
Building codes and community resilience to natural
disasters

Patrick Baylis Judson Boomhower∗

March 2021

Natural disaster losses can be mitigated through investments in structure
hardening. When property owners do not correctly perceive risks or there are
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California’s wildfire building codes on structure survival. We combine admin-
istrative damage data from several states, representing almost all U.S. homes
destroyed by wildfire since 2007. We merge this damage data to the universe
of assessor data for destroyed and surviving homes inside wildfire perimeters.
There are remarkable vintage effects in resilience for California homes built after
1995. Using differences in code requirements across jurisdictions, we show that
these vintage effects are due to state and local building code changes prompted
by the deadly 1991 Oakland Firestorm. Moreover, we find that these improve-
ments increase the survival probability of neighboring homes due to reduced
structure-to-structure spread. Our results imply that property losses during re-
cent wildfire seasons would have been several billion dollars smaller if all older
homes had been built to current standards.
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1 Introduction

As natural disasters become more frequent and more severe, there is increasing atten-

tion to potential adaptive responses to mitigate economic impacts. One such margin

of adaptation is “hardening” of homes and other structures in high hazard areas. A

growing number of high-profile federal and state initiatives require or subsidize such

investments. In theory, these policies can be justified by misperception of risk by

property owners and/or by spillover benefits of mitigation across properties. But

there is little empirical evidence about the degree to which these policies increase

resilience compared to a counterfactual of purely voluntary takeup.

In this paper, we consider the case of wildfire building codes in California. California

has some of the the most advanced and detailed mitigation requirements in the world

for homes in areas with high fire hazard. We worked with state emergency manage-

ment agencies and individual county assessors to assemble a database that includes

almost all United States homes destroyed by wildfire between 2007 and 2020. We

merge this damage data to assessor data for the universe of homes in affected areas.

We use this new dataset to provide new evidence on the effects of California’s building

codes on structure survival, and on spillover benefits of mitigation across properties.

A key advantage of our study is that we observe the full population of surviving and

destroyed homes, unlike existing studies that primarily observe data for destroyed

homes.

The rich dataset also allows us to deploy an explicit empirical design that requires

substantially weaker identifying assumptions than existing work. Our preferred em-

pirical approach is a fixed effects design that compares the likelihood of survival for

homes of varying vintages located on the same residential street. These street fixed

effects allow us to compare groups of homes that experience essentially identical wild-

fire exposures. This methodological contribution reduces noise and omitted variables

bias introduced by the substantial variation in fire severity and average structure char-

acteristics within any individual incident perimeter. Our empirical analysis leverages

emerging tools in spatial analysis, including precise “rooftop” geocoding of structure

locations and high-resolution aerial imagery.

We find remarkable vintage effects for California homes. A 2010 or newer home is

about 15 percentage points (38%) less likely to be destroyed than a 1985 home ex-
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periencing an identical wildfire exposure. There is strong evidence that these effects

are due to state and local building code changes prompted by the deadly 1991 Oak-

land Firestorm. The observed vintage effects are highly nonlinear and discontinuous,

appearing immediately after these changes took effect. There are no similar effects

in areas of California not subject to these code changes, or in other states.

We also find important benefits to neighboring homes, consistent with reduced structure-

to-structure spread. These neighbor effects match anecdotal reports that home-to-

home spread may be an important factor during urban conflagrations. Our results

imply that, ceteris parabis, a home’s likelihood of destruction during a wildfire falls

by about 3 percentage points (8%) if its nearest neighbor was built under the modern

wildfire codes. This benefit is even larger when homes have multiple close neighbors

built to modern codes.

These results have immediate policy implications. The state of California, for ex-

ample, is actively implementing policies to require or incentivize home hardening in

wildfire-prone areas. Assembly Bill 38, which took effect in 2020, introduced a large-

scale grant program to support wildfire safety retrofits for existing housing. The

law specifically calls for support of “cost effective” retrofits, a concept to which the

evidence in this study is essential. Similarly, California’s 2021 Wildfire and Forest Re-

silience Action Plan calls for large-scale increases in state support for home hardening

and defensible space.1 Additionally, policymakers are confronting pressing issues of

insurance rate reform in response to large losses during the 2017 and 2018 wildfires.

One key debate in this area is the degree to which individual investments improve

structure survival, and should thus be rewarded through insurance pricing. This

paper’s evidence on the effectiveness of such investments from real wildfire events

directly responds to this knowledge gap. Finally, the clear risk spillovers that we

measure between neighboring homes underscore the need for policy approaches that

can address these externalities.

