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The challenge of program targeting

Hundreds of targeted social protections launched in response to COVID-19

- The targeting of such programs is a major source of program inefficiency
e Coady et al. (2004), Brown et al. (2018), Hanna and Olken (2018)

- Particularly in the middle of a pandemic, which complicates data collection

Example: Togo’s flagship anti-poverty program (“Novissi”)
- 100% digital: people register via USSD, paid $15/month via mobile money
- Eligibility based on home location and occupation
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Targeting with ML + phone data

Our question: Can targeting be improved with non-traditional data (+ML)?
- Prior work indicates patterns of phone use are predictive of wealth (Blumenstock et al 2015)
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- Intuition: Wealthy people use their phones differently
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Togo 2018
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Preview of Results

Targeting with phone-based PMT improves targeting accuracy
- Togolese gov’t is expanding benefits to ~60k individuals in poorest rural cantons

- We simulate targeting outcomes according to three feasible mechanisms, based on
“ground truth” poverty data collected in September 2020 phone survey (N=9,484)

Current expansion in Togo based on this approach (evaluation planned for 2021)
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