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Combining satellite imagery with machine learning (SIML) has the potential

to address global challenges by remotely estimating socioeconomic and envi-

ronmental conditions in data-poor regions, yet the resource requirements of

SIML limit its accessibility and use. We show that a single encoding of satel-

lite imagery can generalize across diverse prediction tasks (e.g. forest cover,

house price, road length). Our method achieves accuracy competitive with

deep neural networks at orders of magnitude lower computational cost, scales

globally, delivers label super-resolution predictions, and facilitates character-

izations of uncertainty. Since image encodings are shared across tasks, they

can be centrally computed and distributed to unlimited researchers, who need

only fit a linear regression to their own ground truth data in order to achieve

state-of-the-art SIML performance.
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Introduction1

Addressing complex global challenges—such as managing global climate changes, population2

movements, ecosystem transformations, or economic development—requires that many differ-3

ent researchers and decision-makers (hereafter users) have access to reliable, large-scale obser-4

vations of many variables simultaneously. Planet-scale ground-based monitoring systems are5

generally prohibitively costly for this purpose, but satellite imagery presents a viable alternative6

for gathering globally comprehensive data, with over 700 earth observation satellites currently7

in orbit (1). Further, application of machine learning is proving to be an effective approach8

for transforming these vast quantities of unstructured imagery data into structured estimates of9

ground conditions. For example, combining satellite imagery and machine learning (SIML) has10

enabled better characterization of forest cover (2), land use (3), poverty rates (4) and population11

densities (5), thereby supporting research and decision-making. We refer to such predictions12

of an individual variable as a single task. Demand for SIML-based estimates is growing, as13

indicated by the large number of private service-providers specializing in predicting one or a14

small number of these tasks.15

The resource requirements for deploying SIML technologies, however, limit their accessibility16

and usage. Satellite-based measurements are particularly under-utilized in low-income con-17

texts, where the technical capacity to implement SIML may be low, but where such measure-18

ments would likely convey the greatest benefit (6, 7). For example, government agencies in19

low-income settings might want to understand local waterway pollution, illegal land uses, or20

mass migrations. SIML, however, remains largely out of reach to these and other potential users21

because current approaches require a major resource-intensive enterprise, involving a combina-22

tion of task-specific domain knowledge, remote sensing and engineering expertise, access to23

imagery, customization and tuning of sophisticated machine learning architectures, and large24
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computational resources (8).25

To remove many of these barriers, we develop a new approach to SIML that enables non-26

experts to obtain state-of-the-art performance without manipulating imagery, using specialized27

computational resources, or developing a complex prediction procedure. We design a one-time,28

task-agnostic encoding that transforms each satellite image into a vector of variables (hereafter29

features). We then show that these features (x) perform well at predicting ground conditions30

(y) across diverse tasks, using only a linear regression implemented on a personal computer.31

Prior work has similarly sought an unsupervised encoding of satellite imagery (9, 10, 11, 12);32

however, to the best of our our knowledge, we are the first to demonstrate that a single set of33

features both achieves performance competitive with deep-learning methods across a variety of34

tasks and scales globally.35

We focus here on the problem of predicting properties of small regions (e.g. average house36

price) at a single time period, using high-resolution daytime satellite imagery as the only input.37

We use this imagery to test whether a single embedding can generalize across tasks because it is38

globally available from the Google Static Maps API at fine resolution, is geo-rectified and pre-39

processed to remove cloud occlusions, and has been found to perform well in SIML applications40

(Supplementary Materials Section S.2.2) (4, 13), though in principle other data sources could41

also be used (14). We develop a simple yet high-performing system that is tailored to address42

the challenges and opportunities specific to SIML applications, taking a fundamentally differ-43

ent approach from leading designs. We achieve large computational gains in model training44

and testing, relative to leading deep neural networks, through algorithmic simplifications that45

take advantage of the fact that satellite images are collected from a fixed distance and viewing46

angle and capture repeating patterns and objects. This contrasts with deep-learning approaches47

to SIML that use techniques originally developed for natural images (e.g. photos taken from48
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handheld cameras), where inconsistency in many key factors, such as subject or camera per-49

spective, require complex solutions that our results suggest are mostly unnecessary for SIML50

applications.51

A key contribution of our analysis is the demonstration that a single set of general purpose fea-52

tures can encode rich information in satellite images. We utilize an unsupervised featurization53

process, which separates feature construction from model-fitting. This approach dramatically54

increases computational speed for any given researcher and delivers large computational gains55

at the research-system level by reorganizing how imagery is processed and distributed. Tra-56

ditionally, hundreds or thousands of researchers use the same images to solve different and57

unrelated tasks (e.g. Fig. 1A). Our approach allows common sources of imagery to be con-58

verted into centralized sets of features that can be accessed by many researchers, each solving59

different tasks. This isolates future users from the costly steps of obtaining, storing, manipu-60

lating, and processing imagery themselves. The magnitude of the resulting benefits grow with61

the size of the expanding SIML user community and the scale of global imagery data, which62

currently increases by more than 80TB/day (15).63

Multi-task Observation using Satellite Imagery & Kitchen Sinks64

Our objective is to enable any user with basic resources to predict ground conditions using65

only satellite imagery and a limited sample of task-specific ground truth data which they pos-66

sess. Our SIML system, “Multi-task Observation using Satellite Imagery and Kitchen Sinks”67

(MOSAIKS, see Supplementary Materials S.1), makes SIML accessible and generalizable by68

separating the prediction procedure into two independent steps: a fixed “featurization step”69

which translates satellite imagery into succinct vector representations (images → x), and a70

“regression step” which learns task-specific coefficients that map these features to outcomes71
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for a given task (x → y). For each image, the unsupervised featurizaton step can be centrally72

executed once, producing one set of outputs that are used to solve many different tasks through73

repeated application of the regression step by multiple independent users (Fig. 1B). Because the74

regression step is computationally efficient, MOSAIKS scales nearly costlessly across unlim-75

ited users and tasks.76

The accessibility of our approach stems from the simplicity and computational efficiency of the77

regression step for potential users, given features which are already computed once and stored78

centrally (Fig. 1B). To generate SIML predictions, a user of MOSAIKS (i) queries these tabular79

data for a vector ofK features for each of theirN locations of interest; (ii) merges these features80

x with label data y, i.e. the user’s independently collected ground truth data; (iii) implements a81

linear regression of y on x to obtain coefficients β – below, we use ridge regression; (iv) uses82

coefficients β and and features x to predict labels ŷ in new locations where imagery and features83

are available but ground truth data are not.84

The generalizability of our approach means that a single mathematical summary of satellite85

imagery (x) performs well across many prediction tasks (y1, y2, ...) without any task-specific86

modification to the procedure. The success of this generalizability relies on how images are en-87

coded as features. We design a featurization function by building on the theoretically grounded88

machine learning concept of “random kitchen sinks” (16), which we apply to satellite imagery89

by constructing “random convolutional features” (RCFs) (Fig. 1C, Supplementary Materials90

S.1). RCFs are suitable for the structure of satellite imagery and have established performance91

encoding genetic sequences (17), classifying photographs (18), and predicting solar flares (19)92

(see Supplementary Materials Section S.3.3). RCFs capture a flexible measure of similarity93

between every sub-image across every pair of images without using contextual or task-specific94

information. The regression step in MOSAIKS then treats these features x as an overcomplete95
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basis for predicting any y, which may be a nonlinear function of image elements (see Supple-96

mentary Materials Section S.1).97

In contrast to many recent alternative approaches to SIML, MOSAIKS does not require training98

or using the output of a deep neural network and encoding images into unsupervised features99

requires no labels. Nonetheless, MOSAIKS achieves competitive performance at a large com-100

putational advantage that grows linearly with the number of SIML users and tasks, due to shared101

computation and storage. In principle, any unsupervised featurization would enable these com-102

putational gains. However, to date, a single set of unsupervised features has neither achieved103

accuracy competitive with supervised CNN-based approaches across many SIML tasks, nor at104

the scale that we study. Below, we show that MOSAIKS achieves a practical level of general-105

ization in real world contexts.106

Results107

We design a battery of experiments to test whether and under what settings MOSAIKS can108

provide access to high-performing, computationally-efficient, global-scale SIML predictions.109

Specifically, we 1) demonstrate generalization across tasks, and compare MOSAIKS’s perfor-110

mance and cost to existing state-of-the-art SIML models; 2) assess its performance when data111

are limited and when predicting far from observed labels; 3) scale the analysis to make global112

predictions and try recreating the results of a national survey; and 4) detail additional proper-113

ties of MOSAIKS, such as the ability to make predictions at finer resolution than the provided114

labels.115

Generalization across tasks116

We first test whether MOSAIKS achieves a practical level of generalization by applying it to a117

diverse set of pre-selected tasks in the United States (US). While many applications of interest118
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for SIML are in remote and/or data-limited environments where ground-truth may be unavail-119

able or inaccurate, systematic evaluation and validation of SIML methods are most reliable in120

well-observed and data-rich environments (20).121

Multi-task performance of MOSAIKS in the US We sample daytime images using the122

Google Static Maps API from across the continental US (N = 100, 000), each covering∼1km×1km123

(256-by-256 pixels) (Supplementary Materials Sections S.3.1-S.3.2). We first implement the124

featurization step, passing these images through MOSAIKS’ feature extraction algorithm to125

produce K = 8, 192 features per image (Supplementary Materials Section S.3.3). Using only126

the resulting matrix of features (X), we then repeatedly implement the regression step by solv-127

ing a cross-validated ridge regression for each task and predict forest cover (R2 = 0.91), el-128

evation (R2 = 0.68), population density (R2 = 0.72), nighttime lights (R2 = 0.85), average129

income (R2 = 0.45), total road length (R2 = 0.53), and average house price (R2 = 0.52)1 in130

a holdout test sample (Fig. 2, Table S2, Supplementary Materials Sections S.3.4-S.3.6). Com-131

puting the feature matrix X from imagery took less than 2 hours on a cloud computing node132

(Amazon EC2 p3.2xlarge instance, Tesla V100 GPU). Subsequently, solving a cross-validated133

ridge regression for each task took 6.8 minutes to compute on a local workstation with ten cores134

(Intel Xeon CPU E5-2630) (Supplementary Materials Section S.4.2). These seven outcomes135

are not strongly correlated with one another (Fig. S2) and no attempted tasks in this experiment136

are omitted. These results indicate that MOSAIKS is skillful for a wide range of possible ap-137

plications without changing the procedure or features and without task-specific expertise. Note138

that due to the absence of metadata describing the exact time of observation in the Google139

imagery, as well as task-specific data availability constraints, these performance measures are140

conditional on a certain degree of unknown temporal mismatch between imagery and task labels141

1Performance observed for housing using our published data will be higher (R2 = 0.60) because privacy
concerns mandate the withholding of a subset of this data (see Supplementary Materials Section S.2.1).
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(Supplementary Materials Section S.2).142

Comparison to state-of-the-art SIML approaches We contextualize this performance by143

comparing MOSAIKS to existing deep-learning based SIML approaches. First, we retrain end-144

to-end a commonly-used deep convolutional neural network (CNN) architecture (21, 22, 23)145

(ResNet-18) using identical imagery and labels for the seven tasks above. This training took 7.9146

hours per task on a cloud computing node (Amazon EC2 p3.xlarge instance, Tesla V100 GPU).147

We find that MOSAIKS exhibits predictive accuracy competitive with the CNN for all seven148

tasks (mean R2
CNN − R2

MOSAIKS = 0.04; smallest R2
CNN − R2

MOSAIKS = −0.03 for housing;149

largest R2
CNN − R2

MOSAIKS = 0.12 for elevation) in addition to being approximately 250 to150

10, 000× faster to train, depending on whether the regression step is performed on a laptop151

(2018 Macbook Pro) or on the same cloud computing node used to train the CNN (Fig. 3A,152

Supplementary Materials Section S.4.1 and Table S8).153

Second, we apply “transfer learning” (24) using the ResNet-152 CNN pre-trained on natural154

images to featurize the same satellite images (22, 23). We then apply ridge regression to the155

CNN-derived features. The speed of this approach is similar to MOSAIKS, but its performance156

is dramatically lower on all seven tasks (Fig. 3A, Supplementary Materials Section S.4.1).157

Third, we compare MOSAIKS to an approach from prior studies (4, 25, 13) where a deep CNN158

(VGG16 (26) pretrained on the ImageNet dataset) is trained end-to-end on night lights and then159

each task is solved via transfer learning (Supplementary Materials Section S.4.1). We apply160

MOSAIKS to the imagery from Rwanda, Haiti, and Nepal used in ref. (13) to solve all eleven161

development-oriented tasks they analyze. We find MOSAIKS matches prior performance across162

tasks in Rwanda and Haiti, and has slightly lower performance (average ∆R2 = 0.08) on tasks163

in Nepal (Fig. S16). The regression step of this transfer learning approach and MOSAIKS164

are similarly fast, but the transfer learning approach requires country-specific retraining of the165
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CNN, limiting its accessibility and reducing its generalizability.166

Together, these three experiments illustrate that with a single set of task-independent features,167

MOSAIKS predicts outcomes across a diverse set of tasks, with performance and speed that168

favorably compare to existing SIML approaches. However, throughout this set of experiments,169

we find that some sources of variation in labels are not recovered by MOSAIKS. For exam-170

ple, extremely high elevations (>3,000m) are not reliably distinguished from high elevations171

(2,400-3,000m) that appear visually similar (Fig. S9). Additionally, roughly half the variation172

in incomes and housing prices is unresolved, presumably because they depend on factors not173

observable from orbit, such as tax policies or school districts (Fig. 2).174

These experiments additionally reveal that patterns of predictability across tasks are strikingly175

similar in MOSAIKS and in alternative SIML approaches (Figs. S16 and S17). Together,176

these findings are consistent with the hypothesis that there exists some performance ceiling for177

each task, due to some factors not being observable from satellite imagery. To investigate this178

further, we develop a hybrid model in which the 512 features produced by the last layer of the179

ResNet-18 CNN are concatenated with the 8,192 MOSAIKS features and included together180

in a ridge regression. Performance improvements above either MOSAIKS or the CNN are181

small (≤ 0.01R2) for most tasks, although there is a notable performance boost for the two182

tasks where both models achieve the lowest accuracy (R2
hybrid − R2

CNN = 0.04 for income;183

R2
hybrid − R2

MOSAIKS = 0.05 for housing price; Table S7). These results suggest that for some184

tasks, combining MOSAIKS with alternative SIML models can enhance predictive accuracy.185

Evaluation of model sensitivity186

There is growing recognition that understanding the accuracy, precision, and limits of SIML187

predictions is important, since consequential decisions increasingly depend on these outputs,188

such as which households should receive financial assistance (27, 20). However, historically,189
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the high costs of training deep-learning models have generally prevented the stress-testing and190

bench-marking that would ensure accuracy and constrain uncertainty. To characterize the per-191

formance of MOSAIKS we test its sensitivity to the number of features (K) and training obser-192

vations (N ), as well as the extent of spatial extrapolation.193

Changes to training data Unlike some featurization methods, these is no measure of “impor-194

tance” for individual features in MOSAIKS so the computational complexity of the regression195

step can be manipulated by simply including more or fewer features. Repeatedly re-solving the196

linear regression step in MOSAIKS with a varied number of features indicates that increasing197

K above 1,000 features provides minor predictive gains (Fig. 3B). A majority of the observable198

signal in the baseline experiment using K = 8, 192 is recovered using K = 200 (min 55% for199

income, max 89% for nighttime lights), reducing each 65,536-pixel tri-band image to just 200200

features (∼ 250× data compression). Similarly, re-solving MOSAIKS predictions with a differ-201

ent number of training observations demonstrates that models trained with fewer samples may202

still exhibit high accuracy (Fig. 3B). A majority of the available signal is recovered for many203

outcomes using only N = 500 (55% for road length to 87% for forest cover), with the excep-204

tion of income (28%) and housing price (26%) tasks, which require larger samples. Together,205

these experiments suggest that users with computational, data acquisition, or data storage con-206

straints can easily tailor MOSAIKS to match available resources and can reliably estimate the207

performance impact of these alterations (Supplementary Material Section S.3.7).208

