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Abstract

Using a novel data set containing all bids by all bidders for Mexican government
bonds from 2001 to 2017, we demonstrate that asymmetric information about default
risk is a key determinant of primary market bond yields. Empirically, large bidders
do not pay more for bonds than the average bidder but their bids are accepted more
frequently. We construct a model where investors may differ in wealth, risk aversion,
market power and information, and find that only heterogeneous information can
qualitatively account for these patterns. Moreover, asymmetric information about
rare disasters can quantitatively match key moments of bids and yields, both within
and across periods.
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1 Introduction

Governments frequently finance themselves by issuing sovereign bonds. In emerging
markets, these bonds usually offer a risk premium on the order of the U.S. equity pre-
mium even when accounting for default losses (Aguiar et al. (2016)). Sovereign bond
markets also experience recurring episodes during which yield spreads are elevated and
volatile for extended periods of time. The sovereign debt literature typically analyzes
these price movements by assuming competitive price determination in secondary mar-
kets. However, government finances are determined in primary markets, and primary
markets do not employ competitive pricing protocols. In this paper, we analyze the de-
terminants of sovereign bond prices by developing and empirically validating a micro-
founded model of primary markets with rich investor heterogeneity and realistic pricing
protocols. Using a new data set from Mexico, we find that asymmetric information about
default risk can qualitatively and quantitatively account for many salient features of bond
prices and bidding behavior.

The data set we construct contains primary market bids and prices for Cetes bonds in
Mexico from 2001 to 2017. Cetes are domestically-denominated zero-coupon bonds which
are sold at small face values and in large lots to a wide variety of investors. They are the
most important public debt instrument in Mexico, representing 25% of all government
securities in 2001. In our sample period, Cetes of different maturities were auctioned
weekly using a discriminatory (pay-your-bid) pricing protocol. Figure 1 shows the real
marginal price in Cetes auctions, defined by the lowest accepted price in an auction and
computed off the annual yield deflated by the yearly CPI inflation, for the four most
common maturities of 28, 91, 182 and 364 days. We are interested in understanding how
investors’ characteristics (such as their risk aversion, wealth or information) and their
bidding behavior determine the level and volatility of these marginal prices.

To this end, we collect bid-level data that includes information on the quantities and
prices bid for each investor at each auction. This allows us to document several key facts.
First, there were on average 20 bidders in each auction, with each bidder submitting an
average of three bids per auction. Second, the share of an investor’s total bids that are
accepted, which we label the in-the-money share (ITM), differs substantially across bidders.
The largest bidder at an auction has on average 86% of bids accepted. The remaining
bidders have only 33% of their bids accepted on average. Third, the largest bidders do not
overpay on average relative to the remaining bidders, where we measure overpayment
as the ratio of an investor’s average price paid to the marginal price.

The combination of the last two facts is perhaps surprising. In order to have high
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Figure 1: Marginal Prices of Cetes Bonds of Different Maturity

Graph 11/4/19, 5:34 PM

.92

.94

.96

.98

1

1.02

01
jan

20
00

01
jan

20
02

01
jan

20
04

01
jan

20
06

01
jan

20
08

01
jan

20
10

01
jan

20
12

01
jan

20
14

01
jan

20
16

01
jan

20
18

28 days 91 days
182 days 364 days

in-the-money shares, bidders must submit relatively many bids at relatively high prices.
Since bids are executed at the bid price, high in-the-money shares would therefore seem
to suggest that large investors should overpay relative to the marginal price on average.
What can account for this apparent inconsistency? And, what does it suggest about the
nature of the shocks driving primary market prices? Answering these questions is criti-
cal for understanding the fundamental determinants of government financing costs and
economic performance more broadly (Bocola (2016) documents a link between the two).

Our approach is twofold. First, we develop a theoretical framework with a realistic
discriminatory pricing protocol, rich multidimensional investor heterogeneity, and risk
aversion of the constant relative risk aversion type. Then, we use this framework to as-
sess which type of heterogeneity can qualitatively and quantitatively explain the bidding
patterns we document for Mexican primary sovereign bond markets.

Investors may submit multiple bids consisting of a bid price and a commitment to
buy a positive quantity of bonds at that price. Bid quantities must be weakly positive
but are otherwise unrestricted. The government accepts bids in descending order of price
until it obtains its required revenue (i.e., its revenue target). We introduce uncertainty
along two dimensions: a supply shock to the government’s revenue target, which can affect
marginal prices because the government must sell more bonds to raise more revenue, and
a quality shock that determines the bond’s default risk (high or low) and alters investors’
willingness to pay.
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Given this protocol, we study the Walrasian limit with a large number of bidders who
act as price-takers. This leads to the existence of a lowest-accepted price in each state of
the world, with all bids at prices above this marginal price also executed. This allows for
a clean comparison with the literature that assumes price determination in competitive
markets under uniform pricing. We refer to marginal prices associated with the good
quality shock as the high price schedule, and to those associated with the bad quality shock
as the low price schedule.

Investors may differ in terms of their fundamental characteristics, such as wealth, risk
aversion or market power, as well as in terms of their information. While all investors
are uninformed about the supply shock, there are some investors who are informed about
the realization of the quality shock, while the remainder are uninformed. Heterogeneous
information gives rise to heterogeneous bidding strategies that can be mapped to the data.

Our first main result is that it is not possible to account for the observed differences
in bidding behavior between the largest bidders and the rest by relying on fundamental
heterogeneity in the absence of asymmetric information. This is because a discriminatory-
price protocol induces strong positive co-movement between bid prices and in-the-money
shares for any source of fundamental heterogeneity. More specifically, an investor can
obtain relatively high in-the-money shares only if she offers relatively high prices, but this
directly implies that she would also overpay more on average. Since all investors face the
same price schedule when there is symmetric information, any form of heterogeneity that
induces some investors to bid more at high prices then leads to counterfactual positive
co-movement between overpayment and in-the-money shares.

In contrast, asymmetric information can account for the empirical bidding patterns.
This is because the presence of informed investors induces the winner’s curse for unin-
formed investors, whose bids at high marginal prices associated with the good quality
shock will be accepted even if the quality shock is bad. If the winner’s curse is severe,
uninformed investors optimally choose to no longer submit bids at high marginal prices,
only at low marginal prices. But given that they do not participate at high prices, they can
bid at low prices as if they were informed because all of their bids are now accepted if and
only if the realized quality shock is bad. This leads to bidding patterns where informed
bidders achieve higher average in-the-money shares because they buy both good and bad
bonds, but do not overpay relative to the marginal price because they can target bids to
the state of the world. Moreover, uninformed investors do not tend to overpay either, but
only because they opt not to participate at high marginal prices in the first place.

The winner’s curse is sufficiently strong to produce these bidding patterns only if
there are sufficiently many informed investors. If share of informed investors were small,
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price differences across quality shocks would also be small, and uninformed investors
would continue to bid at every marginal price. Hence the equilibrium bidding patterns
we document reveal that there is substantial asymmetric information in primary govern-
ment bond markets. This is perhaps surprising because it is commonly assumed that
information about a country’s finances is publicly known. What is the information that
some investors have and some others do not? Can such information explain both bidding
behavior and the aforementioned dynamic properties of marginal prices? We answer
these questions by calibrating a version of the model to Cetes data exploring the nature of
information that allow us to quantitatively match the observed bidding behavior as well
as the dynamic behavior of prices.

A critical dynamic property of Cetes marginal prices is the relatively high uncondi-
tional volatility and low conditional volatility. To account for this, we distinguish in the
model between publicly observed information, which determines a public state, and pri-
vately observed information, which leads to information heterogeneity. Public informa-
tion includes standard fundamentals, such as GDP growth or inflation, or the past week’s
auction prices. Private information pertains to information that is difficult or costly to ac-
quire, process and evaluate. Within the Mexican context, a particularly pertinent example
is knowledge of the inner workings of the government, such as the financial negotiations
that took place between Clinton and Congress over the 1995 bailout.1

To be consistent with within and across properties of prices, the calibration has to gen-
erate a large difference in bidding behavior despite low conditional price volatility. The
version of our model that best achieves this result feature a small probability of an ex-
tremely bad (black swan) event of the sort seen in Mexico during the 1990s and 1980s. The
winner’s curse allows this small probability to have a relatively large impact on unin-
formed investors’ portfolio. If, in line with the ”Peso problem” literature in asset pricing,
we assume that this low-probability bad event has not occurred in the sample period data
(which is the case in our sample), our sparse model generates results that are very close
to the data.2

1On January 30, 1995, at exactly the moment when the Mexican government was informing the Clinton
Administration that without an emergency injection of funds it would have to default, the Speaker of the
House, Newt Gingrich, was informing the Clinton Administration that the bailout bill was stalled in the
Congress. See Chun, John H. ”Post-Modern Sovereign Debt Crisis: Did Mexico Need an International
Bankruptcy Forum.” Fordham L. Rev. 64 (1995): 2647. The relevance of political uncertainty for sovereign
default in emerging markets has been also highlighted by Cuadra and Sapriza (2008).

2A peso problem refers to a circumstance in which some infrequent or unprecedented event, such as an
economic disaster, may have a substantial impact on asset prices. However, the infrequency of the event
makes it hard to estimate its empirical probability and it even may not have occurred in the time series
being considered despite affecting the assessments of the investors. See for example Rogoff (1980), Evans
(1996), Geert Bekaert and Marshall (2001), and Burnside et al. (2011).
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Taken together, our results show that investors’ bidding behavior is qualitatively con-
sistent with the data only if there is asymmetric information, and quantitatively consistent
with the data only if there is asymmetric information about infrequent and large crises.
This result has important implications for government finances, as the level of asymmetric
information that is consistent with bidding patterns in our data also leads to substantially
higher bond yields relative to a counterfactual with identical fundamentals but symmet-
ric information. Specifically, we show that symmetric information about black swan events
would lower sovereign bond yields because more investors would be willing to submit
bids at high prices; while symmetric ignorance would also reduce yields because investors
do not face the winner’s curse and enjoy better risk sharing.