This paper is related to a small literature on natural hazard mitigation. For wildfires,

several studies in the engineering and ecology literature estimate benefits of vari-

ous mitigation actions such as removing vegetation near homes and upgrading roofs,

1. California Natural Resources Agency, California Environmental Protection Agency, and De-
partment of Forestry and Fire Protection. “California’s Wildfire and Forest Resilience Action Plan:
A Comprehensive Strategy of the Governor’s Forest Management Task Force.” January 2021.
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windows, and other home components (Gibbons et al. 2012; Syphard et al. 2012;

Syphard, Brennan, and Keeley 2014; Alexandre et al. 2016; Syphard, Brennan, and

Keeley 2017; Kramer et al. 2018; Syphard and Keeley 2019). These studies paint a

conflicting picture of the effectiveness of various potential investments. None of them

directly measure the effects of building codes or other policy changes. In economics,

Shafran 2008; Champ, Donovan, and Barth 2013; Dickinson et al. 2015; Wagner

2020 consider the uptake or effectiveness of risk mitigation activities for wildfire or

flooding.

From a methodologial perspective, our work connects to a separate literature in en-

vironmental economics on the effectiveness of building codes in reducing energy con-

sumption (Jacobsen and Kotchen 2013; Levinson 2016; Kotchen 2017). Our approach

to measuring code effects is similar to the approaches in these papers, although our

focus on disaster resilience is quite different.

This study adds to our understanding of these issues in four ways. First, we focus on

evaluating building code policies, where previous work studies homes where owners

have or have not chosen to install various fire safety technologies. Thus, our study

is able to estimate benefits of the policy relative to an explicit counterfactual of not

mandating these investments and relying instead on voluntary takeup. Second, we

provide the first empirical estimates of the spillover benefits of wildfire mitigation

investments to neighboring properties. Third, we apply the toolkit of modern ap-

plied microeconomics to introduce an explicit empirical design in a causal framework.

Previous work is primarily descriptive or relies on regression adjustment. Finally,

we compile a comprehensive dataset of structure-level outcomes in wildfires across

states that, to our knowledge, is the most complete accounting in existence. This

large-scale dataset allows us to examine structure loss and survival in a more general

and granular way than previous studies, which have tended to be case studies of one

or a few fires. Beyond the results in this study, this new dataset will enable future

work on the economic impacts of catastrophic wildfire risk.

The rest of the paper proceeds as follows. Section 2 discusses structure survival in

wildfires and California’s history of building code updates. Section 3 describes the

data and spatial analysis. Section 4 outlines the empirical strategy, and Section 5

presents and discusses the results. Section 6 concludes.
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2 California’s Wildfire Building Codes

Among U.S. states, California has the most detailed building standards for wildfire

resistance in high hazard areas. Code requirements vary throughout the state. In

areas where CAL FIRE provides firefighting services (State Responsibility Area or

SRA), the state directly determines building standards. Within incorporated cities

and other areas with their own fire departments (Local Responsibility Area or LRA),

local governments have historically had greater control over code requirements.

The Oakland Hills Firestorm of 1991, which killed 25 people and caused $1.5 billion

in property damage, focused the public and policymakers on wildfire safety and led

to a series of legislative actions. The first of these was the so-called Bates Bill of

1992 (Assembly Bill 337). Among other changes, the Bates Bill encouraged stronger

building standards in LRA areas by requiring CAL FIRE to recommend Very High

Fire Hazard Severity Zones (VHFHSZ) where new building codes would apply. Local

governments could choose whether to adopt these recommended hazard zones in LRA

areas. This designation process unfolded over several years, with hundreds of local

governments adopting or rejecting CAL FIRE’s proposed VHFHSZ maps at different

times. According to Troy 2007, 151 of 208 (73%) local governments either adopted

the VHFHSZ regulations or claimed to have promulgated equally strong existing

rules.2

On the heels of the Bates Bill, Assembly Bill 3819 of 1994 increased requirements

for ignition-resistant roofs. Roofing materials are rated Class A, B, C, or unrated.3

Starting in 1995, the law required Class B ignition-resistant roofs on homes built or re-

roofed in all SRA areas and in LRA areas that accepted the state’s proposed VHFHSZ

designations. In 1997, this requirement stepped up to Class A ignition-resistant roofs

in the highest-hazard areas. Finally, Assembly Bill 423 in 1999 simplified enforcement

of these roofing codes by outlawing the use of unrated roofing materials throughout

the state.

California increased its code requirements again in 2008 with the so-called “Chapter

2. For an excellent qualitative study of local VHFHSZ adoption decisions, see also Miller, Field,
and Mach (2020).

3. These ratings are earned through laboratory testing; for example, the Class A test involves
placing a 12-inch by 12-inch burning brand on the roof material under high wind speeds. The
material must not ignite for 90 minutes.
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7A” requirements of the California Building Code. These requirements include de-

tailed standards for building components like decks and eaves, as well as requirements

for managing vegetation around the home. The Chapter 7A codes apply to all homes

built in 2008 or later in SRA areas and in designated LRA VHFHSZ areas.

