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Abstract

We propose a novel framework for analyzing linear asset pricing models: simple, ro-
bust, and applicable to high dimensional problems. For a (potentially misspecified)
standalone model, it provides reliable risk premia estimates of both tradable and non-
tradable factors, and detects those weakly identified. For competing factors and (pos-
sibly non-nested) models, the method automatically selects the best specification —
if a dominant one exists — or provides a model averaging, if there is no clear winner
given the data. We analyze 2.25 quadrillion models generated by a large set of existing
factors, and gain novel insights on the empirical drivers of asset returns.
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I Introduction

In the last decade or so, two observations have come to the forefront of the empirical asset
pricing literature. First, at current production rates, in the near future we will have more
sources of empirically “identified” risk than stock returns to price with these factors — the
so-called factors zoo phenomenon (see, e.g., Harvey, Liu, and Zhu (2016)). Second, given the
commonly used estimation methods in empirical asset pricing, useless factors (i.e., factors
whose true covariance with asset returns is asymptotically zero) are not only likely to appear
empirically relevant but also invalidate inference regarding the true sources of risk (see, e.g.,
Gospodinov, Kan, and Robotti (2019)). Nevertheless, to the best of our knowledge, no
general method has been suggested to date that: ¢) is applicable to both tradable and
non-tradable factors, i) can handle the very large factor zoo, and #ii) remains valid under
model misspecification, while iv) being robust to the spurious inference problem. And that
is exactly what we provide.

We develop a unified framework for tackling linear asset pricing models. In the case of
standalone model estimation, our method provides reliable risk premia estimates (for both
tradable and non-tradable factors), hypothesis testing and confidence intervals for these
parameters, as well as confidence intervals for all the possible objects of interest, for example,
alphas, measures of fit, and model-implied Sharpe ratios. The approach naturally extends
to model comparison and factor selection, even when all models are misspecified and non-
nested. Furthermore, it endogenously delivers a specification selection — if a dominant model
exists — or model averaging, if there is no clear winner given the data at hand. The method
is numerically simple, fast, extremely easy to use, and can be feasibly applied to a very
large number (literally, quadrillions) of candidate factor models, while being robust to the
common identification problems.

As stressed by Harvey (2017) in his AFA presidential address, the zoo of factors in the em-
pirical literature naturally calls for a Bayesian solution — and we develop one. Furthermore,
we show that factors proliferation and spurious inference are tightly connected problems, and
a naive Bayesian approach to model selection fails in the presence of spurious factors. Hence,
we correct it, and apply our method to the zoo of traded and non-traded factors proposed in
the literature, jointly evaluating 2.25 quadrillion models and gaining novel insights regarding
the empirical drivers of asset returns. Our results are based on the beta-representation of
linear factor models, but the method is straightforwardly extendable to the direct estimation
of the stochastic discount factor (SDF).

We find that only a handful of factors proposed in the previous literature are robust
explanators of the cross-section of asset returns, and a three robust factor model easily out-
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of potential models: hundreds of possible specifications, none of which has been examined
in the previous literature, are virtually equally likely to price the cross-section of returns.
Furthermore, we find that the “true” latent SDF is dense in the space of observable factors,
that is, a large subset of the factors proposed in the literature is needed to fully capture its
pricing implications. Nonetheless, the SDF-implied maximum Sharpe ratio in the economy
is not unrealistically high, suggesting substantial commonality among the risks spanned by
the factors in the zoo.

Our contribution is fourfold. First, we develop a very simple Bayesian version of the
canonical Fama and MacBeth (1973) regression method that is applicable to both traded
and non-traded factors. This approach makes useless factors easily detectable in finite sam-
ple, while delivering sharp posteriors for the strong factors’ risk premia (i.e., leaving inference
about them unaffected). The result is quite intuitive. Useless factors make frequentist infer-
ence unreliable since, when factor exposures go to zero, risk premia are no more identified.
We show that exactly the same phenomenon causes the Bayesian posterior credible intervals
of risk premia to become diffuse and centered at zero, which makes them easily detectable
in empirical applications. This robust inference approach is as easy to implement as the
canonical Shanken (1992) correction of the standard errors.

Second, the main intent of this paper is to provide a method for handling inference on
the entirety of the factor zoo at once. This naturally calls for the use of model (and factor)
posterior probabilities. However, as we show, model and factor selection based on marginal
likelihoods (i.e., on posterior probabilities or Bayes factors) is unreliable under flat priors for
risk premia: asymptotically, weakly identified factors get selected with probability one even
if they do not command any risk premia. This is due to the fact that lack of identification
generates an unbounded manifold for the risk premia parameters, over which the likelihood
surface is totally flat.! Hence, integrating such a likelihood under a flat prior produces
improper marginals that select useless factors with probability tending to one. As a result,
in the presence of identification failure, naive Bayesian inference has the same weakness as
the frequentist one. This observation, however, not only illustrates the nature of the problem;
it also suggests how to restore inference: use suitable, non-informative — but yet non-flat —
priors.

Third, building upon the literature on predictor selection (see, e.g., Ishwaran, Rao, et al.
(2005) and Giannone, Lenza, and Primiceri (2018)), we provide a novel (continuous) “spike-
and-slab” prior that restores the validity of model and factor selection based on posterior
model probabilities and Bayes factors. The prior is economically motivated — it has a direct
mapping to beliefs about the Sharpe ratio of the risk factors. It is uninformative (the

“slab”) for strong factors, but shrinks away (the “spike”) useless factors. This approach is

1This is similar to the effect of “weak instruments” in IV estimations, as discussed in Sims (2007).



similar in spirit to a ridge regression and acts as a (Tikhonov-Phillips) regularization of the
likelihood function of the cross-sectional regression needed to estimate factor risk premia.
A distinguishing feature of our prior is that the prior variance of a factor’s risk premium is
proportional to its correlation with the test asset returns. Hence, when a useless factor is
present, the prior variance of its risk premium converges to zero, so the shrinkage dominates
and forces its posterior distribution to concentrate around zero. Not only does this prior
restore integrability, but it also: i) makes it computationally feasible to analyze quadrillions
of alternative factor models; i) allows the researcher to encode prior beliefs about the sparsity
of the true SDF without imposing hard thresholds; #ii) restores the validity of hypothesis
testing; iv) shrinks the estimate of useless factors’ risk premia toward zero. We regard this
novel spike-and-slab prior approach as a solution for the high-dimensional inference problem
generated by the factor zoo.

Our method is easy to implement and, in all of our simulations, has good finite sample
properties, even when the cross-section of test assets is large. We investigate its performance
for risk premia estimation, model evaluation, and factor selection, in a range of simulation
designs that mimic the stylized features of returns. Our simulations account for potential
model misspecification and the presence of either strong or useless factors in the model. The
use of posterior sampling naturally allows to build credible confidence intervals not only for
risk premia, but also other statistics of interest, such as the cross-sectional R?, which is
notoriously hard to estimate precisely (Lewellen, Nagel, and Shanken (2010)). We show that
whenever risk premia are well identified, both our method and the frequentist approach pro-
vide valid confidence intervals for model parameters, with empirical coverage being close to
its nominal size. However, in the presence of useless factors, canonical frequentist inference
becomes unreliable. Instead, the posterior distributions of useless factors’ risk premia are
reliably centered around zero, which quickly reveals them even in a relatively short sample.
We find that the Bayesian estimation of strong factors is largely unaffected by the identifica-
tion failure, with posterior-based confidence intervals corresponding to their nominal size. In
other words, our Bayesian approach provides sound inference on model parameters. Further-
more, we also illustrate the factor (and model) selection pitfalls generated by flat priors for
risk premia, and show that our spike-and-slab prior successfully eliminates spurious factors,
while retaining the true sources of risk, even in a relatively short sample.

Fourth, our results have important empirical implications for the estimation of popular
linear factor models and their comparison. We examine 51 factors proposed in the previous
literature, yielding a total of 2.25 quadrillion possible models to analyze, and we find that
only a handful of variables are robust explanators of the cross-section of asset returns (the
Fama and French (1992) “high-minus-low” proxy for the value premium, as well the adjusted
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Santos (2020)).

Jointly, the three robust factors provide a model that is, compared to the previous em-
pirical literature, one order of magnitude more likely to have generated the observed asset
returns: its posterior probability is about 85-88%, while the most likely model among the
ones previously proposed (the five-factor model of Fama and French (2016)) has a poste-
rior probability of about 2 — 6%. However, when considering the whole space of potential
models, there is no clear best model: hundreds of possible specifications, none of which has
been proposed before, are equally likely to price the cross-section of returns. This is due
to the fact that, as we show, the “true” latent SDF is dense in the space of factors pro-
posed in the empirical literature: capturing the characteristics of the SDF requires the use
of 24-25 observable factors. Nevertheless, the SDF-implied maximum Sharpe ratio is not
excessive, indicating a high degree of commonality, in terms of captured risks, among the
factors proposed in the empirical literature.

Furthermore, we apply our useless factors detection method to a selection of popular
linear SDF models. We find that a variety of models with both tradable and non-tradable
factors are only weakly identified at best and are characterized by a substantial degree of
model misspecification and uncertainty:.

While most of our results are obtained on the joint cross-section of 25 Fama-French port-
folios, sorted by size and value, and 30 industry portfolios, we have also analyzed other
test assets used in the empirical literature. In aggregating estimation output across these
different portfolios, we largely rely on a “revealed preferences” approach. That is, we care-
fully survey test assets used by the existing literature and focus on the most popular (and,
arguably, most salient) cross-sections used in the papers. Based on the empirical frequency
of particular portfolios used in the literature, we build a set of 25 composite cross-sections
and average our findings across all of them, with weights proportional to the frequency of
their empirical use. Despite using different test assets, we still find that HML and the ad-
justed version of the market factor by Daniel, Mota, Rottke, and Santos (2020) are robust
explanators of the cross-section of returns.

Finally, since traditional cross-sectional asset pricing is often criticized on the grounds
of relying on only in-sample estimates and model evaluation, we also conduct out-of-sample
analysis. We split our sample in two parts, estimate the model in each of them, and evaluate
the forecast for the cross-sectional spread of returns on the half of the data not used for
estimation. We find that our model out-of-sample performance is remarkably stable for a
wide range of parameters. Furthermore, we show that the key to this finding is a combination
of the overall degree of factors shrinkage, and the ability to successfully separate strong and
weak factors, that our prior design generates.

The remainder of the paper is organized as follows. First, we focus on the related liter-



ature and our contribution to it, correspondingly. In Section II we proceed to outline the
Bayesian Fama-MacBeth estimation and its properties for individual factor inference, and
selection /averaging. Section III describes the simulation designs, highlighting both small and
large-sample behavior of our method and explaining how it relates to the traditional frequen-
tist approach. Section IV presents most of the empirical results for standalone popular linear
models (Section IV.1), and provides further insights from sampling the whole candidate mo-
del space (Sections IV.2 — IV.5). We analyze cross-section uncertainty and out-of-sample
performance in Sections IV.6 and IV.7, respectively. Finally, we discuss potential extensions

to our procedure in Section V, and Section VI concludes.?

I.1 Closely related literature

There are numerous contributions to the literature that rely on the use of Bayesian tools
in finance, especially in the areas of asset allocation (for an excellent overview, see Fabozzi,
Huang, and Zhou (2010), and Avramov and Zhou (2010)), model selection (e.g., Barillas and
Shanken (2018)), and performance evaluation (Baks, Metrick, and Wachter (2001), Péstor
and Stambaugh (2002), Jones and Shanken (2005), Harvey and Liu (2019)). Therefore, we
aim to provide only an overview of the literature that is most closely related to our paper.

While there are multiple papers in the literature that adopt a Bayesian approach to
analyze linear factor models and portfolio choice, most of them focus on the time series
regressions, where the intercepts, thanks to factors being directly traded (or using their
mimicking portfolios) can be interpreted as the vector of pricing errors — the a’s. In this
case, the use of test assets actually becomes irrelevant, since the problem of comparing model
performance is reduced to the spanning tests of one set of factors by another (e.g., Barillas
and Shanken (2018)).