Spatial cross-validation To systematically evaluate the ability of MOSAIKS to make accu-209

rate predictions in large contiguous areas where labels are not available, we conduct a spatial210

cross-validation experiment by partitioning the US into a checkerboard pattern (Fig. 3C), train-211

ing on the “black squares” and testing on the “white squares” (Supplementary Materials Section212

S.3.8). Increasing the width of squares (δ) in the checkerboard increases the average distances213
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between train and test observations, simulating increasingly large spatial extrapolations. We214

find that for three of seven tasks (forest cover, population density, and nighttime lights), perfor-215

mance declines minimally regardless of distance (maximum R2 decline of 10% at δ = 16◦ for216

population density). For income, road length, and housing price, performance falls moderately217

at small degrees of spatial extrapolation (19%, 33%, and 35% decline at δ = 4◦, respectively),218

but largely stabilizes thereafter. Note that the poor performance of road length predictions is219

possibly due to missing labels and data quality (Supplementary Materials Section S.2.1 and Fig.220

S1). Finally, elevation exhibits steady decline with increasing distances between training and221

testing data (49% decline at δ = 16◦).222

To contextualize this performance, we compare MOSAIKS to spatial interpolation of observa-223

tions, a widely used approach to fill in regions of missing data (Supplementary Materials Sec-224

tion S.3.8). Using the same samples, MOSAIKS substantially outperforms spatial interpolation225

(Fig. 3C, grey dashed lines) across all tasks except for elevation, where interpolation performs226

almost perfectly over small ranges (δ = 0.5◦ : R2 = 0.95), and housing price, where inter-227

polation slightly outperforms MOSAIKS at small ranges. For both, interpolation performance228

converges to that of MOSAIKS over larger distances. Thus, in addition to generalizing across229

tasks, MOSAIKS generalizes out-of-sample across space, outperforming spatial interpolation230

of ground-truth in 5 of 7 tasks.231

The above sensitivity tests are enabled by the speed and simplicity of training MOSAIKS. These232

computational gains also enable quantification of uncertainty in model performance within each233

diagnostic test. As demonstrated by the shaded bands in Figs. 3B-C, uncertainty in MOSAIKS234

performance due to variation in splits of training-validation data remains modest under most235

conditions.236
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Applications237

Having evaluated MOSAIKS systematically in the data-rich US, we test its performance at238

planetary scale and its ability to recreate results from a national survey.239

Global observation We test the ability of MOSAIKS to scale globally using the four tasks240

for which global labels are readily available. Using a random sub-sample of global land lo-241

cations (training and validation: N = 338,781, test: N = 84,692; Supplementary Materials242

Section S.3.10), we construct the first planet-scale, multi-task estimates using a single set of243

label-independent features (K = 2048, Fig. 4A), predicting the distribution of forest cover244

(R2 = 0.85), elevation (R2 = 0.45), population density (R2 = 0.62), and nighttime lights245

(R2 = 0.49). Note that inconsistent image and label quality across the globe are likely partially246

responsible for lowering performance relative to the US-only experiments above (Supplemen-247

tary Materials Section S.3.10).248

National survey “field test” It has been widely suggested that SIML could be used by resource-249

constrained governments to reduce the cost of surveying their citizens (4, 13, 28, 29, 30). To250

demonstrate MOSAIKS’s performance in this theoretical use-case, we simulate a ‘field test’251

with the goal of recreating results from an existing nationally representative survey. Using252

the pre-computed features from the first US experiment above, we generate predictions for253

12 pre-selected questions in the 2015 American Community Survey (ACS) conducted by the254

US Census Bureau (31). We obtain R2 values ranging from 0.06 (percent household income255

spent on rent, an outlier) to 0.52 (building age), with an average R2 of 0.34 across 12 tasks256

(Fig. 4B). Compared to a baseline of “no ground survey,” or a costly survey extension, these re-257

sults suggest that MOSAIKS predictions could provide useful information to a decision-maker258

for almost all tasks at low cost; noting that, in contrast, the ACS costs > $200 million to deploy259
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annually (32). However, some variables (e.g. percent household income spent on rent) may260

continue to be retrievable only via ground survey.261

Extensions262

The design of MOSAIKS naturally provides two additional useful properties.263

Incorporating multiple sensors Available satellites exhibit a diversity of properties (e.g.264

wavelength, timing of sampling) that can be used to improve SIML predictions (33). While265

most SIML approaches, including the above analysis, use a single sensor, the design of MO-266

SAIKS allows seamless integration of data from additional satellites because the regression267

step is linear in the features. To demonstrate this, we include nighttime lights as a second data268

source in the analysis of survey data from Rwanda, Haiti, and Nepal discussed above (Supple-269

mentary Materials S.4.1). The approach mirrors that of the hybrid MOSAIKS-ResNet18 model270

discussed previously in that features extracted from the nighttime lights data are simply con-271

catenated with those from MOSAIKS prior to the regression step. In all 36 tasks, predictions272

either improved or were unchanged when nighttime imagery was added to daytime imagery in273

the model (average ∆R2 = 0.03). This approach naturally optimizes how data from all sensors274

are used without requiring that users possess expertise on each technology.275

Predicting at sub-image resolution Many use cases would benefit from SIML predictions276

at finer resolution than is available in training data (33, 34). Here we show that MOSAIKS277

can estimate the relative contribution of sub-regions within an image to overall image-level278

labels, even though only aggregated image-level labels are used in training (See Fig. 4C and279

Fig. S12). Such “label super-resolution” prediction follows from the functional form of the280

featurization and linear regression steps in MOSAIKS, allowing it to be analytically derived281

for labels that represent nearly linear combinations of ground-level conditions (Supplementary282
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Materials Section S.3.9 and Fig. S11). We numerically assess label super-resolution predictions283

of MOSAIKS for the forest cover task, since raw label data are available at much finer resolution284

than our image labels. Provided only a single label per image, MOSAIKS recovers substantial285

within-image signal when predicting forest cover in 4 to 1,024 sub-labels per label (within-286

image R2 = 0.54-0.32, see Fig. S13 for a plot of performance against number of sub-labels and287

Supplementary Materials Section S.3.9 for methodological details).288

Discussion289

We develop a new approach to SIML that achieves practical generalization across tasks while290

exhibiting performance that is competitive with deep learning models optimized for a single291

task. Crucial to planet-scale analyses, MOSAIKS requires orders of magnitude less computa-292

tion time to solve a new task than CNN-based approaches and it allows 1km-by-1km image data293

to be compressed ∼6-500 times before storage/transmission (Supplementary Materials Section294

S.1). Such compression is a deterministic operation that could theoretically be implemented in295

satellite hardware. We hope these computational gains, paired with the relative simplicity of296

using MOSAIKS, will democratize access to global-scale SIML technology and accelerate its297

application to solving pressing global challenges. We hypothesize that there exist hundreds of298

variables observable from orbit whose application could improve human well-being if measure-299

ments were made accessible.300

While we have shown that in many cases MOSAIKS is a faster and simpler alternative to ex-301

isting deep learning methods, there remain contexts in which custom-designed SIML pipelines302

will continue to play a key role in research and decision-making, such as where resources are303

plentiful and performance is paramount. Existing ground-based surveys will also remain impor-304

tant. In both cases we expect MOSAIKS can complement these systems, especially in resource305
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constrained settings. For example, MOSAIKS can provide fast assessments to guide slower306

SIML systems or extend the range and resolution of ground-based surveys.307

As real-world policy actions increasingly depend on SIML predictions, it is crucial to un-308

derstand the accuracy, precision and sensitivity of these measurements. The low cost and309

high speed of re-training MOSAIKS enables unprecedented stress tests that can support ro-310

bust SIML-based decision systems. Here, we tested the sensitivity of MOSAIKS to model pa-311

rameters, number of training points, and degree of spatial extrapolation, and expect that many312

more tests can be developed and implemented to analyze model performance and prediction313

accuracies in context. To aid systematic bench-marking and comparison of SIML architectures,314

the labels and features used in this study are made publicly available; to our knowledge this315

represents the largest multi-label benchmark dataset for SIML regression tasks. The high per-316

formance of RCF, a relatively simple featurization, suggests that developing and benchmarking317

other unsupervised SIML methods across tasks at scale may be a rich area for future research.318

By distilling SIML to a pipeline with simple and mathematically interpretable components,319

MOSAIKS facilitates development of methodologies for additional SIML use cases and en-320

hanced performance. For example, the ability of MOSAIKS to achieve label super-resolution321

is easily derived analytically (Supplementary Materials Section S.3.9). Furthermore, while we322

have focused here on tri-band daytime imagery, we showed that MOSAIKS can seamlessly in-323

tegrate data from multiple sensors through simple concatenation, extracting useful information324

from each source to maximize performance. We conjecture that integrating new diverse data,325

from both satellite and non-satellite sources, may substantially increase the predictive accuracy326

of MOSAIKS for tasks not entirely resolved by daytime imagery alone; such integration using327

deep learning models is an active area of research (35).328

We hope that MOSAIKS lays the foundation for the future development of an accessible and de-329
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mocratized system of global information sharing, where, over time, imagery from all available330

global sensors is continuously encoded as features and appended to a single table of data, which331

is distributed and used planet-wide. As a step in this direction, we make a global cross-section332

of features publicly available using 2019 imagery from Planet Labs, Inc. Such a unified global333

system may enhance our collective ability to observe and understand the world, a necessary334

condition for tackling pressing global challenges.335

Code and data availability336

Code, data, a configured computing environment, and free cloud computing for this analysis is337

provided via Code Ocean. The editor will be provided with a link to the Code Ocean “capsule”,338

which will be distributed to reviewers.339

All data used in this analysis is from free, publicly available sources and is available for down-340

load other than the house price data. House price data is provided by Zillow through the Zlllow341

Transaction and Assessment Dataset (ZTRAX). More information on accessing the data can342

be found at http://www.zillow.com/ztrax. The results and opinions are those of the343

author(s) and do not reflect the position of Zillow Group. The house price dataset we release344

publicly is a subset of that which used in the analysis, where grid cells containing <30 obser-345

vations of recent property sales are removed to preserve privacy. Instructions for downloading346

the replication data are included in the Readme file within the project’s Code Ocean capsule.347

At the time of submission, interested users can obtain random convolutional features in areas348

of interest by emailing the authors a csv file with locations (latitude, longitude) along with a349

short description of the intended use. Concurrent with review, we are automating this process350

to further simplify the user experience.351
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Figure 2: 1km × 1km resolution prediction of many tasks across the continental US using daytime images
processed once, before tasks were chosen. 100,000 daytime images were each converted to 8,192 features and
stored. Seven tasks were then selected based on coverage and diversity and predictions were generated for each
task using the same procedure. Left maps: 80,000 observations used for training and validation, aggregated up to
20km×20km cells for display. Right maps: concatenated validation set estimates from 5-fold cross-validation for
the same 80,000 grid cells (observations are never used to generate their own prediction), identically aggregated
for display. Scatters: Validation set estimates (vertical axis) vs. ground-truth (horizontal axis); each point is a
∼1km×1km grid cell. Black line is at 45◦. Test set and validation set performance are essentially identical (Table
S2); validation set values are shown for display purposes only, as there are more observations. The tasks in the
top three rows are uniformly sampled across space, the tasks in the bottom four rows are sampled using population
weights (Supplementary Materials Section S.3.1); grey areas were not sampled in the experiment.
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Figure 3: Prediction accuracy relative to a convolutional neural network and transfer learning, using
smaller K and N , and over large contiguous regions with no ground truth data. (A) Task-specific MOSAIKS
test-set performance (dark bars) in contrast to: an 18-layer variant of the ResNet Architecture (ResNet-18) trained
end-to-end for each task (middle bars); and an unsupervised featurization using the last hidden layer of a 152-layer
ResNet variant pre-trained on natural imagery and applied using ridge regression (lightest bars). See Supplemen-
tary Materials Section S.4.1 for details. (B) Validation set R2 performance for all seven tasks while varying the
number of random convolutional features K and holding N = 64, 000 (left) and while varying N and holding
K = 8, 192 (right). Shaded bands indicate the range of predictive skill across 5 folds. Lines indicate average
accuracy across folds. (C) Evaluation of performance over regions of increasing size that that are excluded from
training sample. Data are split using a “checkerboard” partition, where the width and height of each square is δ
(measured in degrees). Example partitions with δ = 0.5◦, 8◦, 16◦ are shown in maps. For a given δ, training
occurs using data sampled from “black squares” and performance is evaluated in “white squares.” Plots show
colored lines representing average performance of MOSAIKS in the US across δ values for each task. Benchmark
performance from Fig. 2 are indicated as circles at δ = 0. Grey dashed lines indicate corresponding performance
using only spatial interpolation with an optimized radial basis function kernel instead of MOSAIKS (Supplemen-
tary Materials Section S.3.8). To moderate the influence of the exact placement of square edges, training and test
sets are resampled four times for each δ with the checkerboard position re-initialized using offset vertices (see
Supplementary Materials Section S.3.8 and Fig. S10). The ranges of performance are plotted as colored or grey
bands.
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Figure 4: A single featurization of imagery predicts multiple variables at planet-scale, predicts results from
a national survey, and achieves label super-resolution. (A) Training data (left maps) and estimates using a single
featurization of daytime imagery (right maps). Insets (far right) marked by black squares in global maps. Training
sample is a uniform random sampling of 1,000,000 land grid cells, 498,063 for which imagery were available
and could be matched to task labels. Out-of-sample predictions are constructed using 5-fold cross-validation. For
display purposes only, maps depict ∼50km × 50km average values (ground truth and predictions at ∼1km ×
1km). (B) Test-set performance in the US shown for 12 variables from the 2015 American Community Survey
(ACS) conducted by the US Census Bureau (31). Income per household (in purple) is also shown in Figs. 2
and 3, and was selected as an outcome for the analysis in these figures before this ACS experiment was run. (C)
Both labels and features in MOSAIKS are linear combinations of sub-image ground-level conditions, allowing
optimized regression weights to be applied to imagery of any spatial extent (Supplementary Materials Section
S.3.9). MOSAIKS thus achieves label super-resolution by generating skillful estimates at spatial resolutions finer
than the labels used for training. Shown are example label super-resolution estimates at 2 × 2, 4 × 4, 8 × 8,
and 16 × 16 the original 1 × 1 label resolution (See Fig. S12 for additional examples). Systematic evaluation of
within-image R2 across the entire sample is reported in Supplementary Materials Section S.3.9 for the forest cover
task. 25



Supplementary Materials Appendix

The primary goal of our analysis is to develop, evaluate and contextualize the performance of511

MOSAIKS. In the following four supplementary sections we first summarize the methods used512

in this evaluation and then describe the data, the experiments conducted, and how MOSAIKS513

compares to other approaches in the literature in greater depth. We also describe the intuition514

behind and the mechanics of MOSAIKS’s algorithms in greater detail.515
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S.1 Methods summary538

Here we provide additional information on our implementation of MOSAIKS and experimental539

procedures, as well as a description of the theoretical foundation underlying MOSAIKS. Full540

details on the methodology behind MOSAIKS can be found throughout Section S.3.541

Implementation of MOSAIKS542

We begin with a set of images {I`}N`=1, each of which is centered at locations indexed by ` =543

{1, . . . , N}. MOSAIKS generates task-agnostic feature vectors x(I`) for each satellite image544

