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Abstract

The design and conduct of climate change policy necessarily confronts uncertainty along

multiple fronts. We explore the consequences of ambiguity over various sources and configu-

rations of models that impact how economic opportunities could be damaged in the future.

We appeal to decision theory under risk, model ambiguity and misspecification concerns to

provide an economically motivated approach to uncertainty quantification. We show how this

approach reduces the many facets of uncertainty into a low dimensional characterization that

depends on the uncertainty aversion of a decision maker or fictitious social planner. In our

computations, we take inventory of three alternative channels of uncertainty and provide a

novel way to assess them. These include i) carbon dynamics that capture how carbon emis-

sions impact atmospheric carbon in future time periods; ii) temperature dynamics that depict

how atmospheric carbon alters temperature in future time periods; iii) damage functions that

quantify how temperature changes diminish economic opportunities. We appeal to geosci-

entific modeling to quantify the first two channels. We show how these uncertainty sources

interact for a social planner looking to design a prudent approach to the social pricing of

carbon emissions.
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1 Introduction

There are many calls for policy implementation to address climate change based on confidence

in our knowledge of the adverse impact of economic activity on the climate, and conversely

the negative effects of climate change on economic outcomes. Our view is that the knowledge

base to support quantitative modeling in the realm of climate change and elsewhere remains

incomplete. While there is a substantial body of evidence supporting the adverse human imprint

on the environment, uncertainty comes into play when we build quantitative models aimed at

capturing the dynamic transmission of human activity on the climate and on how adaptation to

climate change will play out over time. It has been common practice to shunt uncertainty to the

background when building and using quantitative models in many policy arenas. To truly engage

in “evidence-based policy” requires that we are clear both about the quality of the evidence

and the sensitivity to the modeling inputs used to interpret the evidence. The importance of

quantifying uncertainty has been stressed and implemented in a variety of scientific settings. Our

aim is to explore ways to incorporate this uncertainty for the purposes of making quantitative

assessments of alternative courses of action. We see this as much more than putting standard

errors on econometric estimates, and we turn to developments in dynamic decision theory as a

guide to how we confront uncertainty in policy analysis.

In climate economics, Weitzman (2012), Wagner and Weitzman (2015) and others have em-

phasized uncertainty in the climate system’s dynamics and how this uncertainty could create

fat-tailed distributions of potential damages. Relatedly, Pindyck (2013) and Morgan et al. (2017)

find existing integrated assessment models in climate economics to be of little value in the actual

prudent policy. We are sympathetic to their skepticism, and are not offering simple repairs to

the existing integrated assessment models in this area nor quick modifications to EPA postings

for the social cost of carbon. Nevertheless, we still find value in the use of models to engage in

a form of “quantitative storytelling.” Instead of proceeding with separate analyses for each such

model, we find value in model comparisons and seek a framework for “quantitative storytelling”

with multiple models. Our aim is to explore ways to incorporate uncertainty explicitly into policy

discussions with a more explicit accounting for the limits to our understanding. Not only is there

substantial uncertainty about the economic inputs, but also about the geoscientific inputs.

Drawing on insights from decision theory and asset pricing, Barnett et al. (2020) proposed

a framework for assessing uncertainty, broadly-conceived, to include ambiguity over alternative

models and the potential form of the misspecification of each. In effect, they suggest methods for

conducting structured uncertainty analyses. But their examples scratch the surface of the actual

quantitative assessment of uncertainty pertinent to the problem of climate change. In this paper,

we explore more systematically the consequences of uncertainty coming from both geo-scientific

and economic inputs.
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Decision theory provides tractable ways to explore a tradeoff between projecting the “best

guess” consequences of alternative courses of action versus “worst possible” outcomes among a

set of alternative models. Rather than focusing exclusively on these extremal points, we allow

our decision maker to take intermediate positions in accordance with parameters that govern

aversions to model ambiguity and potential misspecification. We presume a decision maker con-

fronts many dimensions of uncertainty and engages in a sensitivity analysis. We use the social

planner’s decision problem to add structure to this sensitivity analysis and reduce a potentially

high-dimensional sensitivity analysis to a very low-dimensional characterization of sensitivity pa-

rameterized by aversion to model ambiguity and potential misspecification.