Related Literature: Our paper fills an important gap in the sovereign debt litera-
ture, as most papers study sovereign default as the outcome of governments’ strategic
choice, but use a parsimonious model of investor optimization (see, for instance, Men-
doza and Yue (2012), Chatterjee and Eyigungor (2012), Hatchondo, Martinez, and Sosa-
Padilla (2016)). Consistent with this, the macroeconomic sovereign debt literature focuses
on competitive pricing rules under which risk-adjusted bond yields are equal to the risk-
free rate. In this literature there has been some attention to the impact of the timing of
decisions and of debt maturity in sovereign markets (see Aguiar et al. (2019)). However,
the actual mechanics of how sovereign bonds are sold in practice through auctions and
their impact on observed prices has been largely ignored. We take the opposite route, and
focus on the auction mechanics and investors choices while entirely neglecting strategic
considerations on the part of the government.3 Our paper argues that the neglected roles
of auction mechanics and information heterogeneity, and their interaction, drives primary
market prices when investors are risk averse. The nature of the information shocks we
consider (public and private, heterogeneous and common) is also consistent with the rich
literature on rare disasters and the “peso problem”.4

Methodologically, we circumvent some of the challenges that standard auction models
face in accommodating asymmetric information.5 In this context, our framework can be

3See for example Eaton and Gersovitz (1981), the review articles by Aguiar and Amador (2013) and
Aguiar et al. (2016), and the recent quantitative literature by Aguiar and Gopinath (2006), Arellano (2008),
Chatterjee and Eyigungor (2012), Bocola and Dovis (2019).

4Disaster risk has been argued to play a large role in both asset pricing and macroeconomic fluctuations.
See for example Chatterjee and Corbae (2007), Barro and Ursúa (2012) and Gourio (2012).

5For a discussion see, for instance, Biais, Bossaerts, and Rochet (2002) who characterize an optimal mech-
anism in the context of initial public offering auctions under pure common values in the presence of better
informed dealers (investment banks) and retail investors. Another example is Manzano and Vives (2020),
who study a divisible good uniform-price auction with risk neutral bidders with asymmetric dispersed
information in linear strategies.
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viewed as an auction model with three key characteristics: (i) the good being auctioned
is perfectly divisible, (ii) the number of bidders is large, and (iii) there is both uncertainty
about the good quality and its supply (or, equivalently, demand). Given these three char-
acteristics, the price-quantity strategic aspects of standard auction theory become less
relevant, and a price-taking, or Walrasian, analysis emerges as a good approximation.6

Finally, our paper is related to a recent effort to empirically document the implications
of information sharing across dealers on the revenue of governments (see Boyarchenko,
Lucca, and Veldkamp (2017)).

Section 2 describes our novel data set and establishes basic facts about bidding and
prices. In Section 3 we develop a tractable primary market model with a discriminatory
pricing protocol and rich bidder heterogeneity. In Section 4 we show that only informa-
tion asymmetry can qualitatively accommodate the empirical bidding patterns we docu-
ment. We also conduct a detailed analysis of yields under various levels of asymmetric
information, which will become useful for conducting counterfactuals. In Section 5 we
calibrate the model to match relevant moments on price dynamics and bidding behavior
in order to understand the quantitative nature and extent of asymmetric information for
the Mexican case. In this section we also empirically validate further testable implications
of the model and study counterfactual information environments. Section 6 concludes.

2 Institutional Background and Data

We study auctions of Mexican Federal Treasury Bills (Cetes), which are zero-coupon pure
discount bonds with typical maturities of 28, 91, 182 and 364 days. They are the leading
instrument in Mexican money markets and the main source of federal government fund-
ing since 1978. Since its inception, the primary market for Cetes has consisted of public
auctions, with the pricing protocols alternating between uniform and discriminatory.

Our data comes from the archives of the Mexican central bank and we are the first
to compile it. We focus on the period June 2001 to September 2017, which has three key
advantages. First, Cetes were regularly auctioned using a discriminatory-price protocol
throughout this period (a switch to a uniform-price protocol occurred on October 5, 2017).
Second, Mexico experienced relatively stable inflation and did not suffer any major crisis
during the period. Hence Cetes auctions took place on a consistent weekly schedule for

6Recent auction literature shows that price-taking arises as the number of bidders get large. An example
is Fudenberg, Mobius, and Szeidl (2007), who show that the equilibria of large double auctions with corre-
lated private values are essentially fully revealing and approximate price-taking behavior when the number
of bidders goes to infinity. Another is Reny and Perry (2006) who show a similar result when bidders have
affiliated values and prices are on a fine grid.
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all maturities.7 Finally, we were able to gather data on all bids submitted (not just those
that were executed) and all bidders.

We observe a total of 2,717 Cetes auctions. Across maturities, we observe an average of
20 bidders at each auction, with each bidder submitting an average of 3 bids per auction.
Table 1 shows summary statistics for each maturity.

Table 1: Summary Data on Cetes Auctions. 2001-2017

Maturity (days) Auctions Bidders per auction Bids per auction

28 857 19.4 59.6
91 857 19.2 64.8

182 789 17.2 60.0
364 214 17.3 66.7

2.1 Price Dynamics

As a first step, we establish a number of basic facts about Cetes price dynamics. Dur-
ing the sample period, Mexico experienced relatively stable inflation and macroeconomic
conditions. This is reflected in relatively low average yields and mild conditional volatil-
ity of marginal auction prices. (We return to this point when we discuss Peso problems).

Table 4 shows the time-series moments of marginal prices MP by maturity, defined by
the minimum bid accepted in each auction. The autocorrelation between marginal prices
at subsequent auctions is a measure of conditional uncertainty, since it partly determines
the predictability of future prices from public information.

Table 2: Time series properties of marginal prices

Maturity Avg. MP St. Dev. MP Autocorrelation MP

28 0.984 0.017 0.984
91 0.983 0.018 0.983

182 0.982 0.018 0.992
364 0.978 0.019 0.956

7All maturities except 364 days are auctioned weekly, 364 day bonds are auctioned monthly.
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Our results suggest that the unconditional uncertainty of the marginal price (its stan-
dard deviation) is much higher than the uncertainty conditional on the prior week’s auc-
tion results. To further characterize the conditional uncertainty, we run a regression of
marginal prices 28-day bonds on a constant and one lag,

p28dt = �0 + �1p
28d
t�1 + ✏t. (1)

We estimate �1 = 0.98, which implies that lagged prices are very informative.8 This is not
surprising because auctions take place every week. We also estimate R2 = 0.97, which
implies that conditional uncertainty is indeed quite low during this period. A naive in-
terpretation of this result might suggest that publicly observable prices from previous
weeks encode all relevant information for pricing bonds in the current auction. However,
we will show that even a small amount of conditional uncertainty can have significant
effects on bidding strategies and prices.

2.2 Bidding Patterns

Next we establish basic facts about bidding patterns. One drawback of our data is that
the numeric bidder identifier is auction-specific. This means that we cannot track bidders
across auctions. To uncover heterogeneous bidding behavior, we compare the bidding
behavior of the largest bidder at an auction to all other bidders, where the largest bidder
is the bidder who buys the most bonds in an auction.9

We make this distinction anticipating potential sources of heterogeneity across bid-
ders. In particular, the largest bidder would naturally stand out as (i) the wealthiest, (ii)
the one with most market power, (iii) the least risk-averse, and/or (iv) the one with the
strongest incentives (or lowest costs) to become informed. In our model, we allow for all
of these factors as potential sources of heterogeneity.

Figure 2 shows a histogram of the share of all bids that is accepted at an auction, per
bidder, aggregated across all auctions and maturities. We call this fraction of accepted
bids the in-the-money share (the ITM), and distinguish between the largest bidder and the
rest of bidders. For the largest bidder, the mode of the ITM is 1 (typically, all of their bids
are accepted), while there is much more dispersion for smaller bidders. On average, the
largest investor at a given auction has 84% of bids executed, while only 33% of remaining
bidders’ bids are executed.

What accounts for differences in in-the-money shares across bidders? One possibility
8As can be guessed from Figure 1 and Table 4, the result for other maturities is very similar.
9Our results are robust to considering the Top 2 or Top 3 bidders
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Figure 2: In the Money Shares Largest vs. Rest
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is that large bidders systematically offer higher prices than other investors. To investigate
this issue, we construct a measure of overpayment, defined as the ratio of the average
price paid (weighted by bids executed at each price) to the marginal price. Since all bids
above the marginal price are accepted, a ratio greater than one indicates that the bidder
overpaid for at least some bids. In Figure 3 we show a histogram (for all auctions and all
maturities) of the overpayment for the largest bidder and the rest of bidders. It is clear
that the distribution of overpayment is very similar for large bidders and other bidders.