Our paper instead develops a method that can be applied to both tradable and non-
tradable factors. As a result, we focus on the general pricing performance in the cross-section
of asset returns (which is no longer irrelevant) and show that there is a tight link between the
use of the most popular, diffuse, priors for the risk premia, and the failure of the standard
estimation techniques in the presence of useless factors (e.g., Kan and Zhang (1999a)).

Shanken (1987) and Harvey and Zhou (1990) were probably the first to contribute to
the literature that adapted the Bayesian framework to the analysis of portfolio choice, and
developed GRS-type tests (cf. Gibbons, Ross, and Shanken (1989)) for mean-variance effi-
ciency. While Shanken (1987) was the first to examine the posterior odds ratio for portfolio
alphas in the linear factor model, Harvey and Zhou (1990) set the benchmark by imposing

2 Additional results are reported in the Online Appendix available at: https://ssrn.com/abstract=
3627010
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the priors, both diffuse and informative, directly on the deep model parameters.

Péastor and Stambaugh (2000) and Péastor (2000) directly assign a prior distribution to
the vector of pricing errors a, a ~ N (0, kX), where X is the variance-covariance matrix of
returns and k£ € R, , and apply it to the Bayesian portfolio choice problem. The intuition
behind their prior is that it imposes a degree of shrinkage on the alphas, so whenever factor
models are misspecified, the pricing errors cannot be too large a priori, hence, placing a
bound on the Sharpe ratio achievable in this economy. Therefore, they argue, a diffuse prior
for the pricing errors o in general should be avoided.

Barillas and Shanken (2018) extend the aforementioned prior to derive a closed-form
solution for the Bayes’ factor in a setting in which all risk factors are tradable, and use it to
compare different linear factor models exploiting the time series dimension of the data. Chib,
Zeng, and Zhao (2020) show that the improper prior specification of Barillas and Shanken
(2018) is problematic and propose a new class of priors that leads to valid comparison for
traded factor models. In a recent paper, Goyal, He, and Huh (2018) also extend the notion
of distance between alternative model specifications and highlight the tension between the
power of the GRS-type tests and the absolute return-based measures of mispricing.

Following the seminal work of Avramov (2002, 2004) on model uncertainty, return pre-
dictability, and asset allocation, Anderson and Cheng (2016) recently develop a Bayesian
model-averaging approach to portfolio choice, with model uncertainty being one of the key
ingredients that yields robust asset allocation, and superior out-of-sample performance of
the strategies. There is a general close connection between the Bayesian approach to mo-
del selection or parameter estimation and the shrinkage-based one. Garlappi, Uppal, and
Wang (2007) impose a set of different priors on expected returns and the variance-covariance
matrix and find that the shrinkage-based analogue leads to superior empirical performance.
For example, the shrinkage-based approach to recovering the SDF of Kozak, Nagel, and
Santosh (2019) can also be interpreted from a Bayesian perspective. Within a universe of
characteristic-managed portfolios, the authors assign prior distributions to expected returns,?
and their posterior maximum likelihood estimators resemble a ridge regression. Instead, we
work directly with tradable and non-tradable factors and consider (endogenously) heteroge-
nous priors for factor risk premia, A. The dispersion of our prior for each A directly depends
on the correlation between test assets and the factor, so that it mimics the strength of the
identification of the factor risk premium.

Naturally, our paper also contributes to the very active (and growing) body of work

that critically evaluates existing findings in the empirical asset pricing literature and tries

30r, equivalently, the coefficients vector b when the linear stochastic discount factor is represented as
my = 1 — (fe — E[f:])Tb, where f; and E denote, respectively, a vector of factors and the unconditional
expectation operator.



to develop a robust methodology. There is ample empirical evidence that most linear asset
pricing models are misspecified (e.g. Chernov, Lochstoer, and Lundeby (2019), He, Huang,
and Zhou (2018)). Gospodinov, Kan, and Robotti (2014) develop a general approach for
misspecification-robust inference that provides valid confidence interval for the pseudo-true
values of the risk premia. Giglio and Xiu (2018) exploit the invariance principle of the PCA
and recover the risk premium of a given factor from the projection on the span of latent
factors driving a cross-section of asset returns. Uppal, Zaffaroni, and Zviadadze (2018) adopt
a similar approach by recovering latent factors from the residuals of the asset pricing model,
effectively completing the span of the SDF. Daniel, Mota, Rottke, and Santos (2020) instead
focus on the construction of cross-sectional factors and note that many well-established
tradable portfolios, such as HML and SMB, can be substantially improved in asset pricing
tests by hedging their unpriced component (which does not carry a risk premium). We do
not take a stand on the origin of the factors or the completion of the model space. Instead, we
consider the whole universe of potential models that can be created from the set of observable
candidates factors proposed in the empirical literature. As such, our analysis explicitly takes
into account both standard specifications that have been successfully used in numerous
papers (e.g., Fama-French three-factor model, or nondurable consumption growth), as well
as the combinations of the factors that have never been explicitly tested.

Following Harvey, Liu, and Zhu (2016), a large body of literature has tried to under-
stand which of the existing factors (or their combinations) drive the cross-section of asset
returns. Giglio, Feng, and Xiu (2019) combine cross-sectional asset pricing regressions with
the double-selection LASSO of Belloni, Chernozhukov, and Hansen (2014) to provide valid
uniform inference on the selected sources of risk. Huang, Li, and Zhou (2018) use a re-
duced rank approach to select among not only the observable factors, but their total span,
effectively allowing for sparsity not necessarily in the observable set of factors, but their
combinations as well. Kelly, Pruitt, and Su (2019) build a latent factor model for stock
returns, with factor loadings being a linear function of the company characteristics, and find
that only a small subset of the latter provide substantial independent information relevant
for asset pricing. Our approach does not take a stand on whether there exists a single com-
bination of factors that substantially outperforms other model specifications. Instead, we
let the data speak, and find out that the cross-sectional likelihood across the many models
is rather flat, meaning the data is not informative enough to reliably indicate that there is
a single dominant specification.

Finally, our paper naturally contributes to the literature on weak identification in asset
pricing. Starting from the seminal papers of Kan and Zhang (1999a,b), identification of risk
premia has been shown to be challenging for traditional estimation procedures. Kleibergen

(2009) demonstrates that the two-pass regression of Fama-MacBeth lead to biased estimates



of the risk premia and spuriously high significance levels. Moreover, useless factors often
crowd out the impact of the true sources of risk in the model and lead to seemingly high
levels of cross-sectional fit (Kleibergen and Zhan (2015)). Gospodinov, Kan, and Robotti
(2014, 2019) demonstrate that most of the estimation techniques used to recover risk premia
in the cross-section are invalidated by the presence of useless factors, and they propose
alternative procedures that effectively eliminate the impact of these factors. We build upon
the intuition developed in these papers and formulate the Bayesian solution to the problem
by providing a prior that directly reflects the strength of the factor. Whenever the vector of
correlation coefficients between asset returns and a factor is close to zero, the prior variance
of X for this specific factor also goes to zero, and the penalty for the risk premium converges
to infinity, effectively shrinking the posterior of the useless factors’ risk premia toward zero.
Therefore, our priors are particularly robust to the presence of spurious factors. Conversely,
they are very diffuse for strong factors, with the posterior reflecting the full impact of the
likelihood.

II Inference in Linear Factor Models

This section introduces the notation and reviews the main results of the Fama-MacBeth
(FM) regression method (see Fama and MacBeth (1973)). We focus on classic linear factor
models for cross-sectional asset returns. Suppose that there are K factors, f; = (fi... fxe) ',
t = 1,...7T, which could be either tradable or non-tradable. To simplify exposition, but
without loss of generality, we consider demeaned factors so that we have both E[f;] = Ok
and f = Ok, where E[.] denotes the unconditional expectation and the upper bar denotes
the sample mean operator. The returns of N test assets, in excess of the risk-free rate, are
denoted by R; = (Ry;... Ry:)'.

In the FM procedure, the factor exposures of asset returns, By € RV*K

, are recovered

from the following linear regression:

R, =a+Bsf +e, (1)

where €4,...,€r s N(0n,X) and a € RY. Given the mean normalization of f; we have

E[Ry] = a.
The risk premia associated with the factors, Ay € RX, are then estimated from the

cross-sectional regression:
RZ)\CIN—FﬂfAf-i—C\C, (2)

where Bf denotes the time series estimates, A\. is a scalar average mispricing that should

be equal to zero under the null of the model being correctly specified, 1 denotes an N-



dimensional vector of ones, and o« € R¥ is the vector of pricing errors in excess of A.. If the
model is correctly specified, it implies the parameter restriction: a = E[R;] = A\.1n+ BfAy.

Therefore, we can rewrite the two-step FM regression into one equation as

R, = M\AN + BsAg + B fi + €. (3)

Equation (3) is particularly useful in our simulation study. Note that the intercept A. is
included in (2) and (3) in order to separately evaluate the ability of the model to explain
the average level of the equity premium and the cross-sectional variation of asset returns.

Let BT = (a,B8¢) and F," = (1, f,"), and consider the matrices of stacked time series
observations, R = (Ry,...,Ry)", F = (Fy,...,Fr)", € = (€1,...,€r)". The regression in
(1) can then be rewritten as R = F'B + €, yielding the time series estimates of (a, 8f) and

Y as follows:

A~

~\T ~ 1 . .
B= (a, ﬁf) ~(F'F)'F'R, £~ _(R-FB) (R-FB).
In the second step, the OLS estimates of the factor risk premia are
A= (8'B)'B'R. (4)

where 8 = (1y B\f) and AT = (A Af). The canonical Shanken (1992) corrected covariance

matrix of the estimated risk premia is*

G*(A) =

M| =

-
(G737 BTSAE B 1+ 357 + T 7 = <0(L %f;) 5)
where 3 7 is the sample estimate of the variance-covariance matrix of the factors f;. There
are two sources of estimation uncertainty in the OLS estimates of A. First, we do not know
the test assets’ expected returns but instead estimate them as sample means, R. According
to the time series regression, R ~ N (a, %2) asymptotically. Second, if 8 is known, the
asymptotic covariance matrix of X is simply %(BTB)_lﬁTi@(BTB)_I. The extra term
(1+ A;E}l)\ ) is included to account for the fact that By is estimated.

Alternatively, we can run a (feasible) GLS regression in the second stage, obtaining the
estimates
A=(B'E7B)B'E'R, (6)

where 3 = L€T€ and € denotes the OLS residuals, and with the associated covariance matrix

1
T

4An alternative way (see e.g. Cochrane (2005), page 242) to account for the uncertainty from “generated
regressors,” such as By, is to estimate the whole system via GMM.



of the estimates .
() = = [(BTE‘lﬁ)‘l(l +XTS) + V. (7)

Equations (4) and (6) make it clear that in the presence of a spurious (or useless) factor,
that is, such that 8; = \%,AC’ € RY, risk premia are no longer identified. Furthermore,
their estimates diverge (i.e., A; /4 0 as T — 00), leading to inference problems for both the
useless and the strong factors (see, e.g., Kan and Zhang (1999b)). In the presence of such an
identification failure, the cross-sectional R? also becomes untrustworthy. If a useless factor
is included into the two-pass regression, the OLS R? tends to be highly inflated (although
the GLS R? is less affected).’

This problem arises not only when using the Fama-MacBeth two-step procedure. Kan
and Zhang (1999a) point out that the identification condition in the GMM test of linear
stochastic discount factor models fails when a useless factor is included. Moreover, this leads
to overrejection of the hypothesis of a zero risk premium for the useless factor under the Wald
test, and the power of the over-identifying restriction test decreases. Gospodinov, Kan, and
Robotti (2019) document similar problems within the maximum likelihood estimation and
testing framework.