This paper takes inventory of the consequence of alternative sources of uncertainty and pro-

vides a novel way to assess it. We consider three specific sources:

• carbon dynamics mapping carbon emissions into carbon in the atmosphere

• temperature dynamics mapping carbon in the atmosphere into temperature changes

• economic damage functions that depict the fraction of the productive capacity that is re-

duced by temperature changes

We necessarily adopt some stark simplifications to make this analysis tractable. Many of the

climate models are of both high dimension and nonlinear. Rather than using those models directly,

we rely on outcomes of pulse experiments applied to the models. We then take the outcomes of

these pulse experiments as inputs into our simplified specification of the climate dynamics inside

our economic model. We follow much of the environmental macroeconomic modeling literature in

the use of ad hoc static damage functions, and explore the consequences of changing the curvature

in these damage functions. Even with these simplifications, our uncertainty analysis is sufficiently

rich to show how uncertainty about the alternative channels by which emissions induce economic

damages interact in important ways. Modeling extensions that confront heterogeneity in exposure

to climate change across regions will also open the door to the inclusion of cross-sectional evidence

for measuring potential environmental damages.

We use the social cost of carbon (SCC) as a barometer for investigating the consequences of

uncertainty for climate policy. In settings with uncertainty, we depict this as an asset price. The

social counterpart to a cash flow is the impulse response from a marginal increase in emissions to

a marginal impact on damages induced by climate changes in future time periods. This cash flow

is discounted stochastically in ways that account for uncertainty. This follows in part revealing

discussions in Golosov et al. (2014) and Cai et al. (2017) who explore some of the risk consequences

for the social cost of carbon. We extend this by taking a broader perspective on uncertainty. The

common discussion in environmental economics about what “rate” should be used to discount

future social costs is ill-posed for the model ambiguity that we feature. Rather than a single
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rate, we borrow and extend an idea from asset pricing by representing broadly based uncertainty

adjustments as a change in probability over future outcomes for the macroeconomy.

This paper extends previous work by “opening the hood” of climate change uncertainty and

exploring which components have the biggest impact on valuation. To simplify the policy analysis,

we consider a world with a “fictitious social planner.” Thus, we put to the side important

questions pertaining to heterogeneity in the exposure to climate change and to the consequent

policy objectives by different decision makers. Instead, we simplify the policy implementation to

that of a Pigouvian tax that eliminates the wedge between market valuation and social valuation.

We use this setup to illustrate how uncertainty can contribute to social valuation while recognizing

the need for further model richness is future research. Our planner confronts risk, model ambiguity,

and model misspecification formally and deduces a socially efficient emissions trajectory.

2 Uncertain climate dynamics

In this section, we first describe some very tractable characterizations of cross-model variation in

the dynamic responses of temperature to emission pulses. To support our analysis, we then build

a simplified stochastic specification of the pulse responses.

2.1 Simple approximations to climate dynamics

Recent contributions to the climate science literature have produced low-dimensional approxima-

tions, emulators, and pulse experiments that provide tractable alternatives to full-scale Atmospheric-

Oceanic General Circulation Models (AOGCMs) used by climate scientists. These results allow

for the inclusion of climate models within economic frameworks in ways that can be informative

and revealing. We use the pulse experiment results of Joos et al. (2013) and Geoffroy et al. (2013)

across various carbon and climate dynamics models to build the set models we will use in our

uncertainty analysis.1

Joos et al. (2013) report the responses of atmospheric carbon concentration to emission pulses

of one hundred gigatons of carbon for several alternative Earth System models. The emission

pulse experiments follow a standardized model intercomparison analysis so that outcomes are

directly comparable. We use the responses for nine such models to capture the variation and

uncertainty present in models of carbon cycle dynamics.

