + φ1ψ1; ψ1 = φ1.

The proof is in Appendix A.7. For an AR(1), the initial response of the surplus is positive in the

empirically relevant case where λ > σ. That is, a negative shock to output is countered with a large

enough government debt issuance that the surplus in the initial period can be negative without

jeopardizing the risk-free nature of the debt. However, the deficit must turn to a surplus starting

in the second year since φ1 < 1. Surpluses remain in the years that follow. As the persistence of

the debt/output process φ1 increases, the response of the surplus/output ratio converges to zero

in year 2 and beyond.

For an AR(2), by choosing φ1 > 1, the government can run a deficit in the year of the shock

(year 1) as well as in the following year. In year 3, the IRF equals λ(ψ2−ψ1) = λ(φ2 + φ1(φ1− 1)).

This expression can be positive or negative depending on parameter values but is smaller than

the response in year 2. In other words, the government’s ability to run a third year of deficits in

response to the negative output shock is either limited or gone. The IRF flips sign in year 3 or 4.

The government must revert to running surpluses as the ACFs decline: ψj−1 < ψj−2.

With higher-order AR(p) models for debt/output, the government is able to run deficits for

longer before a reversal. For example, for an AR(3), there is an additional year of deficits possi-

ble while keeping debt risk-free. These deficits must be made up by several years of surpluses

afterwards. The surplus dynamics can display more pronounced hump-shaped IRFs. However,

as shown below, there is limited empirical support for higher-order AR(p) dynamics (i.e., p > 2)

in the observed US debt/output process.

Persistence of the Surplus The auto-covariance of the surplus/output ratio is defined as fol-

lows:

covt(st+1, st+j) = Et[st+1st+j]−Et[st+1]Et[st+j].

In the case of an AR(1) for debt/output, we can show that the conditional autocovariance declines

to zero as the persistence of the debt/output process grows: limφ1→1 covt(st+1, st+j) = 0. Recall

that in the case of a constant debt/output ratio considered in the previous section, surplus/output

ratios were uncorrelated at all horizons. This result is a natural extension.

19



Predictability of the Surplus When debt is risk-free, an increase in debt today needs to be fol-

lowed by higher future surpluses. For the realistic case of an AR(2) process for debt/output, those

surpluses must begin 2–3 years after the initial increase in debt. In the model, the debt/output

ratio is a strong predictor of future surpluses. Below, we study this predictability relationship in

the model and contrast it to that in the data.

In sum, insisting on debt to be risk-free imposes tight constraints on (i) how much and how

long the government can run deficits in response to an adverse shock, (ii) on the persistence of the

surplus/output ratio, and (iii) on the predictability of future surplus/output ratios by the current

debt/output ratio.

3.2 Quantifying the Trade-Off with Counter-cyclical Debt/Output

Persistence of Fiscal Processes in the Data Panel A of Figure 2 plots the sample autocorrelation

function (ACF) of the log government debt/output ratio as a function of the number of annual

lags. The top right panel plots the partial autocorrelation function (PACF). They are estimated

on the post-war U.S. sample (1947–2019). The PACF function indicates that an AR(2) process fits

the data well. Lags beyond two years in the PACF are not statistically different from zero. The

point estimates for φ1 and φ2 are 1.40 and -0.48, respectively. Both roots lie outside the unit circle

(1.66 and 1.25), so that the debt/output process is stationary. While the AR(2) is our preferred

specification, if we were to fit an AR(1), the point estimate for φ1 would be 0.986.

We set φ0 to match the unconditional mean of the debt/output ratio of 0.43. Finally, we set λ =

1.953× σ equal to match the slope coefficient in a regression of the debt/output ratio innovations

on GDP growth in the post-war U.S. sample. A one percentage point increase in GDP growth

lowers the debt/output ratio by 1.95 percentage points. The calibration is reported in Table 1.

Given our values of σ = 0.05, γ = 1, and λ = 1.96σ = 0.098, we have γσ − λ(γ − σ) < 0.

If debt/output were non-stationary (have roots inside the unit circle), then this much counter-

cyclicality would result in a violation of the TVC condition. The coefficient λ would need to

remain below 0.85σ, which is only half of its empirical value, for the TVC to be satisfied in this

case. Once we exceed this upper bound, the value of outstanding debt explodes. To be clear, the

data suggest that the debt/output ratio is stationary, in which case the TVC is satisfied irrespective

of the value for λ. Indeed, the parameter restriction in part (a) of Proposition 5 is satisfied. This is

the case despite the risk-free interest rate being below the growth rate of output, because the risk

premium γσ is large enough.

Panel A of Figure 2 also plots the sample ACF and PACF for the primary surplus/output ratio

in the data. The dynamics of surplus/output are well described by an AR(1). The surplus is quite

persistent, with an AR(1) coefficient around 0.81.
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Figure 2: Autocorrelation in Debt/Output and Surplus/Output

Panel A plots the sample autocorrelation of the U.S. log government debt/output ratio, the U.S. government surplus/output ratio,
the tax/output ratio and the spending/output ratio against GDP. Sample is annual, 1947—2019. Panel B plots the ACF and PACF of
S/Y and D/Y for an AR(1) with parameters φ1 = 0.985 and φ2 = 0. Panel C plots the ACF and PACF of S/Y and D/Y for an AR(2).
The parameters are listed in Table 1.
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Persistence of Fiscal Processes in Model with Risk-free Debt We now show that the risk-free

debt model cannot simultaneously match the high persistence of the debt/output ratio and that

of the surplus/output ratio. Figure 2 also plots the ACF and PACF of the debt/output and
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surplus/output ratios implied by the model of risk-free debt. Panel B is for the case where

debt/output follows an AR(1) with the estimated persistence φ1 = 0.985. Panel C is for the case

where debt/output follows an AR(2) with the estimated coefficients φ1 = 1.4 and φ2 = −0.48. The

ACF and PACF for debt/output match the data by construction. As argued above, the AR(2) fits

the ACF and PACF of the observed debt/output ratio the closest.

The key observation is that insisting on risk-free debt produces counter-factual ACF and PACF

for the surplus/output ratio. In particular, the model cannot replicate the strong autocorrelation

in surplus/output observed in the data. In the case of the AR(1), the ACF is zero from horizon

1 onwards. In the case of the AR(2), the ACF converges much too quickly to zero, compared to

the observed one plotted in Panel A of Figure 2. The ACF is no longer different from zero past

two years, while in the data the ACF remains significantly positive for five years. Furthermore,

the model produces a PACF(2) coefficient of -0.5, which is larger in absolute value than the one

estimated in the data.

Impulse Responses in the Model The top left panel of Figure 3 plots the response of the sur-

plus/output ratio to a negative shock to output, when debt/output follows an AR(1) process.

Each line corresponds to a different autocorrelation, with φ1 ranging from 0.25 to 0.99. The top

right panel plots the response of the debt/output ratio. Upon impact, the debt/output ratio in-

creases by about 4% from its mean. After that, the rate of mean-reversion is governed by φ1. In the

least persistent case (φ = 0.25), the government runs a large surplus after the initial period deficit

to bring the debt back down quickly. In the most persistent debt case (φ1 = 0.99), the initial deficit

is followed by a reversal in the next period as the surplus jumps to just above its long-run value of

s = 0 and then slowly converges to s from above. Note that when ρ < µ, the government can run

a small steady-state deficit s = −d (1− exp(ρ− µ)) < 0. In sum, when the debt/output ratio fol-

lows an AR(1) and the debt is risk-free, there can be no S-shaped response of the surplus/output

ratio to the output shock.

Panel B of Figure 3 plots the IRF when debt/output follows an AR(2), our preferred empiri-

cal specification. We vary φ1 from 1.1 to 1.4 and choose φ2 to match the first-order autocorrela-

tion of debt/output. With φ1 = 1.1, the IRF looks similar to the AR(1) case with φ1 close to 1.

However, with φ1 = 1.4 and φ2 = −0.48, the point estimates from the data, the IRF for the sur-

plus/output ratio displays a hump-shaped pattern. Consistent with the results in Proposition 6,

a state-contingent and persistent debt issuance policy enables the government to delay the fiscal

adjustment. The deficit/output ratio in the year of the shock is followed by an even larger deficit

in year 2. However, the deficit must shrink dramatically in year 3 and turn into a surplus start-

ing in year 4 and beyond. The surplus eventually converges back to s from above. Keeping debt

risk-free still imposes severe restrictions on the size of the S-shaped surplus dynamics. Running

sizeable deficits for more than two years is incompatible with risk-free debt.
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Figure 3: IRF of Surplus/Output and Debt/Output in Model

The figure plots the IRF of S/Y and D/Y for an AR(1) (top panel) and an AR(2) (bottom panel). In Panel B, φ2 is chosen to match the
first-order autocorrelation. The other parameters are given in Table 1.
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Panel B: AR(2)
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Bohn (1998); Canzoneri et al. (2001); Cochrane (2019, 2020) find evidence of S-shaped dynamics

in the U.S. surplus/output ratios. These authors argue that such surplus dynamics are consistent

with budget balance. Our results show that the S-shaped surplus dynamics in the data violate the

risk-free debt condition. Governments cannot defer running a surplus for more than 2 years after

output declines, if they want to keep the debt risk-free.

Predictability of Surplus/Output Table 2 reports the results for the predictability regressions;

st+j = aj + bjdt + et+j

st+j = aj + bjdt + cjst + et+j
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Table 2: Forecasting Surplus/Output Ratios

Panel A is for post-war annual U.S. data (1947-2019). Panel B is for a 10,000 period simulation of the AR(2) model with parameters
given in Table 1. We forecast the primary surplus/output ratios two to five years hence with the current debt/output ratio and
the current surplus/output ratio. The table reports the regression coefficients and R2 statistics for st+j = aj + bjdt + cjst + et+j.

Horizon j 1 2 3 4 5

Panel A: U.S. Data
Specification 1

bj -0.031 -0.0099 0.013 0.023 0.028
[s.e.] [0.023] [0.025] [0.03] [0.031] [0.03]

R2 0.043 0.0041 0.006 0.018 0.024

Specification 2
bj 0.0085 0.018 0.036 0.042 0.044
[s.e.] [0.01] [0.015] [0.019] [0.02] [0.021]
cj 0.81 0.57 0.47 0.37 0.33
[s.e.] [0.087] [0.13] [0.12] [0.11] [0.10]

R2 0.64 0.30 0.21 0.15 0.13

Panel B: AR(2) Model with Risk-free Debt
Specification 1

bj 0.0629 0.117 0.132 0.127 0.114

R2 0.0781 0.271 0.342 0.316 0.254

Specification 2
bj 0.0701 0.12 0.132 0.126 0.112
cj 0.695 0.265 0.045 -0.055 -0.11

R2 0.560 0.342 0.345 0.319 0.266

for horizons j = 1 through j = 5. The results for the data are in Panel A while the results for the

AR(2) model are in Panel B.

In the data, the lagged debt/output ratio has little to no predictive power for the future sur-

plus/output ratio. Lagged surpluses are much better predictors and substantially increase the

regression R2. In contrast, in the model, the debt/GDP ratio has strong forecasting power for fu-

ture surplus/output ratios, with a positive sign. This predictability is changed little even when

we control for lagged surplus/output ratios. The R2 is 25%–26% at the five-year horizon. At hori-

zons up to 2 years, the lagged surplus/output ratio also forecasts future surplus/output ratios

with a positive sign. After 2 years, the lagged surplus/output ratio has no incremental forecasting

power over and above that of the lagged debt/output ratio. In sum, the risk-free debt model is

unable to generate the predictability patterns in the data. It generates too much predictability by

debt/output and too little predictability by the lagged surplus/output ratio. The latter is consis-

tent with our earlier finding that a model with risk-free debt generates a much faster decay in the

ACF of surplus/output than what we see in the data.

