Education Gradients in Mortality Trends by Race and Gender

Adam A. Leive (UVA) and Christopher J. Ruhm (UVA & NBER)

February 2021

Motivation

- Interest in social disparities & health for many years
 - "Whitehall" studies in U.K. (Marmot et al. 1984, 1991). U.S. (Kitagawa and Hauser 1973)
 - Positive relationship between education & health ("SES gradient")
 - Changes in group-specific mortality rates as indicators of social progress
- Reversals in progress reducing mortality rates
 - U.S. life expectancy, 2014-2017 \downarrow from 78.9 to 78.6
 - 1st 3-year decline in a century
- "Deaths of Despair" (Case & Deaton 2015, 2017, 2020)
 - Focus on 45-54 or 50-54 non-Hispanic whites ("Whites")
 - Mortality \uparrow concentrated among non-college educated
 - Taken as evidence of economic/social breakdown in society

Empirical Challenge: Negative Selection

- Most research measures education in discrete categories: < high school, high school, some college, college+
- Disparities could reflect rising educational attainment over time (Preston and Elo 1995, Dowd & Hamoudi 2014; Bound et al. 2015)
 - Less educated groups become more negatively selected
 - Some people who failed to complete high school in previous cohort now graduate high school
 - "Will Rogers Phenomenon": all groups have lower quality
- Recent efforts to adjust for changes in education levels over time
 - Bound et al. 2015; Goldring et al. 2016; Novosad, et al. 2020
 - Different methods, data, time periods, and results

This Project

- Estimate Δ 's in mortality trends by education quartile
 - Construct quartiles by sex, race, 5-year age group (25-64 year olds)
 - Combine administrative + survey data from 2001-2018
- Race & gender patterns for specific causes of death

Conceptual Framework

- Patterns of absolute mortality rate Δ's often taken to indicate size of health shocks to different groups
- Not true if initial differences in stock of health capital
- Equal size Δ in health capital
 - larger mortality Δ for less educated
 - but possibly smaller absolute Δ
- Examine logs and levels of mortality rates

Death Rates

$$\textit{mort}_{\textit{arit}} = rac{\textit{deaths}_{\textit{arit}}}{\textit{pop}_{\textit{arit}}}$$

age group a race/ethnicity r education quartile i year t

- calculate rates for 5-year age groups, from 25-64
- stratified by sex

Data

- Deaths: CDC Multiple Cause of Death Files (MCOD)
 - Available 1999-2018
- Population: *Surveillance Epidemiology & End Results (SEER)* database
 - Age, sex & race-specific populations
- Educational Share: American Community Survey (ACS)
 - Starts in 2001
- Analysis Period: 2001-2018

Complicating Factors

- Education on death certificates switches from continuous to categorical
- Education-Specific Populations
 - SEER Population × ACS Education Share
 - ACS education switches from categorical to continuous
- A single year of education may span quartiles

Causes of Death

- Total mortality
- Specific causes
 - 10 highest causes for each age subgroup (cardiovascular disease, cancer etc.) plus
 - non-drug accidental deaths
 - non-intentional drug deaths
 - suicide
 - residual category
- "Major" vs. "Minor" causes

Total Mortality trends by race: males

- age-standardized trends: 25-64 year olds
- larger declines (but higher levels) for Blacks than whites

Total Mortality trends by race: females

Lower overall rates but similar trends to males

Regression Specification

$$mort_{arit} = \sum_{a \in A} \sum_{r \in R} \sum_{i=1}^{4} \beta_{ari} [age_a \times race_r \times Q_i] + \sum_{r \in R} \pi_r [trend \times race_r] + \sum_{r \in R} \sum_{i \neq 4} \pi_{ri} [trend \times race_r \times Q_i] + \epsilon_{arit}$$

- *Q_i*: education quartile (*Q*₄ reference group)
- age_a: 5-year age group
- *race_r*: race/ethnicity *trend*: year
- β_{ari} : group fixed-effect
- π_r : race-specific trend for reference quartile (Q_4)
- π_{ri} : race-specific trend difference vs. Q_4

Quartile-specific total mortality trends: males

monotonic trends for whites only

Quartile-specific total mortality trends: females

• similar to males

Quartile-specific log mortality trends: males

- 4th quartile does best
- little difference for Q1 Q3

Quartile-specific log mortality trends: females

• more monotonic in education than for males

Cardiovascular mortality: males

- no education pattern for whites
- biggest \downarrow for less educated Blacks (possibly Hispanic & other)

Major causes: males

- drugs monotonic; biggest ↑
- CVD, cancer, sometimes HIV; biggest \downarrow , especially Q1/Q2 Blacks

All major causes: males

Minor causes: males

- minor causes: trend coefficient <0.8 (absolute value)
- liver disease a minor cause for most groups
- residual fairly important for less educated whites

Cardiovascular mortality: females

- very different for Black females vs males
- no general education gradient

Major causes: females

- drugs monotonic; biggest ↑
- females: cancer \downarrow for Q3/4 whites; Q2-Q4 Blacks; CVD for Q3/4 Blacks
- few clear education patterns

All major causes: females

Minor causes: females

• similar to males

Log mortality rates: males

- Largest % increases (decreases) for drugs (HIV)
- Sometimes more favorable Δ for Q4

Log mortality rates: females

- Largest % increases (decreases) for drugs (HIV)
- More monotonic in education

Review of Key Results

- Drug Deaths: most important source of mortality \uparrow
 - particularly for whites
- Cardiovascular disease, cancer, HIV most important for mortality \downarrow
- Other mortality trends also important
 - Q1/2 white females: limited CVD/cancer \downarrow
 - Blacks: exceptional HIV, CVD, cancer \downarrow
 - $\bullet \quad Q1/Q2 \ males; \ Q2/Q4 \ females$
 - smaller drug \uparrow for Blacks than whites
- Hispanic/other nonwhite trends have small magnitude
 - hard to evaluate

What We Have Learned

Unidimensional explanations unlikely to explain mortality trends Must explain tremendous heterogeneity in $\Delta's$ by sex, race & age

- Total mortality $\Delta's$ mix effects of different causes
- Mortality \uparrow dominated by drugs
- Liver disease a "minor" cause (e.g. larger effect of respiratory)
- Mortality \downarrow by Cancer, CVD, sometimes HIV
- Large differences by sex, race & education

Need to focus on specific causes of death

THANK YOU

Complicating Factors

Education on death certificates often categorical

- After 2002: some states report categories
 - <8th grade, 9-12 no diploma, high school grad, some college, bachelor's degree, master's degree, doctorate/professional degree
 - Calculate single years of education (where provided) for broader categories (e.g. ≤8, 9-11 grade)
 - Regress these % on trend, age, sex, race/ethnicity (& interactions)
 - Predict probability of single years of education for categories

Complicating Factors (cont.)

Education-Specific Populations

- SEER Population × ACS Education Share
- After 2007: ACS reports single education years: 1-12
- Before 2008: 0-4, 5-6, 7-8 grades combined, split based on 2008-2017 distribution
- H.S. grad = 12
- College: No Degree / Associates Degree = 14
- College Degree = 16
- Beyond College = 17