We feed these responses for carbon concentration into log-linear approximations of temperature

dynamics constructed by Geoffroy et al. (2013). In accordance with the Arrhenius (1896) equation,

these dynamics relate the logarithm of carbon in the atmosphere to future temperature. The

parameters that Geoffroy et al. (2013) constructed using their simplified representation differ

1See Seshadri (2017), Eby et al. (2009), Matthews et al. (2009), and MacDougall et al. (2017) for additional
examples of work in this area.
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depending on the model being approximated. We use the 16 models listed in the appendix.

Thus, we take the nine different atmospheric carbon responses as inputs into the 16 temperature

dynamics approximations, giving us a total of 144 different temperature responses to emissions.2

Figure 1: Percentiles for temperature responses to emission impulses. The emission pulse was
100 gigatons of carbon (GtC) spread over the first year. The temperature units for the vertical
axis have been multiplied by ten to convert to degrees Celsius per teraton of carbon (TtC). The
boundaries of the shaded regions are the upper and lower envelopes. Top panel: percentiles for
impulse responses including both carbon and temperature dynamic uncertainty. Center panel:
responses obtained for the different carbon responses for nine models each averaged over the 16
models of temperature dynamics. Bottom panel: percentiles for the 16 temperature responses
using each averaged over the nine models of carbon concentration dynamics.

2Appendix A provides additional details on the emission pulse responses from Joos et al. (2013), the approxi-
mating model of Geoffroy et al. (2013), and lists the specific models we use from these two studies.
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Figure 1 captures the resulting temperature responses across various sets of these 144 models.

The top panel provides the results based on all 144 models, the middle panel provides the results

based on variation in the carbon models, and the bottom panel provides the results based on

variation in the temperature models. In each case, the maximal temperature response to an

emission pulse occurs at about a decade and the subsequent response is very flat. These dynamics

are consistent with the response patterns featured by Ricke and Caldeira (2014).

The top panel of Figure 1 also reports the percentiles for each horizon computed using the 144

different temperature response functions from all the different combinations of models of carbon

and temperature dynamics. While there are similar patterns across the temperature response

functions, there is considerable heterogeneity in the magnitudes of the responses. For a further

characterization of this heterogeneity, we compute the exponentially weighted average of each of

these response functions and use them in our computations. We report the resulting histogram

as the top panel of Figure 2.

Figure 2: Histograms for the exponentially weighted average responses of temperature to an
emissions impulse from 144 different models using a rate δ “ .01.
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The eventually flat trajectories of the temperature response functions are consistent with

model comparisons made using what is called the transient climate response (TCRE) to CO2

emissions. The TCRE is the ratio of CO2-induced warming realized over an interval of time to the

cumulative carbon emissions over that same time interval. This linear characterization provides a

simplification suggested by Matthews et al. (2009) and others by targeting the composite response

of the carbon and temperature dynamics instead of the components that induce it. MacDougall

et al. (2017) provide a pedagogical summary of this literature and report a histogram for the

TCRE computed for 150 model variants. Their histogram looks very similar to what we report

in Figure 2.

The middle and bottom panels of Figure 1 show the contribution of uncertainty in tempera-

ture and carbon dynamics to the temperature impulse responses. In generating the middle panel

of Figure 1, we computed the implied temperature responses for nine alternative models of atmo-

spheric CO2 dynamics averaging over the 16 models of temperature dynamics. In generating the

lower panel of Figure 1, we computed the 16 temperature responses for 16 temperature models

while averaging over the nine models of atmospheric CO2 dynamics. Consistent with the results

reported by Ricke and Caldeira (2014), we find heterogeneity in the temperature responses to be

more prominent than that coming from the atmospheric CO2 dynamics.3

2.2 Stochastic climate pulses

To explore uncertainty, we introduce explicit stochasticity as a precursor to the study of un-

certainty. We capture this randomness in part by an exogenous forcing processes that evolves

as:

dZt “ µzpZtqdt` σzpZtqdWt

where tWt : t ě 0u a multivariate standard Brownian motion. We partition the vector Brownian

motion into two subvectors as follows:

dWt “

«

dW y
t

dW k
t

ff

where the first component consists of the climate change shocks and the second component con-

tains the technology shocks. Consider an emissions “pulse” of the form

pιy ¨ Ztq Et pθdt` ς ¨ dW y
t q

where Et is fossil fuel emissions and ιy ¨ Z “ tιy ¨ Zt : t ě 0u is a positive process which we

normalize to have mean one. The ιy ¨ Z-process captures “left out” components of the climate

3Ricke and Caldeira (2014) also consider separately two sources of temperature dynamics.
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system’s reaction to an emission of Et gigatons into the atmosphere while the ς ¨ dW process

captures short time scale fluctuations. We will use a positive Feller square root process for the

ιy ¨ Z process in our analysis.