Covariance of Tax and Spending with GDP Finally, we compare the covariance of tax rev-

enue/output with output growth in model and data. Given a process for spending/output, the

surplus/output ratio implies a tax revenue/output ratio from the government’s budget constraint.

To make the model’s implications for tax revenues as comparable to the data as possible, we posit
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a realistic process for spending/output. Specifically, we assume that the government commits to

a policy for the spending/output ratio xt = Gt/Yt given by:

log xt = ϕ
g
0 + ϕ

g
1 log xt−1 − bgεt −

1
2

b2
g. (9)

When bg > 0, the spending/output ratio rises in response to a negative output shock. We estimate

(ϕ
g
0 , ϕ

g
0 , βg) from the post-war U.S. data. The parameter estimates are reported in Panel C of Table

1. Spending/output is counter-cyclical in the data. A 1% point decline in output coincides with a

1.53% point increase in the spending/output ratio. The persistence of spending/output matches

that in the data with an AR(1) coefficient of 0.88. With this spending process in hand, we compute

the model-implied tax revenue/output.

Figure 4: GDP Growth Betas of U.S. Tax Revenue and Spending

This figure reports the betas in regression of log U.S. spending G growth and log tax revenue T growth over horizon j on the concurrent
GDP growth over horizon j. The blue curve plots the estimate from the data. Sample is annual, 1947—2019. The plot also shows
2 standard error bands, generated by 30,000 bootstrapped samples by drawing jointly with replacement from the 4 × 1 vector of
innovations in the AR models for (log dt, xt, log τt, log gt). The red curve plots the coefficients implied from the model with risk-free
Debt. Benchmark calibration in Table 1.

G

10 20 30 40 50
Horizon in yrs

-2

-1

0

1

2

3

4

G
D

P 
G

ro
w

th
 B

et
a

data
model

T

10 20 30 40 50
Horizon in yrs

-2

-1

0

1

2

3

4

G
D

P 
G

ro
w

th
 B

et
a

data
model

Figure 4 plots the tax revenue beta, namely the covariance of tax revenue/output with output

growth divided by the variance of output growth, in the model. These betas do not depend on the

properties of the SDF. They are estimated from a 10,000 period simulation of the AR(2)-model for

the debt/output ratio, in which we calculate the beta over horizons ranging from 1 to 50 years.

The model implies that the tax betas drop below the spending betas at longer horizons to ensure

that the debt is risk-free.

This property of tax revenues is contrary to what we see in the data. In post-war U.S. data,

the tax revenue beta is always above the spending beta at each horizon, as shown in Figure 4. In

the data, tax revenues are too risky at longer horizons for the debt to be risk-free. Note that the

model-implied tax betas are outside of the 2-standard-error bands around the point estimates in
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the data at horizons between 10 and 30 years.

3.3 Counter-cyclical Tax in the U.K.

In sharp contrast with the U.S. results, the U.K. Treasury is more conservative in trading off the

insurance of taxpayers and bondholders. In fact, we find that the long-run tax and revenue betas

in the U.K. are consistent with risk-free debt.

As we did for the U.S., we calibrate processes for the U.K. debt/output ratio and spend-

ing/output ratio, and compute the required tax process that makes government debt risk-free

under the government’s budget constraint. Table 3 reports our calibration for the U.K., with data

sources listed in Appendix C. The U.K. debt issuance is substantially less counter-cyclical than

in the U.S., and the spending is less counter-cyclical as well. The U.K. spending/output ratio

xt = Gt/Yt is well-described by an AR(2):

log xt = ϕ
g
0 + ϕ

g
1 log xt−1 + ϕ

g
2 log xt−2 − βgεt −

1
2

β2
g. (10)

We estimate (ϕ
g
0 , ϕ

g
1 , βg) from the post-war U.K. data. The parameter estimates are reported in

Panel C of Table 3. Spending/output is counter-cyclical in the data. A 1% point decline in output

coincides with a 0.88% point increase in the spending/output ratio.

Figure 5 reports the spending and tax betas with respect to the output growth in the U.K. We

find that the short-horizon tax beta in the U.K. is much smaller than in the U.S., while the spending

beta is similar. The U.S. tax process is much riskier (the tax liability safer for taxpayers). The U.K.

tax beta is around 0.5 at the one-year horizon, compared to 3 for the U.S beta. Put differently, the

U.S. provides much more insurance to its taxpayers, whereas the U.K. raises taxes when output

Table 3: Benchmark Calibration for U.K

Panel A: Preferences and Output Dynamics
γ 1 maximum annual Sharpe ratio
ρ 4.16% real rate
µ 2.2% mean of growth rate of output
σ 5.0% std. of growth rate of output

Panel B: Debt/Output Ratio Dynamics
λ 1.27× σ sensitivity of debt/output to output innovations
d = exp {φ0/(1− φ1 − φ2)} 0.73 mean of debt/output
φ1 1.50 AR(1) coeff of debt/output
φ2 -0.53 AR(2) coeff of debt/output

Panel C: Government Spending/Output Ratio Dynamics
βg 0.88× σ sensitivity of spending/output to output innovations
ϕ

g
1 1.17 AR(1) coeff of spending/output

ϕ
g
2 −0.26 AR(2) coeff of spending/output

x = exp
{

ϕ
g
0/(1− ϕ

g
1 − ϕ

g
2)
}

0.3069 mean of govt. spending/output
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declines. Even for horizons in excess of ten years, the U.K. tax beta remains below the spending

beta. According to Proposition 1, U.K. tax revenues are potentially safe (counter-cyclical) enough

to keep government debt risk-free. This result stands in sharp contrast wit that for the U.S.

Figure 5: Post-war GDP Growth Betas of U.K. Tax Revenue and Spending

This figure reports the betas in regression of log U.K. spending G growth and log tax revenue T growth over horizon j on the concurrent
GDP growth over horizon j. The blue curve plots the estimate from the data. Sample is annual, 1946—2015. The plot also shows
2 standard error bands, generated by 30,000 bootstrapped samples by drawing jointly with replacement from the 4 × 1 vector of
innovations in the AR models for (log dt, xt, log τt, log gt). The red curve plots the coefficients implied from the model with risk-free
Debt. Benchmark calibration in Table 3.
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4 The Riskiness of the Surplus Claim Across Maturities

How much smoothing can the U.S. government achieve by issuing more debt in response to bad

shocks? It depends on the horizon. This section characterizes the trade-off at different horizons us-

ing the cash-flow betas of the surplus and tax revenues. In the presence of permanent shocks, the

government can only insure taxpayers over a limited period of time. This period can be extended

by imputing more persistence or higher-order dynamics into the debt/output process.

We define the conditional beta of a generic stream of discounted cash flows Z as:

βZ,CF
t (h) ≡ −covt

(
Mt+1, (Et+1 −Et)

h+1

∑
j=1

Mt+1,t+jZt+j

)
.

We refer to this object as the cash-flow beta for short. The cash-flow beta of the surplus process

over the next h periods is a sufficient statistic for how much insurance the government can provide

to taxpayers over the next h periods.

Proposition 7. Under Assumptions 1 and 3, when debt is risk-free and debt/output follows an AR(2) as in

(8), the cash-flow beta of the discounted surpluses over h periods is given by the beta of debt h periods from
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now:

βS,CF
t (h) ≡ −covt

(
Mt+1, (Et+1 −Et)

h

∑
j=1

Mt+1,t+jSt+j

)
= covt (Mt+1, (Et+1 −Et)Mt+1,t+hDt+h)

= Et[Mt+1]Et[Mt+1,t+hdt+hYt+h](exp {γ(ψh−1λ− σ)} − 1).

sign
(

βS,CF
t (h)

)
= sign (γ(ψh−1λ− σ))

where ψj = φ1ψj−1 + φ2ψj−2, j > 2; ψ2 = φ2 + φ1ψ1; ψ1 = φ1; ψ0 = 1.

The proof is in Appendix A.8. The risk properties of the government surpluses over a given

horizon are completely determined by riskiness of the debt issuance process, as long as the debt is

risk-free. The cash-flow beta of the surplus at various horizons does not depend on the spending

and tax revenue dynamics.

Analogously, we define the cash-flow beta of discounted government spending and of tax

revenues.

Corollary 2. Under Assumptions 1 and 3, and when debt is risk-free and debt/output follows an AR(2),

the cash flow beta of spending and tax revenues have to satisfy the following restrictions:

βG,CF
t (h) ≡ −covt

(
Mt+1, (Et+1 −Et)

h

∑
j=1

Mt+1,t+jGt+j

)

=
h

∑
j=1

Et[Mt+1]Et[Mt+1,t+hxYt+h](exp
{

γ(ϕh−1
g bg − σ)

}
− 1).

βT,CF
t (h) ≡ −covt

(
Mt+1, (Et+1 −Et)

h

∑
j=1

Mt+1,t+jTt+j

)
= Et[Mt+1]Et[Mt+1,t+hdt+hYt+h](exp {γ(ψh−1λ− σ)} − 1)

+
h

∑
j=1

Et[Mt+1]Et[Mt+1,t+hxYt+h](exp
{

γ(ϕh−1
g bg − σ)

}
− 1).

The properties of the βG,CF
t (h) depend on the persistence and cyclicality of the exogenous

spending/GDP process in equation (9). The properties of βT,CF
t (h) depend on the risk proper-

ties of both the debt claim and the spending claim.

4.1 Constant debt/output

When debt/output is constant, λ = 0, and proposition 7 simplifies to:

βS,CF
t (h) = Et[Mt+1]Et[Mt+1,t+hdYt+h](exp {−γσ} − 1).
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The cash-flow beta of the surplus is negative at all horizons since γσ > 1. In bad times, the

surplus/output ratio goes up. When spending/output is constant (or also goes up), tax rev-

enues/output must go up. The government cannot insure taxpayers against adverse output

shocks. Rather, the taxpayers insure the bondholders.

The left panel of Figure 6A plots the cash-flow beta of the cumulative discounted surplus,

βS,CF
t (h), divided by Et[Mt+1], as a function of the horizon h. This ratio can be interpreted as

the risk premium on a claim to cumulative surpluses over the next h periods. The negative risk

premium indicates that surpluses are a hedge. Since taxpayers are short the surplus claim, their

tax-minus-transfer liability is risky. When debt/output is constant and there is no possibility to

raise the debt in response to an adverse shock, the surplus/output ratio must rise on impact. This

makes the one-period surplus claim a hedge, with a negative risk premium of -4%. The year-2

surplus claim in contrast earns a small positive risk premium, reflecting the underlying output

risk. The cumulative risk premium at horizon h is the sum of the individual strip risk premia up

until horizon h.

This risk premium on cumulative surpluses is inversely related to the risk premium on a debt

strip, which is positive and constant at all horizons. This debt strip risk premium is plotted in

the right panel of Figure 6A. When the debt/output ratio is constant, the debt strip has the same

risk as the output strip at all horizons. To offset the output risk in debt, the risk premium on the

surplus has to be negative.

As h→ ∞, the sum of discounted surpluses converges to the current value of debt Dt. Insisting

on risk-free debt (βD
t = 0) implies that βS,CF

t (h) → 0. The red line in the left panel converges to

zero from below for large h.

The solid black line in the left panel plot the cash-flow beta of the spending claim scaled by

Et[Mt+1]. It is the risk premium on a claim to cumulative spending. Since the spending/output

dynamics are exogenously given, the spending beta does not depend on the debt policy. The

countercyclical nature of spending/output makes the risk premium negative at short horizons.

At longer horizons, the spending risk premium turns positive reflecting the long-run output risk

in the spending claim, since the spending/output ratio is stationary.

The extent of taxpayer insurance is captured by βT,CF
t (h). The blue dashed line in Figure 6A

plots βT,CF
t (h) scaled by Et[Mt+1]. It is the risk premium on a claim to the next h periods of tax rev-

enue. When this risk premium is negative, taxpayers are providing insurance to the government

rather than receiving insurance. The risk premium is negative until year 13 for our parameters.