3 Data and Spatial Analysis

This section reviews the key datasets and data processing steps. A detailed account

of the database construction is included in the online appendix.

Damage inspection data

We assembled a database of administrative records for homes destroyed or damaged

by wildfire in the United States. In California this information is managed by CAL

FIRE. In other states, we worked with individual county assessors, who track these

damages for the purpose of updating property tax assessments. To our knowledge,

the resulting database is the most complete accounting ever compiled of homes lost to

wildfire. It includes the large majority of homes destroyed by wildfire in the United

States since 2007.

In California, the CAL FIRE Damage Inspection (DINS) database is a census of de-

stroyed and damaged homes following significant wildfire incidents during 2013–2020.

The data include street address and assessor parcel number (APN); limited structure

characteristics; and for some fires, an additional sample of undamaged homes. The

damage variable has four levels: destroyed (> 50% damage), major (26–50%), mi-

nor (10–25%), and affected (1%–9%). Of these, “destroyed” is the most commonly

reported damage category and the only category that appears consistently across all

fires. We focus on “destroyed” as our primary outcome and report results for the

other damage categories in the online appendix. We augment the DINS data with

data on the earlier 2003 and 2007 fire storms in San Diego provided by San Diego

County.

To complement the California data, we solicited damage inspection data for wildfires

in other states during the same period. Using ICS-209 incident reports, we identified

the 15 counties outside of California with the greatest number of structures lost since

2010. We then contacted county assessors in each of these counties to request damage
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data. So far, we have received usable data from 11 of these counties.

Assessment Data

We merge the damage records to comprehensive assessment data for all U.S. homes

from the Zillow ZTRAX database. The ZTRAX data include information on year

built, effective year built (in the case of extensive remodels), building square footage,

lot size, and other housing characteristics. The merge from damage data to ZTRAX

uses assessor parcel numbers. We validate the accuracy of this merge by comparing

street addresses across the two datasets. We restrict the data to include only single

family homes, which account for most properties inside the wildfire perimeters in our

sample. For each incident, we merge the damage data to the most recent historical

assessment data from the pre-fire period. In other words, we merge to the population

of single family homes that existed immediately prior to the start of the fire.

Identifying and validating rooftop locations

We combine several sources of spatial data to identify the precise location of every

home in our dataset. First, we limit the population of ZTRAX homes to all homes

in zip codes where at least one home was destroyed. We merge this homes data to

parcel boundary maps from county assessors. We then use comprehensive building

footprint maps from Microsoft to identify the largest structure on each single family

parcel.4 Figure 1 shows an example for Redding, California in the area of the 2018

Carr Fire. Gray lines are parcel boundaries from the Shasta County Assessor. Blue

polygons are building footprints. The purple and yellow markers show the calculated

rooftop locations for each structure. Yellow markers show homes that are reported

as destroyed in the damage data.

To quality check the calculated property locations and the damage report data, we use

high-resolution aerial imagery from NearMap. The base image in Figure 1 shows an

example. The detailed imagery allows us to manually confirm structure locations. In

addition, the NearMap imagery includes post-fire surveys for many of the incidents in

our database. Figure 1 illustrates how destroyed properties are readily visible in these

surveys, which allows us to confirm the accuracy and completeness of the damage

4. The Microsoft U.S. Building Footprints Database is publicly available at https://github.com/
microsoft/USBuildingFootprints.
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data. We have done extensive manual checking of a random sample of homes and

found the data to be highly reliable. Detailed results of our checks are summarized

in the online appendix.

Currently, we have implemented this rooftop geocoding method for almost all Califor-

nia counties. In a small number of California counties with unreliable parcel boundary

data, and in all counties outside of California, we instead geocode home locations us-

ing the ESRI StreetMap Premium geolocator product. This alternative approach

yields structure locations for 98% of homes in ich returns structure locations for 98%

of homes. Our quality checking shows that these locations are also highly reliable in

most cases.

Spatial merge to wildfire perimeters and code jurisdictions

We restrict the dataset to homes located inside within a 20-meter buffer around

final wildfire perimeters. This defines the population of exposed homes during each

incident to be all single family homes inside these buffered perimeters. Depending

on the state and time period, these digital perimeter maps come from the California

Forest and Range Assessment Program (FRAP), the Monitoring Trends in Burn

Severity (MTBS) dataset, or the National Interagency Fire Center (NIFC).