Palmer and Stevens (2019) argue for the systematic inclusion and quantification of stochastic

components in climate models as a way to make a substantive improvement in predictive models

from climate science, even though the “big picture” is quite settled. Palmer and Stevens proposed

modeling improvements that are well beyond the ambition of our work. But we have a shared

appreciation for explicit stochastic modeling. It is important for our uncertainty quantification

methods that we incorporate explicit randomness to partially disguise the model ambiguity and

misspecification from a decision maker.

Within this framework, we impose the “Matthews’ approximation” by making the consequence

of the pulse permanent:

dYt “ µypZt, Etqdt` σypZt, EtqdW y
t

where

µypz, eq “ e pιy ¨ zq θ

σypz, eq “ e pιy ¨ zq ς
1

Throughout, we will use uppercase letters to denote random vector or stochastic processes and

lower case letters to denote possible realizations. Armed with this “Matthews’ approximation,”

we collapse the climate change uncertainty into the cross-model empirical distribution reported

in Figure 2. We will eventually introduce uncertainty about θ.

This specification misses the initial build up in the temperature response and instead focuses

exclusively on the flat trajectories depicted in the upper panel of Figure 1. We expect that this

error might be small when the prudent social planner embraces preferences that have a low rate

of discounting the future, but this requires further investigation. While others in climate sciences

find linear approximations to be relevant, we recognize the need for subsequent efforts to explore

systematically the potential importance of nonlinearities. Ghil and Lucarini (2020) is a thorough

review of climate physics at a hierarchy of temporal and spatial scales that embraces the inherent

complexity of the climate system.

Remark 2.1. For a more general starting point, let Yt be a vector used to represent temperature

dynamics where the temperature impact on damages is the first component of Yt. This state vector

evolves according to:

dYt “ ΛYtdt` Et pιy ¨ Ztq pΘdt` ΣdW y
t q

where Λ is a square matrix and Θ is a column vector. Given an initial condition Y0, the solution
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for Yt satisfies:

Yt “ exp ptΛqY0 `

ż t

0
exp rpt´ uqΛs pιy ¨ Ztq Et pΘdt` ΣdW y

t q

Thus under this specification, the expected future response of Y to a pulse at date zero is:

exp puΛqΘ.

It is the first component of this function that determines the response dynamics. This general-

ization allows for multiple exponentials to approximate the pulse responses. Our introduction of

a multiple exponential approximation adapts for example, Joos et al. (2013) and Pierrehumbert

(2014).4

As an example, we capture the initial rise in the emission responses by the following two-

dimensional specification

dY 1
t “ Y 2

t dt

dY 2
t “ ´λY

2
t dt` λθEtdt

which implies the response to a pulse is:

θ r1´ expp´λtqs E0

A high value of λ implies more rapid convergence to the limiting response θE0. This approximation

is intended as a simple representation of the dynamics where the second state variable can be

thought of as an exponentially weighted average of current and past emissions.5

Remark 2.2. The approximation in Geoffroy et al. (2013) includes the logarithm of carbon in the

atmosphere as argued for by Arrhenius (1896) which is not directly reflected in the linear approx-

imation to the temperature dynamics that we use. The pulse experiments from Joos et al. (2013)

show a more than proportional change in atmospheric carbon when the pulse size is changed. It

turns out that this is enough to approximately offset the logarithmic Arrhenius adjustment so that

the long-term temperature response remains approximately proportional for small pulse sizes. See

4See equation (5) of Joos et al. (2013) and equations (1)-(3) of Pierrehumbert (2014). Pierrehumbert puts the
change in radiative forcing equal to a constant times the logarithm of the ratio of atmospheric CO2 at date t to
atmospheric CO2 at baseline date zero. His Figures 1 and 2 illustrate how an approximation of the Earth System
dynamics by three exponentials plus a constant tracks a radiative forcing induced by a pulse into the atmosphere
at a baseline date from the atmosphere works quite well with half lives of approximately six, sixty five, and four
hundred and fifty years.