Consequently, several papers have attempted to develop alternative statistical procedures
that are robust to the presence of useless factors. Kleibergen (2009) proposes several novel
statistics whose large sample distributions are unaffected by the failure of the identification
condition. Gospodinov, Kan, and Robotti (2014) derive robust standard errors for the
GMM estimates of factor risk premia in the linear stochastic factor framework, and prove
that t-statistics calculated using their standard errors are robust even when the model is
misspecified and a useless factor is included. Bryzgalova (2015) introduces a LASSO-like
penalty term in the cross-sectional regression to shrink the risk premium of the useless
factor toward zero.

In this paper, we provide a Bayesian inference and model selection framework that i) can
be easily used for robust inference in the presence, and detection, of useless factors (section
I1.1) and i7) can be used for both model selection, and model averaging, even in the presence
of a very large number of candidate (traded or non-traded, and possibly useless) risk factors

— that is, the entire factor zoo.

°For example, Kleibergen and Zhan (2015) derive the asymptotic distribution of the R? under the as-
sumption that a few unknown factors are able to explain expected asset returns, and show that, in the
presence of a useless factor, the OLS R? is more likely to be inflated than its GLS counterpart.
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II.1 Bayesian Fama-MacBeth

This section introduces our hierarchical Bayesian Fama-MacBeth (BFM) estimation method.
A formal derivation is presented in Appendix A.1.1. To start with, let’s consider the time
series regression. We assume that the time series error terms follow an iid multivariate
Gaussian distribution (the approach, at the cost of analytical solutions, could be generalized
to accommodate different distributional assumptions), that is € ~ MVYN (Orxn, 2 ® Ir).
The time series likelihood of the data (R, F') is then

p(data| B, =) = (27)"7 S| 2 exp {—%tr [X(R- FB)"(R— FB)] } .

The time series regression is always valid even in the presence of a spurious factor. For
simplicity, we choose the non-informative Jeffreys’ prior for (B,X): 7(B,%) o |32 .
Note that this prior is flat in the B dimension. The posterior distribution of (B,X) is,
therefore,

B[S, data ~ MYN (fzols, > ® (FTF)-l) and (8)
>|data ~ W (T K -1, Tﬁ) , 9)

where Eols and 3 denote the canonical OLS based estimates, and W is the inverse-Wishart
distribution (a multivariate generalization of the inverse-gamma distribution). From the
above, we can sample the posterior distribution of the parameters (B,3) by first drawing
the covariance matrix X from the inverse-Wishart distribution conditional on the data, and
then drawing B from a multivariate normal distribution conditional on the data and the
draw of X.

If the model is correctly specified, in the sense that all true factors are included, expected
returns of the assets should be fully explained by their risk exposure, 3, and the prices of risk
A, that is, E[R;] = BA. But since, given our mean normalization of the factors, E[R;] = a,

we have the least square estimate (3" 3)!3"a. Therefore, we can define our first estimator.

Definition 1 (Bayesian Fama-MacBeth (BFM)) The posterior distribution of A con-
ditional on B, X and the data, is a Dirac distribution at (3" 3)"18"7a. A draw (X)) from
the posterior distribution of X conditional on the data only is obtained by drawing B(; and
) from the Normal-inverse-Wishart (8)—(9), and computing (Ba)ﬁ(j))_lﬁa)a(j).

The posterior distribution of A defined above accounts both for the uncertainty about the
expected returns (via the sampling of @) and the uncertainty about the factor loadings (via
the sampling of 3). Note that, differently from the frequentist case in equation (5), there is
no “extra term” (14 A}Z}l)\f) to account for the fact that B¢ is estimated. The reason is
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that it is unnecessary to explicitly adjust standard errors of A in the Bayesian approach, since
we keep updating B¢ in each simulation step, automatically incorporating the uncertainty
about B¢ into the posterior distribution of A. Furthermore, it is quite intuitive, from the
definition above of the BFM estimator, that we expect posterior inference to detect weak
and spurious factors in finite sample. For such factors, the near singularity of (Ba),@(j))_l
will cause the draws for A(;) to diverge, as in the frequentist case. Nevertheless, the posterior
uncertainty about factor loadings and risk premia will cause ﬂ&)a(j) to switch sign across
draws, causing the posterior distribution of A to put substantial probability mass on both
values above and below zero. Hence, centered posterior credible intervals will tend to include
zero with high probability.

In addition to the price of risk A, we are also interested in estimating the cross-sectional
fit of the model, that is, the cross-sectional R?. Once we obtain the posterior draws of the
parameters, we can easily obtain the posterior distribution of the cross-sectional R?, defined

- (a— BN (a— BN)

(CL — leN)T(a — C_L].N)7

R, =1- (10)

where a = % ZZV a;. That is, for each posterior draw of (a, B, A), we can construct the
corresponding draw for the R? from equation (10), hence tracing out its posterior distribu-
tion. We can think of equation (10) as the population R?, where a, 3, and A are unknown.
After observing the data, we infer the posterior distribution of a, 3, and A, and from these
we can recover the distribution of the R2.

However, realistically, the models are rarely true. Therefore, one might want to allow

6 This can be easily

for the presence of pricing errors, a, in the cross-sectional regression.
accommodated within our Bayesian framework since in this case the data-generating process
in the second stage becomes a = B\ + a. If we further assume that pricing error «; follows
an independent and identical normal distribution A(0,0?), the cross-sectional likelihood

function in the second step becomes”

S

1

p(data|X, 0?) = (2m0%) ™2 exp {—ﬁ(a — BN (a— B)\)} : (11)
o

In the cross-sectional regression the “data” are the expected risk premia, a, and the factor

loadings, 3, albeit these quantities are not directly observable to the researcher. Hence, in

the above, we are conditioning on the knowledge of these quantities, which can be sampled

from the first step Normal-inverse-Wishart posterior distribution (8)—(9). Conceptually, this

6As we will show in the next section, this is essential for model selection.

"We derive a formulation with non-spherical cross-sectional pricing errors, which leads to a GLS type
estimator, in Online Appendix OA.A.1.
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is not very different from the Bayesian modeling of latent variables. In the benchmark case,
we assume a Jeffreys’ diffuse prior® for (X, 0?): m(A,0?) < 072, In Appendix A.1.1, we show
that the posterior distribution of (A, 0?) is then

Alo?, B, X, data ~ N <gﬁTﬂ)1ﬁTq, gQ(ﬂTﬂ)l), (12)
X Be

(13)

_ _ _a\\T _ A3\
02|B,E,data~ZQ(N K-1(a-pX (a ﬂ’\)),

2 ’ 2
where ZG denotes the inverse-Gamma distribution. The conditional distribution in equation
(12) makes it clear that the posterior takes into account both the uncertainty about the
market price of risk stemming from the first stage uncertainty about the 3 and a (that
are drawn from the Normal-inverse-Wishart posterior in equations (8)-(9)), and the random
pricing errors o that have the conditional posterior variance in equation (13). If test assets’
expected excess returns are fully explained by 3, there are no pricing errors and o%(3"3) !
converges to zero; otherwise, this layer of uncertainty always exists.

Note also that we can think of the posterior distribution of (3"3) '3 a as a Bayesian
decision-maker’s belief about the dispersion of the Fama-MacBeth OLS estimates after ob-
serving the data {Ry, f;}7_,. Alternatively, when pricing errors « are assumed to be zero
under the null hypothesis, the posterior distribution of A in equation (12) collapses to a
degenerate distribution, where X equals (3"3)"!3"a with probability one.

Often the cross-sectional step of the FM estimation is performed via GLS rather than least
squares. In our setting, under the null of the model, this leads to A = (3T2718)18T2a.
Therefore, we define the following GLS estimator.

Definition 2 (Bayesian Fama-MacBeth GLS (BFM-GLS)) The posterior distribution
of X conditional on B, ¥ and the data, is a Dirac distribution at (3'X718)"!8"S ta. A
draw (X)) from the posterior distribution of X conditional on the data only is obtained by

drawing B(jy and X;) from the Normal-inverse- Wishart in equations (8)-(9) and computing
—1 _ —1
(B6,26)B6)™ BB 80)

From the posterior sampling of the parameters in the definition above, we can also obtain

the posterior distribution of the cross-sectional GLS R? defined as

R —1_ (a—BAgs) 3 (a B)‘ng)_

gls (@—aln) % (a—aly) (14)

8As shown in the next subsection, in the presence of useless factors, such prior is not appropriate for
model selection based on Bayes factors and posterior probabilities, since it does not lead to proper marginal
likelihoods. Therefore, we introduce therein a novel prior for model selection.
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Once again, we can think of equation (14) as the population GLS R? which is a function
of the unknown quantities a, 3, and A. But after observing the data, we infer the posterior
distribution of the parameters, and from these we recover the posterior distribution of the
R2,.
Remark 1 (Generated factors) Often factors are estimated, as, e.q., in the case of prin-
cipal components (PCs) and factor mimicking portfolios (albeit the latter are not needed in
our setting). This generates an additional layer of uncertainty normally ignored in empirical
analysis due to the associated asymptotic complexities. Nevertheless, it is relatively easy to
adjust the above defined Bayesian estimators of risk premia to account for this uncertainty.
In the case of a mimicking portfolio, under a diffuse prior and Normal errors, the posterior
distribution of the portfolio weights follow the standard Normal-inverse-Gamma of Gaussian
linear regression models (see, e.g., Lancaster (2004)). Similarly, in the case of principal
components as factors, under a diffuse prior, the covariance matriz from which the PCs
are constructed follows an inverse- Wishart distribution.” Hence, the posterior distributions
in Definitions 1 and 2 can account for the generated factors uncertainty by first drawing
from an inverse- Wishart the covariance matrix from which PCs are constructed, or from the
Normal-inverse-Gamma posterior of the mimicking portfolios coefficients, and then sampling

the remaining parameters as explained in the above Definitions.

Note that while we focus on the two-pass procedure, our method can be easily extended

to the estimation of linear SDF models.

I1.2 Model selection

In the previous subsection we have derived simple Bayesian estimators that deliver, in a finite
sample, credible intervals robust to the presence of spurious factors, and avoid over-rejecting
the null hypothesis of zero risk premia for such factors.

However, given the plethora of risk factors that have been proposed in the literature,
a robust approach for models selection across non-necessarily nested models, and that can
handle potentially a very large number of possible models as well as both traded and non-
traded factors, is of paramount importance for empirical asset pricing. The canonical way of
selecting models, and testing hypothesis, within the Bayesian framework, is through Bayes’
factors and posterior probabilities, and that is the approach we present in this section. This
is, for instance, the approach suggested by Barillas and Shanken (2018) for tradable factors.

The key elements of novelty of the proposed method are that: i) our procedure is robust

9Based on these two observations, Allena (2019) proposes a generalization of Barillas and Shanken (2018)
model comparison approach for these type of factors.
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to the presence of spurious and weak factors, ii) it is directly applicable to both traded
and non-traded factors, and iii) it selects models based on their cross-sectional performance
(rather than the time series one), that is on the basis of the risk premia that the factors
command.

In this subsection, we show first that flat priors for risk premia are not suitable for model
selection in the presence of spurious factors. Given the close analogy between frequentist
testing and Bayesian inference with flat priors, this is not too surprising. But the novel
insight is that the problem arises exactly because of the use of flat priors and can therefore
be fixed by using non-flat, yet non-informative, priors. Second, we introduce “spike-and-
slab” priors that are robust to the presence of spurious factors, and particularly powerful in
high-dimensional model selection, that is, when one wants, as in our empirical application,

to test all factors in the zoo.

11.2.1 Pitfalls of Flat Priors for Risk Premia

We start this section by discussing why flat priors for risk premia are not desirable in model
selection. Since we want to focus on, and select models based on the cross-sectional asset
pricing properties of the factors, for simplicity we retain Jeffreys’ priors for the time series
parameter (a,3g,X) of the first-step regression.

In order to perform model selection, we relax the (null) hypothesis that models are
correctly specified and allow instead for the presence of cross-sectional pricing errors. That
is, we consider the cross-sectional regression a = B+ «. For illustrative purposes, we focus
on spherical errors, but all the results in this and the following subsections can be generalized
to the non-spherical error setting.'’