This combination of high in-the-money shares for the highest bidder without con-
comitant differences in overpayment is surprising: in a pay-your bid protocol, bids are
accepted relatively frequently only if they are submitted at relatively high prices. In the
next section we construct a model that can replicate these facts by relying on asymmetric
information about default risk. The basic mechanism is that informed investors can more
effectively tailor bids to the prevailing marginal price than uninformed investors

3 A Model of the Primary Debt Market

We now construct a model of primary sovereign debt markets with bidder heterogeneity
in wealth, risk aversion, market power, and information. Our baseline model is static
and has two dates; in Section 5 we consider a repeated version to incorporate time series
information on prices. Our key theoretical result is that asymmetric information is the
only form of heterogeneity that can rationalize the bidding patterns previously discussed.
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Figure 3: Ratio between Weighted Price Paid and the Marginal Price
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3.1 Environment

There is a single period with two dates (t = 1, 2), and a single good (the numeraire).
The economy is populated by a government and a measure one of risk-averse investors.
Investors’ objective is to maximize expected utility over consumption at the end of the
period given a strictly concave flow utility function that satisfies the Inada conditions.
Each investor has wealth W in period one and cannot borrow. Investors invest their
wealth in either a risk-free bond (storage) or a risky bond offered by the government.

The government is modeled mechanically: it needs to raise a certain number of units
of the numeraire at date 1 by selling multiple units of a bond that promises repayment
at date 2. Without loss of generality and like Cetes, bonds are zero-coupon and pure
discount, offering a claim to one unit of the numeraire at date 2.

Bonds are risky in that the government may default on its promises. If the government
defaults, investors cannot recover any of their investment. Its default probability ✓ is
random and determined by an exogenous state of the world ✓ 2 {g, b}, with g < b. The
ex-ante probability of each state is f(g) and f(b) respectively, with f(g) + f(b) = 1; the
unconditional default probability is

̄ = f(g)g + f(b)b.

Since the default probability determines the expected repayment of the bond, we refer
to the realization of  as a quality shock. The bond with default probability g is a good-
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quality bond and the one with default probability b is a bad-quality bond. In our simple
one-period model, we can capture different bond maturities by the length of the period.
If we view defaults as random events that occur with some (constant) arrival rate, then
longer maturities are associated with higher values of ✓.

To generate variation in in-the-money shares, we need an additional source of uncer-
tainty. Hence we introduce a supply shock  to the government financing needs, where
 D is the total revenue that the government must raise (for example, because it needs to
roll over existing obligations) and D is a constant. We assume that the supply shock  

is discrete and lives on an arbitrarily fine discrete grid H ⌘ { 0, ..., M} with length M .
We index the supply shock by k 2 {0,M}. Without loss of generality, let  k be strictly
increasing in k and denote the probability of  k by h( k).10

We refer to s = (✓, ) as the state of the world and to the set of states by S = {g, b} ⇥

H. The cumulative distribution function over states is denoted by �. Consistent with
our mechanical modeling of the government we assume that it observes neither ✓ nor  ,
which precludes signaling by the government.

3.2 Investors

Investors may differ in their fundamental type and their information type. The fundamen-
tal type j 2 {1, 2} indexes the investor’s utility function Uj and initial wealth Wj , where
wealth differences will also allow us to capture differences in market power. For simplic-
ity, we only consider two fundamental types of equal mass at a time; thus we will either
assume investors have the same preferences but differ in their wealth, or that they have
the same wealth but differ in their preferences.

The information type i 2 {I, U} determines whether an investor is informed about the
quality shock and knows its realization (denoted by ✓⇤), or uninformed about the quality
shock and unaware of its realization. Both information types face some residual uncer-
tainty because of the supply shock  . We summarize this uncertainty by defining type-
specific set of plausible states F

i
j which collect all states that type i believes may feasibly

occur. Given the two sources of shocks, we have F
I
j = ✓⇤ ⇥ H (the supply shock is the

only source of uncertainty for informed investors) and F
U
j = S (all states are plausible for

10An alternative interpretation is that there is a demand shock which leads to a random share ⌘ of investors
not participating in buying government bonds (because of liquidity shocks or access to more favorable
investment opportunities). These demand shocks could be thought of as a correlated private value shock,
while the quality shock ✓ is a common value shock. Supply and demand shocks are largely isomorphic to
each other when taking  = 1/(1�⌘). However demand shocks somewhat complicate the analysis because
investors might update their beliefs with respect to the size of the demand shock once they know whether
that they were not personally affected. In the interest of parsimony, we therefore use supply shocks.
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uninformed investors). The share of informed investors is n 2 [0, 1], and we assume that
there is no correlation between fundamental and information types.

3.3 Pricing Protocol and Strategies

As in practice, the government sells bonds via a pay-your-bid auction protocol. A bid is
a pair {P̃ , B̃} representing a commitment to purchase B̃ units of the bond at a price P̃ ,
should the government decide to accept the bid. Each investor is free to submit as many
bids as desired at the beginning of the auction. There is no short-selling, B̃ � 0. The
government treats each bid independently, sorts all received bids from the highest to the
lowest bid price, and accepts all bids in descending price-order until it raises D in rev-
enue. We refer to the lowest accepted price in state s as the state-contingent marginal price
P (s). All bids at prices above the marginal price are accepted (they are in the money), all
bids below are rejected (they are out of the money).11 The set of marginal prices associated
with the good quality shock P (g, ·) is the high price schedule, the set marginal prices associ-
ated with the bad quality shock P (b, ·) is the low price schedule. The state-contingent yield
is

y(s) =
1� P (s)

P (s)
.

Bonds pay one unit of the numeraire after repayment and zero after default, hence the
range of possible prices is [0, 1]. A bidding strategy maps any price in [0, 1] into a weakly
positive bid quantity. Since investors have rational expectations with respect to the set
of possible marginal prices, it is without loss of generality to restrict attention to bidding
strategies that assign zero bids to any price that is not marginal in at least one state of
the world.12 Since there is a single marginal price associated with each state, we can then
equivalently define bidding strategies as functions that maps sets of states into weakly
positive bid quantitites at each state-contingent marginal price.

Definition 1. Let P (s) denote the marginal price in state s. A bidding strategy for an investor of
information type i and fundamental type j is a function B̃i

j that maps every state in the investor’s

11If there is excess demand at the marginal price, the government is assumed to ration pro-rata. While
this does not occur in the equilibrium of our model, there is some rationing in our data because prices
are restricted to a fine grid. However, the extent of rationing of the bids at the marginal price is roughly
uniformly distributed between 0 and 1, suggesting that it is not playing a key role. As rounding bids does
not add any insights, we follow the literature that assumes the set of possible bid prices is in a continuum,
as in the seminal work of Wilson (1979). For a treatment of bidders restricted bids at discrete points in a
uniform-price auction of a perfectly divisible good see Kastl (2011).

12Observe that if two states have the same marginal price, bids associated with either state are perfect
substitutes because they are accepted and rejected in the identical set of states. The precise allocation of
bids across such states is thus irrelevant.
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set of feasible states F i
j into bids consisting of quantity Bi

j(s) � 0 and bid price P (s).

Note that, while informed investors need not choose bids for any states of the world
they know will not occur (i.e, states that are not associated with the realized quality
shock), it is convenient to assume that they follow a two step procedure: they first choose
bids for all possible states S , and then discard any bids that are not associated with the
realized quality shock. This procedure allows state-contingency in bids while ensuring
that bidding strategies are well-defined for all possible states. We follow this convention
going forward.

3.4 Decision problems and equilibrium definition

To find an optimal bidding strategy, investors must forecast which bids will be accepted
in which states of the world. It is useful to conceptualize the trading protocol as consisting
of two steps: First, investors choose a bidding strategy. Second, the state of the world is
realized and the government chooses which bids to accept.

The outcome of this procedure is conveniently summarized using sets of executed bids
E
i
j(s) which collects all bids by an investor of type {i, j} that are executed in state s. Since

each bid is associated with a state-specific marginal price, the elements of executed bid
sets are states. For uninformed investors, the executed bid set includes all states with
marginal prices above the realized marginal price. For informed investors, states must
correspond to the realized quality shock and the state-specific marginal price must be
higher than the realized marginal price. This implies

E
U
j (s) ⌘ {s̃ : P (s̃) � P (s)} and E

I
j (s) ⌘ {s̃ : P (s̃) � P (s) and ✓̃ = ✓}.

The total quantity of bonds purchased in state s by an investor of information type i and
fundamental type j is then equal to

B
i
j(s) =

X

s̃2Ei
j(s)

Bi
j(s̃), (2)

and the investor’s expenditures on bonds is

X i
j(s) =

X

s̃2Ei
j(s)

P (s̃)Bi
j(s̃). (3)
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Investment in the risk-free asset in state s is then determined as the residual,

wi
j(s) = Wj �X i

j(s). (4)

The objective function of an investor is the conditional expectation of utility after default
and repayment, given the investor’s information set F i

j ,

V i
j

⇣
B̃i

j

⌘
= E✓, 

"
✓Uj

⇣
wi

j(s)
⌘
+ (1� ✓)Uj

⇣
wi

j(s) + B
i
j(s)

⌘�����F
i
j

#
, (5)

and the associated decision problem is

max
B̃i

j

V i
j

⇣
B̃i

j

⌘
s.t Bi

j(s) � 0; wi
j(s) � 0 for all s 2 S. (6)

where the constraints are the short-sale constraint on bids and the borrowing constraint.
The market clearing condition such that the government raises revenue  D in state s =

(✓, ) given share n of informed investors and share 1
2 of each fundamental type j is

 D =
1

2

X

j2{1,2}

⇣
nXI

j (s) + (1� n)XU
j

⌘
. (7)

We are now ready to state our equilibrium definition.

Definition 2 (Primary Market Equilibrium). A primary market equilibrium consists of a price
schedule P : S ! [0, 1], and bidding strategies B̃i

j : F
i
j ! RF i

j
+ for all i and j such that

1. Bidding strategies solve decision problem (6) for all types.

2. The market clearing condition (7) is satisfied for all s 2 S.

3.5 Mapping Bids to the Data

Given an equilibrium, we can map investors’ bidding strategies into model counterparts
of the data moments discussed in Section 2. This facilitates our empirical analysis.