It then turns positive. The positive risk premium on longer-dated tax strips reflects cointegration

between tax revenues and output and a positive risk premium for output risk.

Note that the tax beta βT,CF
t (h) in the left panel is below the spending beta βG,CF

t (h) at all hori-

zons. As h → ∞, these cash-flow betas converge to the return betas βT
t and βG

t . As we discussed

in Corollary 1, βT
t < βG

t was the condition to keep the debt risk-free.
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Figure 6: Risk Premia Across Horizons

The figure plots the risk premium of cumulative discounted cash flows, βi,CF
t (h)/Et[Mt+1], in the left panel against the horizon h. The

right panel plots the risk premium on the debt strips: 1− exp
{

γ(φh−1λ− σ)
}

. The parameters are given in Table 1, except for the
debt dynamics in the first two panels.
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Panel B: AR(1) Debt/Output (φ1 = 0.75)
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Panel C: AR(2) Debt/Output

0 5 10 15 20 25 30
Horizon in years

-4

-2

0

2

4

6

8

Su
m

  i
n 

%
 p

.a
.

T
G
S

0 5 10 15 20 25 30
Horizon in years

-10

-5

0

5

  D
 S

tr
ip

s,
 in

 %
 p

.a
.

30



4.2 AR(1) for debt/output

The sign and magnitude of the cash-flow beta of the surplus is now governed by γ(φh−1
1 λ− σ).

This term has a natural economic interpretation. 1− exp
{

γ(φj−1λ− σ)
}

is the risk premium of

a h-period debt strip with payoff Yt+hdt+h. The cumulative surplus can be risky over a horizon h

only if this is offset by the safety of debt issuance at time t + h.

If λ ≤ 0, and debt/output is pro-cyclical, βS,CF
t (h) < 0 at all horizons. We are back in the

previous case. In other words, the government cannot insure taxpayers by running deficits in bad

times over any horizon.

In the empirically relevant case of λ > σ > 0, the initial βS,CF
t (1) > 0. By issuing more debt in

response to an adverse shock, the government prevents the tax rate and the surplus from going up.

This provides insurance to the taxpayers βT,CF
t (1) > 0. The one-period debt strip has a negative

risk premium due to the counter-cyclical nature of debt issuance, as shown in the right panel of

Figure 6B.

However, due to its AR(1) nature, the debt/output ratio starts to revert back to its mean the

very next period. The cumulative two-period surplus risk premium depends on γ(φ1λ− σ) which

is still positive but not as large as the one-period risk premium since φ1 < 1. Conversely, the

cumulative two-period debt strip risk premium is not as negative as the one-period debt strip risk

premium. The risk premium on the strip that pays the annual surplus two years from now is

negative. The same is true for the two-year tax strip.

The surplus beta βS,CF
t (h) inherits the dynamics of the AR(1) process for the debt/output ratio

and starts to decline right away. As h increases, the surplus beta eventually switches signs. This

occurs at the first time h that φh−1λ < σ. If the rate of mean-reversion in debt is high (φ1 is small),

this switch occurs sooner. If the debt/output ratio is more persistent, the sign switch occurs later.

Given the counter-cyclical nature of government spending, the tax beta βT,CF
t (h) must cross

over into negative territory sooner than the surplus beta. There is only a very limited amount

of taxpayer insurance that the government can provide when debt is risk-free and follows AR(1)

dynamics. This insurance is further curtailed due to the counter-cyclical nature of spending.

As the right panel shows, the risk premium on the debt strip increases with the horizon. As

h → ∞, it converges to the risk premium on a long-dated output strip. Again, this reflects the

fact that debt is co-integrated with output. It is common in the literature to assume that this

risk premium is zero at long horizons, because this allows discounting at the risk-free rate. In

the presence of permanent shocks, this is incorrect. Similarly, the risk premia on the long-dated

T-strip and G-strip also converge to risk premium on the long-dated output strip of 5% as h→ ∞.

When output shocks are i.i.d. and permanent, far-out surpluses are risky as they inherit the

permanent output risk. Medium-term surpluses must be safe and have negative risk premia to

offset both the positive risk premium of the short-run surpluses (insurance provision) and the
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positive risk premium of the long-run surpluses (output risk). Equivalently, the cash-flow betas

of the tax strip must be below those of the spending strip at medium horizons. The cash-flow beta

at h = ∞ equals the return beta, and so βT
t < βG

t ensures that βD
t = 0. Permanent output risk rules

out insurance provision to taxpayers over long horizons.

4.3 AR(2) for debt/output

In our preferred case of an AR(2) for debt/output, the sign of the cash flow beta of the surplus is

determined by γ(ψj−1λ− σ). If λ > σ, the initial surplus beta is positive. The second beta is larger

since ψ1 = φ1 > 1. The third beta remains positive and is larger than the second beta if ψ2 > ψ1 or

φ1(φ1 − 1) + φ2 > 0. This condition is satisfied for φ1 = 1.40 and φ2 = −0.48. For these parameter

values, the fourth beta is lower than the third, the fifth lower than the fourth, etc. Eventually this

beta crosses over into negative territory. The left panel of Figure 6C shows this occurs around year

9. The cash-flow beta for tax revenue follows a similar pattern. The cash-flow betas inherit the

hump-shaped pattern from the debt/output ratio, plotted in the right panel.

What allows the government to provide temporary insurance to taxpayers is a debt issuance

policy with more history dependence. Risk premia on debt strips, shown in the right panel, are

more negative than in the AR(1) model and remain negative for longer (9 versus 3 years). The slow

expansion and repayment of the debt in response to an adverse shock allows the government

to postpone fiscal rectitude. But as h increases, the expression γ(σ − ψj−1λ) turns positive and

converges to γσ, the risk premium on the output strip.

4.4 Counter-cyclical Spending

The government insures transfer recipients by spending a larger fraction of GDP in recession. The

counter-cyclical nature of spending further constraints the government in navigating the trade-off

between insurance of bondholders and taxpayers. We analyze the sensitivity of our results to the

cyclicality of spending.

Figure 7 plots scaled cash-flow betas for spending, βG,CF
t (h)/Et[Mt+1], in the top panel, and

the implied tax revenue betas, βT,CF
t (h)/Et[Mt+1], in the bottom panel, for a range of values of

the cyclicality of spending bg. As government spending becomes more counter-cyclical, the risk

premium on the spending claim declines. The risk premium on the tax claim has to decline as

well in order to keep the government debt risk-free. As the tax claim becomes safer, taxpayers

face a riskier tax liability proposition. As the governments provides more insurance to transfer

recipients, this reduces the scope for insurance of taxpayers. When spending is acyclical (bg = 0),

the tax claim inherits the risk properties of the surplus claim.
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Figure 7: Varying the Counter-cyclicality of Spending

This figure plots the scaled cash-flow beta of spending βG,CF
t (h)/Et[Mt+1] in the top panel and the implied tax revenue betas,

βT,CF
t (h)/Et[Mt+1], in the bottom panel for a range of values of the cyclicality of spending bg.
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4.5 Debt Persistence

To provide more intertemporal smoothing, the government can increase the persistence of the

debt/output process. This allows it to spread out the adjustment to a negative shock further

over time. Assuming AR(1) dynamics for debt/output, Figure 8 plots the value of debt h periods

from now relative to debt today: Et[Mt+hDt+h]/Dt. When φ = 0.90, the present value of debt

in the future is a vanishing share of the current debt value as the horizon grows large. When

the persistence of the debt/output process is 0.99, the government imputes a near-unit root into

the debt/output ratio. The tail (or bubble) component of the debt one hundred years from now

is seven times larger than current debt. This allows the government to run cumulative deficits

over the next one hundred years with an expected present-discounted value of 6 times current

debt. Under the risk-neutral measure, investors expect the debt to increase faster than the risk-

free rate; the government increases the debt/output ratio along paths characterized by adverse

aggregate histories, because λ > 0. The insurance provided by such persistent debt issuance

policy is so valuable to risk averse agents (γ is large enough to match the equity risk premium),

that the government creates itself a near-arbitrage opportunity. Recall that the actual debt/GDP

ratio in the post-war U.S. data displays substantially less persistence than an AR(1) process with
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φ1 = 0.99.

Figure 8: Debt Persistence

The figure plots the tail value at t of the debt expected at t + h as a fraction of debt today: Et[Mt+hDt+h]/Dt. Debt/gdp follows an
AR(1) with φ equal to 0.90 (dashed line) or 0.99 (solid line). All other parameters are as listed in Table 1.
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Finally, Appendix B develops a version of the model without permanent shocks. This model

produces starkly different implications for the trade-off between insuring taxpayers and bond-

holders. However, it has counterfactual asset pricing implications. In models with only transitory

shocks, long-term bonds are the riskiest assets.

5 Characterizing the Trade-off with Convenience Yields

While the U.K. government’s behavior is consistent with our trade-off, the U.S. government’s

behavior seems to violate this constraint. The convenience yields earned by the U.S. can relax the

trade-off between insuring bondholders and taxpayers. Some governments are endowed with the

ability to issue government bonds at prices that exceed their fair market value. The convenience

yield λt is defined as a wedge in the investors’ Euler equation for government bonds:

Et

[
Mt,t+1RD

t

]
= exp(−λt) (11)

Typically, the debt then serves the role of a special, safe asset for domestic or foreign investors. U.S.

Treasuries currently fill the role of the world’s safe asset.Krishnamurthy and Vissing-Jorgensen

(2012) estimate convenience yields on U.S. Treasurys of around 75 bps.7

7Using the deviations from CIP in Treasury markets, Jiang et al. (2018a); Jiang, Krishnamurthy, and Lustig (2018b);
Koijen and Yogo (2019) estimate convenience yields that foreign investors derive from their holdings of dollar safe
assets; these estimates exceed 200 bps.
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Jiang et al. (2019b) show that, in the presence of these convenience yields, the value of the

government debt equals the sum of the expected present values of future tax revenues plus future

seigniorage revenues minus future government spending:

Bt =
H

∑
h=0

Qh+1
t−1 Ph

t = Et

[
∞

∑
j=0

Mt,t+j(Tt+j + (1− e−λt+j)Dt+j − Gt+j)

]
= PT

t + PK
t − PG

t ,

provided that a transversality condition holds. The periodic seigniorage revenue is Kt+j = (1−
e−λt+j)Dt+j, which is the amount of interest the government does not need to pay thanks to the

convenience yield. The current value of government debt reflects the present value of all conve-

nience yields earned on future debt. We refer to this value as the Treasury’s seigniorage revenue:

PK
t = Et

[
∞

∑
j=0

Mt,t+j(1− e−λt+j)Dt+j

]
.

The government debt portfolio return is the return on a portfolio that goes long in the tax claim

and short in the spending claim:

Et

[
RD

t+1 − R f
t

]
=

PT
t − Tt

Bt − St
Et

[
RT

t+1 − R f
t

]
+

PK
t − Tt

Bt − St
Et

[
RK

t+1 − R f
t

]
− PG

t − Gt

Bt − St
Et

[
RG

t+1 − R f
t

]
,

where RD
t+1, RT

t+1,RK
t+1 and RG

t+1 are the holding period returns on the bond portfolio, the tax

claim, the seigniorage claim, and the spending claim, respectively. We take government spending

process, and the debt return process as given, and explore the implications for the properties of

the tax claim.

For simplicity, assume that the spending/output ratio is constant: βY = βG. Suppose that

the (convenience yield) seigniorage process has a zero beta: βK = 0. If the government wants to

manufacture risk-free debt, then the implied beta of the tax revenue process must satisfy:

βT
t =

PG
t − Gt

Dt + (PG
t − Gt)− (PK

t − Kt)
βG >

PG
t − Gt

Dt + (PG
t − Gt)

βG,

The tax beta with convenience yields exceeds the tax beta without convenience. Hence, more

taxpayer insurance becomes feasible.