Similar to many Bayesian variable selection problems, we introduce a vector of binary
latent variables v' = (y0,71, . .,7x), where v; € {0,1}. When ~; = 1, it indicates that the
factor j (with associated loadings B;) should be included into the model, and vice versa.
The number of included factors is simply given by p, = Zj{:o v; - Note that we do not
shrink the intercept, so vy is always equal to 1 (as the common intercept plays the role of
the first “factor”). The notation 8, = [,Bj]%:l represents a p.-columns sub-matrix of 3.

When testing whether the risk premium of factor j is zero, the null hypothesis is H :
Aj = 0. In our notation, this null hypothesis can be expressed as Hy : ; = 0, while the
alternative is H; : 7; = 1. This is a small, but important, difference relative to the canonical
frequentist testing approach: for useless factors, the risk premium is not identified, hence,
testing whether it is equal to any given value is per se problematic. Nevertheless, as we show

in the next section, with appropriate priors, whether a factor should be included or not is a

108ee Online Appendix OA.A.1.
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well-defined question even in the presence of useless factors.

In the Bayesian framework, the prior distribution of parameters under the alternative
hypothesis should be carefully specified. Generally speaking, the priors for nuisance param-
eters, such as 3, 02 and X, do not greatly influence the cross-sectional inference. But, as we
are about to show, this is not the case for the priors about risk premia.

Recall that when considering multiple models, say, without loss of generality model ~

and model 4/, by Bayes’ theorem we have that the posterior probability of model - is

p(dataly)
(data|y) + p(dataly’)’

Pr(vl|data) =
(v|data) 5
where we have given equal prior probability to each model and p(data|vy) denotes the marginal
likelihood of the model indexed by ~. In Appendix A.1.2 we show that, when using a flat

prior for A), the marginal likelihood is

py+1
2

r (N*perl)
Tg - 2
‘IB"/IB’Y‘ 2 N—py+1 (15)
N&2\ 2z
2

pldataly) o< (2r)

where A, = (B,8y)7'Ba, 62 = (a=p VS‘V)L(a_ﬂ ”5‘"’), and I" denotes the Gamma function.

Therefore, if model ~ includes a useless factor (whose 8 asymptotically converges to
zero), the matrix B,I B~ is nearly singular and its determinant goes to zero, sending the
marginal likelihood in (15) to infinity. As a result, the posterior probability of the model
containing the spurious factor goes to one.!* Consequently, under a flat prior for risk premia,
the model containing a useless factor will always be selected asymptotically. However, the
posterior distribution of A for the spurious factor is robust, and particularly disperse, in any
finite sample.

Moreover, it is highly likely that conclusions based on the posterior coverage of A contra-
dict those arising from Bayes’ factors. When the prior distribution of A; is too diffuse under
the alternative hypothesis Hy, the Bayes’ factor tends to favor Hy over Hy, even though the
estimate of \; is far from 0. The reason is that even though H, seems quite unlikely based
on posterior coverages, the data is even more unlikely under H; than under Hy. Therefore,
a disperse prior for A\; may push the posterior probabilities to favor H, and make it fail
to identify true factors. This phenomenon is the so-called “Bartlett Paradox” (see Bartlett
(1957)).

Note also that flat, hence, improper, priors for the risk premia are not legitimate since

H'Note that a similar problem also arises when performing time series regressions with a mimicking portfolio
for weak factors.

16



they render the posterior model probabilities arbitrary. Suppose that we are testing the null
Hy : A; = 0. Under the null hypothesis, the prior for (A,0?) is A\; = 0 and w(A_;,0?) x 2.
However, the prior under the alternative hypothesis is 7(\;, A_;, 0?) % Since the marginal
likelihoods of data, p(data|Hy) and p(data|H,), are both undetermined, we cannot define the

Bayes’ factor % (see, e.g., Chib, Zeng, and Zhao (2020)). In contrast, for nuisance

2 we can continue to assign improper priors. Since both hypotheses

parameters such as o
Hy and H, include o2, the prior for it will be offset in the Bayes’ factor and in the posterior
probabilities. Therefore, we can only assign improper priors for common parameters.!?
Similarly, we can still assign improper priors for 8 and X in the first time series step.

The final reason why it might be undesirable to use a flat prior in the second step is that
it does not impose any shrinkage on the parameters. This is problematic given the large
number of members of the factor zoo, while we have only limited time series observations of
both factors and test asset returns.

In the next subsection, we propose an appropriate prior for risk premia that is both
robust to spurious factors and can be used for model selection even when dealing with a very

large number of potential models.

11.2.2 Spike-and-slab prior for risk premia

In order to make sure that the integration of the marginal likelihood is well-behaved, we
propose a novel prior specification for the factors’ risk premia A} = (A1,..., A\g).® Since
the inference in time series regression is always valid, we only modify the priors of the
cross-sectional regression parameters.

The prior that we propose belongs to the so-called spike-and-slab family. For exemplifying
purposes, in this section we introduce a Dirac spike, so that we can easily illustrate its
implications for model selection. In the next subsection we generalize the approach to a
“continuous spike” prior, and study its finite sample performance in our simulation setup.

In particular, we model the uncertainty underlying the model selection problem with a
mixture prior, (X, 02, 7) o< m(A|o?, y)m(0?)m(), for the risk premium of the j-th factor.
When v; = 1, and, hence, the factor should be included in the model, the prior follows a
normal distribution given by A;|0%,v; = 1 ~ N(0,0%1;), where 9; is a quantity that we
will be defining below. When instead v; = 0, and the corresponding risk factor should
not be included in the model, the prior is a Dirac distribution at zero. For the cross-
sectional variance of the pricing errors we keep the same prior that would arise with Jeffreys’

approach!: 7(0?) o 072

12See Kass and Raftery (1995) (and also Cremers (2002)) for a more detailed discussion.
13We do not shrink the intercept ..
14Note that since the parameter o is common across models and has the same support in each model,
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Let D denote a diagonal matrix with elements ¢,y "', -+ ¥', and D., the sub-matrix
of D corresponding to model 7. We can then express the prior for the risk factors, A, of
model v as

A, 0%,y ~ N(0,0° D).

~

Note that ¢ is a small positive number, since we do not shrink the common intercept, A., of
the cross-sectional regression.

Given the above prior specification, we sample the posterior distribution by sequentially
drawing from the conditional distributions of the parameters (i.e., we use a Gibbs sampling
algorithm). The crucial sampling steps of the cross-sectional parameters are given by the

following proposition.

Proposition 2 (Posterior of Risk Premia with Dirac Spike-and-Slab) The posterior
distribution of (\,,02,) under the assumption of Dirac spike-and-slab prior, conditional on
the draws of the time series parameters from equations (8)-(9), is characterized via the

following conditional distributions:

A, |data,o® v ~ N (5\7, [72(5\7)), (16)
N
o?|data,y ~ IG | —, 58, : (17)
2 2
D,|: 1
p(v | data) = D, ; (18)

vz

1878y + D52 (SSR, /2)

where Ay = (BB, + D) 'Bla, 6*(X,) = o*(B]By + D,)~!, and SSR, = a'a —
a'B,(8)8y + D,)'Bla = miny {(a — ByA,) (@ — ByAy) + A DA} and ZG denotes
the inverse-Gamma distribution.

The result above is proved in Appendix A.1.3.

Note that SSR, is the minimized sum of squared errors with generalized ridge regression
penalty term }\; D, \,. That is, our prior modeling is analogous to introducing a Tikhonov-
Phillips regularization (see Tikhonov, Goncharsky, Stepanov, and Yagola (1995) and Phillips
(1962)) in the cross-sectional regression step, and has the same rationale: delivering a well
defined marginal likelihood in the presence of rank deficiency (which, in our settings, arises
in the presence of useless factors). However, in our setting the shrinkage applied to the
factors is heterogeneous, since we rely on the partial correlation between factors and test

assets to set v, as
V; =1 X p;p;, (19)

the marginal likelihoods obtained under this improper prior are valid and comparable (see Proposition 1 of
Chib, Zeng, and Zhao (2020)).
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where p; is an N x 1 vector of correlation coefficients between factor j and the test assets,
and 1) € R, is a tuning parameter that controls the shrinkage over all the factors.'®> When
the correlation between f;; and R, is very low, as in the case of a useless factor, the penalty
for A;, which is the reciprocal of prij, is very large and dominates the sum of squared
errors.

Equation (16) makes clear why this Bayesian formulation is robust to spurious factors.
When 3 converges to zero, (BI B+ D.) is dominated by D., so the identification condition
for the risk premia no longer fails. When a factor is spurious, its correlation with test assets
converges to zero, hence, the penalty for this factor, 7,0]-_1, goes to infinity. As a result, the
posterior mean of A, 5\,7 = (BI By + D,y)_lﬁi a, is shrunk toward zero, and the posterior
variance term &2(5\) approaches 02D; 1. Consequently, the posterior distribution of A for
a spurious factor is nearly the same as its prior. In contrast, for a normal factor that has
non-zero covariance with test assets, the information contained in B dominates the prior
information, since in this case the absolute size of D, is small relative to ﬁ; By

When comparing two models, using posterior model probabilities is equivalent to simply

using the ratio of the marginal likelihoods, that is, the Bayes factor, which is defined as

BF, . = p(data|y)/p(data|y’),

where we have given equal prior probability to model v and model 4.

Corollary 1 (Variable Selection via the Bayes Factor) Consider two nested linear fac-
tor models, v and ~'. The only difference between v and ' is 7y,: 7, equals 1 in model v but
0 in modelv'. Let~v_, denote a (K —1)x 1 vector of model index excluding y,: v' = ('yjp, 1)
and 4T = (')/IP,O) where, without loss of generality, we have assumed that the factor p is

ordered last. The Bayes factor is then

SSR.,\? .
By = (SSR: ) (1 + wPBzTr [IN — By (BvT'ﬂ'v’ + Dv’)_lﬁﬂj'} BP)

NI

(20)

The result above is proved in Appendix A.1.4.

Since B, [In — B ([3;,,87/ + D) ,61,] Bp is always positive, 1, plays an important role
in variable selection. For a strong and useful factor that can substantially reduce pricing
errors, the first term in equation (20) dominates, and the Bayes factor will be much greater
than 1, hence, providing evidence in favor of model ~.

Remember that SSR., = minx {(a — ByAy)" (@ — ByA,) + A] Dy A, }, hence, we always
have SSR, < SSR, in sample. There are two effects of increasing 1,: i) when 1, is large,

15 Alternatively, we could have set V; =P x ,B;rﬁj, where @; is an N x 1 vector. However, p; has the
advantage of being invariant to the units in which the factors are measured.
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the penalty for ), is small, hence, it is easier to minimize SSR,, and SSR., /SSR., becomes
much larger than 1; ii) large ¢, decreases the second term in equation (20), lowering the
Bayes’ factor, and acting as a penalty for dimensionality.

A particularly interesting case is when the factor is useless: 3, converges to zero, but the
penalty term 1/, o< 1/ p;,rpp goes to infinity. On the one hand, the first term in equation
(20) will converge to 1; on the other hand, since v, ~ 0 in large sample, the second term in
equation (20) will also be around 1. Therefore, the Bayes factor for a useless factor will go
to 1 asymptotically.’® In contrast, a useful factor should be able to greatly reduce the sum
of squared errors SSR,, so the Bayes’ factor will be dominated by SSR,, yielding a value
substantially above 1.

Note that since our prior restores the validity of the marginal likelihood, any hypothesis
on the parameters (e.g., whether the pricing errors are jointly zero) can be tested via pos-
terior probabilities or, equivalently, Bayesian p-values. In particular, we obtain closed-form
solutions for testing hypothesis about risk premia by centering the Dirac spike at the null

value rather than at zero.

Corollary 2 (Testing Risk Premia) Let A_, = A_, and A,|o% v ~ N(0,0°D;") in
model vy, Proposition 2 still applies with SSR~ replaced by:

5%7 = (a— [3_75\_7)T(a - 6—75‘—7> —(a— /8—75‘—’7>T16’Y<16:/FIB’Y + D'y)il:@’z(a - 5—75‘—7)
= rr;in{(& = ByAy) (@ =By, + )"TyD'r)"w

where a = a—ﬂ_,yj\_., denotes the vector of cross-sectional residual expected returns that are

unexplained by factors f_., with risk premia 5\_7. A Bayesian p-value for the null hypothesis

can then be constructed by integrating 1 — p(7y | data) in equation (18) with respect to the

Normal-inverse- Wishart in equations (8)-(9).