The in-the-money share in state s is the ratio of accepted bids to submitted bids,

ITM i
j(s) =

P
s̃2Ei

j(s)
Bi

j(s̃)
P

s̃2F i
j
Bi

j(s̃)
. (8)
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The bid-weighted average price paid in state s is

AP i
j (s) =

X

s02Ei
j(s)

P (s0)Bi
j(s

0)
P

s̃2Ei
j
Bi

j(s̃)
. (9)

Overpayment ⌦i
j(s) is the ratio of the average price to marginal price

⌦i
j(s) =

AP i
j (s)

P (s)
. (10)

These quantities are observable since our data set contains submitted bids, executed bids,
and all associated prices for each investor at a given auction.

4 Equilibrium Characterization

4.1 Optimal bids and equilibrium prices

We begin by characterizing optimal bidding strategies and mapping these into equilib-
rium prices. Two preliminary observations are useful. Since preferences satisfy Inada
conditions, every investor must always invest some amount of money in the risk-free as-
set; hence, the borrowing constraint never binds. Second, the non-negativity constraint
on bids may bind for some investors in some states of the world; we use �i

j(s) to denote
the associated Lagrange multiplier.

Formulating a bidding strategy requires forming expectations about the states of the
world in which a given bid will be accepted. Hence we define acceptance sets A

i
j(s) that

collect all states in which a bid at a given marginal price P (s) is accepted. For uninformed
investors, the pay-your-bid protocol implies that a particular bid is accepted in all states
with lower marginal prices; for informed investors a bid is accepted in all states associated
with the realized quality shock which have a lower marginal price. That is,

A
U
j (s) = {s̃ : P (s̃)  P (s)} and A

I
j (s) = {s̃ : P (s̃)  P (s) and ✓̃ = ✓}.

Acceptance sets are complements of executed bid sets. The former collect all states with
marginal prices that are lower than the bid price, the latter cumulate all bids that were
submitted at higher prices and are thus executed in the current state.

Now consider the decision of an informed investor of some fundamental type j. From
the investor’s decision problem, a necessary and sufficient condition for optimality of the
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bid at marginal price P (s⇤) associated with state s⇤ = (✓⇤, ⇤) is

E 

"
X

s2AI
j (s

⇤)

�U 0
j(w

I
j (s))✓⇤P (s⇤)+U 0

j(w
I
j (s)+B

I
j (s))(1�✓⇤)(1�P (s⇤))

#
��I

j (s
⇤) = 0. (11)

Since informed investors know the quality shock, expectations are taken only with re-
spect to the supply shock  . The summation in square brackets is the difference between
marginal utility after default and after repayment, weighted by the marginal price and
default probability in all states in which a bid at P (s⇤) is accepted. While a bid at P (s⇤)

is always executed at the bid price, consumption levels are indexed by s rather than s⇤

because the realized portfolio is state-contingent.
Uninformed investors face the same basic trade-off as informed investors. The key

difference is that they face uncertainty about default probabilities and the sets of states
in which a given bid is accepted. This leads to the concern that bids on the high price
schedule are also accepted when the realized quality shock is bad. This is captured by
differences in acceptance sets AU

j (s) given a set of bids. Hence for an uninformed investor
of fundamental type j, the necessary and sufficient condition for bids at marginal price
P (s⇤) can be similarly stated as

E✓, 

"
X

s2AU
j (s⇤)

�U 0
j(w

U
j (s))✓P (s⇤)+U 0

j(w
U
j (s)+B

I
j (s))(1�✓)(1�P (s⇤))

#
��U

j (s
⇤) = 0. (12)

where expectations are taken with respect to both the quality shock and the supply shock.
We can summarize these optimality conditions by defining investor {i, j}’s expected

marginal rate of substitution across default and repayment when bidding at marginal
price P (s⇤) associated with state s⇤ given type-specific expectation operator Ei as

M i
j(s

⇤) =
Ei
✓, 

P
s2Ai

j(s
⇤) (s)U

0
j(w

i
j(s))

Ei
✓, 

P
s2Ai

j(s
⇤)(1� (s))U 0

j(w
i
j(s) + B

i
j(s))

for all s⇤ 2 S.

The numerator is the expected marginal utility of consumption after a default; the de-
nominator is the expected marginal utility of consumption in case of repayment.

This leads to the following characterization of equilibrium prices and portfolios, which
shows that bond yields satisfy asset pricing relationships that are sensitivity to the pres-
ence of informed investors.

Proposition 1. Equilibrium prices satisfy the following conditions:

(i) The marginal investor in any state is the investor with the lowest expected marginal rate of
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substitution, and yields are equal to the marginal investor’s marginal rate of substitution:

1� P (s)

P (s)
= min

i,j
M i

j(s) for all s 2 S. (13)

(ii) Prices are strictly ordered by the supply shock: P (✓, ) is strictly decreasing in  given ✓.

(iii) If there are no informed investors, there is a single price schedule: P (g, ) = P (b, ) for all
 . If there are informed investors, then P (g, ) � P (b, ) and strictly for at least one  .

(iv) The high and low price schedules converge for all interior demand shocks as n ! 0. That is,
limn!0 P (g, ) = P (b, ) for all  0 <  <  M . Hence the winner’s curse disappears if the
share of informed investors is sufficiently small and h( 0) and h( M) are sufficiently low.

Proof. We prove each statement in turn:

(i) The marginal investor is the investor with the highest marginal willingness to pay.
This is equivalent to offering the lowest marginal yield. Market clearing requires
that the marginal investor’s short-sale constraint does not bind. Pricing equation
(13) then follows directly from first-order conditions (11) and (12).

(ii) The government can raise more revenue only if at least one type of agent consumes
less after a default. Since agents have CRRA preferences, marginal utility is convex.
Hence the required risk premium must increase in  , and prices must fall.

(iii) The first part follows from the fact that uninformed bids are not state contingent.
Since (g) < (b) and informed investors can submit state-contingent bids, it is clear
that there does not exist an equilibrium where P (g, ) < P (b, ) for some  if n > 0.
We now show that we must have P (g, ) > P (b, ) for at least one  . Since there ex-
ist an equal share of informed investors of every fundamental type, at least one type
of informed investor must be marginal in every (g, ). Since the statement follows
trivially if informed investors do not bid in some state (b, ), assume that optimal
bids are interior in every state. Statements (i) and (ii) then imply that optimal bids
in state s = (✓, ) satisfy optimality condition

(✓)

1� (✓)

u0(W �
P

 0 P (✓, 0)BI(✓, 0))

u0(W �
P

 0 P (✓, 0)BI(✓, )) +
P

 0 B
I(✓, 0))

=
1� P (✓, )

P (✓, )
.

Now suppose for a contradiction that P (g, ) = P (b, ) for all  . Since uninformed
bids are not contingent on the state, market clearing then implies that XI(g, ) =
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XU(b, ) for all  . Given P (g, ) = P (b, ), then BI(g, ) = BU(b, for all  . Since
(g) < (b), the optimality condition must therefore be violated for at least one state.

(iv) By market clearing (7), limn!0

P
j2(1,2)

1
2X

U
j (✓, ) ! D for all  . As uninformed

bid unconditionally of ✓, limn!0

P
j2(1,2)

1
2X

U
j (g, ) !

P
j2(1,2)

1
2X

U
j (b, ) and then

limn!0 P (g, ) ! P (b, ). As P (g, ) is strictly decreasing in  given ✓ and n, when
n ! 0, prices must be sorted by  . That is, there is always a ✏ small enough such
that for  0

�  = ✏, i.e P (✓, ) < P (✓0, 0) < P (✓, 0). This proof does not apply at
extreme values of  , and then convergence will not happen at  =  0 and  =  M .

The first statement shows that price determination works similarly to a canonical as-
set pricing framework. In every state, bonds are priced by the covariance of payoffs with
marginal utility of the investor with the highest marginal willingness to pay. The key
difference is the pricing protocol, whereby bids are executed at the bid prices whenever
they exceed the marginal price. This leads to rich interactions in optimal bids in different
states of the world, and implies that bids at high prices affect willingness to pay in all
states with lower marginal prices. The second statement shows that we can nevertheless
partially order prices by the supply shock. This is because investors must carry more
exposure to default risk when bond supply is high, which raises the required risk pre-
mium. The third statement shows that the presence of informed investors drives a wedge
between the high and low price schedules because informed investors bid more aggres-
sively when the default probability is low. This immediately implies that uninformed
investors face the winner’s curse whenever there are informed investors because unin-
formed bids on the high quality schedule are also accepted when the bad quality shock
realizes. This discourages uninformed investors from bidding at high prices, and has im-
plications for risk sharing, average yields and equilibrium bidding patterns. The fourth
statement shows that such wedge disappears as informed investors leave the market.

While the general model is complex, simple examples provide insights into the basic
mechanics of bidding behavior, and motivates our joint analysis of heterogeneous bidders
and asymmetric information.

Example 1 (Homogeneous investors with complete information). Suppose all investors are
ex-ante symmetric, know the realized supply shock  and have common expectations about the
quality shock, with  denoting the expected default probability (if all investors are informed, then
 = ✓; if they are uninformed then  = ̄). Given these assumptions, simplify notation to P ( )

for prices and B( ) for bond purchases. For any  , the market-clearing condition is B( )P ( ) =
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 D and the first-order condition for optimal bids is

P ( )

W � B( )P ( )
=

(1� )(1� P ( ))

W +B( )(1� P ( ))
.

The bond price in state  is

P ( ) = 1� � 
 D

W �  D
. (14)

the in-the-money share is one, the average price is the marginal price, and no investor overpays

ITM( ) = 1, AP ( ) = P ( ) and ⌦( ) = 1.