If the seigniorage revenue/output is sufficiently counter-cyclical (βK < 0), then the govern-

ment can potentially fully insure both taxpayers and bondholders at the same time. In this case,

the government surplus is procyclical while the debt is risk-free, i.e., zero beta.

The fiscal relief enjoyed by the U.S. government from convenience yields may be tempo-

rary. Krishnamurthy and Vissing-Jorgensen (2012) have demonstrated that the convenience yields

earned on U.S. government debt decline as the supply of debt increases relative to output. This
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ultimately would restore the standard trade-off we have described.

6 Conclusion

The government engineers risk-free debt by choosing the exposure of the tax claim to output risk

judiciously. The more debt there is outstanding, the lower this exposure must become, and hence

the more output risk must be borne by the taxpayer. There is no scope for insurance of both

taxpayers and debt holders over long horizons in the presence of permanent, priced shocks to

output. The only way the government can provide insurance to taxpayers over all horizons while

keeping the debt risk-free is by saving or by earning a large convenience yield on its debt.
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A Proofs

A.1 Return Betas and Cash Flow Betas

What is the relationship between return betas and cash flow betas? In the simple case with constant debt/output and

spending/output ratios, there is a one-to-one mapping:

Corollary 3. The expected returns can be expressed as a function of the cash flow betas:

Et

[
RT

t+1 − R f
t

]
=

x
d(1− ξ1) + xξ1

−covt (Mt+1, Yt+1/Yt)

Et(Mt+1)
,

=
x

d(1− ξ1) + xξ1
exp(µ +

1
2

σ2)(1− exp(−γσ))

Et

[
RG

t+1 − R f
t

]
=

1
ξ1

−covt (Mt+1, Yt+1/Yt)

Et(Mt+1)

=
1
ξ1

exp(µ +
1
2

σ2)(1− exp(−γσ)),

where ξ1 = exp(−ρ− γσ + µ + 0.5σ2).

Proof. From R f
t+1 = ρ exp(ρ) and Tt

Yt
= x− d

(
1− R f

t−1
Yt−1
Yt

)
, we have that the return on the tax claim can be stated as:

RT
t+1 =

PT
t+1

PT
t − Tt

=
(d + x ξ1

1−ξ1
)Yt+1 + (x− d

(
1− R f

t
Yt

Yt+1

)
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.

Similarly, we have an expression for the return on the spending claim:

RG
t+1 =

PG
t+1

PG
t − Gt

=
x ξ1

1−ξ1
Yt+1 + xYt+1
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Yt
.

As a result, we can state the risk premium as follows:
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where we have used that ξ1 = exp(−ρ− 1
2 γ2 + g + 1

2 (γ− σ)2) = exp(−ρ− γσ + g + 1
2 σ2).

Then plug in
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A.2 Proof of Proposition 1

Proof. From the investor’s Euler equation Et[Mt+1(Ri
t+1 − R f

t )]=0, we know that the expected excess return on the tax

claim, spending claim, and debt claims are given by
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A.3 Proof of Proposition 2

Proof. We start from the one-period budget constraint:

Tt = Gt − (Dt − R f
t−1Dt−1).

With TVC,

R f
t−1Dt−1 = St + Dt = St + Et[Mt,t+1R f

t Dt] = St + Et[Mt,t+1(St+1 + exp(mt+1,t+2)R f
t+1Dt+1)] = Et[

∞

∑
k=0

Mt,t+kSt+k].

Replace the time index t by t + 1,

R f
t Dt = Et+1[

∞

∑
j=1

Mt+1,t+jSt+j].

Since the left-hand side is known at time t,

(Et+1 −Et)[
∞

∑
j=1

Mt+1,t+jSt+j] = 0.

A.4 Proof of Proposition 3

Proof. To verify the expression, first conjecture the pricing of the surplus strip is

Et
[
Mt,t+kYt+k

]
= ξkYt

for k ≥ 0. Then ξ0 = 1 and

ξkYt = Et
[
Mt,t+kYt+k

]
= Et [Mt,t+1ξk−1Yt+1]

= exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− 1)2)Yt,

ξ1Yt = exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− σ)2)ξk−1Yt,
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which verifies the conjecture and implies

ξk = ξk−1 exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− σ)2).

Similarly, we define a k-period surplus strip as a claim to St+k, with price given by

Et
[
Mt,t+kSt+k

]
= χkYt.

The pricing of the first surplus strip is

Et [Mt,t+1St+1] = Et

[
Mt,t+1{−dYt+1

(
1− R f

t exp[−(µ + εt+1)]
)
}
]

,

= −dEt [Mt,t+1Yt+1] + dYtR
f
t Et [Mt,t+1] ,

= −d exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− σ)2)Yt + dYt,

=

[
1− exp(−ρ− 1

2
γ2 + µ +

1
2
(γ− σ)2)

]
dYt.

χ1 =

[
1− exp(−ρ− 1

2
γ2 + µ +

1
2
(γ− σ)2)

]
d.

Then, the pricing of the second surplus strip is

χkYt = Et
[
Mt,t+kSt+k

]
= Et

[
Mt,t+1Et+1[Mt+1,t+kSt+k]

]
,

= Et [Mt,t+1χk−1Yt+1] ,

= χk−1 exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− σ)2)Yt.

Note that this calculation also implies that we cannot simply price these strips off the risk-free yield curve, even

though the entire debt is risk-free. The solution is

χ1 = d
[

1− exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− σ)2)

]
χk = χk−1 exp(−ρ− 1

2
γ2 + µ +

1
2
(γ− σ)2).

which implies that

lim
j→∞

Et

[
Mt,t+jSt+j

]
=

∞

∑
k=1

χkYt = χ1(1 + ξ1 + ξ2
1 + . . .)Yt = dYt,

where ξ1 = exp(−ρ− 1
2 γ2 + µ + 1

2 (γ− σ)2).

A.5 Proof of Proposition 4

Proof. From the gross risk-free rate xpression R f
t+1 = exp(ρ) and the one-period government budget constraint, we get

that:

Tt
Yt

= x− d
(

1− R f
t−1

Yt−1
Yt

)
,
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we have that the return on the tax claim can be stated as:

RT
t+1 =

PT
t+1

PT
t − Tt

=
(d + x ξ1

1−ξ1
)Yt+1 + (x− d

(
1− R f

t
Yt

Yt+1

)
)Yt+1

(d + x ξ1
1−ξ1

)Yt
,

=
x 1

1−ξ1
Yt+1

(d + x ξ1
1−ξ1

)Yt
+

d exp(ρ)

(d + x ξ1
1−ξ1

)
.

Similarly, the return on the spending claim can be stated as:

RG
t+1 =

PG
t+1

PG
t − Gt

=
x ξ1

1−ξ1
Yt+1 + xYt+1

x ξ1
1−ξ1

Yt
,

=
x 1

1−ξ1
Yt+1

x ξ1
1−ξ1

Yt
.

Armed with these expressions, we get the following expression for the covariance:

cov(RT
t+1, Mt,t+1) =

x ξ1
1−ξ1

(d + x ξ1
1−ξ1

)
cov(RG

t+1, Mt,t+1),

which also translates to

Et

[
RT

t+1 − R f
t

]
=

x ξ1
1−ξ1

d + x ξ1
1−ξ1

Et

[
RY

t+1 − R f
t

]
.

A.6 Proof of Proposition 5

A.6.1 Case of AR(1)

Proof. From

Tt = Gt − (Dt − R f
t−1Dt−1).

The surplus process is given by:

St
Yt

= −
(

dt − R f
t−1dt−1

Yt−1
Yt

)
= dt−1R f

t−1 exp[−(µ + σεt)]− dφ1
t−1 exp(φ0 − λεt −

1
2

λ2).

We conjecture that the price of the surplus strips is given by:

Et
[
Mt,t+kSt+k

]
= (χk,t − ψk,t)Yt.

The pricing of the first surplus strip is

Et [Mt,t+1St+1] = Et

[
Mt,t+1{−Yt+1

(
dt+1 − R f

t dt exp[−(µ + σεt+1)]
)
}
]

,

= Et

[
− exp(φ1 log dt + mt,t+1 + φ0 − λεt+1 −

1
2

λ2)Yt+1

]
+ dtYt,

= − exp(φ1 log dt + φ0 − ρ− 1
2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)Yt + dtYt,
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(χ1,t − ψ1,t)Yt =

[
dt − exp(φ0 + φ1 log dt − ρ− 1

2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)

]
Yt.

So, we define:

(χ1,t)Yt = dtYt,

(ψ1,t)Yt = exp(φ0 + φ1 log dt − ρ− 1
2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)Yt.

Similarly the pricing of the k-th surplus strip is

Et
[
Mt,t+kSt+k

]
= Et

[
Mt,t+1Et+1[Mt+1,t+kSt+k]

]
,

(χk,t − ψk,t)Yt = Et
[
Mt,t+1(χk−1,t+1 − ψk−1,t+1)Yt+1

]
,

where the χ’s are defined by the following recursion:

χ2,tYt = Et [Mt,t+1χ1,t+1Yt+1] ,

χ2,t = Et

[
exp(−ρ− 1

2
γ2 − γεt+1) exp(−λεt+1 −

1
2

λ2) exp(µ + σεt+1)

]
exp(φ1 log dt + φ0),

= exp(φ0 + φ1 log dt − ρ− 1
2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2) = ψ1,t

and the ψ’s are defined by the following recursion:

ψ2,tYt = Et [Mt,t+1ψ1,t+1Yt+1] ,

ψ2,t = Et

[
exp(−ρ− 1

2
γ2 − γεt+1 + φ0 + φ1 log dt+1 − ρ− 1

2
(γ2 + λ2) + g +

1
2
(γ + λ− σ)2 + µ + σεt+1)

]
,

ψ2,t = exp(−2ρ + φ0 + φ1φ0 + φ2
1 log dt −

1
2
(γ2 + φ1λ2),

− 1
2
(γ2 + λ2) + 2g +

1
2
(γ + λ− σ)2 +

1
2
(γ + λφ1 − σ)2),

= ψ1,t exp(−ρ + φ1φ0 + (φ2
1 − φ1) log dt −

1
2
(γ2 + φ1λ2) + µ +

1
2
(γ + λφ1 − σ)2).

More generally, we note that χk+1,t = ψk,t, so that

∞

∑
k=1

Et
[
Mt,t+kSt+k

]
= χ1,tYt = Dt.

For some 0 < φ1 < 1,

Et[Mt,t+1Dt+1] = Et[Mt,t+1Yt+1dt+1],

= dφ1
t Et[exp(mt,t+1 − λεt+1 −

1
2

λ2)Yt+1],

= dφ1
t exp(φ0 − ρ− 1

2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)Yt,

= exp(κ1) exp(φ1 log dt)Yt,

where κ1 = φ0 − ρ− 1
2 (γ

2 + λ2) + µ + 1
2 (γ + λ− σ)2.

Et[Mt,t+2Dt+2] = Et[Mt,t+1Et+1[exp(mt+1,t+2)Dt+2]],

= Et[Mt,t+1 exp(κ1) exp(φ1 log dt+1)Yt+1],
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= Et[Mt,t+1 exp(κ1) exp(φ2
1 log dt + φ1φ0 − φ1λεt+1 −

1
2

φ1λ2) exp(µ + σεt+1)]Yt,

= exp(κ1 + κ2) exp(φ2
1 log dt)Yt,

where κ2 = φ1φ0 − ρ− 1
2 (γ

2 + φ1λ2) + g + 1
2 (γ + φ1λ− σ)2. Then, by induction,

lim
j→∞

Et[Mt,t+jDt+j] = lim
j→∞

exp(
j

∑
k=1

κk) exp(φj
1 log dt)Yt,

= lim
j→∞

exp(
φ0

1− φ1
− ρj− 1

2
(γ2 j +

λ2

1− φ1
) + µj +

j

∑
k=1

1
2
(γ + λφk−1

1 − σ)2)Yt,

= lim
j→∞

exp(
φ0

1− φ1
− ρj− 1

2
(γ2 j +

λ2

1− φ1
) + µj + j

1
2
(γ− σ)2 + C)Yt,

which is 0 if and only if −ρ + µ + 1
2 σ(σ− 2γ) < 0. This equality does not depend on φ1 and λ.