We merge the homes data to spatial data on fire protection responsibility (SRA,

LRA) and fire hazard that together determine building codes in a given location in

California. Currently, we use the most recent SRA definitions and fire hazard zones

available from CAL FIRE. These maps have changed somewhat over time, which

likely introduces some misclassification in our analysis. We are working with CAL

FIRE to get access to digital versions of historical maps.

Identifying nearest neighbors

We identify the 15 nearest neighbors for each home in the final dataset. We restrict

the neighbor definition to homes inside the wildfire perimeter and within 1,000 meters,

so that some homes have fewer than 15 neighbors. We identify two sets of neighbors:

one based on all nearby homes, and another limited to homes on the same street. We

validate these neighbor locations during the quality checking of structure locations

described earlier. Appendix Figure A5 shows an example of the same-street neighbor

assignment for a home inside the perimeter of the 2017 Tubbs fire in Santa Rosa,
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California. The underlying aerial image (taken before the fire) shows that the implied

neighbor ordering and distance closely matches the actual arrangement of homes along

the street.

Data Summary

The final dataset includes 49,435 single family homes exposed to 91 wildfires in Cal-

ifornia, Oregon, Washington, and Arizona between 2007 and 2020. Forty percent of

these (19,753) were destroyed. Table 1 summarizes information for a subset of the

largest fires, and Appendix Figure A1 shows the distribution of year built and fraction

destroyed by year built.

4 Empirical Strategy

Figure 2 provides an example of the merged dataset for the 2018 Woolsey Fire in

Los Angeles County. The green and purple markers indicate locations of surviving

and destroyed single family homes inside the final fire perimeter (shown in red). The

street map data give a sense of development density. The intensity of losses varies sig-

nificantly within the burned area. Near Malibu, a large share of affected homes were

lost. Further north, however, there are several areas where most homes inside the

fire perimeter escaped destruction. These differences reflect varying fire conditions,

response timing, landscape vulnerability, structure characteristics, and potentially

numerous other factors. This heterogeneity adds noise to empirical analysis of struc-

ture resilience. Moreover, it may introduce bias if year built or other structure traits

also vary within burned areas. We address these challenges using an empirical design

that compares the likelihood of survival for homes on the same residential street, tak-

ing advantage of the address information and large number of unburned comparison

structures available in the assessor data.

4.1 Own-structure survival

Event study figures

We begin our regression analysis with the following event study-style model for home

i on street s within fire perimeter f ,
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1[Destroyed]isf =
v=V∑
v=v0

βvD
v
i + γsf +Xiα + εi (1)

The outcome variable is equal to one for destroyed homes and zero otherwise. The V

variables Dv0
i , ..., D

V
i are indicator variables equal to one if house i’s year built falls

into bin v. The main parameters of interest are the coefficients β that correspond to

these vintage bins. These give the effect of each vintage on probability of survival

when exposed to wildfire. We estimate Equation 1 separately for homes in SRA,

LRA areas that opted in to VHFHSZ designations, and a pooled comparison group

that includes areas of California not subject to state codes along with homes in other

states. We pool these two comparison groups to maximize our ability to measure any

effects in these somewhat smaller samples.

The street fixed effects γsf include separate indicator variables for each street name-zip

code combination within fire perimeter f . These fixed effects sweep away arbitrary

patterns of damage across streets within the fire perimeter, so that the model is

identified by average differences in survival between homes of different vintages on

the same street. Our main specification groups all homes on the same street and zip

code as one street. We also show results for an approach that further segments houses

into groups of no more than 25 homes along each street, ordering homes by house

number.

The additional control variables Xi include structure characteristics from the assess-

ment data and landscape characteristics for the home site from USDA Forest Service

LANDFIRE.5 The primary effect of these control variables is to improve precision by

explaining some of the residual variation in structure survival on each street.

Difference in differences

We calculate overall effects of the building codes using a difference-in-differences (DiD)

model that limits the sample to years close to the policy change, and collapses time

periods into before and after 1995. This DiD regression includes three groups: SRA,

LRA VHFHSZ, and the pooled comparison group of other California homes and

5. The structure characteristics are lot size, building square footage, number of bedrooms, and
number of bathrooms. The LANDFIRE variables are slope steepness and vegetation type at the
home location.
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homes outside California. Our main speciication includes two time periods centered

on 1995, but we estimate alternative specifications that also capture the additional

effect of the 2008 Chapter 7A standards.