I` by convolving an M ×M × S “patch”, Pk, across the entire image. M is the width and545

height of the patch in units of pixels and S is number of spectral bands. In each step of the546

convolution, the inner product of the patch and an M ×M × S sub-image region is taken, and547

a ReLU activation function with bias bk = 1 is applied. Each patch is a randomly sampled sub-548

image from the set of training images {I`}N`=1 (Fig. S5). In our main analysis, we use patches549

of width and height M = 3 (Fig. S6) and S = 3 bands (red, green, and blue). To create a single550

summary metric for the image-patch pair, these inner product values are then averaged across551

the entire image, generating the kth feature xk(I`), derived from patch Pk. The dimension of552

the resulting feature space is equal to K, the number of patches used, and in all of our main553
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analyses we employ K = 8, 192 (i.e. 213). Both images and patches are whitened according to554

a standard image preprocessing procedure before convolution (Section S.3.3).555

In practice, this one-time featurization can be centrally computed and then features xk(I`) dis-556

tributed to users in tabular form. A user need only (i) obtain and link the subset of these features557

that match spatially with their own labels and then (ii) solve linear regressions of the labels on558

the features to learn nonlinear mappings from the original image pixel values to the labels (the559

nonlinearity of the mapping between image pixels and labels stems from the nonlinearity of560

the ReLU activation function). We show strong performance across seven different tasks using561

ridge regression to train the relationship between labels y` and features xk(I`) in this second562

step, although future work may demonstrate that other fitting procedures yield similar or better563

results for particular tasks.564

Implementation of this one-time unsupervised featurization takes about the same time to com-565

pute as a single forward pass of a CNN. With K = 8, 912 features, featurization results in566

a roughly 6 to 1 compression of stored and transmitted imagery data in the cases we study.2567

Notably, storage and computational cost can be traded off with performance by using more or568

fewer features from each image (Fig. 3B). Since features are random, there is no natural value569

for K that is specifically preferable.570

Experimental procedures571

Task selection and data Tasks were selected based on diversity and data availability, with572

the goal of evaluating the generalizability of MOSAIKS (Section S.2.1). Results for all tasks573

evaluated are reported in the paper. We align image and label data by projecting imagery and574

label information onto a ∼1km × 1km grid, which was designed to ensure zero spatial overlap575

2This is calculated as: (256 ∗ 256 ∗ 3)/(8192 ∗ 4) = 6× compression, where 256 * 256 * 3 integer values
per image are compressed into 8192 float32 features, each of which takes 4× the storage of an integer. Using 100
features gives a 500× compression.
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between observations (Sections S.3.1 and S.3.2). Images are obtained from the Google Static576

Maps API (Section S.2.2) (36), and labels for the seven tasks are obtained from refs. (2, 37, 38,577

39, 31, 40, 41). Details on data are described in Table S1 and Section S.2.578

US experiments From this grid we sample 20,000 hold-out test cells and 80,000 training and579

validation cells from within the continental US (Section S.3.4). To span meaningful variation580

in all seven tasks, we generate two of these 100,000-sample data sets according to different581

sampling methods. First, we sample uniformly at random across space for the forest cover,582

elevation, and population density, tasks which exhibit rich variation across the US. Second,583

we sample via a population-weighted scheme for nighttime lights, income, road length, and584

housing price, tasks for which meaningful variation lies within populated areas of the US. Some585

sample sizes are slightly reduced due to missing label data (N = 91, 377 for income, 80, 420586

for housing price, and 67, 968 for population density). We model labels whose distribution is587

approximately log-normal using a log transformation (Section S.3.5 and Table S3).588

Because fitting a linear model is computationally cheap, relative to many other SIML ap-589

proaches, it is feasible to conduct numerous sensitivity tests of predictive skill. We present590

cross-validation results from a random sample, while also systematically evaluating the behav-591

ior of the model with respect to: (a) geographic distance between training and testing samples,592

i.e. spatial cross-validation, (b) the dimension K of the feature space, and (c) the size N of the593

training set (Fig. 3, Sections S.3.7 and S.3.8). We represent uncertainty in each sensitivity test594

by showing variance in predictive performance across different training and validation sets. We595

also benchmark model performance and computational expense against an 18-layer variant of596

the ResNet Architecture, a common deep network architecture that has been used in satellite597

based learning tasks (42), trained end-to-end for each task and a transfer learning approach (24)598

utilizing an unsupervised featurization based on the last hidden layer of a 152-layer ResNet599
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variant pre-trained on natural imagery and applied using ridge regression (Sections S.4.1 and600

S.4.2).601

Global experiment To demonstrate performance at scale, we apply the same approach used602

within the data-rich US context to global imagery and labels. We employ a target sample ofN =603

1, 000, 000, which drops to a realized sample ofN = 423, 476 due to missing imagery and label604

data outside the US (Fig. 4). We generate predictions for all tasks with labels that are available605

globally (forest cover, elevation, population density, and nighttime lights) (Section S.3.10).606

Label super-resolution experiment Predictions at label super-resolution (i.e. higher reso-607

lution than that of the labels used to train the model), shown in Fig. 4B, are generated for608

forest cover and population density by multiplying the trained ridge regression weights by the609

un-pooled feature values for each sub-image and applying a Gaussian filter to smooth the re-610

sulting predictions (Section S.3.9). Additional examples of label super-resolution performance611

are shown in Fig. S12. We quantitatively assess label super-resolution performance (Fig. S13)612

using forest cover, as raw forest cover data are available at substantially finer resolution than our613

common ∼1km x 1km grid. Performance is evaluated by computing the fraction of variance614

(R2) within each image that is captured by MOSAIKS, across the entire sample.615

Theoretical foundations616

MOSAIKS is motivated by the goal of enabling generalizable and skillful SIML predictions.617

It achieves this by embedding images in a basis that is both descriptive (i.e. models trained618

using this single basis achieve high skill across diverse labels) and efficient (i.e. such skill is619

achieved using a relatively low-dimensional basis). The approach for this embedding relies on620

the theory of “random kitchen sinks” (16), a method for feature generation that enables the621

linear approximation of arbitrary well-behaved functions. This is akin to the use of polynomial622
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features or discrete Fourier transforms for function approximation generally, such as functions623

of one dimension. When users apply these features in linear regression, they identify linear624

weightings of these basis vectors important for predicting a specific set of labels. With inputs of625

high dimension, such as the satellite images we consider, it has been shown experimentally (17,626

18, 19) and theoretically (43) that a randomly selected subspace of the basis often performs as627

well as the entire basis for prediction problems.628

Convolutional random kitchen sinks Random kitchen sinks approximate arbitrary functions629

by creating a finite series of features generated by passing the input variables z through a set630

of K nonlinear functions g(z; Θk), each paramaterized by draws of a random vector Θ. The631

realized vectors Θk are drawn independently from a pre-specified distributions for each of k =632

1...K features. Given an expressive enough function g and infinite K, such a featurization633

would be a universal function approximator (43). In our case, such a function g would encode634

interactions between all subsets of pixels in an image. Unfortunately, for an image of size635

256 × 256 × 3, there are 2256×256×3 such subsets. Therefore, the fully-expressive approach636

is inefficient in generating predictive skill with reasonably concise K because each feature637

encodes more pixel interactions than are empirically useful.638

To adapt random kitchen sinks for satellite imagery, we use convolutional random features,639

making the simplifying assumption that most information contained within satellite imagery640

is represented in local image structure. Random convolutional features have been shown to641

provide good predictive performance across a variety of tasks from predicting DNA binding642

sites (17) and solar flares (19) to clustering photographs (18) (kitchen sinks have also been643

used in a non-convolutional approach to classify individual pixels of hyper-spectral satellite644

data (44)). Applied to satellite images, random convolutional features reduce the number of645

effective parameters in the function by considering only local spatial relationships between646
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pixels. This results in a highly expressive, yet computationally tractable, model for prediction.647

Specifically, we create each Θk by extracting a small sub-image patch from a randomly selected648

image within our image set, as described above. These patches are selected independently,649

and in advance, of any of the label data. The convolution of each patch across the satellite650

image being featurized captures information from the entire R256×256×3 image using only 3 ∗651

M2 free parameters for each k. Creating and subsequently averaging over the activation map652

(after a ReLU nonlinearity) defines our instantiation of the kitchen sinks function g(z; Θk) as653

g(I`;Pk, bk) = xk(I`), where bk is a scalar bias term. Our choice of this functional form is654

guided by both the structural properties of satellite imagery and the nature of common SIML655

prediction tasks, and it is validated by the performance demonstrated across tasks.656

Relevant structural properties of satellite imagery and SIML tasks Three particular prop-657

erties provide the the motivation for our choice of a convolution and average-pool mapping to658

define g.659

First, we hypothesize that convolutions of small patches will be sufficient to capture nearly all660

of the relevant spatial information encoded in images because objects of interest (e.g. a car or a661

tree) tend to be contained in a small sub-region of the image. This is particularly true in satellite662

imagery, which has a much lower spatial resolution that most natural imagery (Fig. S6).663

Second, we expect a single layer of convolutions to perform well because satellite images are664

taken from a constant perspective (from above the subject) at a constant distance and are (often)665

orthorectified to remove the effects of image perspective and terrain. Together, these charac-666

teristics mean that a given object will tend to appear the same when captured in different im-667

ages. This allows for MOSAIKS’s relatively simple, translation invariant featurization scheme668

to achieve high performance, and avoids the need for more complex architectures designed to669
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provide robustness to variation in object size and orientation.670

Third, we average-pool the convolution outputs because most labels in the types of problems671

we study can be approximately decomposed into a sum of sub-image characteristics. For ex-672

ample, forest cover is measured by the percent of total image area covered in forest, which can673

equivalently be measured by averaging the percent forest cover across sub-regions of the image.674

Labels that are strictly averages, totals, or counts of sub-image values (such as forest cover, road675

length, population density, elevation, and night lights) will all exhibit this decomposition. While676

this is not strictly true of all SIML tasks, for example income and average housing price, we677

demonstrate that MOSAIKS still recovers strong predictive skill on these tasks. This suggests678

that some components of the observed variance in these labels may still be decomposable in679

this way, likely because they are well-approximated by functions of sums of observable objects.680

Additional interpretations The full MOSAIKS platform, encompassing both featurization681

and linear prediction, bears similarity to a few related approaches. Namely, it can be interpreted682

as a computationally feasible approximation of kernel ridge regression for a fully convolutional683

kernel or, alternatively, as a two-layer CNN with an incredibly wide hidden layer generated684

with untrained filters. A discussion of these interpretations and how they can help to understand685

MOSAIKS’s predictive skill can be found in Section S.3.3.686

S.2 Data687

This section describes the datasets we use to construct our ground truth labels across all seven688

of our tasks: forest cover, elevation, population density, nighttime lights, income, road length,689

and housing price. In addition, we describe the imagery used in the analysis. In Section S.3.2690

we detail our method for linking the labeled data for each outcome to the imagery (Fig. S4).691
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In evaluating the ability of MOSAIKS to generalize, we are interested in its ability to recover692

different types of variables, including: (i) variables that are averages of sub-image properties,693

(ii) variables that not directly observable through daytime imagery but are a function of visible694

objects in the image, such as nighttime lights, and (iii) variables that are an underlying factor695

that determines what material appears in the image, such as elevation. Labels may also be a696

combinations of (i)-(iii), such as housing price or household income. An advantage of MO-697

SAIKS is that it solves all these cases without any alteration of method. In the main text, we698

use the the same set of image features to predict all seven outcomes and, in principle, this set of699

features can be used to predict an unlimited number of outcomes (Section S.3.3, so long as the700

outcomes and the images are aligned as described in Section S.3.2).701

For each task, we obtain an up-to-date and geographically complete publicly available data-702

source to match with the images. Most of these data are based on measurements from 2010 -703

2015, though our data on population density draws from sources that date back as far as 2005 in704

order to achieve global coverage. Our imagery data, from the Google Static Maps API (Section705

S.2.2), was mostly acquired in 2018, though in some cases images may be a few years older.706

Task Units Native resolution Data source
Forest cover % forest cover ∼30m × 30m (2)
Elevation meters ∼611.5m × 611.5m (37)
Population density people per sq. km. ∼1km × 1km (38)
Nighttime lights nanoWatts/cm2/sr ∼500m × 500m (39)
Income USD per household census block group (31)
Road length meters polyline (40)
Housing price USD per sq. ft. geocoded point data (41)

Table S1: Data sources for all tasks. Note that for all raster data sets (forest cover, elevation,
population density, and nighttime lights) stated resolutions apply to grid cells located at the
equator; raster size in Euclidean distance will vary with latitude.
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S.2.1 Labels707

Tasks were chosen to represent outcomes of classes (i)-(iii) above subject to the condition that708

high resolution and up-to-date label data is available across the US. Below we describe these709

data sources. See Section S.3.2 and Fig. S4 for a description of how we assign raw label data to710

images.711

Forest cover To measure forest cover, we use globally comprehensive raster data from ref. (2),712

which is designed to accurately measure forest cover in 2010. This dataset is commonly used713

to measure forest cover when ground-based measurements are not available (45, 46). Forest in714

these data is defined as vegetation greater than 5m in height, and measurements of forest cover715

are given at a raw resolution of roughly 30m by 30m. These estimates of annual maximum forest716

cover are derived from a model based on Landsat imagery captured during the growing season.717

Specifically, the authors train a pixel-level bagged decision tree using three types of features:718

“(i) reflectance values representing maximum, minimum and selected percentile values (10, 25,719

50, 75 and 90% percentiles); (ii) mean reflectance values for observations between selected720

percentiles (for the max-10%, 10-25%, 25-50%, 50-75%, 75-90%, 90%-max, min-max, 10-721

90%, and 25-75% intervals); and (iii) slope of linear regression of band reflectance value versus722

image date.” These estimates of forest cover were derived using different spectral bands than we723

observe in our imagery, and using information about how surface reflectance changes over the724

growing season, which we did not observe. This gives us confidence that we are indeed learning725

to map visual, static, high-resolution imagery to forest cover, rather than simply recovering the726

model used in ref. (2).3727

3These data can be accessed at:
https://landcover.usgs.gov/glc/TreeCoverDescriptionAndDownloads.php.
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Elevation We use data on elevation provided by Mapzen, and accessed via the Amazon Web728

Services (AWS) Terrain Tile service. These Mapzen terrain tiles provide global elevation cov-729

erage in raster format. The underlying data behind the Mapzen tiles comes from the Shuttle730

Radar Topography Mission (SRTM) at NASA’s Jet Propulsion Laboratory (JPL), in addition to731

other open data projects.732

These data can be accessed through AWS at different zoom levels, which range from 1 to 14 and,733

along with latitude, determine the resolution of the resulting raster. To align with the resolution734

of our satellite imagery, we use zoom level 8, which leads to a raw resolution of 611.5 meters735

at the equator.4736

Population density We use data on population density from the Gridded Population of the737

World (GPW) dataset (38). The GPW data estimates population on a global 30 arc-second738

(roughly 1 km at the equator) grid using population census tables and geographic boundaries. It739

compiles, grids, and temporally extrapolates population data from 13.5 million administrative740

units. It draws primarily from the 2010 Population and Housing Censuses, which collected data741

between 2005 and 2014. GPW data in the US comes from the 2010 census.5742

Nighttime lights We use luminosity data generated from nighttime satellite imagery, which743

is provided by the Earth Observations Group at the National Oceanic and Atmospheric Admin-744

istration (NOAA) and the National Geogphysical Data Center (NGDC). The values we use are745

Version 1.3 annual composites representing the average radiance captured from satellite images746

taken at night by the Visible Infrared Imaging Radiometer Suite (VIIRS). We use values from747

2015, the most recent annual composite available.748

4We accessed these data via the R function get aws terrain from the elevatr package. Code and
documentation can be found here: https://www.github.com/jhollist/elevatr.