A.6.2 Case of Random Walk

Proof. Now, assume φ1 = 1 and φ0 = 0. Then κj = φ0 − ρ− 1
2 (γ

2 + λ2) + µ + 1
2 (γ + λ− σ)2.

The TVC is

lim
j→∞

Et[Mt,t+jDt+j] = lim
j→∞

exp(
j

∑
k=1

κk) exp(log dt)Yt,

which is 0 if and only if −ρ− 1
2 (γ

2 + λ2) + µ + 1
2 (γ + λ− σ)2 < 0.

A.6.3 Case of AR(2)

Proof. From

Tt = Gt − (Dt − R f
t−1Dt−1).

This implies that:

St = −
(

dtYt − R f
t−1dt−1Yt−1

)
,

= dt−1R f
t−1Yt−1 − exp(φ0 + φ1 log dt−1 + φ2 log dt−2 − λεt −

1
2

λ2)Yt.

Conjecture the price of the surplus strips is given by

Et
[
Mt,t+kSt+k

]
= (χk,t − ψk,t)Yt.

The pricing of the first surplus strip is

Et [Mt,t+1St+1] = Et

[
Mt,t+1{−Yt+1

(
dt+1 − R f

t dt exp[−(µ + σεt+1)]
)
}
]

,

= Et

[
− exp(φ1 log dt + φ2 log dt−1 + mt,t+1 + φ0 − λεt+1 −

1
2

λ2)Yt+1

]
+ dtYt,

= − exp(φ1 log dt + φ2 log dt−1 + φ0 − ρ− 1
2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)Yt + dtYt,

(χ1,t − ψ1,t)Yt =

[
dt − exp(φ0 + φ1 log dt + φ2 log dt−1 − ρ− 1

2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)

]
Yt.
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We define

(χ1,t)Yt = dtYt,

(ψ1,t)Yt = exp(φ0 + φ1 log dt + φ2 log dt−1 − ρ− 1
2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)Yt.

Similarly the pricing of the k-th surplus strip is

Et
[
Mt,t+kSt+k

]
= Et

[
Mt,t+1Et+1[Mt+1,t+kSt+k]

]
,

(χk,t − ψk,t)Yt = Et
[
Mt,t+1(χk−1,t+1 − ψk−1,t+1)Yt+1

]
,

where the χ’s are defined by the following recursion:

χ2,tYt = Et [Mt,t+1χ1,t+1Yt+1] ,

χ2,t = Et

[
exp(−ρ− 1

2
γ2 − γεt+1) exp(−λεt+1 −

1
2

λ2) exp(µ + σεt+1)

]
exp(φ1 log dt + φ2 log dt−1 + φ0),

= exp(φ0 + φ1 log dt + φ2 log dt−1 − ρ− 1
2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2).

and the ψ’s are defined by the following recursion:

ψ2,tYt = Et [Mt,t+1ψ1,t+1Yt+1] ,

ψ2,t = Et

[
exp(−ρ− 1

2
γ2 − γεt+1 + φ0 + φ1 log dt+1 + φ2 log dt − ρ− 1

2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2 + µ + σεt+1)] ,

ψ2,t = exp(−2ρ + φ0 + φ1φ0 + (φ2
1 + φ2) log dt + φ1φ2 log dt−1 −

1
2
(γ2 + φ1λ2),

− 1
2
(γ2 + λ2) + 2µ +

1
2
(γ + λ− σ)2 +

1
2
(γ + λφ1 − σ)2).

We note that χk+1,t = ψk,t, so this expression can be simplified as follows:

∞

∑
k=1

Et
[
Mt,t+kSt+k

]
= χ1,tYt = Dt

dt = exp(φ1 log dt−1 + φ2 log dt−2 + φ0 − λεt −
1
2

λ2).

Et[Mt,t+1Dt+1] = Et[Mt,t+1Yt+1dt+1],

= dφ
t Et[exp(mt,t+1 − λεt+1 −

1
2

λ2)Yt+1],

= dφ
t exp(φ0 − ρ− 1

2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)Yt,

= exp(κ1) exp(φ1 log dt + φ2 log dt−1)Yt,

Define κ1 = φ0 − ρ +− 1
2 (γ

2 + λ2) + µ + 1
2 (γ + λ− σ)2.

Et[Mt,t+2Dt+2] = Et[Mt,t+1Et+1[exp(mt+1,t+2)Dt+2]],

= Et[Mt,t+1 exp(κ1) exp(φ1 log dt+1 + φ2 log dt)Yt+1],

= Et[Mt,t+1 exp(κ1) exp((φ2
1 + φ1φ2 + φ2) log dt + φ1φ0 − φ1λεt+1 −

1
2

φ1λ2) exp(µ + σεt+1)]Yt,

= exp(κ1 + κ2) exp((φ2
1 + φ1φ2 + φ2) exp(log dt)Yt.
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Define κ2 = φ1φ0 − ρ− 1
2 (γ

2 + φ1λ2) + µ + 1
2 (γ + φ1λ− σ)2.

lim
j→∞

Et[Mt,t+jDt+j] = lim
j→∞

exp(
j

∑
k=1

κk) exp(ψj log dt)Yt,

= lim
j→∞

exp(
φ0

1− φ1 − φ2
− ρj− 1

2
(γ2 j +

λ2

1− φ1 − φ2
) + µj +

j

∑
k=1

1
2
(γ + λψk−1 − σ)2)Yt,

= lim
j→∞

exp(
φ0

1− φ1 − φ2
− ρj− 1

2
(γ2 j +

λ2

1− φ1 − φ2
) + µj + j

1
2
(γ− σ)2 + C)Yt,

which is 0 if and only if −ρ + µ + 1
2 σ(σ− 2γ) < 0. This equality does not depend on φ and λ. So this case is similar to

the i.i.d. debt case φ = 0. More extremely, when λ = 0, dt = exp(φ0) is a constant. Now, assume φ = 1. Then

κj = φ0 − ρ− 1
2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2,

and limj→∞ Et[Mt,t+jDt+j] = limj→∞ exp(∑
j
k=1 κk) exp(log dt)Yt, which is 0 if and only if φ0 − ρ− 1

2 (γ
2 + λ2) + µ +

1
2 (γ + λ− σ)2 < 0.

A.7 Proof of Proposition 6

A.7.1 Case of AR(1)

Proof. When the log of the debt/output process follows an AR(1), the surplus/output ratio is given by:

St+1
Yt+1

= dtR
f
t exp[−(µ + σεt+1)]− dφ1

t exp(φ0 − λεt+1 −
1
2

λ2)

= exp(r f
t − µ− σεt+1 −

∞

∑
j=0

φ
j
1λεt−j +

φ0 − 1
2 λ2

1− φ1
)− exp(φ1(−

∞

∑
j=0

φ
j
1λεt−j +

φ0 − 1
2 λ2

1− φ1
) + φ0 − λεt+1 −

1
2

λ2).

We assume that r f
t = µ. This expression for the surplus/output ratio can be restated as:

St+1
Yt+1

= exp(−σεt+1 −
∞

∑
j=0

φ
j
1λεt−j +

φ0 − 1
2 λ2

1− φ1
)− exp(−

∞

∑
j=0

φ
j
1λεt+1−j +

φ0 − 1
2 λ2

1− φ1
).

Next, we compute the derivative of the surplus/output ratio at t + 1:

∂ St+1
Yt+1

∂εt+1
= (λ) exp(g + σεt+1 −

∞

∑
j=0

φ
j
1λεt+1−j +

φ0 − 1
2 λ2

1− φ1
)− σ exp(−σεt+1 −

∞

∑
j=0

φ
j
1λεt−j +

φ0 − 1
2 λ2

1− φ1
).

We evaluate this derivative at εt+j = 0 to obtain:

∂ St+1
Yt+1

∂εt+1
= + (λ− σ) exp(

φ0 − 1
2 λ2

1− φ1
).

Next, we compute the derivative of the surplus/output ratio at t + 2, given by

∂ St+2
Yt+2

∂εt+1
= −λ exp(−σεt+2 −

∞

∑
j=0

φ
j
1λεt+1−j +

φ0 − 1
2 λ2

1− φ1
) + λφ1 exp(−

∞

∑
j=0

φ
j
1λεt+2−j +

φ0 − 1
2 λ2

1− φ1
).
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We evaluate this derivative at εt+j = 0 to obtain:

∂ St+2
Yt+2

∂εt+1
= −λ exp(

φ0 − 1
2 λ2

1− φ1
) + λφ1 exp(

φ0 − 1
2 λ2

1− φ1
).

This generalizes to the following expression. For j ≥ 2, we obtain:

∂
St+j
Yt+j

∂εt+1
= −λφ

j−1
1 exp(

φ0 − 1
2 λ2

1− φ1
) + λφ

j
1 exp(

φ0 − 1
2 λ2

1− φ1
).

Assume r f = g. Then we obtain the IRF:

∂
St+j
Yt+j

∂εt+1
= λφ

j−1
1 (φ1 − 1)d, j > 1,

∂ St+1
Yt+j

∂εt+1
= (λ− σ)d, j = 1.

A.7.2 Case of AR(2)

Proof. We use ψ(L) to denote the infinite MA representation of the debt/output process. We assume that r f
t = g. When

the log of the debt/output process follows an AR(2), the surplus/output ratio is given by:

St+1
Yt+1

= exp(−σεt+1 −
∞

∑
j=0

ρjλεt−j + d)− exp(+d + φ1(−
∞

∑
j=0

ψjλεt−j) + φ2(−
∞

∑
j=0

ψjλεt−1−j)− λεt+1 −
1
2

λ2).

Next, we compute the derivative of the surplus/output ratio at t + 1, and we evaluate this derivative at εt+j = 0 :

∂ St+1
Yt+1

∂εt+1
= + (λ− σ) exp(d)).

The surplus/output ratio at t + 2 is given by:

St+2
Yt+2

= exp(−σεt+2 −
∞

∑
j=0

ρjλεt+1−j + d)− exp(+d + φ1(−
∞

∑
j=0

ψjλεt+1−j) + φ2(−
∞

∑
j=0

ψjλεt−j)− λεt+2 −
1
2

λ2).

We evaluate this derivative at εt+j = 0 to obtain:

∂ St+2
Yt+2

∂εt+1
= −λ exp(d) + λ(φ1) exp(d)).

The surplus/output ratio at t + 3 is given by:

St+3
Yt+3

= exp(−σεt+3 −
∞

∑
j=0

ψjλεt+2−j + d)− exp(d + φ1(−
∞

∑
j=0

ψjλεt+2−j) + φ2(−
∞

∑
j=0

ψjλεt+1−j)− λεt+3 −
1
2

λ2).

We evaluate this derivative at εt+j = 0 to obtain:

∂ St+3
Yt+3

∂εt+1
= −ψ1λ exp(d) + λ(φ1ψ1 + φ2) exp(µ + d).
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This generalizes to the following expression. For j > 2, we obtain:

∂
St+j
Yt+j

∂εt+1
= −λψj−1 exp(+d)) + λψj exp(d)).

Assume r f = µ. Then we obtain the IRF:

∂
St+j
Yt+j

∂εt+1
= (λ− σ) exp(d), for j = 1,

= λ(φ1 − 1) exp(d), for j = 2,

= λ(ψj−1 − ψj−2) exp(d), for j > 2.