The Corollary is established following the same steps as in the proof of Proposition 2 in
Appendix A.1.3.

The result above can be used for joint hypothesis testing within the Bayesian framework
(e.g., building confidence intervals), and it is very similar in spirit to the standard frequentist

identification-robust inference.

Remark 3 (Level Factors) Identification failure of factors’ risk premia can arise in the
presence of “level factors,” exposure to which is non-zero, but lacks cross-sectional spread i.e.

B; — cln with ¢ # 0. These factors help explain the average level of returns, but not the

16But in finite sample it may deviate from its asymptotic value, so we should not use 1 as a threshold
when testing the null hypothesis Hy : vy, = 0.
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their cross-sectional dispersion, and, hence, are collinear with the common cross-sectional
intercept. Our approach can handle this case by using variance standardized variables in the

estimation and replacing the penalty in (19) with
v =v % p; b, (21)

where p; is the cross-sectionally demeaned vector of correlations with asset returns, for ex-

ample, pj = p; — (% > Pm‘) X 1N

11.2.3 Continuous Spike

We extend the Dirac spike-and-slab prior by encoding a continuous spike for A;, when ~;
equals 0. Following the literature on Bayesian variable selection (see, e.g., George and Mc-
Culloch (1993, 1997) and Ishwaran, Rao, et al. (2005)), we model the uncertainty underlying
model selection with a mixture prior m(A, 02, v, w) = 7(A|o?, )7 (0?)7(y|w)T(w), which is
specified as follows:

Ailvg, 0 ~ N0, 7()150°). (22)

Note the introduction of a new element, r(y;), in the prior, and where (1) = 1 and
r(0) = r < 1. As we explain below, the additional parameter vector w encodes our prior
beliefs about the sparsity of the true model.

Redefine D as a diagonal matrix with elements ¢, (r(y1)11) ", ..., (r(yx)k) ", where
1; is given as before by equation (19). In matrix notation, the prior for X is: Alo?,v ~
N(0,62D~1). The term r(v;)1; in D~ is set to be small or large, depending on whether
7; = 0 or v; = 1. In the empirical implementation, we set r to a value much smaller than
1 since we intend to shrink A; toward zero when ~; is 0.!” Hence the spike component
concentrates the mass of A toward zero, whereas the slab component allows X to take values
over a much wider range. Therefore, the posterior distribution of A is very similar to the
case of a Dirac spike in section 11.2.2.

A desirable feature of the prior in equation (22) is that it encodes beliefs about quantities
that are salient to, and observed by, practitioners and researchers: Sharpe ratios, excess
returns, and their volatilities. For instance, in the empirical applications below we will
consider a value of 9 in the 10-20 range as a reasonable benchmark since it is equivalent
to a prior standard deviation for the (annualized) risk premia of about 9.1%—-12.7% for the
typical strong factor, implying that (annualized) factor Sharpe ratios as large as 0.92-2.62

are within the centered 95% prior coverage.

1"We set r = 0.0001. In our framework, r is essentially a tuning parameter, hence, we need to choose a
reasonable value such that we can identify useful factor but exclude spurious ones.
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Furthermore, the prior encodes our expectation about the contribution of the factors
to the squared Sharpe ratio of the test assets relative to the contribution coming from the
pricing errors. To see this, consider the case in which (as in our empirical applications) both

factors and returns are standardized.'® It then follows that

Eo[SR} |7,0%] _ S, riw)en _ ¢ 0, ()L
E,[SR2 | o7 N N '

where SRy and SR, denote, respectively, the Sharpe ratios of all factors (f;) and of the
pricing errors of all assets (a), and E, denotes prior expectations. In the baseline sample
of our empirical applications, Zszl prpr/N =~ 0.51. Hence, for ¢ in the 10-20 range, if,
say, 50% of the factors are selected, our prior expectation is that the factors should explain
about 71%-83% of the squared Sharpe ratio of test assets.

Even though the prior on model index  could be simply set to be 7(v) = 1/2K, we
decide instead to encode our a priori belief about the sparsity of the true model using the
prior distribution 7(vy; = 1|w;) = w;. As in the literature on predictors selection, we assign

the following prior distribution to (7, w):
(v, = llw;) = wj, w; ~ Beta(ay,,b,).

Different hyper-parameters a,, and b, determine whether we a priori favor more parsimo-

nious models or not, since the prior expected probability of selecting a factor is simply

[¢75)

aw+be

ratio achievable in the economy since E-[SR} | 0%] = 24-y0? S PrprasT — 0,

The considerations above imply that an agent’s expectations about the Sharpe ratio

19 Furthermore, a, and b, can be chosen to encode prior beliefs about the Sharpe

achievable i) with only one factor, i) with all the factors jointly, as well as #ii) the sparsity
of the “true” model, uniquely determine the parameters ¢, a, b,,.

When wj; is constant and equal to 0.5 and 7 converges to 0, the continuous spike-and-
slab prior is equivalent to the one with a Dirac spike in Section 11.2.2. However, treating
instead w;, and consequently 7;, as a parameter to be drawn is particularly useful in the
high dimensional case. Imagine that there are 30 candidate factors in the factor zoo. In the
Dirac spike-and-slab prior case we have to calculate the posterior model probabilities for 239
different models. Given that we update (a, 3) in each sampling round, posterior probabilities
for all models are necessarily re-computed for every new draw of these quantities, rendering

the computational cost very large. In contrast, with the above approach we can simply use

18S0 that A is the Sharpe ratio of factor k& and «,, is the Sharpe ratio of the pricing error of asset n.

19We set a,, = b, = 2 in the benchmark case, that is, each factor has an ex ante expected probability of
being selected equal to 50%. However, we could assign a,, = 1 and b, = 2 in order to select a sparser model.
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the posterior mean of v; to approximate the posterior marginal probability of the j-th factor.
Similarly to the Dirac spike-and-slab case, we use Gibbs sampling to draw the posterior

distribution of the parameters (X, w,o?) and, most importantly, .

Proposition 4 (Posterior of Risk Premia with Continuous Spike-and-Slab) The pos-
terior distribution of (X,~v,w,c?) under the assumption of continuous spike-and-slab prior,
conditional on the draws of the time series parameters from equations (8)-(9), is character-

1zed via the following conditional distributions:

Adata, 0%, ~v,w ~ N (X, 62(X)), (23)
p(%’ = 1|datav)‘vw702>’7—j) _ W p(>‘j|7j = 1702)
2 - 2\’ (24)
p(y; = 0ldata, \,w,02,v_;) 1 —w;p(\|y; =0,02)
wjldata, X, v, 0 ~ Beta (v; + ay, 1 — v +b,), and (25)
N+K+1 — Ta - ™D
02|data,w,)\,7~Ig( +2 + 7(a BA) (a 2B>\)+>\ >\>’ (26)

where A = (878 + D)8 a and 62(A) = o%(B7 3+ D).

The result above is proved in Appendix A.1.5.

III Simulation

We build a simple setting for a linear factor model that includes both strong and irrelevant
factors and allows for potential model misspecification.

The cross-section of asset returns mimics the empirical properties of 25 Fama-French
portfolios sorted by size and value. We generate both factors and test asset returns from
normal distributions, assuming that HML is the only useful factor. A misspecified model also
includes pricing errors from the two-step FM procedure, which makes the vector of simulated
expected returns equal to their sample mean estimates of 25 Fama-French portfolios. Finally,
a spurious factor is simulated from an independent normal distribution with mean zero and
standard deviation 1%. In summary,

iid

iid
ft,useless ~

0,(1%)%),  formr ~N(Fgar, 6hs). o = fomvr — fomur

_ id N (5\611\( + ,[;’(;\HML + ft,HML), f]) , if the model is correct, and
Ry|fonr ~ L .

N (R + Bfiamr, 2) , if the model is misspecified,

where factor loadings, risk premia, and variance-covariance matrix of returns are equal to

their OLS sample estimates from the time series and cross-sectional regressions of the two-
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pass FM procedure, applied to 25 size-and-value portfolios and HML as a factor. All the
model parameters are estimated on monthly data from July 1963 to December 2017.

To illustrate the properties of the frequentist and Bayesian approaches, we consider 3
estimation setups: (a) the model includes only a strong factor (HML); (b) the model includes
only a useless factor; and (c) the model includes both strong and useless factors. Each setting
can be correctly or incorrectly specified, with the following sample sizes: T = 100, 200, 600,
and 1,000. We compare the performance of the OLS/GLS standard frequentist and Bayesian
Fama-MacBeth estimators (FM and BFM, correspondingly) with the focus on risk premia

recovery, testing, and identification of strong and useless factors for model comparison.

ITII.1 Estimating risk premia via Bayesian Fama-MacBeth

Since it is unlikely that in most empirical settings a linear factor model is correctly specified,
we focus our discussion on the case that allows for model misspecification. Furthermore, we
focus on the most realistic (and challenging) model setup, which includes both useless and
strong factors.

Table 1 compares the performance of frequentist and Bayesian Fama-MacBeth estimators
and reports the size of the tests for risk premia and confidence intervals for cross-sectional R?.
Since the model is misspecified, cross-sectional R? never reaches 100% (with the population
value of 31% (82%) for OLS (GLS)). In the case of the standard FM approach, tests are
constructed using standard t-statistics, adjusted for Shanken correction, and in the case of
the BFM and BFM-GLS we rely on the quantiles of the posterior distribution to form the
credible confidence intervals for parameters. The last two columns also report the quantiles
of the mode of the posterior distribution of R? across the simulations. As expected, in the
conventional case of frequentist Fama-MacBeth estimation, the useless factor is often found
to be a significant predictor of the asset returns: its OLS (GLS) t-statistic would be above a
5%-critical value in more than 60% (80%) of the simulations. On the contrary, the Bayesian
confidence intervals have approximately the right coverage and reject the null of no risk
premia attached to the spurious factor with frequency asymptotically approaching the size
of the tests.

The crowding out of the true factors by the useless ones could also be an important
empirical concern. When the model is misspecified, the presence of spurious factors can also
bias the risk premia estimates for the strong ones, and often leads to their crowding out of
the model. Panel A in Table 1 serves as a good illustration of this possibility, with risk
premia estimates for the strong factor clearly biased in the frequentist estimation by the
identification failure in case of the frequentist approach. Again, in this case BFM provides

reliable, albeit conservative, confidence bounds for model parameters.
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Figure 1: Distribution of risk premia estimates.

Posterior distribution of risk premia (blue dashed line) from BFM-OLS estimation of a misspecified one-
factor model based on a single simulation with 7" = 1000, and asymptotic distribution of the frequentist FM
estimate (red solid line). The dotted line corresponds to the pseudo-true value of the parameter (defined to
be 0 for a useless factor). Panel (a): case of a single spurious factor included into the model. Panel (b):
relies on a strong, well-identified factor, included in a (nevertheless) misspecified model.

In the Online Appendix OA.B.1 we report additional results for a wide range of alternative
simulation settings, also considering correctly specified models and cross-sections of different
dimensions. In all cases BFM and BFM-GLS perform very well in both detecting the spurious
factor and retaining the strong factor, hence, confirming the soundness of the proposed
method.