5These data can be accessed at http://sedac.ciesin.columbia.edu/data/collection/
gpw-v4
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This composite is created after the Day/Night VIIRS band is filtered to remove the effects of749

stray light, lightening, lunar illumination, lights from aurora, fires, boats, and background light.750

Cloud cover is removed using the VIIRS Cloud Mask product. These values are provided across751

the globe from a latitude of 75N to 65S at a resolution of 15 arc-seconds. The radiance units752

are nW cm−2 sr−1 (nanowatts per square centimeter per steradian).753

Like forest cover, these labels are themselves derived from satellite imagery. However, because754

they capture luminosity at night, while our satellite imagery is taken during the day, the labels755

for luminosity and the imagery used to predict luminosity represent independent data sources.756

Our ability to predict nighttime lights depends on how well objects visible during the day are757

indicative of light emissions at night.6758

Income We use the American Community Survey (ACS) 5-year estimates of median annual759

household income in 2015. These data are publicly available at the census block group level, of760

which there are 211,267 in the US, including Puerto Rico. On average, block groups are around761

38 km2, though block groups are smaller in more densely populated areas.7762

Road length We use road network data from the United States Geological Survey (USGS)763

National Transportation Dataset, which is based on TIGER/Line data provided by US Census764

Bureau in 2016. Shapefiles for each state provide the road locations and types, including high-765

ways, local neighborhood roads, rural roads, city streets, unpaved dirt trails, ramps, service766

drives, and private roads. Road types are indicated by a 5-digit code Feature Class Code which767

is assigned by the Census Bureau.8 The variable we predict is road length (in meters), which is768

computed as the total length of all types of roads that are recorded in a given grid cell.769

6These data can be accessed at https://www.ngdc.noaa.gov/eog/viirs/download_dnb_
composites.html#NTL_2015.

7These data are accessible using the acs package in R (47), table number B19013.
8https://www.census.gov/geo/reference/mtfcc.html
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A B

Figure S1: Quality of ground truth road data varies by region. (A) Private roads in the
northern Midwest recorded in the USGS National Transportation Dataset. The conspicuous
lack of recorded private roads in Indiana and sections of Ohio suggests that road data quality
in certain regions may be lacking. (B) Overlaying recorded roads of all types (shown in white)
over a single satellite image in Indiana, demonstrates that some roads that are easily visible
from satellite imagery are missing in the available data that we use to construct labels.

The Census Bureau database is created and corrected via a combination of partner supplied data,770

aerial images, and fieldwork. The spatial accuracy of linear features of roads and coordinates771

vary by source materials used. The accuracy also differs by region, causing cases in which some772

regions lack recordings of certain road types, the most common one being private roads and dirt773

trails. For example, private roads are rarely recorded in Indiana and some regions in Ohio (Fig.774

S1A), despite satellite images that suggest they are present (Fig S1B).9775

Housing price We estimate housing price per square foot using sale price and assessed square776

footage values for residential buildings. Data are provided by Zillow through the Zlllow Trans-777

action and Assessment Dataset (ZTRAX). This dataset aggregates transaction and assessment778

9The data can be accessed at: https://prd-tnm.s3.amazonaws.com/index.html?prefix=
StagedProducts/Tran/Shape/
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data across the United States, combining reported values from states and counties with widely779

varying regulations and standards. Thus, significant data cleaning is required. Furthermore,780

because some states do not require mandatory disclosure of the sale price, we currently have781

limited data for the following states: Idaho, Indiana, Kansas, Mississippi, Missouri, Montana,782

New Mexico, North Dakota, South Dakota, Texas, Utah, and Wyoming. To address data quality783

issues, we develop a quality assurance and quality control (QA/QC) approach that is based on784

approaches employed in previous work (48, 49, 50) but adapted for our case.785

ZTRAX contains data on the majority of buildings in the United States, initially comprising 374786

million detailed records of transactions across more than 2,750 counties. The data is organized787

into two components - transaction data and assessment data. These two datasets are linked,788

allowing us to merge the latest sale price of a property to the latest assessment data. To minimize789

the effect of nation-wide trends in housing price that would be unobservable from our cross-790

sectional satellite imagery, we limit our dataset to sales occurring in 2010 or later. Further, we791

restrict our analysis to buildings coded as “residential” or “residential income - multi-family”792

and drop any sale that was coded as an intra-family transfer. To obtain a square footage value,793

we follow the example in Zillow Research’s GitHub repository (51) and take the maximum794

reported square footage for a given improvement, and then sum over all improvements on a795

given property.796

To reduce the number of potentially miscoded outliers at the bottom end of the distribution of797

sale price and property size, we drop any remaining sales that fall under $10,000 USD, any798

properties that fall under 100 sq. ft., and any $/sq. ft. values under $10. To address outliers on799

the high end of the distribution, we take this restricted sample and further cut our dataset at the800

99th percentile of $/sq. ft. by state. Afterwards, we select the most recent recorded sale price801

for each property (divided by the most recent assessed square footage). We then average across802

39



Figure S2: Correlation of labels across tasks. Each figure shows a scatter plot of labeled out-
comes for one of our seven tasks against another. All points come from a population-weighted
random sampling of grid cells (as described in Section S.3.1) across the US. Scatters andR2 val-
ues are shown across approximately 100,000 grid cell labels, depending on the data availability
for each task.

all of the remaining units within each grid cell to comprise our final dataset of housing price per803

square foot.804

To protect potentially identifiable information, our public data release contains housing price805

labels only for grid cells that contain 30 or more sales meeting the aforementioned criteria.806

This reduces the size of the dataset from N = 80, 420 to N = 52, 355 and makes the model807

performance obtainable by users better than that stated in the main text. For example, the public808
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Figure S3: Test set performance when restricting the dataset of mean housing price labels.
Curve shows the R2 obtained in the test set for the housing price task in our main prediction
experiment (Table S2), when removing data with low numbers of valid, recent sales of buildings
within the associated grid cell. The dashed line indicates the restriction applied to the publicly
available dataset.

dataset will yield a test set R2 of 0.60, rather than 0.52 (Table S2). This could be due to the fact809

that the average housing price label we train on is noisier when estimated in a grid cell with few810

valid sales prices. It could also be because the average housing price of areas with few recent811

sales may be inherently harder to predict via satellite imagery than that of areas with a greater812

number of recent sales. Fig. S3 empirically demonstrates the performance effect of removing813

grid cells with few recent sales.814

Correlation of outcomes across tasks The seven tasks described above were selected in815

order to evaluate the performance of MOSAIKS across many diverse contexts. Figure S2 eval-816

uates the extent to which this was achieved, by plotting label values against one another. A few817

of the labels are moderately correlated, most notably population density and nighttime lights,818
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but in general there is substantial orthogonal variation across these seven tasks.819

S.2.2 Imagery820

We use satellite imagery from Google Static Maps API (36), zoom level 16 (see Fig. 1A for821

examples). This gives roughly 1km × 1km images which are 640 × 640 pixels across and 3822

dimensions deep (red, green, and blue spectral bands). We coarsen these images to 256 × 256823

× 3 prior to featurizing, meaning that our models are trained on images with roughly 4m resolu-824

tion. These images can be composites of several satellite images – sources include the Landsat,825

Sentinel, SPOT, Pleiades, WorldView and QuickBird satellites.10 Prior to downloading, images826

were geo-rectified and pre-processed to remove cloud occlusions.11
827

S.3 Methods828

This section describes the methods that we use to define samples (Section S.3.1), to construct829

labels (Section S.3.2), and to construct features (Section S.3.3) for each image. It then describes830

how we separate data for training and evaluation (Section S.3.4), train models (Section S.3.5),831

test predictive skill (Section S.3.6), test sensitivity to the dataset size (Section S.3.7) and test832

model extrapolation performance (Section S.3.8). Next, we describe tests of model performance833

at sub-label or “super” resolution as well as at the global scale (Sections S.3.9 and S.3.10).834

S.3.1 Grid definition and sampling strategy835

Grid definition: To evaluate the generalizability of MOSAIKS performance across tasks we836

need a standardized unit of observation to link raw labels for all tasks and imagery. To do this,837

we construct a single global grid onto which we project both satellite imagery and labeled data.838

10In some cases aerial photography is also integrated into images.
11More information is available at: https://developers.google.com/maps/documentation/

maps-static/dev-guide.
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We design the grid to match our source of satellite imagery to ensure adjacent images do not839

overlap. Each element of the grid, i.e. each “grid cell,” was designed to be a square in physical840

space. Because the earth is a sphere, the angular extent of grid cells changes across latitudes.12
841

Sampling strategy: For our primary experiment in the continental US we subsample sets of842

100,000 observations, roughly 1.25% of the grid cells in the continental US, using two dis-843

tinct sampling strategies.13 First, we sample uniformly-at-random (UAR) from all grid cells844

within the continental US. This sampling strategy is most appropriate for tasks like forest cover,845

where there is meaningful variation in most regions of the country. Second, we implement846

a population-weighted (POP) sampling strategy. To generate this sample, each grid cell is847

weighted by population density values taken from Version 4 of the Gridded Population of the848

World dataset, which provides a raster of population density estimates for the year 2015.14 This849

weighted sampling strategy is most applicable to tasks like housing price, where the most mean-850

ingful variation lies in more populated regions of the US. We use the UAR grid when sampling851

population density to avoid any issues that might arise from sampling a task using the same852

variable as sampling weights. In both the UAR and POP samples, we randomly sample just853

once; all results in the paper are displayed using the same two subsets of the full grid. Note that854

these sub-sampled grid cells, by construction, are each covered by exactly one satellite image855

without having to process data over the entire US.856

In our main results, we use the UAR sample for the forest cover, elevation, and population857

density tasks. We use the POP sample for nighttime lights, income, road length, and housing858

12For the continental US (spanning 25 to 50 degrees latitude and -125 to -66 longitude), the grid cells are 0.0138
degrees in width (1.39 km) at the southern edge of the grid, and 0.0138 degrees in width (0.98 km) at the northern
edge of the grid. The grid cells are 0.012 degrees in height (1.39 km) at the southern edge of the grid, and 0.0089
degrees in height (.98 km) at the northern edge of the grid.

13We discard marine grid cells, but do not discard grid cells that are composed only of lakes or smaller inland
bodies of water.

14These data are available at http://sedac.ciesin.columbia.edu/data/collection/
gpw-v4/sets/bro
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Figure S4: Calculation of grid cell labels from raw data. We calculate labels by spatially
overlaying our grid cells and raw labeled data. We calculate labels as the average of raw label
values that fall within the grid cell, except for roads where we calculate the label as the sum of
road length within the grid cell.

price. See Section S.3.10 for a discussion of how we extend this grid and sampling procedure859

to the global scale.860

S.3.2 Assigning labeled data to sampled imagery861

To assign labels to each grid cell, we spatially overlay our raw labeled data and our custom grid.862

The native format and spatial resolution of the labeled data vary across the tasks studied, neces-863

sitating different aggregation or disaggregation procedures for each task. Here, we describe the864

approach taken in each task (Fig. S4).865

The raw forest cover, elevation, population density and nighttime lights data are provided na-866

tively as rasters with higher spatial resolution than our custom grid. For these tasks, we perform867

aggregation by calculating the mean of all labeled pixels with centroids that fall within the868

imagery grid cell. The resulting labels indicate mean forest cover, mean elevation, mean popu-869

lation density, and mean nighttime lights across the image grid cell.870
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Our road length data are provided as high-resolution spatial line segments. To aggregate these871

data to the image grid cell, we calculate the sum of road length segments within each image.872

The resulting labels indicate the total length of recorded roads that fall within an image grid873

cell.874

Our housing price data are available as individual geocoded house sales. We aggregate these875

geocoded prices to the image grid cell by taking the average housing price per square foot across876

all sale prices that fall within the extent of the image. The resulting labels indicate the average877

housing price per square foot across all observed houses within a grid cell.878

Our income data are provided at the block-group level (see Section S.2.1 for details). In some879

parts of the U.S., these block-groups are larger in total area than our image grid cells. How-880

ever, in other regions, block-groups are smaller than our image grid cells. To treat both cases881

consistently, we aggregate incomes to the grid cell level by taking the weighted average of882

block-group incomes, where the weights are the area of intersection between the image grid883

cell and the block-group polygons. These weights are normalized to unity for each grid cell.884

The resulting labels indicate the area-weighted average median income across the grid cell.885

Future users of a production-scale version of MOSAIKS would employ label data of arbitrary886

format and resolution. The above approaches provide guidelines for how to match various forms887

of label data to the pre-computed image feature grid, but other methods may be used. In the888

simplest case, for example, sparse point data could be directly matched to the nearest grid cell889

centroid.890

S.3.3 Featurization of satellite imagery891

Notation In our context, the input variable z is a set of satellite images I, each corresponding892

to a physical location, `. We use brackets to denote indexing into images, with colons denoting893
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sub-regions of images (e.g. I`[i, j] is the (i, j)th pixel of image I`, I`[i : i + M, j : j + M ]894

is the square sub-image of size M ×M starting at pixel (i, j).) Because images have a third895

dimension (spectral bands), a colon I`[i, j, :] denotes all bands at pixel (i, j). Indexing into non-896

image objects is denoted with subscripts (e.g. the kth element of vector x is denoted as xk and897

the kth patch in a set of patches P is denoted as Pk). We denote inner products with angular898

brackets 〈·, ·〉 and the convolution operator with ∗.899

Connection to the kitchen sinks framework The random kitchen sink featurization used in900

MOSAIKS relies on a nonlinear mapping g(z; Θk), where z is an input variable and Θk is a901

randomly drawn vector. Here, we describe the implementation details of this featurization in902

the context of satellite imagery. Connecting our implementation and notation to the framework903

of random kitchen sinks, the random variables Θk are instantiated as the values of a random904

patch Pk and the bias bk. The input variable z is an image I`, and g(z; Θk) represents the905

convolution of the patch over the image, followed by addition of the bias bk and application of906

a element-wise ReLU function and an average pool, as described in the Methods of the main907

article and detailed below.908

Methodological Details Fig. S5 depicts our featurization process. As described in Section909

S.2.1 and S.3.1, we begin with two sets (uniform and population-weighted samples) of N =910

100, 000 satellite images, each of which measures 640 × 640 × 3 pixels (the third dimension911

represents the visible red, green, and blue spectral bands). We then coarsen the images to912

256 × 256 × 3 pixels to reduce computation. Next, we draw K/2 = 4, 096 small sub-image913

“patches” of size M ×M × 3 uniformly at random from the 80,000 images that comprise our914

training and validation set, and calculate the negative of each patch to get another 4, 096 patches915

(Fig. S5A, S5B). Our chosen specification sets M = 3, so that each patch Pk is of dimension916

3× 3× 3 (see Fig. S6 for performance in experiments using different patch sizes).917
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Figure S5: MOSAIKS process from featurization to multi-task prediction. Given a large
sample of N satellite images (A), a random sample of K patches (B) are drawn. (C) These
K random patches Pk are convolved over each image I` and (D) passed through a nonlinear
function φ(·) to generate K activation maps. (E) Pixel-specific activations are pooled across
each image to generate one set of N × K features that are stored and distributed to all users.
(F) The same random feature vector x is used in cross-validated ridge regression across many
distinct tasks, after labeled and geo-referenced data y` is matched to features from each image
I` (as shown in Fig. 1B of the main text). (G) Models trained via ridge regression can be used
to generate predictions across unrestricted tasks for any location with satellite imagery.

We then “whiten” each patch by zero components analysis (ZCA), a common pre-processing

routine in image processing (52). ZCA whitening pre-multiplies each patch by a transformation

such that the resulting empirical covariance matrix of the whitened patches is the identity matrix.

We then convolve each patch Pk over each of the N images (Fig. S5C) to obtain a set of

254× 254× 1 pixel matrices for each image I`
15.During the convolutions each 3× 3× 3 sub-

image I`[i : i + M, j : j + M, :] is also whitened according to the same whitening matrix as is

applied to the patches.16 We then apply a pixel-wise nonlinearity operator Φ to each resulting

matrix to obtain K nonlinear activation maps Ak(I`) = Φ(Pk ∗ I` + bk) for each image I`

(Fig. S5D) so that the (i, j)th pixel of the kth activation map is defined as

Ak(I`)[i, j] = Φ(〈I`[i : i+M, j : j +M, :],Pk〉+ bk),

15To improve efficiency of the featurization process, our implementation calculates the inner product of patch
and image only for the original K/2 patches. We then create an additional K/2 values equal to the negative of
each of the original inner products.