In the example, investors charge a risk premium that depends on the ratio between
the per-capita debt level  D and wealth W and is proportional to the default probability
. Since every investor can correctly forecast the marginal price in every state, all bids are
in-the-money in every state, and every investor pays the same price.

The next example shows that supply uncertainty can create variation in in-the-money
shares and overpayment in some states of the world, but that these two outcomes will be
positively correlated. This is at odds with the data.

Example 2 (Homogeneous investors with supply uncertainty). Continue to assume that all
investors are ex-ante symmetric and have common expectations about the quality shock, but are
uncertain about the supply shock, which has two possible realizations,  2 { 1, 2} with  1 <  2.
We index states by 1 and 2 in parentheses, respectively.

Since investors are risk averse, marginal prices must fall when fewer investors participate in
the auction. Hence P (1) > P (2), and the market-clearing conditions in the two states are

P (1)B(1) =  1D and P (1)B(1) + P (2)B(2) =  2D.

Combining both expressions implies that expenditures at marginal price P (2) must exactly offset
the incremental supply of bonds that is not already purchased at marginal price P (1),

P (2)B(2) = ( 2 �  1)D.

Now consider in-the-money shares and prices paid. In state 1, the government rejects bids at P (2)

and all accepted bids are executed at marginal price P (1). In state 1 we then have

ITM(1) =
B(1)

B(1) +B(2)
< 1 AP (1) = P (1) ⌦(1) =

P (1)

P (1)
= 1.
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In state 2, all bids are accepted but some are executed at above marginal price P (2). We have

ITM(2) = 1, AP (2) =
B(1)P (1) +B(2)P (2)

B(1) +B(2)
> P (2) ⌦(2) =

B(1)P (1)
P (2) +B(2)

B(1) +B(2)
> 1.

Investors choose symmetric strategies, and ITM and overpayment are positively correlated.

The positive correlation between in-the-money shares and overpayment in the exam-
ple is a direct implication of the pay-your-bid protocol, but is inconsistent with the em-
pirical facts. This motivates our analysis of investor heterogeneity.13

4.2 Using heterogeneity to account for the empirical bidding patterns

In Section 2 we documented two key empirical facts: on average, the largest bidder at
an auction has a higher in-the-money share (submits higher bids in average), but does
not overpay (does not pay more in average). We have shown with the two previous
examples that these facts cannot be accounted for without investor heterogeneity. We
now investigate which forms of investor heterogeneity can do so.

4.2.1 Fundamental heterogeneity

We now consider the effects of fundamental heterogeneity due to, for example, wealth,
risk aversion, or market power, while assuming that all agents have symmetric informa-
tion. We first show a useful property of optimal bids under CRRA utility, which is that
statistics based on ratios of bids, such as in-the-money shares or average prices paid, are
invariant to wealth heterogeneity. (The result readily extends to CARA utility, but we do
not consider such preferences here.) An immediate upshot is that wealth heterogeneity
cannot account for the empirical facts we document. The result also informs our calibra-
tion strategy below.

Proposition 2 (Wealth neutrality). Suppose that all agents are symmetrically informed, have
common CRRA preferences, and differ only in their type-specific wealth Wj . Then optimal bid-
ding strategies satisfy the decomposition Bj(s) = F (Wj)�(s) for all j, where �(s) and F (·) are
independent of j. Hence in-the-money shares and average prices paid are the same for all types.

Proof. The multiplicative separability of the optimal policy function is a standard prop-
erty of CRRA utility functions. The remaining statements then follow immediately.

13In Appendix A, we also provide a numerical example along the lines of Examples 1 and 2 (with param-
eters in Definition 3 below), and show the limited role of investors’ risk aversion on bidding behavior.
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We now turn to other potential forms of fundamental heterogeneity. Our key finding
is that the pay-your-bid protocol leads to a counterfactual positive link between in-the-
money shares, average prices paid and overpayment for any form of fundamental hetero-
geneity. We restrict attention to the analytically tractable case with two possible supply
shocks, as in Example 2. This allows for a transparent discussion of the key economic
forces. We verify the robustness of these forces in our quantitative analysis.

Proposition 3 (Counterfactual implications of fundamental heterogeneity ). Let 2 { 1, 2}.
If all investors are symmetrically informed, any form of fundamental heterogeneity generates pos-
itive correlation between in-the-money shares and overpayment across investors. Hence funda-
mental heterogeneity of any form cannot generate the facts documented in Section 2.

Proof. Under symmetric information, there is a unique price schedule with two marginal
prices P (1) and P (2) < P (1). Define the ratio of type j’s bids at the marginal prices as

⇢j = Bj(1)/Bj(2).

Following Example 2, we can then derive in-the-money shares and overpayment for each
type j in each state as monotone functions of this ratio only. For state 1, we obtain

ITMj(1) =
⇢j

1 + ⇢j
and ⌦j(1) = 1,

where ITMj(1) is strictly increasing in ⇢j . In state 2, we have

ITMj(2) = 1 and ⌦(2) =
1 + ⇢j(P (1)/P (2))

1 + ⇢j
,

where ⌦j(2) is strictly increasing in ⇢j since P (1) > P (2). Hence, differences in-the-money
shares and overpayment across investors must be positively correlated on average. For-
mally, for any types j and j0 distinguished by any fundamental heterogeneity,

E[ITMj( )] > E[ITMj0( ) , E[⌦j( )] > E[⌦j0( )].

In a pay-your-bid protocol with symmetric information, an investor can have a rela-
tively large share of bids her accepted only if she submits a relatively large share of her
bids at high marginal prices. But if this implies that she will also overpay more when
the marginal price turns out to be low. Hence in-the-money shares and overpayment are
both governed by the ratio of bids ⇢j , and any form of fundamental heterogeneity that
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leads to differences in in-the-money shares must necessarily lead to co-movement with
overpayment.As we will show in the next section, this link breaks down when investors
have heterogeneous information.

4.2.2 Informational heterogeneity

We now show that heterogeneous information can break the positive association between
in-the-money shares and overpayment that arises under fundamental heterogeneity. This
allows us to match the empirical lack of correlation between in-the-money shares and
overpayment we have documented in Section 2. We establish this result by assuming
that there is no fundamental heterogeneity.

The key insight is that asymmetric information leads to distinct quality-contingent
price schedules. This allows informed investors to target bids to the realized quality shock
while uninformed investors face the winner’s curse.

The following proposition formalizes this possibility result by constructing in closed
form an example without supply shocks. The construction clarifies that heterogeneous
information is sufficient to break the positive association between in-the-money shares
and overpayment. However, the lack of supply shocks leads to counterfactual predic-
tions for informed investors’ in-the-money shares. Hence we require supply shocks and
heterogeneous information to jointly account for all empirical facts.

Proposition 4. Even absent supply shocks, heterogeneous information can break the positive as-
sociation between the differences in investor’s in-the-money shares and overpayment.

Proof. We construct an example that satisfies the stated conditions. Let investors have
log preferences. Assume no supply shocks,  M !  1 = 1, and index bids and prices by
quality shock ✓ only.

Now construct an equilibrium where informed investors bid at both prices while un-
informed investors submit bids only at P (b). Since the winner’s curse applies only to
bids at P (g) and BU(g) = 0, uninformed investors submit the same bids on the low price
schedule as informed investors, BU(b) = BI(b). Hence market-clearing in each state is
nBI(g) = D and nBI(b) + (1� n)BU(b) = BI(b) = D, where

BI(✓) =
(1� (✓)� P1(✓))

P (✓)(1� P (✓))
.

Now observe that the winner’s curse is increasing in n because equilibrium prices are

P (g) = 1�
(g)nW

nW �D
and P (b) = 1�

(b)W

W �D
.
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Now we compute in-the-money shares and overpayment. Informed investors submit
state-contingent bids at the marginal price in every state, and all of their bids are always
accepted. Uninformed investors submit bids at the low price in every state, but these bids
are executed only if ✓ = b. Hence they have strictly lower average in-the-money shares
than informed investors. Like informed investors, however, uninformed investors never
overpay if their bids are accepted.

A sufficient condition for the optimality of BU(g) = 0 is that uninformed bids at P (g)

earn negative expected returns if the government is expected to default with probability
̄. This is the relevant measure of default risk because any uninformed bids at P (g) would
be executed in every state. This is the case if

1� ̄ < P (g) , ̄ > (g)
nW

nW �D
.

This condition is satisfied if (b) is large relative to (g), n and f(b) are sufficiently large,
and D/W is small. These restrictions ensure that the winner’s curse P (g)�P (b) is severe.

The key insight is that uninformed investors may stop bidding on the high quality
schedule if the winner’s curse is sufficiently severe, in which case they can submit bids
on the low price schedule as if they are informed because they can forecast with certainty
that all bid on the low price schedule are accepted if and only if ✓ = b. Asymmetric
participation given ✓ = g and symmetric bidding strategies given ✓ = b lead to differences
in in-the-money shares without differences in overpayment conditional on bid execution.

The key counterfactual implications of the constructed example that in-the-money
shares are always equal to one for some investors, and that overpayment is always equal
to one for all investors. We now use the following numerical example to show that the
combination of supply shocks and information heterogeneity can qualitatively account
for the empirical bidding patterns. Parameters are chosen for ease of exposition; we cali-
brate parameters in order to quantitatively match the data in Section 5.

Definition 3 (Numerical Example). Preferences satisfy log utility, investor wealth is W = 250,
the debt level is D = 50, the probability of the good state is f(g) = 0.5, and state-contingent
default probabilities satisfy g = 0.15 and b = 0.35. Assume that  is uniformly distributed on
a grid between 1 and 1.16.