A.7.3 Case of AR(3)

Proof. We use ψ(L) to denote the infinite MA representation of the debt/output process. We assume that the risk-free

rate equals the growth rate of the economy. When the log of the debt/output process follows an AR(3), the sur-

plus/output ratio is given by:

St+1
Yt+1

= exp(−σεt+1 −
∞

∑
j=0

ρjλεt−j + d)

− exp(+d + φ1(−
∞

∑
j=0

ψjλεt−j) + φ2(−
∞

∑
j=0

ψjλεt−1−j + φ3(−
∞

∑
j=0

ψjλεt−2−j)− λεt+1 −
1
2

λ2).

Next, we compute the derivative of the surplus/output ratio at t + 1, and we evaluate this derivative at εt+j = 0:

∂ St+1
Yt+1

∂εt+1
= + (λ− σ) exp(d)).

The surplus/output ratio at t + 2 is given by:

St+2
Yt+2

= exp(−σεt+2 −
∞

∑
j=0

ρjλεt+1−j + d)

− exp(d + φ1(−
∞

∑
j=0

ψjλεt+1−j) + φ2(−
∞

∑
j=0

ψjλεt−j) + φ3(−
∞

∑
j=0

ψjλεt−1−j)− λεt+2 −
1
2

λ2).

We evaluate this derivative at εt+j = 0 to obtain:

∂ St+2
Yt+2

∂εt+1
= −λ exp(d)) + λ(φ1) exp(d)).

The surplus/output ratio at t + 3 is given by:

St+3
Yt+3

= exp(−σεt+3 −
∞

∑
j=0

ψjλεt+2−j + d)

− exp(d + φ1(−
∞

∑
j=0

ψjλεt+2−j) + φ2(−
∞

∑
j=0

ψjλεt+1−j + φ3(−
∞

∑
j=0

ψjλεt−j)− λεt+3 −
1
2

λ2).
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We evaluate this derivative at εt+j = 0 to obtain:

∂ St+3
Yt+3

∂εt+1
= −ψ1λ exp(d) + λ(φ1ψ1 + φ2) exp(µ + d).

We evaluate this derivative at εt+j = 0 to obtain:

∂ St+4
Yt+4

∂εt+1
= −ρ2λ exp(d) + λ(φ1ρ2 + φ2ψ1 + φ3) exp(µ + d).

This generalizes to the following expression. For j > 2, we obtain:

∂
St+j
Yt+j

∂εt+1
= −λψj−1 exp(d) + λψj exp(µ + d).

Assume r f = µ. Then we obtain the IRF:

∂
St+j
Yt+j

∂εt+1
= (λ− σ) exp(d), for j = 1,

= λ(φ1 − 1) exp(d), for j = 2,

= λ(φ1ψ1 + φ2 − ψ1) exp(d), for j = 3,

= λ(ψj−1 − ψj−2) exp(d), for j > 3.

A.8 Proof of Proposition 7

A.8.1 Case of AR(1)

Proof. As a result, we can solve for an expression of the log debt/output ratio as a function of the past shocks:

log dt = −
∞

∑
j=0

φjλεt−j +
φ0 − 1

2 λ2

1− φ
.

Consider a government that only issues risk-free debt. Note that the surplus at t + 1 is given by:

St+1 = dtYt exp(r f
t )− exp(φ log dt + φ0 − λεt+1 −

1
2

λ2)Yt+1.

We get the following expression for the covariance:

covt(Mt+1, St+1) = covt(Mt+1,−dt+1Yt+1)

= −Et[Mt+1dt+1Yt+1] + Et[Mt+1]Et[dt+1Yt+1]

= − exp(−ρ− 1
2

γ2 +
1
2
(γ + λ− σ)2 + µ + yt + φ log dt + φ0 −

1
2

λ2)

+ exp(−ρ) exp(
1
2
(λ− σ)2 + µ + yt + φ log dt + φ0 −

1
2

λ2)

= −(exp(−1
2

γ2 +
1
2
(γ + λ− σ)2 − 1

2
(λ− σ)2)− 1)Et[Mt+1]Et[dt+1Yt+1]

= −Et[Mt+1]Et[dt+1Yt+1](exp(−γ(σ− λ))− 1).
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By the same token, we get the following expression for the covariance of the discounted surpluses over two periods:

covt(Mt+1, St+1 + Et+1[Mt+1,t+2St+2)]

= covt(Mt+1,−Et+1[Mt+1,t+2dt+2Yt+2])

= −Et[Mt+1]Et+1[Mt+1,t+2dt+2Yt+2](exp(−γ(σ− φλ))− 1)

Check the proof of Prop. 2 to see why the sum of the discounted surpluses drop out, and only the debt issuance term

remains. We get the following expression for the covariance of the discounted surpluses over j periods:

covt(Mt+1,
j

∑
k=1

Et+1[Mt+1,t+jSt+j])

= covt(Mt+1,−Et+1[Mt+1,t+jdt+jYt+j])

= −Et[Mt+1]Et+1[Mt+1,t+jdt+jYt+j](exp(−γ(σ− φj−1λ))− 1).

A.8.2 Case of AR(2)

Proof. We use ψ(L) to denote the infinite MA representation of the debt/output process. As a result, we can solve for

an expression of the log debt/output ratio as a function of the past shocks:

log dt = −
∞

∑
j=0

ψjλεt−j +
φ0 − 1

2 λ2

1− φ1 − φ2
.

where ψj = φ1ψj−1 + φ2ψj−2. Consider a government that only issues risk-free debt. Note that the surplus at t + 1 is

given by:

St+1 = dtYt exp(r f
t )− exp(+φ1 log dt + φ2 log dt−1 + φ0 − λεt+1 −

1
2

λ2)Yt+1.

As a result, we get the following expression for the covariance:

covt(Mt+1, St+1) = covt(Mt+1,−dt+1Yt+1)

= −Et[Mt+1dt+1Yt+1] + Et[Mt+1]Et[dt+1Yt+1]

= − exp(−ρ− 1
2

γ2 +
1
2
(γ + λ− σ)2 + µ + yt + φ1 log dt + φ2 log dt−1 + φ0 −

1
2

λ2)

+ exp(−ρ) exp(
1
2
(λ− σ)2 + µ + yt + φ1 log dt + φ2 log dt−1 + φ0 −

1
2

λ2)

= −(exp(−1
2

γ2 +
1
2
(γ + λ− σ)2 − 1

2
(λ− σ)2)− 1)Et[Mt+1]Et[dt+1Yt+1]

= −Et[Mt+1]Et[dt+1Yt+1](exp(−γ(σ− λ))− 1).

By the same token, we get the following expression for the covariance of the discounted surpluses over two periods:

covt(Mt+1, St+1 + Et+1[Mt+1,t+2St+2)]

= covt(Mt+1,−Et+1[Mt+1,t+2dt+2Yt+2])

= −Et[Mt+1]Et+1[Mt+1,t+2dt+2Yt+2](exp(−γ(σ− ψ1λ))− 1)

Check the proof of Prop. 2 to see why the sum of the discounted surpluses drop out, and only the debt issuance term
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remains. And we get the following expression for the covariance of the discounted surpluses over j periods:

covt(Mt+1,
j

∑
k=1

Et+1[Mt+1,t+jSt+j])

= covt(Mt+1,−Et+1[Mt+1,t+jdt+jYt+j])

= −Et[Mt+1]Et+1[Mt+1,t+jdt+jYt+j](exp(−γ(σ− ψj−1λ))− 1).

A.9 Proof of Corollary 2

A.9.1 Case of AR(1)

Proof. Start from the restriction:

covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kTt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(σ− φj−1λ))− 1)

+ xcovt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kYt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(σ− φj−1λ))− 1)

+ x
j

∑
k=1

Et[Mt+1]Et[Mt+1,t+kYt+k](exp(−γσ)− 1)

We substitute for the price of debt strips:

Et[Mt,t+jdt+jYt+j]

= exp(
j

∑
k=1

κk) exp(φj log dt)Yt

= exp(
φ0(1− φj)

1− φ
− ρj− 1

2
(γ2 j +

λ2(1− φj)

1− φ
) + µj +

j

∑
k=1

1
2
(γ + λφk−1 − σ)2) exp(φj log dt)Yt

For j > 1, we obtain the following expression:

Et+1[Mt+1,t+jdt+jYt+j]

= exp(
φ0(1− φj−1)

1− φ
− ρ(j− 1)− 1

2
(γ2(j− 1) +

λ2(1− φj−1)

1− φ
) + µ(j− 1) +

j−1

∑
k=1

1
2
(γ + λφk−1 − σ)2)

exp(φj−1 log dt+1)Yt+1,

and, for j = 1, we get that:

Et+1[Mt+1,t+jdt+jYt+j] = exp(
φ0

1− φ
) exp(log dt+1)Yt+1.

For j > 1, this simplifies to the following expression:

Et[Mt+1,t+jdt+jYt+j]

= exp(
1− φj

1− φ
(φ0 −

1
2

λ2)− ρ(j− 1)− 1
2

γ2(j− 1) + µj +
j−1

∑
k=1

1
2
(γ + λφk−1 − σ)2)
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exp(φj log dt +
1
2
(−φj−1λ + σ)2)Yt.

Note that by a similar logic, the price of the output strips is given by:

Et[Mt+1,t+jYt+j]

= exp(−ρ(j− 1)− 1
2

γ2(j− 1) + µj + (j− 1)
1
2
(γ− σ)2 +

1
2
(σ)2)Yt

To summarize, for j > 1, this implies that we have the following expression:

Et[Mt+1,t+jdt+jYt+j]

= Et[Mt+1,t+jYt+j] exp(
1− φj

1− φ
(φ0 −

1
2

λ2) +
j−1

∑
k=1

1
2
((λφk−1)2 + 2(γ− σ)λφk−1))

exp(φj log dt +
1
2
((φj−1λ)2 − 2σφj−1λ)).

and for j = 1, we get that:

Et+1[Mt+1,t+jdt+jYt+j] = exp(
φ0

1− φ
) exp(φ log dt) exp(µ +

1
2

σ2)Yt.

A.9.2 Case of AR(2)

Proof. We use ψ(L) to denote the infinite MA representation of the debt/output process. Start from the restriction:

covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kTt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(σ− ψj−1λ))− 1)

+ xcovt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kYt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(σ− ψj−1λ))− 1)

+ x
j

∑
k=1

Et[Mt+1]Et[Mt+1,t+kYt+k](exp(−γσ)− 1)

We substitute for the price of debt strips:

Et[Mt,t+jdt+jYt+j]

= exp(
j

∑
k=1

κk) exp(ψj log dt)Yt

= exp(
j

∑
k=1

ψk−1φ0 − ρj− 1
2
(γ2 j +

j

∑
k=1

ψk−1λ2) + gj +
j

∑
k=1

1
2
(γ + λψk−1 − σ)2) exp(ψj log dt)Yt

For j > 1, we obtain the following expression:

Et+1[Mt+1,t+jdt+jYt+j]

= exp(
j−1

∑
k=1

ψk−1φ0 − ρ(j− 1)− 1
2
(γ2(j− 1) +

j−1

∑
k=1

ψk−1λ2) + µ(j− 1) +
j−1

∑
k=1

1
2
(γ + λψk−1 − σ)2)

exp(ψj−1 log dt+1)Yt+1,
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and, for j = 1, we get that:

Et+1[Mt+1,t+jdt+jYt+j] = exp(
φ0

1− φ1 − φ2
) exp(log dt+1)Yt+1.

For j > 1, this simplifies to the following expression:

Et[Mt+1,t+jdt+jYt+j]

= exp(
j

∑
k=1

ψk−1(φ0 −
1
2

λ2)− ρ(j− 1)− 1
2

γ2(j− 1) + µj +
j−1

∑
k=1

1
2
(γ + λψk−1 − σ)2)

exp(ρj log dt +
1
2
(−ψj−1λ + σ)2)Yt.