16In practice, we apply the whitening operator as a right multiplication to the original 8192× 27 whitened patch
matrix in order to reduce computation.
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where bk is a bias term from the constant bias matrix bk, in which every element is equal to

bk = 1. We use Φ(I`;Pk,bk) = ReLU(Pk ∗ I` +bk) := max{Pk ∗ I` +bk, 0} as the nonlinear

operator. We then aggregate across the image by taking the average of the nonlinear activation

maps (Fig. S5E). The combination of the nonlinear operator Φ(·) and average pooling composes

the function g(·) above, and creates a scalar value for each patch k and image ` pair:

xk(I`) =
1

2542

254∑
i=1

254∑
j=1

Ak(I`)[i, j] (1)

Stacking these scalars across allK patches provides the resultingK-dimensional feature vector,918

x(I`) :=
[
x1(I`) x2(I`) ... xK(I`)

]
∈ RK . This featurization thus embeds the original919

image I` into a K-dimensional feature space, which can then be mapped to many different920

outcomes using task-specific models (s) implemented by researchers (r): ys,r` = x(I`)β
s,r+εs,r` ,921

as illustrated in Fig. S5F. This linear relationship between labels and features may express922

a relationship between labels and image pixels that is highly nonlinear because the features923

themselves are nonlinear with respect to the images.924

Patch size and sampling We approximate the idealized complete convolutional basis, which925

contains features for all patch sizes, with the simpler truncated basis where we use only a single926

patch size. Throughout our main analysis, we use a 3 × 3 × 3 patch size for Pk. While larger927

patches may, in principle, enable the detection of image features with larger spatial structure,928

we find that, in practice, patch size M = 3 performs best across all seven tasks (Fig. S6). This929

finding suggests that most information contained within satellite imagery of this resolution can930

be represented by local-level image structure, and that the inclusion of “non-local” relationships931

reduces the efficiency of the function approximator by introducing more degrees of freedom.932

This empirical finding is consistent with previous applications of kitchen sink features (26).933

We draw patches randomly from the empirical distribution of M ×M × 3 patches from our934
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Figure S6: Performance by patch size. Featurization in MOSAIKS relies on convolving an
M×M×3 patch Pk across satellite images. M indicates the width in pixels of each sub-image
patch, and the third dimension indexes the 3 spectral bands used throughout the analysis in this
paper (an analogous approach can be applied to hyperspectral data). This figure shows, for each
task, test setR2 for patch sizesM = 1, 2, 3, 6, 12 and 24, usingK = 2, 048 features for eachM .
The dotted gray line indicates the benchmark model used throughout the paper, with M = 3.

training data set of satellite images. Drawing patches from the empirical distribution, rather935

than generating them randomly, allows us to sample efficiently from the distribution of sub-936

images we will encounter in the sample. This patch selection process is almost identical to the937

filter selection methods described in refs. (53, 54, 55). It may be valuable for future research938

to explore whether MOSAIKS performance and computational efficiency could be improved939

through patch selection algorithms. For example, one goal in selecting patches-based features940

is to promote relative sparsity in the resulting patch-based features, as in ref. (9). However, any941

attempt to tailor patch selection or featurization to a particular task of interest requires sacrific-942

ing the generalizability of this task-agnostic featurization. It remains an open question whether943

a non-randomly selected set of basis patches could potentially achieve similar (or greater) per-944

formance than what we present here when applied to arbitrary new tasks.945
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Alternative interpretations relating MOSAIKS to kernels and CNNs The methods sum-946

mary describes how MOSAIKS’s convolutional random features enable nonparametric approx-947

imations of nonlinear functions through an embedding in a rich basis that expresses local spatial948

relationships. Here, we provide two alternative interpretations of the approach, the first relating949

to kernel methods and the second relating to convolutional neural networks. We believe these950

interpretations can provide useful lenses to consider why MOSAIKS works, and may also be951

helpful to researchers thinking about related problems.952

First, one could interpret the design of MOSAIKS as if we were attempting to design a com-953

putationally tractable approximation to implementing a ridge regression using a convolutional954

kernel and the kernel trick. Under this interpretation, one could arrive at the same design of955

MOSAIKS using the following logic: (i) Design a kernel that allows us to describe the “sim-956

ilarity” of every image to every other image in the sample. (ii) For any new task, we want to957

use a kernel regression to predict the unobserved labels of new images based on their similarity958

to all other images—specifically, predicted labels would be a weighted sum of all observed959

labels using weights determined by this kernel-based measure of image similarity, i.e. the960

kernel trick. (iii) Unfortunately, calculating such a kernel exactly would be computationally961

intractable on a data set as large as the one we use, so instead use convolutional kitchen sinks962

(i.e. the featurization in MOSAIKS) to approximate the desired kernel regression. This last step963

follows from prior work demonstrating two concepts. First, random features can approximate964

the lifted feature space induced by well-known kernels (56) as the number of random features965

increases. Second, convolutions of random patches drawn from joint Gaussian distributions has966

been proven to approximate, in the limit, a kernel in which every sub-image from one image is967

compared with every sub-image from another using an arc-cosine distance function (57). Thus,968

convolutions with random patches should, in the the limit, approximate a kernel that compares969

every sub-image with every other sub-image in the sample. However, because our distribution970
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of patches is drawn from training imagery, rather than from Gaussian distributions, there is not971

an analytical expression that is known for the kernel being approximated by MOSAIKS in the972

limit.973

The above logic would arrive at a design essentially the same as MOSAIKS, although it is not974

our preferred motivation or interpretation of why MOSAIKS works because it is a more com-975

plicated rationale than is needed. Ref. (16) showed that the existence of an associated kernel976

is not necessary for performance using kitchen sinks. Rather, it is simply the embedding of977

an input in a descriptive basis that provides the predictive skill, the insight that motivates our978

preferred—and we think simpler—interpretation presented in the main text. Nevertheless, the979

interpretation of MOSAIKS in the context of kernels motivates one way to understand the mech-980

anism through which MOSAIKS achieves predictive skill at low computational cost. Namely,981

it enables the approximation of a nonparametric kernel regression, using some (unknown) fully982

convolutional kernel that is sufficiently rich to represent meaningful similarity between images983

but costly enough to prohibit a direct application of the kernel trick.984

An additional way to contextualize MOSAIKS is in terms of its computational elements. In985

particular, MOSAIKS uses image convolutions and nonlinear activation operations common986

to convolutional neural networks (CNNs) (58). Indeed, MOSAIKS is mathematically identi-987

cal to the architecture one would arrive at if one designed a very shallow and very wide CNN988

without using backpropogation and instead using random filters. Specifically, MOSAIKS could989

be viewed as a two-layer CNN that has an 8,192-neuron wide hidden layer with untrained990

weights that are randomly initialized by drawing from sub-images in the sample, and that uses991

an average-pool over the entire image. In contrast to the conventional CNN approach of optimiz-992

ing weights (via backpropogation), the random initialization with no subsequent optimization993

significantly reduces training time and avoids numerical challenges associated with non-convex994
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optimization procedures (such as vanishing gradients). Thus, in the main text, we do not frame995

MOSAIKS as a CNN because MOSAIKS does not exploit the primary benefits of a deep CNN,996

since MOSAIKS lacks intermediate layers and does not implement backpropogation. Nonethe-997

less, some readers may find this description more intuitive, and, as mentioned in the main998

article, we believe that the high performance of MOSAIKS might motivate the design of CNN999

architectures that share some of these computational elements.1000

Because deep CNNs are a state-of-the-art tool for SIML tasks, we provide further comparisons1001

of MOSAIKS performance and cost relative to this benchmark in Sections S.4.1 and S.4.2,1002

respectively.1003

S.3.4 Data separation practices and cross-validation1004

We split our data into a 20% holdout test sample and an 80% training and validation sample.1005

Within the training and validation sample, we perform 5-fold cross validation in our primary1006

analysis, splitting the training and validation sample into 5 sets of 80% training data (64% of1007

full sample) and 20% validation data (16% of full sample), such that the validation sets are1008

disjoint.1009

Creating the holdout test set Before any of the label data are touched, we remove a hold-out1010

test set that is chosen uniformly at random from the entire sample, consisting of 20% of the1011

original data. The analysis and diagnostic procedures that follow use only the remaining 80%1012

of the observations. The held-out test set is only used once, for the purposes of comparison to1013

the validation set performance in Table S2. It is important to keep these data untouched until1014

this point to ensure that our final performance results do not suffer from over-fitting.1015
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Tuning hyperparameters We choose the optimal λ in Eq. (3) for each outcome through1016

5-fold cross-validation over the training and validation sample. Specifically, λ is chosen to1017

maximize average performance (R2) across 5 folds, from a list of candidate values.17 For tasks1018

with the same sampling scheme (i.e. UAR versus population-weighted sampling), the folds are1019

consistent across tasks, so that each of the five folds comprises the same set of locations across1020

the tasks.1021

Using cross-validation to measure model robustness In addition to being a principled way1022

of selecting hyperparameters, cross-validation gives us a notion of how robust our model is to1023

changes in the training and validation samples. Since each of the 5 validation sets is disjoint1024

and randomly selected, the empirical spread of performance across folds gives us a notion of1025

the variability of our model when applied to new data sets from the same distribution. Under-1026

standing this variation is one way of understanding the performance of our model; it gives us1027

a notion of variance of aggregated performance (e.g. R2 over the entire sample, for a given set1028

of hyperparameters). A useful aspect of MOSAIKS’s low computational cost of model train-1029

ing, however, is that it enables researchers to calculate the variance of individual predictions by1030

bootstrapping.1031

S.3.5 Training and testing the model1032

In our primary model (results shown in Fig. 2 of the main text) we solve for grid cell labels1033

as a linear function of random convolutional features using a ridge regression model and a1034

cross-validation procedure. To obtain training and validation sets, we follow the data separation1035

practices outlined in Sec. S.3.4, and drop any observations with missing values. The resulting1036

combined training and validation set sizes are N = 80,000 for forest cover, 80,000 for elevation,1037

17We choose these candidate values so as to ensure the chosen optimal λ is not the minimum or maximum of all
λs supplied.
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54,375 for population density, 80,000 for nighttime lights, 73,102 for income, 80,000 for road1038

length, and 80,420 for housing price.1039

Population density, nighttime lights, and housing price have label distributions that are approx-1040

imately log-normal (Fig. S7), so we take a log transformation of the labels. We add 1 before1041

logging to avoid dropping labels with an initial value of zero (see Section S.3.6 for performance1042

in logs and levels for all tasks).18
1043

With these labels and features in hand, we regress each outcome ys` for each task s on features

x` as follows:

ys` = x(I`)β
s + εs` (2)

We solve for βs by minimizing the sum of squared errors plus an l2 regularization term:1044

min
βs

1

2
||ys` − x(I`)β

s||22 +
λs

2
||βs||22 (3)

We use ridge regression across all outcomes to demonstrate the generalizability of using a sin-1045

gle set of image features across many simple regression models. Further, this standardized1046

methodology facilitates comparison of performance and sensitivity across tasks. We note that1047

other modeling choices could potentially improve fit (e.g. using a hurdle model for zero-inflated1048

outcome distributions such as road length); we leave such task-specific explorations for future1049

research.1050

In visual display of results and calculation of performance metrics such as R2, we clip our1051

predictions for each task at the minimum and maximum values observed in the labeled data.1052

The resulting weights (i.e. regression coefficients) β̂s obtained from estimation of Eq. (2) indi-1053

cate, along with the variance of the features, which features k (derived from random patch Pk)1054

18Since housing price per square foot is always positive, for that variable we use just a log transformation.
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Figure S7: Distribution of outcome variables in levels and logs. Histograms show the dis-
tribution of each outcome variable over all sampled image grid cells (approximately 100,000
observations, depending on data availability). Forest cover, elevation, and population density
are sampled uniform at random across the continental US, while all other variables are randomly
sampled with population weighting. The first column shows the distribution in levels, and the
second in logs. For elevation, population density, nighttime lights, and road length, logs were
taken after adding 1 to the raw values, given the propensity of zero values in these outcomes.
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Figure S8: Regression weights across folds within a task vs. across tasks within a fold. All
scatterplots indicate regression weights for forest cover, elevation and/or population density.
Each point depicts estimated coefficent values for the kth feature (βsk) when trained on either
different samples or different labels. In the across-fold examples (first two columns), we learn
weights for disjoint training and validation splits for the same task via cross-validation in which
one fold acts as the training set and the other as the validation set. Values corresponding to
each axis are the regression weights when that fold is the training set (e.g. the top left scatter
shows {βforest1k ,βforest0k }), and indicate a strong correlation across regression weights from
different folds. In the across-task examples (last column), regression weights are shown for
the same training and validation sets for two distinct tasks (e.g. the top right scatter shows
{βelevation0k ,βforest0k }). We see that there is virtually no correlation in regression weights across
tasks, demonstrating that predictions across tasks lie in orthogonal subspaces of the feature
space. Across all examples here, we set the number of random features to K = 1, 024.

capture meaningful information for prediction in each task. Fig. S8 demonstrates that the recov-1055

ered weights are stable across cross-validation folds within a task. The first two columns show1056

standardized weights that are estimated from disjoint training and validation splits for the same1057
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task.19 Values corresponding to each axis are the regression weights estimated when the corre-1058

sponding fold composes the training set. High R2 values indicate a strong correlation between1059

regression weights from different folds within a single task (forest cover, elevation, and popula-1060

tion density are shown), demonstrating that similar linear combinations of features are selected1061

by the regression model, even when the sample of training images changes. This suggests that1062

specific sets of patches consistently contain valuable information in predicting outcomes for a1063

specific task. However, different combinations of patches are useful for different tasks, and we1064

find no correlation in the weights recovered between tasks. For example, in the last column of1065

the figure, we show that regression weights that are recovered for forest cover and elevation1066

(top right) are essentially orthogonal as are regression weights recovered for forest cover and1067

population (lower right). In these two plots, regression weights are shown for the same training1068

and validation sets, but for two distinct tasks. Sets of features that are relevant for prediction1069

in one task appear to be irrelevant for another, as there is virtually no correlation in regression1070

weights.1071

Intuition The consistency of weights recovered in MOSAIKS across folds within a task, and1072

the orthogonality of weights recovered within a fold but across tasks, provides some intuition1073

for why MOSAIKS provides consistent results and generalizes across a very large (potentially1074

infite) number of potential tasks. The rich featurization x(I`) locates image I` in a very high-1075

dimensional (K-dimensional) feature space. Solving for βs in Eq. (2) then identifies the K-1076

dimensional vector βs that points in the direction of most rapid ascent (the gradient vector) for1077

labels ys, when the position of images x(I`) are projected onto this vector. Because the feature1078

space is so large — our baseline model has an 8,192-dimensional feature space — there are a1079

19For consistency across comparisons, R2 is calculated on standardized regression weights, which have been
demeaned and divided by their standard deviations. The number of random features is set to K = 1, 024 for visual
display purposes.
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vast number of orthogonal gradient vectors that can be drawn through this space along which1080

images can be organized for different tasks. The left and center panels of Fig. S8 illustrate1081

that similar K-dimensional gradient vectors βs are selected when solving for the same task but1082

using different samples (each point depicts an element of the vector βs). The right panels shows1083

that for different tasks, the gradient vectors are orthogonal and point in completely unrelated1084

directions in the feature space. This orthogonality means that predictions ŷs for different tasks1085

will be independent of one another, even though both are constructed as linear combinations of1086

the same set of features.1087

S.3.6 Primary model test set performance, robustness to functional form,1088

and spatial distribution of errors1089

Here, we describe how we test for overfitting to the training and validation set in our primary1090

model, test for primary model performance robustness to alternative functional forms, and char-1091

acterize the spatial distribution of primary model error.1092

Performance in a holdout test set To test for overfitting, we evaluate the performance of1093

our primary model on a randomly sampled 20% holdout set. These data were never used for1094

model selection and were only touched at the end of our analysis to check for overfitting. To1095

conduct this test, for each outcome, we use cross-validation within the training set to determine1096

the outcome-specific optimal λ. We then retrain the model on the full training set using this1097

optimal λ, and evaluate this model on the holdout test set. We find that performance in the test1098

set is nearly identical to that of the validation set (Table S2), which indicates that our models1099

were not overfit to the data. For some performance metrics, such as the maps in the main text,1100

we present validation set performance (instead of the test set) because the sample is larger and1101

the performance is unchanged.1102
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Cross-validation Test set
Task R2 R2

Forest cover 0.91 0.91
Elevation 0.68 0.68
Population density 0.73 0.72
Nighttime lights 0.85 0.85
Income 0.45 0.45
Road length 0.52 0.53
Housing price 0.50 0.52

Table S2: Model performance in the hold out test set. For each outcome, we use 5-fold cross-
validation within the training/validation set using 80% of our labeled data to optimally select
task-specific hyperparameters in ridge regression (i.e. λ). We then retrain each model on the
full training set using this optimal λ. Performance on the validation set (column 1) is compared
to that of the held out test set (column 2).