Figure 4 shows equilibrium prices as a function of supply shock  for various shares of
informed investors n. The high price schedule is shown in red, and the low price schedule
in blue. Dashed lines provide the benchmark where all investors are informed (n = 1)
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while black lines with circle markers show the counterfactual uninformed benchmark
with symmetric ignorance (n = 0).

Figure 4: DP auction equilibrium as n falls.
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(b) n = 0.3
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(c) n = 0.1
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(d) n = 0.05
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The winner’s curse also generates rich comparative statics of price schedules as we
vary n. When n = 0.6, only informed investors participate at high prices. Since these
investors must bear substantial risk per-capita, the high price schedule is relatively low
in order to provide a sufficient risk premium. At the same time, the low price schedule is
locally independent of n because uninformed investors can submit bids at low prices as if
they were informed.

If n is equal to 0.4, the required risk premium is even higher because there are now
even fewer informed investors who share the default risk in the high state. This leads to

24



a decline in high price schedule that weakens the winner’s curse. This in turn induces
uninformed investors to begin bidding on both price schedules. Since bids on the high
price schedule are also executed in the bad state, there is less residual demand that needs
to be met by marginal bids on the low price schedule, and the low price schedule rises.

The winner’s curse effect continues to operate as n decreases to n = 0.1. Because
the per-capita bids of the uninformed remain below those of the informed on the high
price schedule, reductions in n continue to further concentrate default risk in informed
portfolios. This forces a large fraction of the high price schedule to drop below the unin-
formed price schedule (the price schedule that would obtain if no investor were informed).
Hence presence of informed investors may lead to lower prices even where there is good
news compared the case of symmetric ignorance. Note also that overpayment now di-
verges sharply because uninformed bids submit bids on both schedules, and bids on the
high price schedule are executed even if the marginal price is low. Finally, when n is
very small (around n = 0.02), price schedules start overlapping in the sense that there are
prices which are marginal for either a good quality shock and a high realization of the sup-
ply shock or a bad quality shock and a low realization of the supply shock. Uninformed
investors are now willing to participate fully on both schedules and prices converge to
the uninformed price schedule as n ! 0.

Figure 5 plots in red overpayment and in-the-money shares for informed (solid) and
uninformed (dotted) investors as a function of the share of informed investors n; the right
panel also shows the equilibrium expected yield in black. Foreshadowing our quantita-
tive results, we will assume that large bidders are an auction are informed, while smaller
bidders are uninformed. Matching the empirical bidding patterns then requires that both
information types have similar overpayment, while informed investors have substan-
tially larger in-the-money shares.

This is the case when the share of informed investors is large. The underlying mech-
anism is consistent with Proposition 4 and appears in the price schedules in Figure 4.
When the share of informed investors is large, the high price schedule lies substantially
above the low price schedule. To avoid the winner’s curse, uninformed investors refrain
from bidding at the high-price schedule. Given this choice, it is now optimal to submit he
same bids on the low price schedule as informed investors. Hence there is now no differ-
ence in overpayment between investors types, but the lack of uninformed participation
in the high state implies sharp differences in in-the-money shares, however. The presence
of supply shocks further allows us to capture the empirical fact that in-the-money shares
are below one and that overpayment is above one on average for all investors.

These results suggest that the share of informed investors is a key determinant of price
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Figure 5: Examining Impact of Informed Share.
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levels. Average yields are particularly high when n is approximately equal to 0.5. Inter-
estingly, this is also the level of n that allows the model to match the empirical bidding
patterns. In this sense, the bidding patterns we document suggest that heterogeneous
information can have substantial implications for government financing costs. In our
quantitative analysis, we use counterfactuals with different degrees of information het-
erogeneity to provide a quantitative assessment of this cost.

5 Calibration

We now calibrate parameters to the data with two goals in mind. First, we explore
whether our parsimonious model can quantitatively account for the bidding behavior
of investors in Cetes auctions when asymmetric information is the only source of hetero-
geneity. Second, we ask whether matching the dynamics of marginal prices can inform
us about the sort of information investors have access to (public vs. private news.)

Using the time series dimension of our data requires a dynamic framework. We con-
sider an infinitely-repeated version of our basic model. The government issues bonds
in every period, and there are successive generations of one-period investors. Investors
can observe all past prices but participate in only one auction. Hence price dynamics are
determined by news and the evolution of beliefs but not by dynamic portfolio choice.

To distinguish potential sources of news, we introduce common variation in beliefs by
including in our information structure public regimes which capture all publicly available
information relevant to assessing default risk. There are two regimes indexed by z 2
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{1, 2} with symmetric transition matrix

"
⇢ 1� ⇢

1� ⇢ ⇢

#

parameterized by the single parameter ⇢. Within each public regime, we replicate the
information structure of the basic model with two possible states ✓ 2 {b, g} which may be
known by some investors but unknown by others. Default risk then varies with both z

and ✓ and we index default probabilities by subscript {✓, z}. Since investors can typically
learn the public shock from past prices, we will simply assume that the current public
regime is known at the start of every auction.

Taken together, the parameters which determine the stochastic process for default risk
and bond supply are default probabilities g,z and b,z, probability of the good state f(gz)

in each public regime z 2 {1, 2}, transition probability ⇢ and the maximum supply shock
 M (we maintain our assumption that  follows a uniform distribution).

The next set of parameters concerns bidder heterogeneity. Given our theoretical anal-
ysis, we focus on information heterogeneity as the key driver of portfolio differences.
Nevertheless, we require a model-consistent measure of investor size because there are
sharp differences in bidding behavior between the largest bidder and the rest.14 Propo-
sition 2 implies that we cannot separately identify an investor’s wealth from her mass
because bids are multiplicatively separable in wealth. We therefore assume that all in-
vestors have the same wealth, and calibrate the aggregate share of wealth invested in
goverment bonds net of supply shocks to 20%, i.e. D/W = 0.2. This is because Cetes
are 25% of all debt instruments auctioned by the Mexican government during our sample
period, and the ratio of quarterly Cetes issuance to quarterly GDP in Mexico is stable at
5% during our sample (see Appendix B). We then use investor mass to distinguish size,
and assume that there are no other fundamental differences between investors.

Since we can match empirical bidding patterns only if the largest investor is informed,
we take as given that there is a large bidder with mass nbig, and that this investor is
informed.15 This can be justified by assuming a fixed cost to information acquisition. We
then calibrate nbig and the total share of informed investors n � nbig.

We fix the coefficient of relative risk aversion to be equal to one (log utility), which is
14While we focus on the single largest bidder, our results are robust to considering the Top 2 or Top 3

largest bidders as well.
15Notice that we interpret nbig as a mass of informed investors, even though in the data this corresponds

to a single large investor. Since wealth differences across bidders do not affect their bidding behavior, the
bidding strategy of a mass nbig of atomistic bidders is the same as the bidding of a large single bidder with
the same total level that does not internalize its size.
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low relative to the asset pricing literature. This implies that our quantitative results are
due to the pricing protocol and asymmetric information rather than investor preferences.

The next section shows how parameters are pinned down by data moments. Through-
out, we focus on bonds with 30-day maturities. This frequency is suitable for our investi-
gation of information heterogeneity because there is a sufficiently long interval in which
news might materialize, but the time horizon is short enough such that investors need
not forecast the far-off future.

5.1 Disciplining moments

We calibrate the volatility and level of default risk using the mean and standard deviation
of marginal prices, which are 0.98 and 0.017 respectively. While the first gives a measure
of unconditional level of prices, the second gives us a measure of the unconditional volatil-
ity of prices. These two moments then have an immediate mapping with the mean and
variance of  across the two regimes and the two states in each regime. The second set of
moments are the coefficient �1 = 0.98 from the price regression in (1) and the conditional
volatility of prices as measured by the regression’s R2 = 0.97. While the first measures the
persistence of the marginal price from one auction to the next (the conditional volatility of
prices), the second captures the predictability of prices. These two moments are informa-
tive about the relative importance of public news because they suggest highly persistent
public regimes (high ⇢) with relatively little volatility across states within a regime.

Volatility differences within and across regimes must also be consistent with bidding
behavior. In the data, the in-the-money share of the largest bidder is 0.84 on average (on
average, the largest bidder buys 84% of his submitted bids), while the average in-the-
money share of the remaining investors is just 0.33. At the same time, all bidders pay
a quantity-weighted price that is 0.1% above the marginal price on average, leading to
average overpayment of 1.01. Our model demonstrates that an informed bidder achieves
in-the-money shares and overpayment of 1 if there are no supply shocks. The fact that
this is not the case helps disciplines the maximum supply shock  M , because it is supply
shocks which prevent informed bidders from having all bids accepted in every state.

Our model also suggests that the remaining investors have low in-the-money shares
because some of them are uninformed and thus choose not to bid at high prices. Since the
largest bidder is informed, nbig puts a lower bound on the fraction of informed investors
and the difference between n and nbig represents the share of informed investors among
the remaining bidders. Bidding data then allows us to bound the total share of informed
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investors. The largest bidder buys in average 38% of the bonds,

E


nbigB
I(s)

nBI(s) + (1� n)BU(s)

�
= 0.38

The difference in in-the-money shares between the largest bidder and the rest puts an
upper bound on n, as the in-the-money share of the remaining bidders is a combination
of informed and uninformed investors

1� n

1� nbig
ITMU +

n� nbig

1� nbig
ITM I ,

As n is maximal when ITMU = 0, then n�nbig

1�nbig
0.84 = 0.33 and

nbig < n < nbig +
ITMU

ITM I
(1� nbig).

The fact that n is intermediate is consistent with a degree of adverse selection that dis-
courages uninformed investors from bidding at high prices. Taken together,  M and nbig

are relatively well identified by in-the-money shares and the share of bids of the largest
bidder, respectively, while the combination of n, ⇢,  and the within-regime state proba-
bilities jointly affect the other moments.