5In independent work, Dietz and Venmans (2019) and Barnett et al. (2020) have used such simplified approx-
imations within an explicit economic optimization framework. The former contribution includes the initial rapid
upswing in the impulse response functions. The latter contribution abstracts from this. Barnett et al. instead
explore ways to confront uncertainty, broadly-conceived, while using the Matthews approximation.
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also Pierrehumbert (2014) who discusses the approximate offsetting impacts of nonlinearity in

temperature and climate dynamics.

3 A stochastic model of damages

Our construction of potential damage functions is similar to Barnett et al. with specifications

motivated in part by prior contributions. We posit a damage process, Nt, to capture negative

externalities on society imposed by carbon emissions. The reciprocal of damages, 1
Nt

, diminishes

the productive capacity of the economy because of the impact of climate change.

We use a piecewise log quadratic function for mapping how temperature change induced by

emissions alter economic opportunities:

logNt “ ΓpYtq ` ιn ¨ Zt

for temperature anomaly Yt where

Γpyq “ γ1y `
γ2
2
y2 `

γ3
2

1yěypy ´ yq
2.

In this specification, there is a temperature anomaly threshold y after which the damage function

could becomes much more curved. This curvature in the “tail” of the damage function is only

revealed to decision makers near the threshold. We let the threshold, y, equal a temperature

anomaly of two degrees centigrade.

To capture damage function uncertainty, we posit a jump process with m absorbing states.

Each state corresponds to a value of γ3 starting at threshold y. We denote the possible values as

γm3 for m “ 1, 2, ...,M. We focus on cases where the jump occurs when Y ă ỹ ď y. At the time

of the jump, the right tail of the damage function is revealed via γ3 whereas prior to the jump

this parameter is unknown where each value γm3 has prior probability πpm. We localize the jump

around the threshold ȳ, and for some the computations take limits of this where the jump is very

likely to occur just prior to hitting the threshold. What is uncertain is the value of γ3 governing

the steepness of the damage until after the jump takes place.
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Figure 3: Three possible damage functions. This figure plots exp p´nq, which measures the
proportional reduction of the productive capacity of the economy.

In our earlier work, Barnett et al., we consider two specifications of damages motivated by

prior research. One specification sets γ3 “ 0 and sets γ2 to approximate Nordhaus (2018).6 We

refer to this as the low damage specification. A second specification sets γ3 ą 0 to capture the

steeper degradation in damages that Weitzman (2012) has argued for. We refer to this as the high

damage specification. While Weitzman used uncertainty based on the potential fat tails in the

posterior distribution for unknown damage coefficients, we follow Barnett et al. and introduce a

high damage possibility and explore how a prudent decision maker should respond to the resulting

damage function. We plot the high and low damage functions in Figure 3. Finally, there has been

considerable discussion from the geo-sciences of the need to impose a two degree carbon budget.

This corresponds to the vertical line in Figure 3. Rather than naively embracing this view, we

introduce a third damage function that is much steeper than the high damage function reported

in Figure 3 for which there is a one third reduction in the productive capacity of the economy

due to a three degree temperature increase. We refer to this as an extreme damage specification.

While the term “extreme” may appear to be loaded, we only mean for it to be descriptive as we

are not providing new evidence that bears on the probability of any of the three specifications.

We use these damage function specifications as an illustration, but our approach is not tied to

6Nordhaus (2018) also considered uncertainty around this curve but in a manner that makes our other specifi-
cations very unlikely. Later, we will discuss how we will describe how our approach to uncertainty differs from his
and other approaches.
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these particular damage functions or to baseline probabilities that we assign to them.