Robustness of model to alternative functional forms Throughout the main text, we report1103

primary model performance in each task from a model estimated with labels that are either1104

logged (e.g. population density), or in levels (e.g. forest cover). The decision regarding func-1105

tional form for each task was made based on the underlying distribution of labels across our1106

image grid cells. Many outcomes, such as housing prices, display exceptionally skewed distri-1107

butions that approximate log-normality (see Fig. S7). For these outcomes, we take the natural1108

log of the image grid cell values in model training and testing. Table S3 shows model perfor-1109

mance for all tasks under both the levels and logs functional forms.20 Tasks with highly skewed1110

distributions, such as population density, housing price per square foot, and nighttime lights1111

have substantially higher performance (R2 increases by 10-64%) after being logged. Tasks1112

whose labels display much less skew in levels, such as road length, income, and elevation show1113

small to modestly reduced performance (4-21%) when their outcomes are modeled in logs.1114

20In tasks where negative values or zeros are present (e.g. forest cover, elevation, and nighttime lights), we drop
negative values and add one to zero values before taking logs for this test.
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Log model Levels model
Task R2 R2

Forest cover 0.90 0.91
Elevation 0.58 0.68
Population density 0.73 0.56
Nighttime lights 0.85 0.77
Income 0.43 0.45
Road length 0.41 0.52
Housing price 0.50 0.44

Table S3: Model performance across tasks and functional forms. All R2 values indicate
performance using the optimal hyperparameter λ after 5-fold cross-validation. In the log model,
the outcome variable is defined as the natural logarithm of the original labeled data (e.g. natural
log of the average forest cover over an image gridcell). In the levels model, the outcome variable
is simply the level of the aggregated labeled data, as defined in Section S.3.2. Values in bold
are reported in the main text.

Spatial distribution of errors Fig. S9 shows the distribution of errors over space, for the1115

model predictions presented in Fig. 2. The model systematically over-predicts low values and1116

under-predicts high values across all tasks. This is likely due to our choice of ridge regression,1117

which favors predictions that tend toward the mean due to the `2 penalty. The structured cor-1118

relation of errors across space suggests that there is substantial room for model improvement,1119

potentially from including task specific knowledge. For example, our models of housing price1120

and elevation could likely, respectively, be improved by adding in information about school1121

districts –to address clustering of house price error in parts of big cities – or location – to help1122

identify large areas of high elevation such as the Rocky Mountains. We recognize that there ex-1123

ists substantial room for task-specific model performance, which we leave for future research.1124

Further, discontinuities in the error structure over political boundaries can help identify incon-1125

sistency in label quality. For example, the sharp increase in road length prediction error moving1126

across the border from Louisiana to Texas suggests that the raw data labeling in these two states1127

may differ methodologically, which introduces error into the label, and in turn, the model.1128
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Figure S9: Labels and prediction errors over space for each task. Left maps: ∼80,000
observations used for training and validation, aggregated up to 20km x 20km cells for display
(precise number of observations varies by task based on data availability; see Section S.3.5).
Right maps: prediction errors from concatenated validation set estimates from 5-fold cross-
validation for the same ∼80,000 grid cells, identically aggregated for display.
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S.3.7 Altering the number of features and training set size1129

To better understand factors that could improve the primary model, we test the sensitivity of1130

its performance to the number of features and the training set size (results shown in Fig. 3 in1131

the main text). Understanding the returns to additional features and observations enables better1132

optimization of model performance given cost constraints.1133

Since features in MOSAIKS are generated randomly, there is no theoretical reason to select a1134

specific number of features. To test the sensitivity of the primary model performance to the num-1135

ber of features, we train a model identically to our primary specification (Section S.3.5) except1136

that we vary the number of features across the values {100, 200, 500, 1000, 2000, 4096, 8192}1137

(Fig. 3A). For each set of features and each task, we conduct 5-fold cross-validation to recover1138

the optimal hyperparameter λ.1139

Notably, using only 100 features recovers a substantial amount of the variation across tasks. Of1140

the tasks, the least variation is recovered for income (R2 using 100 features is 81% of R2 using1141

8,192 features) and the most variation is retained in nighttime lights (R2 using 100 features1142

is 96% of R2 using 8,192 features). This suggests that in computation or memory-limited1143

settings, fewer features could be used with only minor losses in performance. On the other1144

hand, even with 8,192 features, performance does not fully flatten out (on a logarithmic scale).1145

This suggests that performance could be improved further by increasing the number of features1146

past K = 8, 192. At the limit of our testing, a doubling of K from 4, 096 to 8, 192 led to1147

a largest performance increase of 0.026 R2 for income and a smallest of 0.010 R2 for forest1148

cover.1149

To test the sensitivity of primary model performance to the number of training samples, we train1150

a model identical to our primary specification (with 8,192 features) except with a varying size1151
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of training set (from 500 to 64,000 images) (Fig. 3A).21 In cases where the training set has fewer1152

than 64,000 total observations due to missing data (e.g. population density, income, road length1153

and housing price), we use the full training data set to construct our largest training sample.1154

Similarly to increasing the number of features, increasing the training set size increases model1155

performance with diminishing marginal returns. Notably, models trained on only 500 obser-1156

vations recover at minimum 56% (road length) of performance relative to N = 64, 000 and1157

at maximum 87% (forest cover), excluding income and housing price, which require larger1158

samples to attain performance. This suggests that, for all but the most difficult SIML tasks,1159

MOSAIKS may be useful even when label collection is very costly. For the tasks with the1160

best R2 performance (forest cover, nighttime lights), performance plateaus out as the number of1161

training observations approaches 64, 000. However, for the remaining five tasks, these results1162

show that more training data could substantially increase performance further. The range of1163

performance gain from increasing N = 32, 000 to 64, 000 is bounded below by forest cover1164

(.005 R2) and above by road length (.027 R2).1165

S.3.8 Testing generalizability across space and comparison to kernel-based1166

interpolation.1167

To understand the ability of our model to predict outcomes in large contiguous regions with no1168

ground truth, we design an experiment where we evaluate models using training and validation1169

sets that are increasingly far away from each other in space. Specifically, we iteratively create1170

a grid over the US with a side length of δ degrees and then use this grid to divide the training1171

and validation dataset (N = 80, 000) into spatially disjoint sets of roughly equal size. We1172

create these disjoint sets by assigning observations that lie in every other box within the grid1173

to the train set and test set, respectively, creating a checkerboard pattern with the train set and1174

21The same per-fold validation sets are used for each iteration of this analysis as well as for the primary analysis
and for the test of model performance sensitivity to the number of features.
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Figure S10: Illustration of the procedure to systematically shift train and validation sets
in space when assessing the performance of MOSAIKSover regions with no ground-truth
data. To assess the ability of MOSAIKS to generate meaningful predictions when extrapolat-
ing across large spatial distances, we conduct a “checkerboard” experiment (Section S.3.8, Fig.
3B-C of the main text) in which the training set (“black squares”) and validation set (“white
squares”) are separated by increasingly large distances. The length of a square in each exper-
iment is δ, measured in degrees. This figure demonstrates the four different train/validation
splits that are created by shifting a given spatial checkerboard (split 1) by δ/2 to the right (split
2), δ/2 up (split 3), and both simultaneously (split 4).

test set, as shown in Fig. 3B. We vary the width δ of each square in the grid range across the1175

values of {0.5, 1.5, 2, 4, 6, 8, 10, 12, 14, 16} degrees (roughly 40 to 1400 km) in sequential runs1176

of the experiment. As δ increases, validation set observations become on average farther away1177

from the training set points. This distance makes prediction on the validation set more difficult,1178

because observations in the validation set are now likely to be less similar to those in the training1179

set. We learn the model on the training set using ridge regression. To assess the stability of this1180

performance, we offset the checkerboard and re-run the above analysis four times – once in1181

the original location and then three more times – shifting the grid up, right, and both up and1182

right by half the width of the grid (see Fig. S10). The `2 regularization term, λ, is selected to1183
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maximize average performance in the four validation sets, as we would select in in a standard1184

cross-validation procedure.1185

The performance plotted in Fig. 3C is the performance on the the resulting validation sets.1186

We find that across most tasks, performance degrades only slightly as the distance between1187

training observations and testing observations increases. This suggests that MOSAIKS is indeed1188

learning image-label mappings that transfer across spatial regions.1189

Comparison of MOSAIKS to kernel-based spatial interpolation In these experiments we1190

demonstrate that MOSAIKS outperforms spatial interpolation (or extrapolation, depending on1191

geometry) – a commonly used simple technique to fill in missing data (Fig. 3C). This suggests1192

that MOSAIKS, and SIML generally, exploits the spectral and structural content of informa-1193

tion within an image to generate predictions at national scale that extend beyond what can be1194

captured by geographic location alone.1195

We compare MOSAIKSto kernel-based spatial interpolation using a Gaussian Radial Basis1196

Function (RBF) kernel, a simple and general widely used approach. In this approach, the value1197

for a point in the validation set at location `v ∈ R2 is predicted to be a weighted sum of the1198

values of all the points in the training set `t, as follows:1199

ŷsv =

∑
`t∈[Train]

ystw(`t, `v)∑
`t∈[Train]

w(`t, `v)
; w(`t, `v) = e−

1
2σ2
‖`t−`v‖2

Here, w is the weight assigned to each observation in the training set based on kernel values that1200

are indexed to distance, such that w decreases as the distance between the point being predicted1201

and the point in the training set increases. We select σ – the parameter that determines the1202

rate at which w degrades with distance – to maximize average performance on the validation1203
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set across all four spatially-offset runs, similar to how we tune λ in the spatial extrapolation1204

experiment described above. The optimal value of the bandwidth parameter σ will depend on1205

the task at hand, as well as the average distance from points in the validation set to points in the1206

training set. To ensure comparability, spatial interpolation based predictions and performance1207

are computed for the exact same samples as used for MOSAIKS in each checkerboard partition.1208

S.3.9 Label super-resolution1209

As discussed in the methods summary, the featurization method in MOSAIKS exploits the1210

fact that many image-level outcomes of interest are linearly decomposable across sub-image1211

regions. This is done by creating image-level features that are averages of statistics from all1212

sub-image regions. Because these features are ultimately used in linear regression, a natural1213

property of this approach is that weights estimated in this linear regression can be used not1214

only to generate predictions of outcome variables at the image-scale, but also at the scale of1215

any sub-image region. As satellite imagery are available at increasingly high spatial resolution,1216

this “label super-resolution” property is both practical and powerful, enabling researchers to1217

generate novel predictions at higher resolution than available ground truth data.1218

This section gives mathematical justification for a simple method to use MOSAIKS to predict1219

outcomes of interest at a finer resolution than available labeled data. We display the label1220

super-resolution properties of MOSAIKS visually, and quantitatively document the empirical1221

performance of this label super-resolution approach.1222

Why MOSAIKS naturally achieves super-resolution for label predictions Given an image-

label pair {I`, ys`}, the goal of label super-resolution is to resolve which sub-regions of the image

I` contribute to high or low values of ys` . Recall that for image I`, feature vector x(I`) is a K

dimensional vector, where each scalar element xk(I`) of x(I`) is an average across the pixels of

the image of the values obtained by convolving sub-regions of the image with patch Pk. As in
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Section S.3.3, denote by X the full random feature matrix in RN×K , so that X`k denotes the kth

element of the feature vector describing image I`. By Eq. (1), we can decompose the feature

elements as:

X`k := xk(I`) =
1

2542

254∑
i=1

254∑
j=1

Ak(I`)[i, j]

where Ak is the activation map associated with patch Pk. Since we are using a linear model

to form predicted values, we can trace these values back to subregions of the original image.

When we perform a linear regression for task s, the resulting regression weights are a vector

β̂s ∈ RK such that the scalar β̂sk describes the relative weight of feature k in the image-scale

predictions. The prediction of outcome s using image I` thus decomposes as:

ŷs` = X`β̂
s

=
K∑
k=1

X`k · β̂sk

=
K∑
k=1

(
1

2542

254∑
i=1

254∑
j=1

Ak(I`)[i, j]

)
· β̂sk

=
1

2542

254∑
i=1

254∑
j=1

(
K∑
k=1

β̂sk · (Ak(I`)[i, j])

)
︸ ︷︷ ︸

super-resolution prediction

where the third line follows from substituting X`k according to Eq. (1). Therefore, we can

associate with each pixel indexed by (i, j) a predicted super-resolution value:

ŷs`,(i,j) =
K∑
k=1

β̂sk · (Ak(I`)[i, j]) (4)

which is that pixel’s predicted label value, and thus its contribution to the overall predicted1223

image-level label value ŷ` for I`. We use a Gaussian filter to smooth these per-pixel predictions1224

to enforce spatial consistency and reduce variance of the high-resolution predictions, using a1225
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kernel bandwidth of σ = 16 pixels. These smoothed pixel-level predictions can be average-1226

pooled to larger sub-image scales as shown in Fig. 4C. The procedure to construct label super-1227

resolution predictions, and a comparison to the procedure to construct image-level predictions,1228

is illustrated in Fig. S11.1229

Fig. S12 demonstrates empirical performance of Eq. (4) using ten examples of this approach1230

at label super-resolutions on both the forest cover and population density outcomes. The ten1231

images were randomly selected from the union of observations with forest cover > 10% and1232

population density > 100 people/km2 to ensure that all images considered had a non-negligible1233

value for each variable.22
1234

In our formulation, super-resolution label predictions are easily estimable during featurization.

Consider again the per-pixel contributions of Eq. (4). An alternative way to express this is

ŷs`,(i,j) =

(
K∑
k=1

β̂sk ·Ak(I`)

)
[i, j]

That is, label super-resolution estimates are just a linear combination of the activation maps1235

Ak(I`) weighted by β̂sk (see Fig. S11). Every time we featurize a new image I′`, we must1236

perform the step of computing the K activation maps {Ak(I
′
`)}Kk=1 (Fig. S5 D). Therefore, if1237

we already have a suitable regression weight vector β̂s for task s, for any new images I′` that we1238

featurize, we can compute the label super-resolution predictions
∑K

k=1 β̂
s
k ·Ak(I`) as weighted1239

combinations of the activation maps at negligible additional cost, prior to pooling, in the existing1240

featurization pipeline.1241

22To ensure that weights decomposed as a sum, as in Eq. (4), we used level values (i.e. not log-transformed) for
population density labels in Fig. S12.
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Figure S11: Illustration of the procedure to construct predictions at image resolution and
label super-resolution. Panel A illustrates the standard MOSAIKS prediction pipeline. After
convolution with random patches, nonlinear activation maps Ak(I`) are averaged across images
to construct a set of image-level features xk(I`) used in linear regression to generate predictions
at image-scale (Section S.3.3). Panel B illustrates how the weights trained using labels and
features at image-scale in panel A can be used to generate predictions at resolutions higher than
the images and labeled data, achieving predictions at label super-resolution. The scalar product
of the entire activation map Ak(I`) and the estimated weights vector β̂ generates label super-
resolution predictions at any desired sub-image scale larger than pixel-level. The last column
of panel B illustrates the fact that label super-resolution predictions, when averaged across an
image, are identical to predictions generated from the standard process in panel A.
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Figure S13: Systematic evaluation of within-image R2 recovered in the forest cover task.