Why does the Bayesian approach work when the frequentist fails? The argument is
probably best summarized by Figure la, which plots a posterior distribution of Xuseless for
BFM from one of the simulations, along with the pseudo-true value of the risk premium,
defined as 0 in this case. In this particular simulation, Fama-MacBeth OLS estimate of
Auseless 18 -1.19%, with Shanken-corrected t-statistics equal to -2.55, so according to tradi-
tional hypothesis testing, we would reject the null of Ayseess = 0 even at 1%. The posterior
distribution of BEFM estimates of the risk premium (the blue line in Figure 1a) behaves rather
differently: it is centered around 0 and overall more spread out, with a confidence interval
(—1.603%, 1.201%). Intuitively, the main driving force behind it is the fact that in BFM, 3
is updated continuously: when B is close to zero, the posterior draws of 3 will be positive or
negative randomly, which implies that the conditional expectation of A in equation 12 will
also switch sign, depending on the draw. As a result, the posterior distribution of A,sejess 1S
centered around 0, and so is the confidence interval. The same logic applies to the case of
BFM-GLS. Note that the Bayesian prior does not have any significant impact on the risk
premia estimation of strong factors: In the case of well-identified sources of risk (see, e.g.,
Figure 1b), the Bayesian and frequentist approach give virtually identical results.

Note also that restoring the validity of the marginal likelihood using the spike-and-slab
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Table 1: Tests of risk premia in a misspecified model with useless and strong factors

/\c )‘strtmg )‘useless RZd]‘
T 10% 5% 1% 10% 5% 1% 10% 5% 1% 5th 95th
Panel A: OLS

100 0.082 0.039 0.008 0.121 0.067 0.016 0.099 0.023 0.001 -5.13% 56.63%

200 0.096 0.044 0.005 0.157 0.100 0.034 0.129 0.039 0.005 1.27% 61.90%

FM 600 0.093 0.034 0.014 0.212 0.147 0.071 0.264 0.129 0.022 840% 61.78%
1000 0.102 0.046 0.010 0.261 0.194 0.098 0.380 0.199 0.056 11.84% 62.48%

20000 0.114 0.054 0.009 0.289 0.229 0.152 0.848 0.633 0.240 25.07% 60.76%

100 0.035 0.012 0.001 0.028 0.007 0.001 0.004 0.001 0.000 -2.11% 40.33%

200 0.049 0.017 0.001 0.067 0.031 0.004 0.011 0.003 0.000 -1.75% 48.28%

BFM 600 0.05 0.018 0.004 0.099 0.047 0.005 0.047 0.014 0.002 10.20% 55.72%
1000 0.041 0.021 0.003 0.102 0.048 0.011 0.071 0.035 0.004 14.87% 56.95%

20000 0.017 0.007 0.000 0.087 0.033 0.007 0.099 0.055 0.012 24.80% 54.66%

Panel B: GLS

100 0.219 0.155 0.057 0.224 0.135 0.066 0.303 0.198 0.064 19.11% 77.75%

200 0.155 0.092 0.028 0.149 0.090 0.024 0.263 0.183 0.061 55.37% 81.71%

FM 600 0.121 0.068 0.015 0.116 0.064 0.016 0.391 0.293 0.134 69.48% 84.33%
1000 0.115 0.061 0.013 0.115 0.057 0.012 0.487 0.387 0.216 73.05% 84.74%

20000 0.084 0.050 0.009 0.100 0.041 0.005 0.864 0.836 0.757 79.79% 84.24%

100 0.122 0.069 0.016 0.129 0.070 0.017 0.046 0.017 0.002 32.43% 68.69%

200 0.112 0.056 0.012 0.099 0.048 0.012 0.031 0.012 0.000 48.44% 73.55%

BFM 600 0.096 0.049 0.011 0.086 0.045 0.009 0.049 0.016 0.002 65.76% 80.30%
1000  0.081 0.036 0.007 0.073 0.032 0.006 0.058 0.030 0.003 70.64% 81.54%

20000 0.027 0.005 0.000 0.022 0.007 0.000 0.098 0.047 0.013 79.74% 82.59%

Frequency of rejecting the null hypothesis Hy : A; = A} for pseudo-true values of A and Asirong, Asigeress = 0
in a misspecified model with intercept, a strong, and a useless factor. Last two columns: 5th and 95th
percentiles of cross-sectional Rgdj across 1,000 simulations, evaluated at the point estimates for FM and

at the posterior mode for BEM. The true value of cross-sectional dej is 30.55% (81.75%) for OLS (GLS)
estimation.

prior of Section I1.2.2 allows for valid hypothesis testing, even as T" — oo, via posterior
probabilities and Bayes factors as per Corollary 2. We report corresponding simulation
results for the Bayesian p-value in Online Appendix OA.B.3, and show that spurious factors
are easily detected, while true sources of risk are retained. Furthermore, the presence of a

spurious factor leaves both power and size of tests of the strong factor virtually unaffected.

I1I1.1.1 Evaluating cross-sectional fit

In addition to risk premia estimates, it is often useful to understand the quality of cross-
sectional fit of the model. Indeed, the increase in cross-sectional R? is often interpreted as
measuring the economic importance of the predictor, contrary to the statistical one implied
by the risk premia significance. It is well-known, however, that the average values of R?
are not always informative about the true model performance: its sample distribution often
suffers from a large estimation uncertainty (see, e.g., Stock (1991) and Lewellen, Nagel, and
Shanken (2010)), and has a non-standard distribution when the matrix of 3 has reduced rank
(see Kleibergen and Zhan (2015) and Gospodinov, Kan, and Robotti (2019)). In this section

we further investigate the properties of cross-sectional R? in the frequentist and Bayesian
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Figure 2: Cross-sectional distribution of R,

in models with strong and useless factors.

Asymptotic distribution of cross-sectional R? under different model specifications across 1,000 simulations
of sample size T = 20,000. Blue dashed lines correspond to the distribution of the posterior mode for
dej, while red solid lines depict the pointwise sample distribution of Ridj evaluated at the frequentist FM

estimates. Grey dotted line stands for the true value of Rgdj.

FM regressions.

Figure 2 shows the distribution of cross-sectional OLS R? across a large number of sim-
ulations for the asymptotic case of T' = 20,000 and a misspecified process for returns. Since
when the model is strongly identified, the distribution of posterior BFM estimates of the risk
premia coincides almost exactly with that of the standard FM procedure (see Figure 1b),
cross-sectional fit would have been the same as well. The major difference emerges whenever
a useless factor is included into the candidate set of variables. Indeed, it is well-known that
in this case the distribution of conventional measures of fit is non-standard and often inflated
(Kleibergen and Zhan (2015)). This is further confirmed in Figure 2, which shows that under
the presence of spurious factors, conventional FM R? has an extremely spreadout right tail
of the distribution, which makes it easy to find a substantial increase of fit whenever the
model is simply not identified. This unfortunate property of the frequentist approach is not
shared by the inference with BFM. Indeed, the mode of the posterior distribution of R? is
generally tightly centered around the true values. The slight bump to the right tail of the
distribution comes from the fact that whenever a spurious factor is included into the model
with a small probability (based on t-statistic cut-off, this is equal to the size of the test; see,
e.g., Table 1, Panel A), its fit will be similar to that of the frequentist estimation.

However, the pointwise distribution of cross-sectional R? across the simulations is only
part of the story, as it does not reveal the in-sample estimation uncertainty and whether the
confidence intervals are credible in reflecting it. While BFM incorporates this uncertainty

directly into the shape of its posterior distribution, one needs to rely on bootstrap-like
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Figure 3: The estimation uncertainty of cross-sectional R2.

Posterior densities of cross-sectional Rﬁdj in one representative simulation with centered 90% confidence
interval (shaded area). Blue dashed line denotes the true Ridj. Red dashed-dotted line depicts FM Ridj
estimate with 90% Lewellen, Nagel, and Shanken (2010) confidence intervals (red dotted lines).

algorithms to build a similar analogue in the frequentist case. As a frequentist benchmark,
we use the approach of Lewellen, Nagel, and Shanken (2010) to construct the confidence
interval? for R2.

Figure 3 presents the posterior distribution of cross-sectional R? for a model that contains
a useless factor (and, potentially, a strong one, too) and contrasts it with a frequentist value
and the confidence interval around it. Consider, for example, Figure 3a. The fact that the
in-sample FM estimate of cross-sectional fit (51%) is substantially higher than the mode
of the posterior distribution (-2%, which is close to the true value of RZ,, about —4%)
is not surprising, given the previous results on the pointwise distribution of the estimates.
What is quite interesting, however, is the coverage of the confidence interval constructed via
the simulation-based approach of Lewellen, Nagel, and Shanken (2010). Not only does it
not include true value of the cross-sectional fit, but, in fact, in this particular simulation,
it suggests that R>, should be between 42% and 100%. A similar mismatch between the
seemingly high levels of cross-sectional fit produced by a frequentist approach and their true
values can also be observed in Figure 3b for the case of including both strong and a useless

factors.

The BFM estimator performed well in a wide range of additional simulations we have
conducted. For example, in Section OA.B.2 of the Online Appendix we show that it can
easily be applied even in the case of a large cross-section of test assets, that is, all of the nice

properties of the estimator discussed above hold in a large-N setting as well.

20Details on this procedure can be found in the Online Appendix OA.A.2
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II1.2 The Bayes factors

How well do flat and spike-and-slab priors work empirically in selecting relevant and detecting
spurious factors in the cross-section of asset returns? We revisit the theoretical results from
Section II.1 using the same simulation design employed to evaluate the estimation of risk

premia.

Table 2: The probability of retaining risk factors using Bayes factors

T 5%  57% 59% 61% 63% 65%
Panel A: strong factors
Flat Prior fstrong 200 0.813 0.784 0.758 0.722 0.693 0.662
600 0.929 0915 0.896 0.876 0.851 0.834
1,000 0.972 0.963 0.957 0.951 0.937 0.924

Spike-and-Slab Prior  fsreng 200 0.917 0.902 0.884 0.868 0.837 0.813
600 0.998 0.998 0.998 0.996 0.993 0.991
1,000 1.000 1.000 1.000 1.000 1.000 0.999

Panel B: useless factors
Flat Prior Susetess 200 1.000 0.996 0.988 0.967 0.919 0.822
600 0.998 0.998 0.995 0.988 0.977 0.943
1,000 1.000 1.000 1.000 0.994 0.983 0.965

Spike-and-Slab Prior  fuseess 200 0.022  0.004 0.001 0.001 0.000 0.000
600  0.000 0.000 0.000 0.000 0.000 0.000
1000  0.000 0.000 0.000 0.000 0.000 0.000

Panel C: strong and useless factors
Flat Prior fstrong 200 0.924 0.897 0.874 0.848 0.821 0.799
600 0.988 0.985 0.976 0.974 0.965 0.958
1,000 0.998 0.996 0.996 0.995 0.992 0.987

fusetess 200 0.984 0.960 0.910 0.811 0.702 0.584
600  0.999 0.993 0.985 0.954 0.913 0.854
1,000 1.000 1.000 0.995 0.986 0.966 0.945

Spike-and-Slab Prior  forong 200 0.916 0.901 0.877 0.861 0.837 0.816
600 0.998 0.998 0.998 0.996 0.994 0.991
1,000 1.000 1.000 1.000 1.000 1.000 0.999

fusetess 200 0.005 0.001 0.000 0.000 0.000 0.000
600  0.000 0.000 0.000 0.000 0.000 0.000
1,000 0.000 0.000 0.000 0.000 0.000 0.000

Frequency of retaining risk factors for different choice sets across 1,000 simulations of different size (T=200,
600, and 1,000). A factor is retained if its posterior probability, Pr(v; = 1|data), is greater than a certain
threshold: 55%, 57%, 59%, 61%, 63% and 65%. In Panel A, the candidate risk factor is truly cross-sectionally
priced and strongly identified, while in Panel B it is not. Panel C reports the case of both strong and useless
candidate factors in the model. In the estimation with spike-and-slab prior, we standardize both returns
and factors. In addition, we choose hyper-parameters ¢ = 20 and r = 0.0001, and the prior variance of risk
premium Ay is proportional to its demeaned-correlation with test asset excess returns as in remark 3.

Consider a cross-section of 25 portfolios that is actually loading on two systematic sources

of risk, with the econometrician potentially observing at most only one of them,?!

a strong
(and priced) f;. However, there is also a second candidate factor available, which is orthog-

onal to asset returns and essentially useless. We compute Bayes’ factors, corresponding to

21That is, we focus on the empirically relevant case of the model being always misspecified. We report
very similar results results for the case of correct specification in Section OA.B.4 of the Online Appendix.