4.2 Structure to structure spread

To measure the effect of mitigation investments on likelihood of structure-to-structure

spread, we estimate the effect of building vintage on likelihood of survival for neigh-

boring homes. Our regression models are of the form,

1[Destroyed]isf =
v=V∑
v=v0

βvD
v
i +

j=J∑
j=1

ρjDj + γsf +Xiα + εi (2)

Like Equation 1, this specification controls for own year of construction. The ad-

ditional regressors and coefficients
∑j=J

j=1 ρjDj capture the effect of the jth nearest

neighbor being built after 1995 (Dj = 1). We implement several different versions

of this basic neighbor regression. Our first preferred specifications tests the effects

of the nearest home. An additional specification tests the effects of both of the two

nearest neighbors having been built under the codes.6

This regression identifies the causal effect of mitigation by neighboring homes if the

age of neighboring homes is uncorrelated with other determinants of structure- and

neighborhood-level risk. This assumption is bolstered by the street fixed effects,

which focus on highly local variation, and by the direct controls for own-structure

vintage. However, one might still worry that even conditional on these controls, the

age of a home’s neighbors may predict other wildfire risk factors. We investigate

these concerns using a placebo test that measures the effect of homes located five or

six homes away on structure survival. These properties located ”a few doors down”

are far enough away to present little direct ignition threat, but should be expected

to otherwise be subjected to all of the same potential omitted variables as the home

directly next door.

We report results for each neighbor separately, as written in Equation 2. However,

our preferred specification pools information for the nearest two or three neighbors

6. Laboratory and field evidence on home ignitions suggest there may be little benefit to mitigation
by the second-nearest neighbor if the closer neighbor still presents an ignition risk.

11



into summary variables (e.g., age of oldest neighboring structure, or number of neigh-

boring structures built before 1995). In addition to increasing statistical power, this

pooling is consistent with the logic of defensible space, in that protecting a home

requires eliminating when potential ignition sources are eliminated on all sides of the

house.

5 Results and Discussion

5.1 Own-structure survival

5.1.1 Graphical Evidence

Figure 3 shows the raw mean of Destroyed for SRA homes in each year of construction

from 1940 to 2016. These simple averages show that about 35% of homes built prior

to the effective date for AB 3819 we destroyed by the 2007–2020 wildfires analyzed in

this study. Immediately after the AB 3819 roof requirements begin to be enforced in

1995, that share drops by about ten percentage points. The share destroyed continues

to smoothly decline in later construction years. Additionally, homes built earlier than

about 1985 are somewhat less likely to be destroyed than homes built just prior to the

roof requirements. This may reflect the fact these older homes are likely to have been

re-roofed at least once, with these roof replacements possibly happening after AB 3819

(and thus falling subject to its requirements for ignition-resistant materials).

Moving on to regression analysis, Figure 4 presents estimates from Equation 1 for

homes in SRA and LRA-VHFHSZ areas. The red markers are estimates and 95%

confidence intervals. The horizontal axis plots the left-most year in each two-year

vintage bin. The lowest bin includes all homes older than 1951, and the highest

bin includes all homes newer than 2015. The gray histogram shows the density of

observations across these bins. Panel (a) considers the group of SRA homes from the

previous plot of raw means. The regression-adjusted vintage effects are flat prior to

about 1993, and then begin to decrease rapidly during the 1995–1999 period when

the various roof mitigation rules were rolled out in SRA areas.

Panel (b) of Figure 4 shows LRA areas with VHFHSZ designations. These areas

again show extremely flat trends in resilience prior to the Tunnel Fire and the Bates

Bill. Immediately after the Bates Bill taking effect in 1992, the figure shows the
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beginning of gradual improvements that persists for about 12 years. This pattern

is consistent with the Bates Bill process (or independent local initiatives) gradually

improving structure quality in these locally-managed areas.

Figure 5 shows vintage effects for the pooled group of homes not subject to California’s

codes. Due to the smaller sample, we use ten-year bins. There is no evidence of any

kind of similar improvement in resilience after 1992 or 1995 as in the SRA and LRA-

VHFHSZ figures.

5.1.2 Difference in Differences Estimates

Table 2 reports difference-in-differences estimates of the effect of building codes on

own structure survival. Column (1) shows that the average effect is 8.5 percentage

points in SRA areas and 9.0 percentage points in LRA-VHFHSZ areas. These esti-

mates are robust to a number of checks, including omitting the comparison group (so

that estimates are identified only by before-after differences), applying finer “street”

definitions that group together no more than 25 adjacent homes, and controlling for

additional home characteristics. The final column adds an additional time threshold

to capture the introduction of the Chapter 7A standards in 2008.

5.2 Spillovers to neighboring properties

This section discusses spillover effects to neighboring homes in SRA and LRA VHFHSZ

areas. Before presenting estimates for Equation 2, we begin with a graphical presen-

tation of the effect of neighbors on own-structure survival as a function of distance

between roofs and age of the neighboring structure. The results are in Figure 6.