Remark 3.1. The information dynamics here are in contrast to much of the previous research,

including Nordhaus (2018), Hassler et al. (2018) and our previous research Barnett et al. (2020),

where the analysis is either static or the damage function in the right tail is never revealed.7 This

jump specification takes a rather different perspective that the curvature is revealed once we cross

a threshold. More generally, a rigorous learning-based analysis would be a valuable extension, but

it would require that we provide a formal characterization of the precise acquisition of information

pertinent to damage function curvature.

We impose a jump intensity function that is, by design, localized at y “ y:

Ipyq “

$

&

%

´

1?
2ρ

¯

exp
”

´
py´yq2

2ρ2

ı

y ă y
´

1?
2ρ

¯

y ě ȳ

which becomes concentrated in the neighborhood of ȳ for ρ small.8 A large intensity informs

us that a jump is likely. We let πpm be the probabilities conditioned on the jump. When the

process jumps to state m, the parameter γm3 is revealed and the continuation value function is

φm. For sufficiently small ρ, we will approximate the solution to the control problem by deriving

an ambiguity adjusted continuation value function at y.

4 An illustrative economy

To illustrate our approach to uncertainty, we deliberately use a highly stylized economic model.

Later, we will consider two alternative richer specifications of the economic environment necessary

to address some important policy challenges.

We start by specifying the economy in the absence of environmental damages. We pose

an AK technology for which output is proportional to capital and can be allocated between

investment and consumption. Capital in this specification should be broadly conceived. Suppose

that there are adjustment costs to capital that are represented as the product of capital times

a quadratic function of the investment-capital ratio. Given the output constraint and capital

evolution imposed by the AK technology, it suffices to let the planner choose the investment-

capital ratio.

7Nordhaus (2018) explored the consequences of date dependent information revelation in contrast to our state
dependent revelation.

8This intensity is recognizable as the scaled version of half normal density with mean y and standard deviation
ρ.
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Formally, “undamaged” capital evolves as

dKt “ Kt

«

µkpZtqdt`

ˆ

It
Kt

˙

dt´
κ

2

ˆ

It
Kt

˙2

dt` σkpZtqdW
k
t

ff

where Kt is the capital stock and It is investment. The capital evolution expressed in logarithms

is

d logKt “

«

µkpZtq `

ˆ

It
Kt

˙

´
κ

2

ˆ

It
Kt

˙2
ff

dt´
|σkpZtq|

2

2
dt` σkpZtqdW

k
t ,

where Kt is the capital stock. Consumption and investment are constrained to be:

Ct ` It “ αKt

where Ct is consumption.

Next, we consider environmental damages. We suppose that temperature shifts proportion-

ately consumption and capital by a multiplicative factor Nt that captures damages to the pro-

ductive capacity induced by climate change. For instance, the damage adjusted consumption is

rCt “
Ct
Nt

and the damage adjusted capital is rKt “
Kt
Nt

. Notice that:

d log rKt “ d logKt ´ d logNt

Thus, damages induce a deterioration of the capital stock.

Consumer/investor preferences are time-separable with a unitary elasticity of substitution

with an instantaneous time t contribution:

p1´ ηq log C̃t ` η log Et
“ p1´ ηqplogCt ´ logKtq ` p1´ ηqplogKt ´ logNtq ` η log Et

We let δ be the subjective rate of discount used in preferences.

Remark 4.1. The model as posed has a solution that conveniently separates. We may solve

two separate control problems i) determines “undamaged” consumption, investment and capital

ii) determines emissions, the temperature anomaly and damages. It is the latter one that is

of particular interest. Undamaged consumption, investment and capital are merely convenient

constructs that allow us to simplify the model solution.