Note that by a similar logic, the price of the output strips is given by:

Et[Mt+1,t+jYt+j]

= exp(−ρ(j− 1)− 1
2

γ2(j− 1) + µj + (j− 1)
1
2
(γ− σ)2 +

1
2
(σ)2)Yt.

To summarize, for j > 1, this implies that we have the following expression:

Et[Mt+1,t+jdt+jYt+j]

= Et[Mt+1,t+jYt+j] exp(
j

∑
k=1

ψk−1(φ0 −
1
2

λ2) +
j−1

∑
k=1

1
2
((λψk−1)

2 + 2(γ− σ)λψk−1))

exp(ψj log dt +
1
2
((ψj−1λ)2 − 2σψj−1λ)),

and for j = 1, we get that:

Et+1[Mt+1,t+jdt+jYt+j] = exp((
φ0

1− φ1 − φ2
) exp(φ1 log dt + φ2 log dt−1) exp(g +

1
2

σ2)Yt.

A.10 Model with Convenience Yields

The government debt portfolio return equals the return on a portfolio that goes long in the tax claim and short in the

spending claim:

Et

[
RD

t+1 − R f
t

]
=

PT
t − Tt

Bt − St
Et

[
RT

t+1 − R f
t

]
+

PK
t − Tt

Bt − St
Et

[
Rλ

t+1 − R f
t

]
− PG

t − Gt

Bt − St
Et

[
RG

t+1 − R f
t

]
,

where RD
t+1, RT

t+1,RK
t+1 and RG

t+1 are the holding period returns on the bond portfolio, the tax claim, and the spending

claim, respectively. We take government spending process, and the debt return process as exogenously given, and we

explore the implications for the properties of the tax claim.

Proposition 8. In the absence of arbitrage opportunities, if the TVC holds, the expected excess return on the tax claim is the

unlevered return on the spending claim and the debt claim:

Et

[
RT

t+1 − R f
t

]
=

PG
t − Gt

Dt + (PG
t − Gt)− (PK

t − Kt)
Et

[
RG

t+1 − R f
t

]
+

Dt

Dt + (PG
t − Gt)− (PK

t − Kt)
Et

[
RD

t+1 − R f
t

]
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− PK
t − Kt

Dt + (PG
t − Gt)− (PK

t − Kt)
Et

[
RK

t+1 − R f
t

]
If we want the debt to be risk-free, then the following equation holds for expected returns:

Et

[
RT

t+1 − R f
t

]
=

PG
t − Gt

Dt + (PG
t − Gt)− (PK

t − Kt)
Et

[
RG

t+1 − R f
t

]
− PK

t − Kt

Dt + (PG
t − Gt)− (PK

t − Kt)
Et

[
RK

t+1 − R f
t

]

βT
t =

PG
t − Gt

Dt + (PG
t − Gt)− (PK

t − Kt)
βG

t

− PK
t − Kt

Dt + (PG
t − Gt)− (PK

t − Kt)
βK

t .

Suppose we consider the case of a constant spending ratio and a constant convenience yield ratio. Then this implies

that the beta of the tax revenue process is given by:

βT
t =

(PG
t − Gt)− (PK

t − Kt

Dt + (PG
t − Gt)− (PK

t − Kt)
βG

On the other hand, suppose that the convenience yield seigniorage process has a zero beta. Then the implied beta of

the tax revenue process

βT
t =

PG
t − Gt

Dt + (PG
t − Gt)− (PK

t − Kt)
βG,

which exceeds the beta of the tax revenue without seigniorage: βT
t =

PG
t −Gt

Dt+(PG
t −Gt)

. If the seigniorage revenue is suffi-

ciently counter-cyclical, then the government can insure both taxpayers and bondholders at the same time. For example,

consider the case in which the government runs zero primary surpluses in all future states of the world. Then the beta

of the tax revenue is one:βT
t = 1, where Dt = Pλ

t − Kt. In this case, the average tax rate is constant: ∆ log τt+1 = 0.
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B Quantifying the Trade-off in Model with Transitory Output Shocks

Next, we consider the impact of transitory shocks to the level of output, but we, in a first pass, we keep our original

pricing kernel with permanent shocks to the level of marginal utility. We call this the goldilocks economy. In this

setting, the government can insure taxpayers at all horizons while keeping the debt risk-free.

B.1 Permanent Shocks to Marginal Utility

Assumption 4. (a) The shocks to output are transitory:

yt+1 = ξ0 + ξyt + σεt+1

where εt+1 still denotes the innovation to output growth that is normally distributed and i.i.d.

(b) The log pricing kernel is

mt,t+1 = −ρ− 1
2

γ2 − γεt+1.

(c) The government commits to a policy for the debt/output ratio dt = Dt/Yt given by:

log dt = φ1 log dt−1 + φ0 − λεt −
1
2

λ2,

where λ > 0 so that the debt-output ratio increases in response to a negative output shock εt.

This asset pricing model is fundamentally misspecified. This pricing kernel does not reflect the mean-reversion in

output and hence cannot be micro-founded. However, we use this model as an expositional device. In this setting, the

government faces no trade-off between insuring taxpayers and bondholders. When there are no permanent shocks to

output, but the pricing kernel does not reflect this, then the government can insure taxpayers over all horizons.

Proposition 9. The cash flow beta of the surpluses over j periods is given by:

covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kSt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ))− 1)

when j ≥ 2. The sign of the cash flow covariance is sign
(

ξ j−1σ− φj−1λ
)

.

Hence, the sign of the cash flow covariance is determined by the sign of γ(σξk−1 − φk−1λ). As before, this is the

risk premium on a debt strip, and compensates investors for output risk. Because the innovations are temporary, the

output component of this risk premium converges to zero. The transitory nature of output risk broadens the scope

for insurance of taxpayers. As we consider ξ → 1, we revert back to the expression derived in the benchmark model:

γ(σ− φk−1λ). If λ > σ, the initial covariance is negative. If the rate of mean-reversion in output is higher than in the

debt/output ratio, φ > ξ, the covariance stays negative for all j. As a result, the government can now insure taxpayers

at all horizons. This was not feasible in the case of permanent innovations.

Corollary 4. The cash flow beta of taxes have to satisfy the following restriction.

covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kTt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ))− 1)

+ covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kGt+k

)
.
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Quantitative Implications We return to our calibrated economy. Figure 9 plots the risk premium contributions

of the surpluses over different horizons for the benchmark calibration:

−covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kSt+k

)
/Et[Mt+1]

= Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ))− 1)

However, the output process no longer has a unit root. We start by considering the case in which φ = ξ. At all

horizons, the tax claim is risky, contributing positive risk premium across all horizons, because λ exceeds σ. The tax

claim is also risky across all horizons. In this goldilocks scenario, the government can insure taxpayers at all horizons.

γ(σξk−1 − φk−1λ) is positive across all horizons.

Figure 9: Risk Premium on Govt. Cash Flows with Transitory Shocks

The figure plots the risk premium contribution of cumulative discounted cash flows (top panel) and the strips (middle panel) against
the horizon. The bottom panel plots the risk premium on the debt strips: −(exp(−γ(σξ j−1 − φj−1λ))− 1). Calibration: φ is 0.75 and
ξ is 0.75. Other parameters–Benchmark calibration in Table 1.
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Figure 9 plots the risk premium on the debt strips, which pay off dt+kYt+k, given by

γ(σξk−1 − φk−1λ) ≈ −(exp(−γ(σξk−1 − φk−1λ))− 1).

Given that λ exceeds σ, the risk premium on the debt strips are uniformly negative. These are the mirror image of

the surplus risk premium in the top panel of Figure 9. As j → ∞, this debt strip risk premium converges to the

risk premium on the output strips, 0%, because the output innovations are transitory, and the pricing kernel does not

have a transitory component which contributes interest rate risk. Why can the government insure taxpayers over long

horizons (by delivering a risky tax claim)? Because the debt strip risk premium are negative at all horizons.

Of course, insurance of taxpayers only works if the governments commits to a debt policy that is at least as per-

sistent as the output process (φ > ξ). Figure 10 plots the risk premia contributions when the output shocks are close

to a unit root, but the debt/output ratio reverts back to the mean at a faster rate. In this case, the government has to

produce safer surplus claims over longer horizons.

59



Figure 10: Risk Premium on Govt. Cash Flows with Transitory Shocks

The figure plots the risk premium contribution of cumulative discounted cash flows (top panel) and the strips (bottom panel) against
the horizon. Calibration: φ is 0.75 and ξ is 0.98. Other parameters–Benchmark calibration in Table 1.
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B.2 Transitory Shocks to Marginal Utility

Next, we consider an internally consistent model: we shut down permanent shocks to the level of output, as well as to

marginal utility.

Assumption 5. (a) The shocks to output are transitory:

yt+1 = ξ0 + ξyt + σεt+1

where εt+1 still denotes the innovation to output growth that is normally distributed and i.i.d.

(b) The log pricing kernel is

mt,t+1 = −ρ− 1
2

γ2 − γ
σεt+1 + (ξ − 1)yt

σ
.

When shocks to output are transitory, most asset pricing models predict that there are no permanent shocks to the

marginal utility of wealth. This specific modification of the pricing kernel is motivated by the fact that if the agent’s

consumption is equal to the output and has CRRA preference with a relative risk aversion of γ/σ, the marginal utility

growth is mt,t+1 = −ρ̃− γ/σ(ξ0 + (ξ − 1)yt + σεt+1). In this case, the marginal utility of wealth can be written as:

Λt+1 = exp(−ρ̃(t + 1)− (γ/σ)yt+1).

There are no permanent shocks to the marginal utility of wealth. Given this pricing kernel, the log of the risk-free rate

is given by:

r f
t = ρ + γ

(ξ − 1)yt
σ

.

Note that this model has counterfactual asset pricing implications. In the model, the interest rate risk will make
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the long bond the riskiest asset in the economy. Modern asset pricing has consistently found that permanent cash flow

shocks receive a high price of risk in the market (e.g., Alvarez and Jermann, 2005; Hansen and Scheinkman, 2009;

Bansal and Yaron, 2004; Borovička et al., 2016; Backus et al., 2018). This model has no permanent priced risk, except

when ξ = 1. In that case, we recover the pricing kernel in our benchmark model.

When there are no permanent shocks to output and the pricing kernel, then the government can insure taxpayers

over longer horizons.

Proposition 10. The cash flow beta of the surpluses over j periods is given by:

covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kSt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ +

γ

σ
(1− ξ j−1)))− 1)

when j ≥ 2. The sign of the cash flow covariance is sign
(

γ(ξ j−1σ− φj−1λ + γ
σ (1− ξ j−1))

)
.

Hence, the sign of the cash flow covariance is determined by the sign of γ(σξk−1 − φk−1λ + γ
σ (1 − ξk−1)). As

before, this is the risk premium on a debt strip. The first component, γ(ξ j−1σ− φj−1λ), compensates for output risk.

The second component, γ
σ (1− ξ j−1), compensates for interest rate risk. Because the innovations are temporary, the

output component of this risk premium converges to zero. The interest rate risk does not converge to zero; the long

bond is the riskiest asset in an economy with only transitory risk. The transitory nature of output risk broadens the

scope for insurance of taxpayers, but this is counteracted by interest rate risk. As we consider ξ → 1, we revert back to

the expression derived in the benchmark model: γ(σ− φk−1λ). The interest rate risk term disappears.