These estimates come from a single regression of Destroyed on street fixed effects,

own year built, and an additional set of dummy variables that capture the presence

of older and new homes at various distances away. The red estimates show the effect

of having at least one pre-1995 home located at a given distance. At distances of

0-20 or 20-40 meters, pre-1995 neighbors increase own-structure loss probability by

about two percentage points. Beyond this short distance there is no effect of older

neighbors. The gray estimates show the effect of newer homes. Regardless of distance

away, post-1995 neighbors do not increase the likelihood of structure loss.

Table 3 reports regression estimates from Equation 2. The sample is limited to
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California homes in SRA or LRA-VHFHSZ areas. Column (1) shows that the effect

of the nearest neighboring home being built after 1995 is about 1.5 percentage points

on average. The remaining columns of Table 3 restrict the sample to homes on

streets with average lot sizes of 1 acre or smaller. These denser neighborhoods are

where structure-to-structure ignition is most likely. The effect of the nearest neighbor

increases to about 3.3 percentage points in this subsample. Column (3) shows that

this effect grows to 5.4 percentage points if both the nearest and the next-nearest

structure were built after 1995.

Columns (4) and (5) present the placebo test based on homes located 5 or 6 doors

down. These neighbors’ ages have no effect on own-structure survival. This result

further allays any concerns about neighborhood-level omitted variables that could be

correlated with neighbors’ ages, supporting the conclusion that the effects we observe

in our neighbor regressions are due to increased likelihood of structure to structure

fire spread from adjacent homes. Finally, Columns (6) and (7) show effects using

neighbor definitions that only consider homes on the same street. The treatment

effect increases, while the placebo result continues to show no effect.

6 Conclusion

Improving community resilience to natural disasters is an increasingly urgent chal-

lenge. In this paper, we create a new, comprehensive dataset of outcomes and property

characteristics for destroyed and surviving homes in U.S. wildfires. We use that data

to provide new estimates of the effect of building vintage on structure resilience, the

role of building codes, and the spillover effects of hazard mitigation for neighboring

homes. Our empirical approach is based on highly localized within-street comparisons

that compare nearby homes experiencing essentially identical wildfire exposures.

Our results imply that structure characteristics play a major role in wildfire outcomes.

Our main estimates show that a structure built to 2012 standards is 17 percentage

points, or about 35%, less likely to be destroyed than a pre-1995 home facing the same

risk. The timing of these improvements is closely tied to the effective date of the Bates

Bill and subsequent increases in roofing standards and other rules. Moreover, we do

not see similar improvements in structure resilience in states and jurisdictions not

subject to these building codes. Together, these pieces of evidence strongly suggest
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that building codes are behind the large vintage effects we measure.

The results also show that hardening homes yields benefits for neighboring proper-

ties. Holding constant own year built and other factors, a home whose two nearest

neighbors were all built after 1995 is about 5 percentage points less likely to be de-

stroyed when a wildfire occurs. Even if homeowners were fully informed and rational

about wildfire risk, these externalities would argue for public policy interventions to

improve community-level resilience.

The economic significance of the effects that we measure will only continue to grow

as wildfires grow more frequent and severe. A simple back-of-the-envelope calcula-

tion illustrates the amounts at stake. Our data show that about 85% of the homes

destroyed in the 2017 and 2018 California wildfires were built prior to 1995, mean-

ing that pre-1995 homes represented about $32.5 billion in property losses during

those two years. If those homes had been built to 2012 standards, our estimates

imply that the avoided property losses during those two years would have been about

$11 billion.7 This calculation ignores other important benefits, including lives saved,

reduced public spending on firefighting to save homes, and less frequent need for

disruptive Public Safety Power Shutoffs that temporarily eliminate electricity service

during high fire-risk periods.

Our estimates can be combined with estimates of construction costs to understand

the cost-effectiveness of these investments. For newly constructed homes, the benefits

we measure clearly pass a cost-benefit test, particularly because the cost of achieving

them is low. The consulting firm Headwaters Economics found in a recent study

that there is little cost difference associated with constructing a wildfire resistant

home relative to a typical home, although this study does not account for the value

of aesthetic differences (Headwaters Economics 2018). Thus, our study implies that

there would be large net benefits from strengthening wildfire building codes in other

states to match those in California. The cost-effectiveness of retrofits for existing

homes is a more complex question since such upgrades may be costly and time-

consuming. Given cost estimates for retrofitting homes to current standards, our

estimates could be applied to generate cost benefit ratios. Further work to identify

the costs and resilience benefits of individual upgrade investments is an important

7. Details of this calculation: Munich RE NatCatSERVICE reports $38 billion of property damage
in wildfires during 2017–2018. $38 billion ∗ 85% ∗ 35% = $11.3 billion.
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priority for future research.
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Figure 1: Identifying and validating roof locations