Evaluating label super-resolution performance1242

To systematically evaluate the ability of MOSAIKS to accurately predict outcome labels at1243

super-resolution, we evaluate the within-image label variation that MOSAIKS’s label super-1244

resolution predictions accurately explain. We use forest cover for this test because the raw label1245

resolution is substantially finer than the grid cell used to construct labels (see Section S.3.1 and1246

Fig. S4), so we are able to attach “true” labels to super-resolution predictions within each image.1247

In our main analysis, we construct grid cell forest cover labels by averaging fine-resolution raw1248

forest cover data (see Section S.3.2). Here we leverage the fine resolution of the raw data to1249

compare label super-resolution performance of a model trained on aggregated labels but tested1250

on high-resolution raw forest cover data.1251

Specifically, we learn regression weights β̂s using a ridge regression applied to image-level1252

labels from the full U.S. UAR sample (N = 100, 000). We do so for multiple regularization1253

parameters, λ, then make label super-resolution predictions on a “validation” set of 1,000 im-1254

ages23. We use the R2 score for 32x downscaled predictions (32x32 predictions per image) to1255

23Note that none of the pixel-level values in this validation set are used in the ridge regression, but the corre-
sponding image-level labels are in-sample.
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choose optimal values for λ and σ (the Gaussian filter length scale).24 Next, we use the weights1256

derived from our image-level ridge regression, along with the corresponding optimal λ and σ,1257

to make label super-resolution predictions for 16,000 additional images drawn randomly from1258

the full set of 100,000 (excluding the 1,000 used for choosing hyperparameters). Lastly, we1259

aggregate these pixel-level predictions to coarser sub-image scales, where increasing aggrega-1260

tion (lower label super-resolution factor) reduces noise in the predictions at the cost of lower1261

resolution.1262

We assess the performance of label super-resolution at a variety of scales by calculating the1263

percent of the variance of the raw within-image forest cover labels that can be explained by1264

the super-resolution label predictions at each scale. For example, to assess the performance1265

of 2 × 2 label super-resolution predictions, we average predictions from the 254 × 254 label1266

super-resolution predictions by quadrants, resulting in four predicted values (twice the original1267

resolution).25 We perform the same per-quadrant average for the raw fine-resolution forest cover1268

labels. We demean both the within-image predictions and labels to eliminate across-image1269

variation, thereby focusing this test on the ability of the predictions to explain residual within-1270

image variation. We then concatenate these within-image predictions and labels across the1271

N = 16, 000 images, so that the resulting R2 value reported is the percent of super-resolution1272

label variance explained by label super-resolution predictions, across 64, 000 = 16, 000 · 22
1273

label-prediction pairs.1274

The resulting performance of label super-resolution predictions at different scales is shown in1275

Fig. S13 for width scales of 2 × 2, 4 × 4, 8 × 8, 16 × 16, and 32 × 32. We test up to w = 321276

because the native width of the forest cover labels (∼ 30m) is just under 1/32 the width of the1277

24The optimal λ = 1e5 is higher than that chosen to optimize image-level predictions (Fig. 2), likely due to
increased noise in sub-image predictions.

25For the analysis, we clip the images and predictions to 224 x 224 pixels so they are evenly divisible by a 32x
super-resolution factor.
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original image (∼ 1km). Label super-resolution predictions are trained only on the aggregate1278

label at the image-level. Nonetheless, as Fig. S13 shows, we are able to explain over 50% of1279

the within-image label variations at 2× 2 super-resolution, and over 30% of the variation using1280

32× 32 super-resolution grids.1281

Comparisons to other within-image prediction algorithms The derivation leading to Eq. (4)1282

has a very similar form to the derivation of class activation mapping in (59). Similar to our goal1283

of label super-resolution, class activation mapping identifies image sub-regions that contribute1284

to the overall prediction for that image. Class activation mapping usually refers to finding1285

discriminative regions of an image that help explain a binary classification decision; we differ1286

from this in our objective of predicting regression values at finer-resolution than the image-1287

sized labels. We use the term “label super-resolution” (also used in (34)) to further distinguish1288

our approach from image super-resolution methods in image processing and microscopy, which1289

increase the resolution of the image itself, rather than the associated labels.1290

A approach to MOSAIKS’s label super-resolution predictions are methods specifically designed1291

for pixel-level classification, or semantic labelling of satellite imagery (60,61). However, these1292

approaches make use of sub-image labels for training, as opposed to our setting, where only one1293

label per image (per task) is provided. For example, (34) studies the case of weakly supervised1294

image segmentation, predicting land cover at finer resolution than the provided labels, which are1295

already at sub-image resolution. Some such semantic labelling approaches use a downsample-1296

then-upsample approach inspired by auto-encoders (62) to learn lower-dimensional latent rep-1297

resentations which are then up sampled to image-size prediction maps from which per-pixel1298

classifications can be made. The upsampling procedure introduces more parameters to be tuned1299

during model training, as well as additional computational cost in producing predictions. We1300

again contrast this complex machinery with the simplicity of MOSAIKS ’s approach, which1301
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calculates label super-resolution predictions as a weighted sum of activation maps.1302

Conditions where label super-resolution is most easily interpretable The linear decompo-1303

sition of Eq. (4) holds when using labels that represent the average or sum of values within a1304

grid cell, such as forest cover, elevation, population density, nighttime lights, income, or road1305

length. However, it does not hold exactly when values are transformed nonlinearly after aggre-1306

gation (e.g. log(
∑
y) 6=

∑
log(y)).26 In these cases, the interpretation of label super-resolution1307

estimates requires care. Another case in which the interpretation of the sub-image predictions is1308

difficult is when an image-level characteristic is not directly the sum of sub-image parcels. For1309

instance, when predicting mean housing price in a grid cell, a manicured park might contribute1310

to a higher value, yet that component of the image does not, in itself, have any associated hous-1311

ing price. In this case, we we would interpret the sub-image predictions as “contributions to1312

grid cell mean housing price” (similar to the class activation maps of (59)) rather than the more1313

natural interpretation as simply “a finer resolution prediction of housing price.”1314

S.3.10 Global model1315

For our global analysis, we create a global grid, composed of roughly 420 million cells just1316

over 1km2 in size, using an identical structure to that described in Section S.3.1 for the US.1317

To obtain observations for our global analysis, we sub-sample 1,000,000 cells from this grid,1318

sampling UAR from non-marine grid cells. This relatively sparse sampling of global data is due1319

to the cost of obtaining imagery data.1320

One of the difficulties in sub-sampling from the global grid is that there are many grid cells1321

where no Google imagery is available (there are negligibly few missing images in the US grid).1322

After discarding grid cells with missing imagery from our original sample of 1,000,000 obser-1323

26This issue could be addressed – in the case of logged variables – if one obtained a geometric mean image-level
outcome rather than an arithmetic mean.
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Figure S14: Continent samples used to solve four tasks at global scale. MOSAIKS pre-
dictions at global scale are generated from six separate cross-validated ridge regressions using
random convolutional features. Each continent model is trained on 80% of the sample size
shown (N ).

vations, we are left with N = 498, 063 valid observations. After removing observations for1324

which labeled data are missing for any of the tasks we analyze at global scale (forest cover, el-1325

evation, population density, and nighttime lights), we are left with N = 423, 476 observations,1326

which we use to train/validate (80%, N = 338, 781) and test (20% N = 84, 692) the model.1327

When generating features (K = 2, 048) for our global model, we conduct featurization as de-1328

scribed in Section S.3.3. Note that to create the global features we use patches drawn randomly1329

from the global sample of images, not just from within the US.1330

When training the global model, we follow the approach outlined in Sec. S.3.5, solving for grid1331

cell labels as a linear function of the random convolutional features using ridge regression and1332

cross-validation to tune the regularization parameter λ. However, recovered regression weights1333

are likely to differ across regions of the globe due to heterogeneity in image quality and in1334

visual signal of task labels or their derivatives. Therefore, we divide our global sample into six1335

continental regions before solving each task. The continents (and sample sizes used for training1336

and testing each continent-specific model) are shown in Fig. S14.1337
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Modeling heterogeneity using the continents shown in Figure S14 leads to meaningful gains1338

in performance over ignoring continent effects. As shown in the main text, the approach ac-1339

counting for heterogeneity generates R2 values of 0.85, 0.45, 0.62, and 0.49, for forest cover,1340

elevation, population density, and nighttime lights, respectively (Fig. 4). In contrast, a global1341

model that pools all observations across the globe and solves for a single linear function of1342

random convolutional features generates R2 values of 0.80, 0.26, 0.48, and 0.41, for the same1343

tasks.1344

S.3.11 Generalizing to other ACS variables1345

Here we demonstrate the ability of MOSAIKS to generalize rapidly across a range of new1346

variables by replicating our primary analysis (i.e. that in Fig. 2) for 12 variables from the1347

American Community Survey, the source we use in the main text to measure income across the1348

continental US. This survey is conducted annually across the US, tracking a diverse range of1349

socioeconomic outcomes, from housing information to income and education. For this exercise,1350

we select variables from the ACS that span a range of diverse outcomes and which seem likely1351

to have at least some visible signal in daytime satellite imagery. We report performance for all1352

tested variables.1353

We calculate grid cell level labels from census block group level ACS data using the the same1354

method used for ACS income label construction outlined in Sec. S.3.2. The resulting labels rep-1355

resent the area-weighted average value of the outcome across the grid cell. The ACS variables1356

we predict are listed and described in Table S4.1357

Patterns in performance across tasks could be explained by the hypothesis that some outcomes1358

exhibit more visible features, such as age and value of housing, while other outcomes exhibit1359

less clear visible signal, such as the percent of household income dedicated to rent.1360
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This exercise shows the ease of generalizing MOSAIKS to new contexts. In total, training these1361

twelve predictive models took less than 45 minutes on a workstation with ten cores (IntelXeon1362

CPU E5-263) (Table S8). Given the similarity in performance between MOSAIKS and other1363

state of the art approaches documented in Sec. S.4.1, MOSAIKS offers a relatively quick and1364

easy way to determine how predictable a variable might be from high resolution visible satellite1365

imagery.1366

S.4 Comparisons to other models1367

Here, we compare the predictive performance and computational cost of MOSAIKS to other1368

approaches in the literature.1369

S.4.1 Benchmarking performance1370

Convolutional neural networks (CNNs) have become the default “gold standard” in many im-1371

age recognition tasks (63), and are increasingly used in remote sensing applications (4, 61, 64,1372

42,5,11,12,65,66,67). Simultaneously, alternative generalizable and computationally efficient1373

pipelines have been developed that incorporate unsupervised featurization and/or a classifica-1374

tion or regression algorithm (68, 10, 11, 3, 44). MOSAIKS is low-cost and generalizable like1375

these latter models; however, unlike these other models, it offers accuracies for regression1376

problems competitive with that of leading CNN architectures. Here we quantitatively assess1377

the predictive performance of MOSAIKS relative to (a) a CNN trained end-to-end with the1378

outcomes of interest, (b) a similarly cheap, unsupervised featurization used in place of random1379

convolutional features in the MOSAIKS infrastructure and (c) a transfer learning approach. For1380

(b), we use the features generated by the last hidden layer of a pre-trained variant of the CNN1381

(trained on natural imagery). This common approach is unsupervised in that the weights of1382

the CNN are not trained using the labels of the outcome of interest, and such an approach has1383
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Name Code Description
Travel time to work B08303 “Travel time (minutes) to work refers to the total number of

minutes that it usually took the worker to get from home to
work during the reference week. The elapsed time includes time
spent waiting for public transportation, picking up passengers in
carpools, and time spent in other activities related to getting to
work.”

Percent Bachelor’s
Degree

B15003 Calculated as the number of people over 25 with only bache-
lor’s degrees (i.e. not masters or doctorate) divided by the total
number of people over 25.

Median Household
Income

B19013 Median household income in the past 12 Months (2015
inflation-adjusted dollars)

Per Capita Income B19301 Per capita income in the Past 12 Months (2015 inflation-adjusted
dollars)

Percent below
poverty level

C17002 Calculated as the number of people 15 years or older whose in-
come fell below the poverty level divided by the total number of
people 15 years or older.

Percent food
stamp/snap

B22010 Percent household received food stamps/snap in the past 12
months.

Median income B25071 Gross rent as a percentage of household income in the past 12
months (dollars)

Number of housing
units

B25001 “A housing unit may be a house, an apartment, a mobile home,
a group of rooms or a single room that is occupied (or, if va-
cant, intended for occupancy) as separate living quarters. Sep-
arate living quarters are those in which the occupants live sepa-
rately from any other individuals in the building and which have
direct access from outside the building or through a common
hall. Both occupied and vacant housing units are included in
the housing unit inventory. Boats, recreational vehicles (RVs),
vans, tents, railroad cars, and the like are included only if they
are occupied as someone’s current place of residence.”

Percent vacant B25002 “A housing unit is vacant if no one is living in it at the time of
interview.”

Structure age B25035 Data reported is the median year structure built. We calculate
structure age as 2015 – median year structure built.

Number of rooms B25017 “For each unit, rooms include living rooms, dining rooms,
kitchens, bedrooms, finished recreation rooms, enclosed
porches suitable for year-round use, and lodger’s rooms. Ex-
cluded are strip or pullman kitchens, bathrooms, open porches,
balconies, halls or foyers, half-rooms, utility rooms, unfinished
attics or basements, or other unfinished space used for storage.”

Median house
value

B25077 For owner-occupied housing units.

Table S4: Description of variables from the American Community Survey (ACS) used in the analysis (Fig.
4). Quoted descriptions of variables are from: https://censusreporter.org/topics/table-codes/.
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been shown to have better predictive performance than many other unsupervised featurization1384

algorithms (e.g. GIST, SIFT, Bag of Visual Words) on satellite image tasks (68). Previous1385

analyses show through direct comparison that our methodology significantly outperforms ridge1386

regression models using GIST features (69). Fig S15 (reproduced from (69)) demonstrates this1387

comparison, describing out-of-sample performance for the prediction of housing price class for1388

homes in Arizona.1389
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Figure S15: Comparison of out-of-sample performance across feature extraction tech-
niques as a function of sample size. Mean Average Precision is shown for the out-of-sample
prediction of housing price class (low, medium, high) for all single-family home sales after
2010 in Arizona, as a function of training sample size. Three feature extraction techniques
are compared: MOSAIKS(blue), a pre-trained CNN (VGG, purple), and the GIST descriptor
(orange). Figure reproduced from (69).