5.2 How well can the model match the data?

We now calibrate the model and assess its ability to match the key data moments dis-
cussed above. We consider two approaches. In the “Baseline Calibration” in Section 5.2.1,
we calibrate parameters to minimize the sum of squared errors between the data targets
and model-generated moments (first and second columns of Table 4, respectively.).

This calibration is quantitatively successful in most dimensions, but can only qualita-
tively match two important pricing moments: the time-series predictability of prices, and
the in-the-money shares of small bidders. Section 5.2.2 shows that we can achieve a quan-
titative match on these dimensions if we posit the existence of a peso problem whereby a
rare disaster state with high default is considered plausible by investors but did not ma-
terialize in our sample period. The magnitude of the disaster required to match these
moments is in line with previous Mexican default episodes; hence it may be reasonable
for investors to consider such an event.
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5.2.1 Baseline Calibration

Table 3 reports parameters for the baseline calibration. We match quite well the mean and
standard deviation of marginal prices, as well as the in-the-money share of the largest
bidder and the extent of overpayment for both the largest and the rest. Qualitatively,
but not quantitatively, we do well with respect to the in-the-money share of the rest of
the investors (lower than for the largest bidder but much larger than in the data, 0.62
versus 0.33) and the extent of predictability (positive but much smaller than in the data,
0.7 versus 0.97).16

Table 3: Calibrated Parameters

Common Parameters Values Model Specific Baseline Model Black Swan Model

g1 0.001 g2 0.019 0.02
b1 0.014 b2 0.029 0.50
f(g1) 0.65 f(g2) 0.65 0.95
 M 1.3 n 0.40 0.40
⇢ 0.999 nbig 0.22 0.17

The quantitative fit is imperfect along these dimensions because of the high uncon-
ditional volatility and low conditional volatility that is present the data. To see why this
presents a tension in the model, we look more closely at our price and bids outcomes,
which are plotted in Figure 6. The price schedules for both public regimes, plotted in the
first panel, show that we are able to generate a moderately high degree of unconditional
volatility and a low degree of conditional volatility by having two relatively high price
schedules in public regime 1, and two relatively low price schedules in public regime 2,
along with each public regime being highly persistent.

The second and third panel of Figure 6 show both the informed and uninformed bid
schedules for public regimes 1 and 2, respectively. The high unconditional volatility in the
data implies that one of the public regimes has to include moderately high default rates
so that prices are low. Hence we assume that default risk is low on average in regime 1,
but relatively higher in regime 2.

To be consistent with relatively high average prices, the average default risk in regime
1 must be low. But this implies the risk-free investment is a very close substitute for the

16Note that the level of the persistence parameter ⇢ = 0.999, may seem large but reflects the fact that this
is a weekly model; .99952 = 0.95.
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Table 4: Calibration Targets: Data vs. Model

Target Data Baseline Model BS Model PP Model

Mean Price 0.98 0.98 0.96 0.97
Std. Price 0.02 0.02 0.10 0.02

Regression � 0.98 0.84 0.14 0.96
Regression R2 0.97 0.70 0.02 0.92
LB ITM share 0.84 0.87 0.88 0.88

Rest ITM share 0.33 0.62 0.43 0.41
UI ITM share 0.45 0.18 0.16
Overpay LB 1.001 1.001 1.003 1.002

Overpay Rest 1.001 1.004 1.005 1.004
Share LB 0.38 0.38 0.37 0.38

Figure 6: Baseline Figures

(a) Price Schedules (b) Bids: Public Regime 1 (c) Bids: Public Regime 2

risky bonds in this regime because the risk premium is relatively low. Hence small differ-
ences in default risk across quality shocks are sufficient to induce uninformed investors
to withdraw from bidding at high prices. That is, the risk premium is so small that par-
ticipating at high prices is not optimal even if the winner’s curse is mild.

To contend with the low average in-the-money shares of uninformed investors in the
data, we then require that uninformed investors do not participate on the high price
schedule in public regime 2. This would force informed investors to absorb all default
risk. But since default probabilities are relatively high in this regime, informed investors
are willing to do so only if prices are very low on average. But since this raises the risk
premium and weakens the winner’s curse, high average default probabilities are not
consistent with asymmetric participation by uninformed investors. This can be seen in
bid schedules for public regime 2: uninformed investors actually bid more on the high-
quality schedule than the low-quality schedule for low realizations of the supply shock,
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generating a fairly high uninformed ITM public regime 2.
Starting from the the baseline calibration, uninformed bidders would thus achieve a

lower in-the money share only if they were much more concerned about the winner’s
curse in public regime 2. As we discuss in the next section, it is possible to induce such
behavior without strongly affecting average prices by allowing for a higher worst-case
default risk b2 (a rare disaster). This approach can remedy the shortcomings of the base-
line approach if the rare disaster does not materialize in the sample period.

5.2.2 Rare Disasters and Peso Problems

Our sample is a relatively tranquil period for Mexico: unconditional volatility is moder-
ate, and no government debt crisis occured. This is in marked contrast to the previous
two decades which each saw such crises. We now evaluate our model under the plau-
sible assumption that investors form expectations about default risk by assuming that a
similar crisis might occur again. Specifically, we consider an alternative “Black Swan”
calibration (BS) in which the worst-case default probability b2 increases to 0.5 from 0.029,
but the probability of this state decreases to 0.05 from 0.45 – a black swan event. Default
probabilities in public regime 1 are unchanged. These parameters ensure that average
prices are not too high while increasing the severity of the winner’s curse for uninformed
bidders in public regime 2.

The likelihood that a black swan event (a debt crisis) does not occur in a decade is
31%, consistent with the fact that over the three decades before our data set, Mexico ex-
perienced two major crises.17 Hence our calibration is plausible in light of the data.

Figure 7 plots prices and bid functions for this alternative calibration. Generated mo-
ments are reported in the third column of Table 4. The first panel of the Figure shows
that the price schedule for bad quality bonds in public regime 2 is now much lower than
in the baseline case, consistent with the bad state having a very high default probabil-
ity. The small possibility of this extreme outcome substantially strengthens the winner’s
curse and discourages the uninformed from bidding at high prices in public regime 2 (see
third panel of the Figure). As a result, the in-the money share of the rest of investors
declines substantially (from 0.62 to 0.43), but it is not as low as in the data.

17The probability of not having a black swan in a decade obeys the following backwards recursion: de-
note ⇡i

j is the probability that a black swan (a bad state in public regime 2) does not happen j weeks from the
end of the decade, where i denotes the public regime. Then

⇡1
j = .999 ⇤ ⇡1

j�1 + (1� .999) ⇤ [.95⇥ ⇡2
j�1]

⇡2
j = .999 ⇤ [.95⇥ ⇡2

j�1] + (1� .999) ⇤ ⇡1
j�1.

The unconditional probability of not having a crisis over a decade is then (⇡1
520 + ⇡2

520)/2 = 0.31.
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Figure 7: Black Swan Figures

(a) Price Schedules (b) Bid Schedules 1 (c) Bid Schedules 2

If we simulate data given using these parameters, the Black Swan alternative fails
to account for the dynamic properties of prices, however. Even though the probability
of the disaster state is fairly low, it substantially raises the standard deviation of prices
(to 0.10), depresses our measure of persistence (� falls to 0.14) and increases conditional
uncertainty (R2 falls to 0.02). This is due to the nonlinear nature of these metrics and the
weight placed on large pricing errors.

One way to rationalize the data using our rare disasters framework is contending that
the data suffers from a peso problem, a phrase attributed to Milton Friedman when explain-
ing the gap between Mexican and U.S. deposit rates during the 1970s. A peso problem
arises in asset pricing models when market participants anticipate the possibility of a
discrete change in the probability distribution generating outcomes that has not yet oc-
curred, so that their subjective probability distribution differs from the distribution which
has generated a particular sample in historical data (see Rogoff (1980) and Evans (1996)).
As explained above, this is a salient concern for Mexico given its history of debt crises.

To examine the extent to which a peso problem can account for the dynamic proper-
ties of the data, we maintain parameters at the Black Swan calibration when computing
the equilibrium outcomes but, when assessing the time series implications of the model,
we set the probability of a high-quality bond in public regime 2 at 1 rather than 0.95. This
is equivalent to assuming that while a black swan event is anticipated as possible by the
investors in our model, it does not occur in the sample realization. We label this alter-
native as a ”Peso Problem” (PP) calibration. The results are reported in the last column
of Table 4. This version of our model does very well, matching almost all of the data
moments closely. In particular, it is successful in matching dynamic moments: regression
coefficient � has risen to 0.96, while the R2 has risen to 0.92, both of which are quite close
to the data.

The quantitative exploration of our model sheds light on the relevant sources of asym-
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metric information. Specifically, our findings suggest that investors do not differ much
in their information about typical price movements because they can all access publicly
available data on the country’s finances, previous auction results and even the function-
ing of secondary markets. However, the joint patterns of bidding behavior and dynamic
bond price evolution suggest that some investors may be particularly well-informed about
events leading to large price swings (such as the disaster state). This information is usu-
ally more difficult to access without contacts with decision makers because it may depend
on internal political decisions and other sorts of non-public information.

5.3 Re-examining the data

In addition to fitting the data using a calibration exercise, we can use our model to de-
velop and test additional empirical prediction.