Notes: Redding, California in the area of the Carr Fire (2018). Circular markers are geocoded
structure locations for the ZTRAX assessment data. Yellow markers show structures reported
as destroyed in the damage inspection data; purple markers are all other ZTRAX homes. Blue
building shapes and gray parcel outlines are the Microsoft building footprint data and assessor
parcel boundary data used to identify rooftop locations (see text for details). The background
imagery is high-resolution aerial imagery after the Carr Fire, provided by NearMap.
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Figure 2: Merged data example: Structure-level outcomes in the Woolsey Fire

Notes: Example of merged inspection, assessor, and fire perimeter data for one fire in our dataset.
Markers indicate the locations of single family homes inside the final Woolsey Fire perimeter (shown
in red). Purple homes are reported destroyed in DINS inspection data; green homes are all remaining
homes in the ZTRAX assessment data. Street map data are from Open Street Map.
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Figure 3: Share Destroyed by Year Built in Mandatory Code Areas, Raw Means

Notes: This figure shows the share of homes inside wildfire perimeters that were destroyed, accord-
ing to the year that the home was built or remodeled. The sample is limited to homes in State
Responsibility Area. The black lines show separate kernel regression fits before and after 1995. The
gray histogram shows the relative number of homes in the sample from each year.
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Figure 4: Estimated Vintage Effects in Mandatory and Recommended Code Areas

(a) Mandatory Code Areas (SRA)

(b) Opt-in Code Areas (LRA VHFHSZ)

Notes: Figure plots point estimates and 95% confidence intervals from 2 separate OLS regressions
of an indicator for Destroyed on two-year bins of effective year built. Each regression includes street
by incident fixed effects. Panel (a) is limited to state responsibility area (SRA). Panel (b) shows
homes in local responsibility area (LRA) inside of designated Very High Fire Hazard Severity Zones.
Standard errors are clustered by street. 21



Figure 5: Estimated Vintage Effects in Areas without Codes

Notes: Figure plots point estimates and 95% confidence intervals from an OLS regressions of an
indicator for Destroyed on ten-year bins of effective year built, with street by incident fixed effects.
The sample includes homes inside wildfire perimters in Oregon, Arizona, and Washington; as well as
California homes in local responsibility area outside of designated Very High Fire Hazard Severity
Zones.

22



Figure 6: The effect of neighboring homes on survival

Notes: Figure shows estimates from a single OLS regression. Red line is the effect on survival of a
pre-1995 home located a given distance away. The shaded region shows 95% confidence intervals.
The dashed gray line shows point estimates for the effect of a 1995 or later home on survival at
various distances. The regression also includes dummy variables for own year built (in four year
bins) and incident by street fixed effects.
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Table 1: Example Fires for California and Other States

Destroyed Single Single Family Homes Share
State Name Year Family Homes In Fire Perimeter Destroyed (%)

Panel A. California

California Camp 2018 8,247 10,279 80

California Tubbs Fire 2017 3,730 4,607 81

California Valley 2015 826 1,693 49

California Carr 2018 747 1,681 44

California Woolsey 2018 655 6,825 10

California Witch 2007 511 5,760 9

California Thomas 2017 496 2,311 22

California CZU Lightning Cmplx 2020 450 1,373 33

California North Complex 2020 399 628 64

California Nuns 2017 370 1,363 27

California LNU Lightning Cmplx 2020 364 1,109 33

California Glass 2020 275 960 29

California Atlas 2017 229 665 34

California Creek 2020 193 1,147 17

California Other California Fires (N=67) 1,072 6,779 16

Panel B. Other States

Oregon Almeda-Obenchain 2020 414 603 69

Oregon HolidayFarm 2020 312 559 56

Oregon BeachieCreek-Santiam 2020 217 352 62

Oregon EchoMountainComplex 2020 125 289 43

Arizona Yarnell 2013 85 219 39

Washington CarltonComplex 2014 16 57 28

Washington OkanoganComplex 2015 9 108 8

Washington ColdSprings 2020 8 60 13

Arizona Goodwin 2017 3 8 38

Notes: This table describes the destructiveness of the worst 15 California fires in our dataset, and
all Oregon, Washington, and Arizona fires. An additional 67 California incidents are grouped as
”Other California Fires”.
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Table 2: Vintage effects by building code jurisdiction

(1) (2) (3) (4) (5)
Street Treated Finer Addl. Plus

FE Only Street FE Controls Ch. 7A

After 1995 0.008 0.018 -0.007 0.005
(0.026) (0.025) (0.030) (0.026)