Corollary 5. The cash flow beta of taxes have to satisfy the following restriction.

covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kTt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ +

γ

σ
(1− ξ j−1)))− 1)

+ covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kGt+k

)
.

which can be restated as:

covt

(
Mt+1, (Et+1 −Et)

j

∑
k=1

Mt+1,t+kTt+k

)

= −Et[Mt+1]Et+1[Mt+1,t+jYt+j] exp(
1− φj

1− φ
(φ0 −

1
2

λ2) +
j−1

∑
k=1

((γ− σ)ξk−1φk−1λ +
1
2
(φk−1λ)2)

+ φj log dt − φj−1λ((σ− γ)ξ j−1 + γ) +
1
2
(φj−1λ)2)(exp(−γ(ξ j−1σ− φj−1λ +

γ

σ
(1− ξ j−1)))− 1)

+ covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kGt+k

)
.

Quantitative Model Implications We return to our calibrated economy. Figure 11 plots the risk premium

contributions of the surpluses over different horizons j for the benchmark calibration:

−covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kSt+k

)
/Et[Mt+1]

= Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ +
γ

σ
(1− ξ j−1)))− 1)

However, the output process no longer has a unit root. At short horizons, the tax claim is safe, contributing negative

risk premium, but the tax claim turns risky over horizons that exceed 10 years.
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Figure 11: Risk Premium on Govt. Cash Flows with Transitory Shocks

The figure plots the risk premium contribution of cumulative discounted cash flows (top panel) and the strips (middle panel) against
the horizon. Calibration: φ is 0.75. Other parameters–Benchmark calibration in Table 1.
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B.3 Proofs

B.3.1 Proof of Proposition 9

Proof. Since

St+1 = dtYt exp(r f
t )− dt+1Yt+1,

we get the following expression for the covariance:

covt(Mt+1, St+1) = covt(Mt+1,−dt+1Yt+1)

= −Et[Mt+1dt+1Yt+1] + Et[Mt+1]Et[dt+1Yt+1]

= − exp(−ρ− 1
2

γ2 +
1
2
(γ + λ− σ)2 + ξ0 + ξyt + φ log dt + φ0 −

1
2

λ2)

+ exp(−ρ) exp(
1
2
(λ− σ)2 + ξ0 + ξyt + φ log dt + φ0 −

1
2

λ2)

= −(exp(−1
2

γ2 +
1
2
(γ + λ− σ)2 − 1

2
(λ− σ)2)− 1)Et[Mt+1]Et[dt+1Yt+1]

= −Et[Mt+1]Et[dt+1Yt+1](exp(−γ(σ− λ))− 1).

By the same token, we get the following expression for the covariance of the discounted surpluses over j ≥ 2

periods:

covt(Mt+1, Et+1[
j

∑
k=1

Mt+1,t+kSt+k])

= covt(Mt+1,−Et+1[Mt+1,t+jdt+jYt+j])

= −Et[Mt+1 Mt+1,t+jdt+jYt+j] + Et[Mt+1]Et[Mt+1,t+jdt+jYt+j]
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= −Et[exp(−ρ− 1
2

γ2 − γεt+1) exp(. . .− γ(ξ − 1)
σ

(1 + ξ + . . . + ξ j−2)yt+1)

exp(φj log dt − φj−1λεt+1 + . . .) exp(ξ jyt + ξ j−1σεt+1 + . . .)] + Et[Mt+1]Et[Mt+1,t+jdt+jYt+j]

= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ))− 1)

B.3.2 Proof of Corollary 4

Proof. This result simply follows from

covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kTt+k

)
= covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kSt+k

)
+ covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kGt+k

)
.

B.3.3 Proof of Proposition 10

Proof. Since

St+1 = dtYt exp(r f
t )− dt+1Yt+1,

we get the following expression for the covariance:

covt(Mt+1, St+1) = covt(Mt+1,−dt+1Yt+1)

= −Et[Mt+1dt+1Yt+1] + Et[Mt+1]Et[dt+1Yt+1]

= − exp(−ρ− γ

σ
(ψ− 1)yt −

1
2

γ2 +
1
2
(γ + λ− σ)2 + ξ0 + ξyt + φ log dt

+ φ0 −
1
2

λ2)

+ exp(−ρ− γ

σ
(ξ − 1)yt) exp(

1
2
(λ− σ)2 + ξ0 + ξyt + φ log dt + φ0 −

1
2

λ2)

= −(exp(−1
2

γ2 +
1
2
(γ + λ− σ)2 − 1

2
(λ− σ)2)− 1)Et[Mt+1]Et[dt+1Yt+1]

= −Et[Mt+1]Et[dt+1Yt+1](exp(−γ(σ− λ))− 1).

By the same token, we get the following expression for the covariance of the discounted surpluses over j ≥ 2

periods:

covt(Mt+1, Et+1[
j

∑
k=1

Mt+1,t+kSt+k])

= covt(Mt+1,−Et+1[Mt+1,t+jdt+jYt+j])

= −Et[Mt+1 Mt+1,t+jdt+jYt+j] + Et[Mt+1]Et[Mt+1,t+jdt+jYt+j]

= −Et[exp(−ρ− γ

σ
(ξ − 1)yt −

1
2

γ2 − γεt+1) exp(. . .− γ(ξ − 1)
σ

(1 + ξ + . . . + ξ j−2)yt+1)

exp(φj log dt − φj−1λεt+1 + . . .) exp(ξ jyt + ξ j−1σεt+1 + . . .)] + Et[Mt+1]Et[Mt+1,t+jdt+jYt+j]

= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ− γ(ξ − 1)
σ

1− ξ j−1

1− ξ
))− 1)

= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ +
γ

σ
(1− ξ j−1)))− 1)
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B.3.4 Proof of Corollary 5

Proof. Start from the restriction:

covt

(
Mt+1, (Et+1 −Et)

j

∑
k=1

Mt+1,t+kTt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ +

γ

σ
(1− ξ j−1)))− 1)

+ xcovt

(
Mt+1, (Et+1 −Et)

j

∑
k=1

Mt+1,t+kYt+k

)

where

covt
(

Mt+1, (Et+1 −Et)Mt+1,t+kYt+k
)

= Et[Mt+1 Mt+1,t+kYt+k]− Et[Mt+1]Et[Mt+1,t+kYt+k]

= Et[exp(−ρ− γ

σ
(ξ − 1)yt −

1
2

γ2 − γεt+1)Mt+1,t+k exp(ξkyt + ξk−1σεt+1 + . . .)]

− Et[Mt+1]Et[Mt+1,t+kYt+k]

= −Et[Mt+1]Et[Mt+1,t+kYt+k](exp(−γ(ξk−1σ +
γ

σ
(1− ξk−1)))− 1).

Next, we conjecture

Et[Mt,t+jdt+jYt+j] = exp(
j

∑
k=1

κ̃k) exp(φj log dt + f jyt)

Note

Et[Mt,t+jdt+jYt+j] = Et[Mt,t+1 exp(
j−1

∑
k=1

κk) exp(φj−1 log dt+1 + f j−1yt+1)]

= Et[exp(−ρ− γ

σ
(ξ − 1)yt −

1
2

γ2 − γεt+1) exp(
j−1

∑
k=1

κ̃k)

exp(φj−1(φ log dt + φ0 − λεt+1 −
1
2

λ2) + f j−1(ξ0 + ξyt + σεt+1))]

So we confirm the conjecture,

exp(κ̃j) = Et[exp(−ρ− γ

σ
(ξ − 1)yt −

1
2

γ2 − γεt+1 + φj−1(φ0 − λεt+1 −
1
2

λ2) + f j−1(ξ0 + σεt+1))]

κ̃j = −ρ− 1
2

γ2 + φj−1(φ0 −
1
2

λ2) + f j−1ξ0 +
1
2
(−γ− φj−1λ + f j−1σ)2

and

f j = −γ

σ
(ξ − 1) + f j−1ξ

= ξ j +
γ

σ
(1− ξ j) =

σ− γ

σ
ξ j +

γ

σ

So, for j > 1,

Et[Mt+1,t+jdt+jYt+j]

64



= Et[exp(
j−1

∑
k=1

κ̃k) exp(φj−1 log dt+1 + (
σ− γ

σ
ξ j−1 +

γ

σ
)yt+1)]

= exp((−ρ− 1
2

γ2)(j− 1) +
1− φj−1

1− φ
(φ0 −

1
2

λ2) +

(
1− ξ j−1

1− ξ

σ− γ

σ
+

γ

σ
(j− 1)

)
ξ0

+
j−1

∑
k=1

1
2
(−γ− φk−1λ + ((σ− γ)ξk−1 + γ))2

+ φj−1(φ log dt + φ0 −
1
2

λ2) + (
σ− γ

σ
ξ j−1 +

γ

σ
)(ξ0 + ξyt) +

1
2
(−φj−1λ + ((σ− γ)ξ j−1 + γ))2)

By a similar logic,

Et+1[Mt+1,t+jYt+j]

= exp((−ρ− 1
2

γ2)(j− 1) +

(
1− ξ j−1

1− ξ

σ− γ

σ
+

γ

σ
(j− 1)

)
ξ0

+
j−1

∑
k=1

1
2
(−γ + ((σ− γ)ξk−1 + γ))2 + (

σ− γ

σ
ξ j−1 +

γ

σ
)(ξ0 + ξyt) +

1
2
(((σ− γ)ξ j−1 + γ))2)

So

Et+1[Mt+1,t+jdt+jYt+j]

= Et+1[Mt+1,t+jYt+j] exp(
1− φj

1− φ
(φ0 −

1
2

λ2) +
j−1

∑
k=1

((γ− σ)ξk−1φk−1λ +
1
2
(φk−1λ)2)

+ φj log dt − φj−1λ((σ− γ)ξ j−1 + γ) +
1
2
(φj−1λ)2)

C UK Data Sources

The main dataset we use is A millennium of macroeconomic data published by the bank of England. The dataset contains

a broad set of macroeconomic and financial data for the UK. We also use other data sets as complementing the main

dataset. Below we describe how we construct variables in our estimation procedure from the raw data set. The time

period for all series are from 1814 to 2015. All sheets and columns refer to the excel table A millennium of macroeconomic

data unless described otherwise.

Primary Surpluses The government expenditure G is the total government expenditure (Sheet A27, Column C)

plus interest payments (Sheet A27, Column N). The government revenue T is from Sheet A27, Column N. The raw

source for the data is from Mitchell and Mitchell (1988) and UK Office of National Statistics. The primary surpluses are

the government revenue T minus the government spending before interest payments G. The market value of debt is

the market value of central government liabilities ( Sheet A30b, Column W).

GDP and Inflation: For real GDP, we use Sheet A8, Column D. For nominal GDP, we use Sheet A9, Column D.

Both of the GDP series are measured based on the current definition of UK (Great Britain and Northern Ireland). We

use the ratio of real GDP and nominal GDP to get the GDP deflator and the inflation series.
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Short Rate: We use Prime Commercial Bill/Paper Rate in Sheet A31, Column F as our 1-period interest rate in our

model. This series is based on spliced yield in the monthly short-term rates sheet (Sheet M9). The detailed break-down

of the short rate are: 1) 1718 – 1825: rates on 6-month East India Bonds from Weiller and Mirowski (1990) and Heim

and Mirowski (1987); 2) 1824 – 1870: rates on three month prime or first class bills from Economist; 3) 1870 – 1974: Prime

Bank Bill Rate for 3 month bills from Nishimura (1971); 4) 1975 – 2005: rates on eligible bills from Bank of England; 5)

2005 –2012: end month rates on 3-month Sterling Euro-commercial paper from Bank of England, and 3 month Libor

rate. All rates are annualized.

Long Rate: We use Yield on perpetual annuities/consols in Sheet A31, Column T as the yield for an infinitely lived

bond in our model. The detailed break-down are: 1) 1703 – 1726: yields on new long-term issues from Neal (1993); 2)

1727 – 1753: yields on 3% perpetual annuities from Odlyzko (2016); 3) 1756 – 2015: yields on consols from Capie and

Webber (1985) and Klovland (1994).
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