29



each of the potential sources of risk, and document the empirical probability of retaining the
variable in the model across 1,000 simulations. Again, we consider models that contain either
strong or useless factors, or a combination of both, and different sample sizes (7" = 200, 600,
and 1,000). In each case we run the Gibbs sampling algorithm derived using the continuous
spike-and-slab prior and then approximate the marginal probability of each factor by the
posterior mean of ;. The decision rule is based on a range of critical values, 55%-65%, such
that whenever the posterior mean of v; is above a particular threshold, we retain the factor.
Finally, we also compute the probability of retaining a factor under a flat prior, which would
be the standard in the literature.

Table 2 summarizes our findings. When only a true risk factor is included in the candi-
date set (Panel A), both flat and spike-and-slab priors successfully identify it with a high
probability, especially in large sample. But the spike-and-slab prior is characterized by higher
power in retaining the strong factor for all specifications and sample sizes considered.

The difference between the two priors becomes drastic whenever useless factors are in-
cluded in the model (Panels B and C in Table 2). As discussed in Section 11.2.1, since in this
case the matrix B,I B4 is nearly singular and its determinant goes to zero, under a flat prior
for risk premia the posterior probability of including a spurious factor in the model converges
to 1 asymptotically. For example, the probability of misidentifying a spurious factor as being
the true source of risk is almost 1 under flat prior, even for a very short sample. This in turn
makes the overall process of model selection invalid.

Overall, we find the behavior of the spike-and-slab prior very encouraging for variable
and model selection: it successfully eliminates the impact of the spurious factors from the

model and identifies the true sources of risk.

IV Empirical Applications

In this section we apply our Bayesian approach to a large set of factors proposed in the previ-
ous literature. First, we use the Bayesian Fama-MacBeth method to analyze several notable
factor models (subsection IV.1). Second, we consider 51 tradable and non-tradable factors,
yielding more than two quadrillion possible models, and employ our spike-and-slab priors to
compute factors’ posterior probabilities and implied risk premia (subsections IV.2 and IV.3).
Third, we compare the performance of a (low-dimensional) robust model, constructed with
only the factors that have high posterior probability, to the one of several notable factor
models (subsection IV.4). Fourth, we estimate the degree of sparsity (in terms of linear fac-
tors) of the true, latent SDF, as well as the SDF-implied maximum Sharpe ratio (subsection
IV.5). Fifth, we evaluate the uncertainty arising from the choice of the cross-section test

assets (subsection IV.6). Sixth, we analyze the out-of-sample performance of our method
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(subsection IV.7).

IV.1 Some notable factor models

In this section we illustrate the differences between the frequentist and Bayesian FM es-
timation (both OLS and GLS) for several candidate models. In particular, we estimate a
set of linear factor models on the returns of the standard 25 Fama-French portfolios, sorted
by size and value, using frequentist and Bayesian FM estimators. We use monthly data
over the 1970:01-2017:12 sample for tradable factors and, whenever possible, non-tradables.
For factors available only at quarterly frequency, the sample is 1952:Q1-2017:Q3 (whenever
possible). A full description of the data and models used, as well as additional empirical
results, can be found in Section OA.C.2 of the Online Appendix.

Tables 3 and 4 summarize the performance of several leading factor models. For the
classical FM approach, we report point estimates of risk premia with their Shanken-corrected
t-statistics, and the cross-sectional R?, along with its 90% confidence interval (constructed
following the methodology of Lewellen, Nagel, and Shanken (2010)). For BFM, we report
the posterior mean of risk premia estimates, and the posterior median and mode of RZ
along with the centered 90% posterior coverage. We report both median and mode of the
cross-sectional fit because its posterior distribution is often heavily skewed.

Carhart (1997) four-factor model: OLS and GLS Fama-MacBeth estimates of risk premia
indicate that size, value, and momentum (SMB, HML, and UMD, respectively) are significant
drivers of the cross-section of test assets. The market factor does not command a significant
risk premium, which is a typical finding for this model. Cross-sectional fit seems to be high,
with R? over 70%, even though it comes with rather wide confidence bounds, according to
the Lewellen, Nagel, and Shanken (2010) approach. The Bayesian estimation indicates that
part of the model success is due to the fact that this cross-section of test assets does not have
much exposure to momentum, especially after one controls for the conventional Fama-French
factors. While still marginally significant, its risk premium is substantially lower under both
BFM and BFM-GLS estimations, with tighter bounds for R? as well. On the contrary, both
HML and SMB have virtually identical risk prices under both FM and Bayesian estimations.

The Hou, Xue, and Zhang (2014) q-factor model emphasizes the role of investment (IA)
and profitability (ROE) in matching the cross-section of equity returns, and we find these
factors significantly priced using the frequentist inference. The Bayesian estimation delivers
very similar risk premia estimates for most factors, but it finds weaker support for ROE
being a significant explanator of the cross-section of returns, as well as lower values and
tighter bounds, for the measures of fit.

The Liquidity-Adjusted CAPM of Pastor and Stambaugh (2003) seems to suffer from
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Table 3: Tradable factors and 25 Fama-French portfolios, sorted by size and value

FM BFM
Model Factors j‘j Rgdj 5‘]‘ dej.mods R<2zd4' median
Panel A: OLS
Carhart (1997) Intercept 0.489 70.63 0.703* 64.32 63.29
[0.244, 1.222]  [31.60, 94.00] [-0.061, 1.426] [48.26, 76.46]
MKT 0.120 -0.101
[-0.631, 0.870] [-0.822, 0.683]
SMB 0.171%** 0.164***
[0.100, 0.241] [0.089, 0.232]
HML 0.404%** 0.396%**
[0.331, 0.477) [0.330, 0.466]
UMD 2.445%** 1.806**
[0.955, 3.936] [0.259, 3.328)]
q-factor model Intercept 0.912%** 65.67 0.922%*% 60.62 61.23
Hou, Xue, and Zhang (2014) [0.286, 1.539]  [30.40, 86.80]  [0.276, 1.560]  [41.31, 76.40]
ROE 0.394** 0.377*
(0.016, 0.771] [-0.020, 0.789]
1A 0.387%** 0.385%**
[0.203, 0.571] [0.208, 0.580]
ME 0.274%%* 0.268***
[0.169, 0.379] [0.158, 0.376]
MKT -0.371 -0.378
[-0.995, 0.252] [-1.005, 0.272]
Liquidity-CAPM Intercept 0.973* 36.24 1.162%* 34.09 30.27
Pastor and Stambaugh (2000) [0.084, 2.030] [-9.09, 100.00] [0.175, 2.120]  [-2.39, 61.46]
LIQ 3.057** 1.785
[0.727, 5.388] [1.237, 4.150]
MKT -0.281 -0.449
[-1.350, 0.788] [-1.371, 0.509]
Panel A: GLS
Carhart (1997) Intercept 1.017%** 89.64 1.083%** 85.87 86.3
0.389, 1.645]  [82.00, 97.60]  [0.458, 1.717]  [80.85, 91.05]
MKT -0.434 -0.504
[-1.065, 0.196] [1.150, 0.122]
SMB 0.191%** 0.189***
[0.150, 0.233] [0.150, 0.230]
HML 0.356%** 0.356%**
[0.313, 0.400] [0.316, 0.395]
UMD 1.626%** 1.264**
(0.479, 2.772] [0.077, 2.401]
q-factor model Intercept 1.305%** 55.03 1.277*%* 47.28 48.54
Hou, Xue, and Zhang (2014) 0.779, 1.831]  [24.40, 96.40]  [0.702, 1.879]  [32.45, 64.19]
ROE 0.295% 0.266
[-0.026, 0.615] [-0.087, 0.640]
1A 0.270%** 0.265%**
[0.104, 0.437) [0.093, 0.450]
ME 0.251%** 0.246***
(0.161, 0.341] [0.144, 0.345]
MKT -0.749%** -0.720%*
[-1.268, -0.229] [-1.292, -0.156]
Liquidity-CAPM Intercept 1.244%*%* 49.38 1.256%** 52.98 43.17
Pastor and Stambaugh (2000) 0.664, 1.824]  [26.91, 98.91]  [0.738, 1.749]  [12.50, 66.53]
LIQ 1.141 0.775
[-0.232, 2.514] [:0.450, 2.116]
MKT -0.664** -0.678%**
[-1.242, -0.086] [-1.176, -0.162]

credible intervals. *,

* kk
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Risk premia estimates and cross-sectional fit for a selection of models with tradable risk factors on a cross-
section of 25 Fama-French monthly excess returns. Each model is estimated via OLS and GLS. We report
point estimates and 95% confidence intervals for risk premia, which are constructed based on the asymptotic
normal distribution, and cross-sectional R? and its (5%, 95%) confidence level constructed as in Lewellen,
Nagel, and Shanken (2010) for FM estimation. For BFM estimation we report the posterior mean of A (\;),
its (2.5%, 97.5%) credible interval, posterior mode and median of cross-sectional R2,., and centered 90%
and *** denote, respectively, 90%, 95% and 99% levels of significance.



Table 4: Non-tradable factors and 25 Fama-French portfolios, sorted by size and value

FM BFM
Model Factors ;\j Rfdj 5\]' Rgdj mode Rlzldj‘mcdzan
Panel A: OLS
Scaled CCAPM Intercept 1.046 25.67 1.791%+* 34.36 29.19
Lettau and Ludvigson (2001) [0.848, 2.940] [14.20, 100.00] [0.001, 3.723]  [-4.76, 62.07]
cay 1.817 0.791
[-0.653, 4.288] [-1.347, 2.686]
ACpq 0.713* 0.303
[-0.030, 1.456] [-0.462, 0.951]
ACyg X cay 0.804 0.301
[-1.645, 3.253] [-1.911, 2.270]
HC-CAPM Intercept 3.243%** -1.22 3.090** 3.54 9.57
Jagannathan and Wang (1996) (1228, 5.257)  [:9.00, 33.45]  [0.790, 5.250]  [-7.48, 44.31]
AY 0.464 0.085
[-0.213, 1.140] [-1.119, 1.058]
MKT -0.719 -0.656
[-2.680, 1.242] [-2.859, 1.558]
Durable CCAPM Intercept 2.214 52.38 2.780%* 47.1 40.78
Yogo (2006) [-1.037, 5.465]  [28.00, 100.00] [-0.184, 5.751]  [1.20, 69.91]
ACyq 0.743%* 0.357
[-0.025, 1.511] [-0.207, 0.832]
ACy -0.057 0.014
[-0.719, 0.605] [-0.668, 0.693]
MKT 0.083 -0.495
[-3.322, 3.489] [-3.395, 2.555]
Panel B: GLS
Scaled CCAPM Intercept 2.180%** -10.24 2.257H** -6.58 -3.13
Lettau and Ludvigson (2001) (0.825, 3.536]  [-14.29, 64.57]  [1.221, 3.258] [-11.87, 15.17]
cay 0.435 0.256
[-0.774, 1.643] [-0.688, 1.217]
ACnq 0.118 0.089
[-0.266, 0.502] [-0.214, 0.407]
ACpq X cay 0.141 0.063
[-1.005, 1.286] [-0.845, 0.938]
HC-CAPM Intercept 2.730%** 56.36 2.759%** 58.24 49.26
Jagannathan and Wang (1996) [1.458, 4.002]  [30.18, 83.64]  [1.379, 4.005]  [9.67, 75.07]
AY -0.421%* -0.241
[-0.742, -0.099] [-0.598, 0.114]
MKT -0.717 -0.740
[-1.979, 0.545] [-2.073, 0.622]
Durable CCAPM Intercept 2.960** 44.54 2.841%** 54.74 40.99
Yogo (2006) [0.547, 5.374]  [2.86,78.20]  [1.102, 4.558] [-2.41, 72.15]
AChq 0.105 0.052
[:0.265, 0.475] [0.201, 0.311]
ACy 0.055 0.025
[-0.390, 0.501] [-0.286, 0.327]
MKT -0.941 -0.822
[-3.314, 1.432] [-2.528, 0.895]

Risk premia estimates and cross-sectional fit for a selection of models with non-tradable risk factors on a
cross-section of 25 Fama-French monthly excess returns. Each model is estimated via OLS and GLS. We
report point estimates and 95% confidence intervals for risk premia, which are constructed based on the
asymptotic normal distribution, and cross-sectional R? and its (5%, 95%) confidence level constructed as in
Lewellen, Nagel, and Shanken (2010) for FM estimation. For the BFM estimation we report the posterior
mean of A (};), its (2.5%, 97.5%) credible interval, posterior mode and median of cross-sectional Rﬁdj, and
centered 90% credible intervals. *, ** and *** denote, respectively, 90%, 95% and 99% levels of significance.
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identification failure, as the risk premium on the liquidity factor is substantially reduced and
no more significant when BFM is used in estimation. Wide confidence bounds and uncertain
cross-sectional fit provide a stark difference to the pointwise estimates and their seemingly
high significance levels under the standard frequentist approach.