The first prediction is that, using the largest bidder as a benchmark for an informed
bidder, the remaining bidders are composed of both informed and uninformed bidders.
This interpretation is consistent with data if the ITM shares and overpayment of some
of the other investors looked like they too were informed. Continuing to use number
of bond purchased as measure of private incentives to become informed, we examine
whether the second and third largest bidders are relatively closer in their bidding behav-
ior to those of the largest bidders than of the rest. This is indeed the case. Table 5 iden-
tifies the bidders that bought the second and third largest shares of bonds per auction,
and show that their ITM shares lie between those of the largest and the rest of bidders.
Moreover, they do not overpay even though their bids are accepted relatively frequently.
We show these statistics for 30-day Cetes, which is the focus of our calibration, but the
same results hold for all maturities.18

Table 5: Second and Third Largest Players

Statistic Largest Second Third Rest

Share Bidder 0.38 0.23 0.13 0.36
ITM Shares 0.84 0.68 0.55 0.28

Overpayment 1.001 1.001 1.001 1.001

18We only have two information types: informed and uninformed. The fact that the ITM shares decline
as we go from the largest to the second to the third suggests that there was some gradation in the quality
of the information among investors in the data; i.e. there were highly informed, somewhat informed, and
uninformed types.
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The second set of predictions concern the contrasting behavior of the largest bidder
(the informed) vs. the rest of bidders conditional on a good or bad realization of the quality
shock. This set of predictions can be summarized as,

1. The largest bidder buys more when the realized quality shock is good and prices
are high, but does not overpay more on average.

2. The largest bidder has similar ITM shares for all realizations of the quality shock,
but the rest of bidders have lower ITM shares when prices are high.

To examine these predictions in our data, we need to take a stance on when the quality
shock is high vs. low, since both the quality shock and the supply shock affect prices
jointly. In our model, the high quality shock leads to above-average prices conditional on
the public state., and vice versa. Consistent with this logic, we can recover the quality
shock ex-post by measuring the pricing error from our regression model in equation (1).
To identify the discrete change in default risk induced by a quality shock (as opposed to a
supply shock), we consider pricing errors greater than one standard deviation in absolute
terms. We interpret a large positive error as indicating that we have a high quality shock,
and a large negative error as indicating we have a low quality one. We find that

1. The largest bidder’s ITM share was 0.40 conditional on large positive pricing errors
and 0.37 conditional on large negative regression errors. Overpayment is of the
same magnitude in both cases.

2. While the largest bidder’s ITM share was essentially identical in both cases (0.40 vs.
0.37), the remaining bidders had an ITM share of 0.24 for positive errors, signifi-
cantly lower than the ITM share of 0.35 during negative errors.

This coherence between our model and the data provides strong additional evidence
of the basic mechanism in the model and the importance of asymmetric information.

5.4 Counterfactuals

The numerical illustration in the second panel of Figure 5 suggests that the level of asym-
metric information that is consistent with the data (this is, n around 0.4) is likely to raise
the government’s risky debt yield. In light of this, a natural question is big the effect of
asymmetric information on yields is in our preferred calibration. There are two ways to
think about this question: (i) how does the future look like with and without information
asymmetry, and (ii) what would the past data have looked liked. To answer (i) we com-
pute the outcomes at the two information extremes of symmetric information with n = 1
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and symmetric ignorance with n = 0 and compare them to the predictions at n = 0.4,
keeping the rest of the Black Swan calibration fixed. To answer (ii), we compute the out-
comes that we would expect on a sample path in which the Black Swan event did not
occur. We compare the average yield computed using the marginal price at an auction
and report the results for (i) and (ii) in table 6 respectively.

Table 6: Counterfactuals: comparing avg. yields

Black Swan Black Swan + PP
n = 0.4 0.07 0.03
n = 1.0 0.06 0.02
n = 0.0 0.03 0.03

In the Black Swan scenario, in which a bad default event does occur, if all investors
were symmetrically informed, expected yields would decline from 0.07 to 0.06. If all were
symmetrically ignorant, yields would fall even further to 0.03. Thus the impact of the
information friction coming from having roughly half of the investors being informed
substantially raises the cost of borrowing for the government. When we compute our
results assuming that the Black Swan event does not occur in sample, this lowers the
average yield for both the n = 0.4 and the n = 1 cases, but the yield gap is still one
percent. In the case where n = 0, there is no impact on the implied yields. Overall,
our results suggest that ”ignorance may be bliss,” particularly when a “disaster” state
materializes in sample.

The reduction in yields obtained in these symmetric counterfactuals obtains for different
reasons. When n = 0 all investors are symmetrically ignorant, which implies better risk
sharing. When n = 1 investors, all investors participate on the high price schedule, low-
ering per capita debt burdens and raising prices given a good shock. (There is no effect on
the low price schedule because uninformed investors always participate at low prices).
Hence the government unambiguously receives higher prices if n = 1 than if n = 0.4.

6 Final Remarks

By compiling a unique dataset of weekly auctions of Mexican Cetes (domestically de-
nominated) bonds between 2001 and 2017, we document three key facts about prices
and bidding behavior patterns. First, the unconditional price volatility is sizable, while
the volatility conditional on the previous auction price is low, which suggests high pre-
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dictability of prices. Second, the largest bidders tend to buy a larger fraction of submitted
bids than the rest, which in a “pay as you bid” auctions (as the one conducted by Mexico
in the considered period) suggests that they bid at higher prices. At the same time, and
despite the low conditional volatility, the rest of the bidders tend to buy a fairly small frac-
tion of their bids. Third, and prima facie inconsistent with the previous fact, the largest
bidders do not pay more conditional on buying.

We then construct a Walrasian model of price-discriminating sovereign debt auctions
in which participating investors can differ in their wealth,market power, risk-aversion
and/or information. We use the implications of our model to show that the documented
heterogeneity in bidding patterns across investors cannot be explained by differences in
wealth, market power or risk aversion. However, it is consistent with the largest investors
being more informed about the probability the bonds default than the rest of bidders.

We perform a calibration of the model that is informative both about the extent of
asymmetric information and about its nature. First, to conform to the data, our model
implies an intermediate share of informed investors. According to the model, this gener-
ates a larger debt burden for Mexico compared to situations in which most of investors
were informed or most were ignorant. Second, to generate bidding by the less informed
investors that is consistent with the data, we need not only a small amount information
heterogeneity with respect to information about usual price movements, but also, and
critically, information asymmetries about the advent of low probability events that gen-
erate large and sudden price swings (such as liquidity crises or currency runs).

When we re-examine the data in light of the model’s predictions, more nuanced im-
plications are also supported by the data. We find, for instance, that the second and third
largest bidders behavior in terms of their ITM and overpayment are consistent with the
notion that these bidders have the next largest incentives to acquire information. We also
find that surprisingly high or low marginal prices, as determined by our price regression,
have nearly identical ITM shares for the largest bidder, but much lower ITM shares for
the rest, exactly as predicted by our model. Having thus validated our model we then
use it to conduct counterfactual exercises as to the impact of heterogeneous information.
We find that the impact on yields is sizable, suggesting that asymmetric information is an
important friction for a government’s ability to raise funds in primary bond markets.

The goal of this paper was providing a tractable model of sovereign debt primary
markets with asymmetric information that is useful to confront our novel empirical find-
ings on bidders behavior and to identify the main frictions in these markets, and their
consequences. As we make a case of the existence of asymmetric information and its
relevance for sovereign bond yields, a natural extension is understanding its implication
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more generally. In Cole, Neuhann, and Ordonez (2020), for instance, we explore the role
of information asymmetry for spillovers across countries. By endogenizing information
acquisition and extending the setting to many countries and secondary markets, we show
the possibility of multiplicity on informational regimes and the possibility that a country
suffers from a shock in an unrelated country through endogenous asymmetric informa-
tion. Furthermore, our model is tractable enough to explore many other dimensions, such
as the incentives of the government to disclose information or to affect information asym-
metry by using different auction protocols. We leave these extensions for future research.
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A Appendix: Symmetric information example
The first panel of Figure 8 compares the price schedules between Examples 1 and 2 (fixing
default probability g, b and ̄, with and without complete information about the supply
shock respectively), for the calibration. As in the main calibration, both schedules are also
fairly flat, with the complete information price starting higher and falling faster. This is
because investors bid more aggressively when they do not have to worry about overpay-
ing if demand turns out to be low. Differences in default probabilities primarily translate
into differences in the level of the price schedule, rather than in slope.

Figure 8: Symmetric Benchmarks

(a) Price Schedules (b) Bid Schedules

The second panel of Figure 8 shows optimal bid schedules for different coefficients of
risk aversion under CRRA utility, assuming all investors take as given that the default
probability is ̄. The bulk of investor’s bids are made at the highest price. This is because
the lion share of the supply is sold at this price, with supply only incrementally increases
with  . More risk aversion leads to more bid shading. However, the effect on in-the-
money share is analytically unclear. In this particular illustration the share of the bids
that are in-the-money is essentially identical, ranging from 0.83 at � = 1, to 0.80 at � = 6.
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While more risk averse investors bid less, they do not bid ”less aggressively,” since they
shade down their bids by the same factor everywhere.

B Appendix: Stability in the sample period: 2001-2017.
Here we show that the fiscal revenue obtained by the Mexican government by selling
Cetes in primary markets has been stable with respect to GDP during our sample period.
This fact maps into the stationarity of D/W imposed in our calibration. To show this
stability we compute the quarter revenues raised by auctioning Cetes of all maturities in
Mexico (in real terms), and plot it in the next figure as a fraction of quarterly real GDP.
As can be seen, every quarter, Mexico raises (or rolls over) around 5% of quarterly GDP

Figure 9: Real Cetes revenue (in all maturities) as a fraction of real GDP
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by auctioning Cetes of all maturities. This fraction has been quite stable over our sample
period, with a short-lived increase to almost 6% during the global financial crisis of 2009,
and returning to pre-crisis levels in 2010. This stability comes from both figures growing
in average 0.5% per quarter in real terms over this sample period.
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