After 1995 * SRA -0.085*** -0.077*** -0.099*** -0.086*** -0.072***
(0.027) (0.010) (0.027) (0.032) (0.028)

After 1995 * LRA VHFHSZ -0.090*** -0.085*** -0.104*** -0.095*** -0.078***
(0.029) (0.018) (0.029) (0.035) (0.029)

After 2008 0.033
(0.030)

After 2008 * SRA -0.092***
(0.035)

After 2008 * LRA VHFHSZ -0.083**
(0.042)

SRA 0.013 -0.045 0.015 0.018 0.011
(0.066) (0.098) (0.064) (0.074) (0.066)

LRA VHFSZ 0.015 0.012 0.028 0.013
(0.025) (0.024) (0.057) (0.025)

Topography Yes Yes Yes Yes Yes
Property characteristics No No No Yes No
Street fixed effects Yes Yes No Yes Yes
Finer street fixed effects No No Yes No No

R2 0.64 0.60 0.68 0.65 0.64
Homes in CA SRA 14,196 14,196 14,196 9,897 14,196
Homes in CA LRA VHFSZ 8,003 8,003 8,003 5,951 8,003
Homes in other areas 5,368 0 5,368 4,168 5,368
Mean of Dep. Var. 0.37 0.31 0.37 0.43 0.37

Notes: Table shows estimates and standard errors from 5 separate OLS regressions. The sample is
limited to homes built in 1980 or later. “Homes in other areas” is a pooled comparison group that
includes LRA areas in California with no state-recommended hazard zones as well as homes in other
states (OR, AZ, WA). Regressions include street fixed effects and additional controls as described
in the text. Standard errors are clustered by street.
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Table 3: Neighbor Effects by Relative Position

All 1 acre lots
lot sizes or smaller

All All All All All Same Same
Neighbors Neighbors Neighbors Neighbors Neighbors Street Street

Nearest House -0.015* -0.033***
(0.008) (0.012)

Nearest 2 Houses -0.054** -0.088***
(0.027) (0.033)

5 Doors Down -0.002
(0.012)

5 and 6 Doors Down -0.010 0.010
(0.022) (0.039)

Own Vintage Yes Yes Yes Yes Yes Yes Yes
Street fixed effects Yes Yes Yes Yes Yes Yes Yes
R2 0.65 0.71 0.71 0.71 0.71 0.69 0.69
N 39,261 21,024 21,024 21,024 21,024 17,877 17,877

Notes: Table shows estimates and standard errors from 7 separate OLS regressions. The outcome
variable is an indicator for Destroyed, and each regression also includes dummy variables for own
year built (in four year bins) and incident-by-street fixed effects. Standard errors are clustered by
street.
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ONLINE APPENDIX

Appendix Figure A1: Year built and probability of destruction for homes inside fire
perimeters - All states and jurisdictions

Notes: Sample includes all single-family homes in the ZTRAX assessment data located inside of
wildfire perimeters in our dataset. The red markers show the fraction of homes of each vintage that
are reported as destroyed in damage inspection data.
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ONLINE APPENDIX

Appendix Figure A2: Additional Maps

(a) Camp Fire (2018) (b) Tubbs Fire (2017)

(c) Carr Fire (2018) (d) Thomas Fire (2017)

Notes: Additional examples of final merged inspection, assessment, and fire perimeter data. See
Figure 2 notes for details.
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ONLINE APPENDIX

Appendix Figure A3: SRA Vintage Effects by Year of Fire

Notes:
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ONLINE APPENDIX

Appendix Figure A4: Validity of damage reports and rooftop locations

(a) Sonoma County (b) Shasta County

(c) Ventura County (d) Los Angeles County

Notes: The base imagery is high-resolution vertical imagery from NearMap. Gray lines are parcel
boundaries and blue building shapes are building footprints from Microsoft. Yellow and purple
markers represent our assigned rooftop locations for homes in the ZTRAX assessor data. Yellow
homes are reported as destroyed in the damage inspection data.
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ONLINE APPENDIX

Appendix Figure A5: Example neighbor ordering

Notes: NB: Structure locations shown in this figure are from an address-based geolocator service.
These locations have been superseded in the current analysis by rooftop locations as described in
Section 3. Figure shows the ranking of nearest same-street neighbors by distance away for a home
inside the Tubbs Fire perimeter, labeled “0”. The red markers and numeric labels show the positions
of neighboring addresses in the geocoded assessment data, ordered by distance from Home 0. The
basemap imagery is high-resolution aerial imagery from NearMap.
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ONLINE APPENDIX

Appendix Figure A6: Responsibility Areas and Fire Hazard Severity Zones

(a) Responsibility Areas

(b) Fire Hazard Severity Zones
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