The Conditional CCAPM of Lettau and Ludvigson (2001) appears weakly identified at
best. Unlike the basic FM estimation, which indicates a relative empirical success of the
model, the Bayesian approach reveals most risk premia to be substantially lower, losing all
the accompanying statistical and economic significance. This is particularly pronounced in
the BFM-GLS, which delivers both risk premia and cross-sectional R? close to zero.

The Labour-Adjusted CAPM of Jagannathan and Wang (1996) extends the classic CAPM
framework by introducing a proxy for human capital and finds it strongly priced in the cross-
sections of stocks returns. The BFM estimates of risk premia are substantially lower and no
longer significant, with the same patterns observed under both OLS and GLS procedures.

The Durable CCAPM of Yogo (2006) in the linearized version, included the durable
consumption factor and found that its impact is priced in a number of cross-sections sorted
by size and value, past betas, and other characteristics. Even though the Lewellen, Nagel,
and Shanken (2010) approach indicates a really wide support for the cross-sectional R?, the
model found empirical support in the data. We find that both durable and nondurable
consumption are weak predictors of the cross-section of returns, as the magnitude of their
risk premia substantially declines and is no longer significant. The model is still characterized
by a wide confidence interval for B2, but overall its pricing ability is questionable at best.

The Online Appendix (Tables OA14-OA17) provides additional empirical results on the
performance of both frequentist and BFM estimators applied to notable factor models. In
many cases, when the models are well specified and strongly identified in the data, there is
almost no distinction between the two approaches. One notable difference, however, are the
confidence intervals of the R?, which are often notoriously wide in the frequentist case. There
are also cases, however, in which the difference in model performance becomes large, affecting
both risk premia estimates and measures of cross-sectional fit. Similar to Gospodinov, Kan,
and Robotti (2019), we caution the reader against blindly relying on the estimates produced

by conventional Fama-MacBeth procedure, and we advocate a robust approach to inference.

IV.2 Sampling two quadrillion models

We now turn our attention to a large cross-section of candidate asset pricing factors. In
particular, we focus on 51 (both tradable and non-tradable) monthly factors available from
October 1973 to December 2016 (i.e. 7" ~ 600). Factors are described in Table Al in
the Appendix, with additional details available in Table OA13 of the Online Appendix. In
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choosing the cross-section of assets to price, we follow Lewellen, Nagel, and Shanken (2010)
and employ 25 Fama-French size and book-to-market portfolios plus 30 industry portfolios
(i.e., N = 55).?2 Since we do not restrict the maximum number of factors to be included,
all the possible combinations of factors give us a total of 2°! possible specifications, that
is 2.25 quadrillion models. Note that each model involves 55 time series regressions and
one cross-section regression, that is, we jointly evaluate the equivalent of 126 quadrillion
regressions.

We employ the continuous spike-and-slab approach of Section I1.2.3, since it is the most
suited for handling a very large number of possible models, and report both the posterior
probability (given the data) of each factor (that is, E [y;|data], Vj) as well as the posterior
means of the factors’ risk premia (that is, E[);|data], Vj) computed as the Bayesian Model
Average (BMA)?? across all the models considered. We use the formulation of the penalty
term v, in equation (21) in order to handle also identification failures of factors’ risk premia
caused by level factors (see Remark 3).%

The posterior evaluation is performed and reported over a wide range for the parameter
(1 in equation (19)) that controls the degree of shrinkage of potentially useless factors’ risk
premia: from ¢ = 1 (that is, very strong shrinkage) to ¢» = 100 (making the shrinkage
virtually irrelevant). As discussed in Section I1.2.3, we consider a value of ¥ in the 10-20
range as a reasonable benchmark.

The prior probability for each factor inclusion is drawn from a Beta(1,1) (that is, a
uniform on [0, 1]), yielding a prior expectation for v; equal to 50%, that is, a priori we have
maximum uncertainty about whether a factor should be included or not.?

Figure 4 plots the posterior probabilities of the 51 factors as a function of the parameter

22In Section IV.6 below we extend our analysis to 24 additional cross-sections of test assets based on the
portfolios most commonly used in the empirical literature.
2If we are interested in some quantity A that is well-defined for every model m = 1,...,M (e.g., risk
premia, maximum Sharpe ratio), from the Bayes theorem, we have
M
E [Aldata] = Z E [A]data, model = m] Pr (model = m|data),
m=0

L
where E [A|data, model = m] = limy o + 17, A(Gl(m)) and {Gl(m)} denote L draws from the posterior

distribution of the parameters of model m. That is, the (BMA) expectation of A, conditional on only the
data, is simply the weighted average of the expectation in every model, with weights equal to the models’
posterior probabilities. See, e.g., Raftery, Madigan, and Hoeting (1997), Hoeting, Madigan, Raftery, and
Volinsky (1999).

24In Online Appendix OA.C.3 we report results based on the formulation in equation (21)) as well as
the Fisher transformation of the correlation coefficients. The findings therein are very similar to the ones
discussed below.

2Using a Beta(2,2), which still implies a prior probability of factor inclusion of 50%, but lower probabilities
for very dense and very sparse models, we obtain virtually identical results. Furthermore, using a prior in
favor of more sparse factor models (that is, a Beta(2,8)), the empirical findings are very similar to the ones
reported. These additional results are reported in Section OA.C.3 of the Online Appendix.
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Figure 4: Posterior factor probabilities

Posterior probabilities of factors, E [y,|data] computed using the continuous spike-and-slab approach of
Section I1.2.3 and 51 factors described in Table A1 of the Appendix. Sample: 1973:10-2016:12. Test assets:
25 Fama-French size-and-book-to-market and 30 industry portfolios. Prior distribution for the j-th factor
inclusion is a Beta(1,1), yielding a 0.5 prior expectation for ;. Posterior probabilities are plotted for

¥ € [1, 100].

1. The corresponding values are reported in Table 5. Overall, the inclusion of only three
factors finds substantial support in our empirical analysis. First, the celebrated Fama-
French HML (high-minus-low), designed to capture the so-called “value premium”, is a strong
determinant of the cross-section of asset returns. For ¢ = 10 (a reasonable benchmark),
its posterior probability is about 92.1%, and only for very strong shrinkage (¢ = 1) the
posterior probability gets reduced to 86.6%. Second, the market factor, in the version of
Daniel, Mota, Rottke, and Santos (2020) (MKT*, which is meant to have hedged out the
unpriced risk contained in the market index), has also high posterior probability (68.3%
for ¢» = 10). Instead, the simple market factor (MKT) seems to be driven out by MKT*.
Third, albeit to a lesser extent, SMB*, the Daniel, Mota, Rottke, and Santos (2020) version
of the small-minus-big Fama-French factor (meant to capture the so-called “size” premium),
seems also to contain relevant information for pricing the cross-section of asset returns, with a
posterior probability in the 51%-62% range for small values of ). Beside the ones mentioned
above, all other factors have posterior probabilities of about 50% or less for all values of .
Interestingly, the results are not very sensitive to the choice of .

In addition to the posterior probabilities of the factors, Table 5 reports the posterior
means of the factor risk premia computed as Bayesian Model Average (BMA), that is,
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Table 5: Posterior factor probabilities, E [y;|data], and risk premia. 2.25 quadrillion models

E [v;|data) E [\;|data]
(LR [UR

Factors: 1 5 10 20 50 100 1 5 10 20 50 100 F

HML 0.866 0.915 0.921 0.921 0.908 0.915 0.173 0.263 0.281 0.290 0.292 0.300 0.377
MKT* 0.667 0.706 0.683 0.712 0.633 0.535 0.074 0.170 0.207 0.259 0.268 0.229 0.514
SMB* 0.624 0.609 0.581 0.505 0.446 0.410 0.057 0.105 0.115 0.105 0.104 0.108 0.215
STRev 0.513 0.498 0.530 0.546 0.549 0.561 0.003 0.013 0.025 0.047 0.095 0.149 0.438
IPGrowth 0.511 0.507 0.488 0.506 0.516 0.502 0.000 -0.001 -0.001 -0.002 -0.005 -0.008 0.097*
BEH_PEAD 0.503 0.503 0.512 0.499 0.515 0.500 0.003 0.010 0.016 0.025 0.048 0.070 0.619
PE 0.486 0.509 0.494 0.508 0.507 0.517 -0.001 -0.003 -0.004 -0.005 -0.011 -0.019 6.770*
CMA* 0.513 0.495 0.509 0.486 0.468 0.437 0.001 0.000 -0.002 -0.004 -0.008 -0.010 0.242
TERM 0.477 0.478 0.494 0.508 0.532 0.530 0.001  0.003 0.006 0.011 0.024 0.038 0.962*
UMD 0.516 0.519 0.517 0.492 0.426 0.378 0.019 0.050 0.067 0.082 0.091 0.098 0.646
DIV 0.491 0.484 0.513 0.502 0.482 0.496 0.000 0.000 -0.001 -0.001 -0.003 -0.005 0.926*
BW_ISENT 0.494 0.500 0.500 0.502 0.487 0.520 0.000 0.002 0.003 0.005 0.009 0.014 0.101*
NONDUR 0.487 0.478 0.494 0.490 0.513 0.515 0.000 0.002 0.003 0.005 0.011 0.019 0.151*
DeltaSLOPE 0.488 0.491 0.494 0.497 0.498 0.505 0.000 0.000 -0.001 -0.001 -0.003 -0.006 0.059*
SERV 0.493 0.494 0.489 0.491 0.491 0.509 0.000 0.000 0.000 0.000 -0.001 -0.001 0.045*
REAL_UNC 0.499 0.484 0.509 0.476 0.503 0.469 0.000 0.000 0.000 0.000 0.000 0.000 0.046*
Oil 0.491 0.491 0.482 0.500 0.496 0.497 0.002 0.011 0.020 0.037 0.074 0.126 0.740*
LIQ-TR 0.484 0.496 0.483 0.507 0.488 0.481 0.000 0.003 0.007 0.015 0.033 0.055 0.438
STOCK_ISS 0.491 0.517 0.494 0.467 0.452 0.362 -0.024 -0.062 -0.076 -0.088 -0.103 -0.096 0.515
LIQNT 0.493 0.482 0.497 0.483 0.491 0.481 -0.002 -0.002 -0.001 0.003 0.014 0.015 0.428*
FIN_UNC 0.484 0.479 0.483 0.484 0.513 0475 0.000 0.000 0.000 0.000 0.000 -0.001 0.103*
UNRATE 0.488 0.487 0.497 0.484 0.485 0475 0.000 -0.001 -0.002 -0.003 -0.006 -0.007 1.157*
DEFAULT 0.501 0.477 0.476 0.496 0.475 0.486 0.000 0.000 0.000 0.000 0.000 0.000 0.333*
HJTZ_ISENT 0.481 0.499 0.485 0.477 0.505 0.486 0.000 -0.001 -0.001 -0.001 -0.002 -0.002 0.242*
NetOA 0.499 0.499 0.499 0.489 0.447 0.422 0.006 0.018 0.028 0.040 0.052 0.056 0.544
INV_IN_ASSETS 0.492 0.480 0.468 0.502 0.466 0.422 0