These exercises compare MOSAIKS performance to that of models suited to the data availabil-1390

ity of different prediction domains (abundant within the U.S., and relatively scarce at dispersed1391

locations globally). A fine tuned CNN is expected to perform well in the United States, where1392

data are relatively high quality and the sample size is large (nearly a hundred thousand observa-1393

tions); whereas the transfer learning approach is designed to perform well in regions where the1394
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training data are more coarse and the sample sizes are smaller (hundreds of observations). The1395

ability of MOSAIKS to perform on par with these approaches in each setting demonstrates its1396

generalizability.1397

Comparison to a deep convolutional neural network and an alternative unsupervised fea-1398

turization First, we compare the performance of MOSAIKS to that of a tuned Residual Net-1399

work (ResNet) (21) – a common, versatile deep network architecture used in recent satellite-1400

based learning tasks (42). We train this network end to end to predict outcomes in all seven1401

tasks across the continental US, using as input the same imagery used by MOSAIKS.1402

Specifically, we train an 18-layer variant of the ResNet Architecture pre-trained on ImageNet1403

using stochastic gradient descent to minimize the mean squared error (MSE) between the pre-1404

dictions and labels with an initial learning rate of 0.001 with a single decay milestone at 101405

epochs, and momentum parameter of 0.9. We train the model for 50 epochs, at which point1406

performance approaches an asymptote. The optimal values for learning rates were tuned on a1407

validation set for the task of predicting population density. We employ a standard train/test split1408

of 80%/20%, matching our approach when evaluating MOSAIKS.1409

Second, we compare MOSAIKS performance to a similarly cheap, unsupervised featurization1410

generated by the last hidden layer of a pre-trained variant of the CNN used above, trained on1411

natural imagery. To execute this comparison, we use the features from the last layer of a 152-1412

layer variant of the ResNet Architecture, and then run ridge regression on these features for1413

each task.1414

1415

Table S5 compares the holdout accuracy of MOSAIKS to both alternative approaches, demon-1416

strating that MOSAIKS (first column) achieves performance competitive with the ResNet (sec-1417
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MOSAIKS ResNet-18 Pre-trained CNN
Task R2 R2 R2

Forest cover 0.91 0.94 0.66
Elevation 0.68 0.80 0.32
Population density 0.72 0.80 0.29
Nighttime lights 0.85 0.89 0.48
Income 0.45 0.47 0.07
Road length 0.53 0.58 0.16
Housing price 0.52 0.50 0.01

Table S5: Comparison of model performance between MOSAIKS, a fine-tuned ResNet-18
and a pre-trained ResNet-152. Task-specific MOSAIKS test-set performance (first column) in
contrast to: an 18-layer variant of the ResNet Architecture (ResNet- 18) trained end-to-end for
each task (second column); an unsupervised featurization using the last hidden layer of a 152-
layer ResNet variant pre-trained on natural imagery and applied using ridge regression (third
column).

ond column) across all seven tasks, while providing substantially greater performance than ridge1418

regression run on features from the pre-trained CNN (third column). These results are shown1419

visually in Fig. 3A in the main text.1420

Comparison to a transfer learning approach We also compare the performance of MO-1421

SAIKS to that of a transfer learning approach in which nighttime lights observations are used to1422

tune a CNN that was pre-trained on ImageNet. The tuned CNN is then used to extract features1423

from the satellite images and a linear model is trained to predict the outcome of interest. This1424

approach leverages a large number of nighttime lights observations to better learn how to extract1425

information from satellite imagery that is meaningful to tasks that may be reflected in nighttime1426

lights (e.g. wealth). Comparing the performance of MOSAIKS to that of transfer learning tests1427

the value of learning these features from nighttime lights, relative to the unsupervised featuriza-1428

tion of MOSAIKS.1429

We compare the performance of MOSAIKS to the transfer learning approach by replicating a1430
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subset of the analyses in (4) and (13). Using MOSAIKS, we predict wealth, electricity, mo-1431

bile phone ownership, education, bed net count, female body mass index, water access, and1432

hemoglobin level in Haiti, Nepal and Rwanda; we additionally predict child weight percentile,1433

child height percentile and child weight for height percentile in Rwanda. These variables are1434

recorded at geo-located “cluster” locations by the Demographic and Health Survey (DHS); the1435

survey methodology is detailed in (4). The variables and countries we provide performance1436

metrics for were chosen based on the facility of obtaining and matching images and labels1437

from the original authors and their replication code bases. We report performance for all tested1438

variables and countries.1439

In this analysis, we use two MOSAIKS-based models to predict the DHS cluster labels. First,1440

we use only the MOSAIKS random convolutional features (indicated as RCF), which we cal-1441

culate for each image as detailed in Sec. S.3.3, and then average over the 100 images associated1442

with each DHS cluster (see (4) and (13) for details on matching images to clusters; we use1443

the same matching approach as the original authors). In a second model, denoted MOSAIKS-1444

NL below, we use the MOSAIKS random convolutional features along with features based on1445

nighttime lights. The nighttime light features for each cluster are counts of the number of night-1446

light values that fall within a set of 19 bins, as well as the minimum, mean and maximum of1447

the values within the image. Bins were evenly spaced on a log scale from a luminosity of 0.11448

to 500 (in units of nanoWatts/cm2/sr). We average nighttime light features for all 100 images1449

associated with each DHS cluster, as we do for RCF.1450

We show results for the MOSAIKS-nighttime lights model for two reasons. First, it presents1451

the most fair comparison to the transfer learning approach, which also leverages both nighttime1452

lights and daytime imagery. Second, it demonstrates the ability of MOSAIKS to seamlessly1453

combine information from different sensors – by appending their features in a linear model – to1454
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make predictions.1455

Training a model that uses features from multiple sensors A key benefit of the MOSAIKS

approach is that it can easily combine information from multiple sensors. Recall that to train a

model when using only the RCF from visual imagery we regress the outcome ys` for each task s

on features x` as follows:

ys` = x(I`)β
s + εs`

And solve for βs by minimizing the sum of squared errors plus an l2 regularization term:

min
βs

1

2
||ys` − x(I`)β

s||22 +
λs

2
||βs||22

To include features from an additional sensor, S`, such as nighttime lights, one simply generates

a new set of features, z(S`), – using the RCF algorithm or any other unsupervised featurization

approach – and includes the features in the regression model, giving:

ys` = x(I`)β
s + z(S`)γ

s + εs`

Then, one solves for βs and γs by minimizing the sum of squared errors plus individual regu-

larization terms for each sensor:

min
βs,γs

1

2
||ys` − x(I`)β

s − z(S`)γ
s||22 +

λs1
2
||βs||22 +

λs2
2
||γs||22

Regularizing the features from each sensor separately enables the model to treat features from1456

individual sensors differently, which we found improves model performance. We implement1457

a model that combines RCF and features from nighttime lights in Fig. S16. Features from1458

additional sensors could be added to the model in a similar way.1459
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Figure S16: Comparison of accuracy between MOSAIKS and a transfer learning model. Box plots (left)
show task-specific performance of MOSAIKS models (RCF in blue and RCF + nighttime lights in green) in
contrast to a transfer learning model (black). Box and whiskers show the performance over the 5 cross-validation
folds. Scatter plots (right) show the performance of MOSAIKS models, as well as a nighttime lights-only model
(orange) versus the transfer learning model performance. Each point in the scatter is the average R2 over the 5
cross-validation folds, while whiskers indicate the full range of performance across folds.
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Table S6: Comparison of accuracy between MOSAIKS and a transfer learning model. All columns report
out-of-sample mean R2 values, where averages are taken across five folds (ranges across all five folds are shown
visually in Fig. S16). Prediction methods are the same as in Fig. S16, where “Head et al.” indicates the transfer
learning model from ref. (13).
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Interpretation of test accuracy comparisons Note that the performance of these models rep-1460

resents a reasonable lower bound on potential performance; some task-specific enhancements1461

could be used to improve predictive power for each of these methods. For example, more lay-1462

ers could be added to ResNet or alternative architectures could be tested for specific tasks. In1463

the case of MOSAIKS and the pre-trained ResNet features, more flexible regression models1464

could be used to estimate the relationship between features and labels, such as increasing K,1465

using a nonlinear model, or leveraging a hurdle model in tasks with a large number of zero1466

observations. While these task-specific changes may marginally improve performance of any1467

of these approaches, prior research on similar image recognition tasks suggests further gains1468

for the ResNet are likely to be minimal (70). While the similarity of performance in Fig. 3A1469

is perhaps surprising, it is also encouraging for further research. This comparison suggests that1470

wide, shallow networks using local-level features (analogous to random convolutional features)1471

are as descriptive as more complex, highly optimized CNN architectures for satellite remote1472

sensing, across many tasks.1473

Fig. S17 provides additional evidence that MOSAIKS and the ResNet-18 CNN display very1474

similar patterns of predictability across tasks, as both the predictions (column 1) and errors1475

(column 2) from the two approaches are strongly correlated. This finding suggests that MO-1476

SAIKS and the CNN may be capturing similar characteristics of the image.1477

1478

To further investigate this hypothesis, we test the performance of a hybrid approach that com-1479

bines MOSAIKS features with features recovered from the ResNet-18 CNN. To do so, we use1480

the same ridge regression method from MOSAIKS; however, prior to running the regression,1481

we concatenate the 512 features produced by the last hidden layer of the ResNet-18 to the 8,1921482

MOSAIKS features used throughout our analysis. In the ridge regression, we apply indepen-1483
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Figure S17: Comparison of predictions and prediction errors between MOSAIKS and the
ResNet-18 CNN. The left column shows the relationship between predictions generated by
MOSAIKS (x-axis) and predictions generated by the ResNet-18 CNN (y-axis). The right col-
umn shows the relationship between prediction errors from MOSAIKS (x-axis) and prediction
errors from the CNN (y-axis). In both plots, each point indicates one grid cell (∼1km×1km)
in the holdout test set; the test set sample size is approximately 20,000 for each task, although
sample sizes vary somewhat due to data availability across tasks (Section S.3.5). ρ2 values on
each plot indicate the square of the Pearson correlation coefficient.
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MOSAIKS ResNet-18 Hybrid
Task R2 R2 R2

Forest cover 0.89 0.94 0.94
Elevation 0.68 0.80 0.81
Population density 0.71 0.81 0.81
Nighttime lights 0.85 0.89 0.90
Income 0.45 0.47 0.51
Road length 0.53 0.58 0.59
Housing price 0.53 0.49 0.58

Table S7: Comparison of performance of MOSAIKS, ResNet-18, and hybrid models on
identical test sets. Task-specific MOSAIKS test-set performance (first column) in contrast to:
an 18-layer variant of the ResNet Architecture (ResNet- 18) trained end-to-end for each task
(second column); and a hybrid model in which features produced by the last hidden layer of the
trained ResNet-18 are concatenated to MOSAIKS features and included in a ridge regression
(third column). Performance for all methods is evaluated on identical 10% test sets. The pre-
trained ResNet-152 model is not included because it exhibits substantially lower performance
(see Table S5).

dent regularization parameters for each of the two feature sets, effectively allowing the model1484

to rely more heavily on one or the other.1485

Table S7 shows support for the hypothesis that MOSAIKS and the ResNet-18 CNN reflect1486

similar image characteristics, as we find only a minimal performance gain from this hybrid1487

approach (third column) for most tasks. However, we do see greater performance gains for the1488

lowest performing tasks (income and housing price), which are also the tasks with the lowest1489

correlation between MOSAIKS and the ResNet-18 predictions (Fig. S17). Note that in Table1490

S7, performance metrics for MOSAIKS and the ResNet-18 differ slightly for some tasks when1491

compared to results in Table S5, as the test set was defined slightly differently.27
1492

27The hybrid approach relies on features defined by the ResNet-18 CNN, which was trained on 80% of the data.
However, this method but must also use a validation set to tune the ridge regression hyperparameters. For this
tuning, we extract half of the remaining 20% of the data typically used as a test set. Results are reported on the
remaining, untouched, 10%. Because this test set is slightly different than that used for the individual methods in
Table S5, performance can vary slightly. Performance of all methods shown in Table S7 are shown for the same
10% test set.
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Together, results from Fig. 3A, Fig. S17, and Table S7 are consistent with a hypothesis that both1493

MOSAIKS and the ResNet-18 CNN are approaching the limit of information that is provided by1494

satellite imagery for predicting the majority of outcomes we test. A human prediction baseline1495

has not been established for these tasks, but could provide additional insight into whether there1496

is substantial room for improvement in skill for each of these tasks. However, we suspect that in1497

some of these tasks it will be difficult for non-expert humans to match leading SIML approaches1498

(e.g. nighttime lights or housing prices).1499

S.4.2 Comparing costs1500

In practice, high computational costs can limit the use of SIML methods – especially when1501

resources are scarce, such as in government agencies of low-income countries (7) or research1502

teams and NGOs with limited budgets. Specifically designed to address this challenge, MO-1503

SAIKS scales across many research tasks by decoupling featurization from task selection,1504

model-fitting, and prediction. The computationally costly step of featurization is done cen-1505

trally on a fast computer with a graphics processing unit (GPU); individual practitioners need1506

only download the pre-computed features, merge on labels for the task they select, and run1507

regressions. Because features are created and stored by a central entity, the research commu-1508

nity makes use of a cached set of computations, reducing the overall computational burden of1509

widespread SIML and any external social costs generated by these computations (71). Addi-1510

tionally, this decoupling of task-agnostic computations from task-specific computations allows1511

practitioners to run more diagnostic analyses on their tasks, such as those presented in Fig. 3 of1512

the main text.1513

From the perspective of a user who can access pre-computed MOSAIKS features to train and1514

validate a new task, we find that MOSAIKS is ∼ 250× to 10, 000× faster than a state-of-1515

the-art neural net architecture (ResNet), depending on the computational resources available1516
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to a MOSAIKS user (Table S8). Moreover, MOSAIKS performance is competitive with the1517

ResNet on all tasks we have studied (Fig 3A). From the perspective of the entire computational1518

ecosystem, which bears the cost of image featurization in addition to model training and testing,1519

we find that MOSAIKS is 5.3× faster than the ResNet when solving a single task. The relative1520

efficiency of MOSAIKS grows with the number of tasks studied because MOSAIKS features1521

can be reused across tasks.1522

For the ResNet, the times in Table S8 reflect our wall-clock time on a single Amazon EC2 in-1523

stance for a single task, so that the time costs are similar to that of introducing a single new1524

domain ex post. For MOSAIKS, Table S8 includes wall-clock times on three different compu-1525

tational platforms, as users may have access to different resources. We show times using the1526

same GPU as we use for the ResNet comparisons, times on a local workstation with ten cores1527

(Intel Xeon CPU E5-263), and times on a standard laptop (MacBook Pro). For both ResNet1528

and MOSAIKS, we report in Table S8 model training time after using cross-validation to select1529

optimal hyperparameters. For MOSAIKS, model training time on the local workstation with1530

10 cores is ∼6.8 minutes when including cross-validation to select penalization parameters in1531

ridge regression. The ecosystem-wide costs of featurization per task shown in Table S8 de-1532

cline as MOSAIKS becomes more widely adopted, because features can be cached centrally1533

and distributed without modification to multiple users who are training and/or testing SIML in1534

common locations.1535

We considered only one CNN architecture, which we chose because of its use in previous re-1536

mote sensing applications (4). We did not attempt to innovate in neural net architectural design1537

or algorithms. While one could pursue targeted innovations in neural networks for remote sens-1538

ing, such as in ref. (65), we emphasize that our method is currently orders of magnitude faster1539

for the user than off-the-shelf fine-tuned CNN methods (Table S8), does not require a GPU for1540
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ResNet MOSAIKS
Component Time (GPU) Time
Training set featurization (N = 80k)

∼ 7.9 hours

∼ 1.2 hours (GPU)
Model training ∼ 2.8 seconds (GPU)

∼ 50 seconds (10 cores)
∼ 1.8 minutes (laptop)

Holdout set featurization (N = 20k)

∼ 40 seconds

∼18 minutes (GPU)
Holdout set prediction < 0.01 seconds (GPU)

∼ 0.1 seconds (10 cores)
∼ 0.7 seconds (laptop)

Total cost to ecosystem ∼ 7.9 hours ∼ 1.5 hours (GPU)
Total cost to user ∼ 7.9 hours ∼ 2.8 seconds (GPU)

∼ 50.1 seconds (10 cores)
∼ 1.8 minutes (laptop)

Table S8: Wall-clock times of components of MOSAIKS compared with a fine-tuned CNN.
Bold times are those that a practitioner using each method would incur (assuming MOSAIKS
users have access to a standard laptop only). Model training time includes training after tuning
for a single task for both ResNet and MOSAIKS. MOSAIKS was run using K=8,192 features.
ResNet operations were run on an Amazon EC2 p3.2xlarge instance with a Tesla V100 GPU
and 60GB of onboard RAM. Cost of computation on this machine is roughly $3/hr. MOSAIKS
operations are shown for runs on this same GPU, a local workstation with ten cores (Intel Xeon
CPU E5-263), and a standard laptop (MacBook Pro).

prediction, and achieves competitive prediction performance (Fig. 3A). There is recent work1541

that aims to train networks to learn a “common representation” that can generalize across tasks,1542

but this is a subject of ongoing research (72), requires the tasks to be known in advance, and1543

has yet to be demonstrated or evaluated at scale.1544
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