5 Uncertainty aversion

The model we have built so far is one in which uncertainty is captured by the stochastic specifi-

cation of shocks as is typical when building dynamic stochastic models in macroeconomics. We
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think of this shock specification as characterizing risk. The presence of these shocks opens the

door to a comprehensive assessment of uncertainty in which we entertain a broader notion of

uncertainty. We include uncertainty over model specifications and parameters, which we refer

to as ambiguity. In this discussion, we treat models and parameters as synonymous by thinking

of each parameter as indexing an alternative model. We are led to depart from the Bayesian

approach which starts with the specification of a subjective prior over the alternative models, but

does not distinguish the role of subjective probabilities over models from the probabilities given

a model. Instead, we use recent formalisms from decision theory under uncertainty to explore

the impact of uncertainty over the subjective inputs. Within statistics, this gave rise to robust

counterparts to Bayesian inferences in the study of prior sensitivity, often outside the realm of a

specific decision problem. The decision theory framework formalizes the question of “sensitivity

to what?” and the formal tradeoff between making best guesses versus possible bad outcomes as

we look across models. While in some settings, data richness may diminish the role of prior sensi-

tivity, we find the economics of climate change to be a problem whereby prior sensitivity remains

an important question for the decision maker. Of course, any model we write down is necessarily

a simplification. We also incorporate concerns about the potential misspecification of the models

under exploration using ideas from robust control theory extended to dynamic economic models.

Our use of decision theory gives rise to a form of uncertainty quantification. Uncertainty

quantification in the sciences is typically done by researchers. For instance, we might ask how

the social cost of carbon differs as we change the modeling ingredients. But decision makers also

confront this uncertainty, including ones inside the models that we build. Thus, model ambiguity

or misspecification concerns by decisions makers should arguably be taken into account when

determining the prudent course of action. This same uncertainty emerges as adjustments to the

social cost of carbon as set by say a benevolent social planner. Just like risk aversion can induce

caution in decision making, the same can be said of broader notions of uncertainty aversion. While

the decision theory that we use does not determine the magnitude of what this aversion should

be, it reduces a potentially high dimensional sensitivity analysis to a much lower dimensional one

captured by low dimensional representations of uncertainty aversion.

We analyze this uncertainty using the formalism of decision theory under uncertainty. We

apply two versions of such theory, one comes under the heading of variational preferences and

the other under smooth ambiguity preferences. We adapt both to continuous-time specifications,

which facilitates their implementation and interpretation. We use this decision theory to reduce

the sensitivity analysis to a one or two-dimensional parameterization that locates the potential

misspecification that is most consequential to a decision maker. Our aim is to provide a more

complete uncertainty quantification within the setting of decision problems.
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5.1 Other approaches to uncertainty quantification across models

We briefly discuss three prior forms of uncertainty quantification as it pertains to unknown pa-

rameters or models. We give these as illustrations, but the list is by no means exhaustive.

Olson et al. (2012) propose and implement a Bayesian method for making inferences about

certain parameters of interest, including a climate sensitivity parameter coming from the UVic

(University of Victoria) earth system climate model. They document posterior sensitivity of the

climate sensitivity parameter to priors and other unknown modeling inputs. In particular, they

show the need to use an informative prior for climate sensitivity to obtain reasonable results,

therefore demonstrating the posterior uncertainty in their informative statistical investigation.

While not the focal point of their analysis, there is additional uncertainty in the likelihood con-

struction. These forms of uncertainty are pertinent not only to researchers presenting evidence,

but also to decision or policy makers as they make decisions. Thus, we move the uncertainty

quantification “inside the decision problem,” including the sensitivity analysis. This allows us

to explore the impact of model or parameter ambiguity for choosing socially prudent emissions

trajectories and imputing the implied social cost of carbon.

In an alternative investigation of uncertainty in a climate economic model, Nordhaus (2018)

computes distributions of model outcomes given a priori distributions of parameters, specifications

and model inputs, including emissions pathways. From their analysis, they are able to produce

a set of outputs associated with each parameter or model configuration to demonstrate the role

of uncertainty in their setting. Their static analysis occurs “outside the decision problem,” but

it opens the door to exploring changes in the prior probability distribution without a systematic

analysis of the sensitivity. Our framework uses recursive methods and decision theoretic tools

to determine endogenously prudent choices of emissions over time and the implied social cost of

carbon trajectories when the policy maker confronts prior ambiguity. Policy outcomes include

endogenous feedbacks and dynamic impacts on the social cost of carbon, and, importantly, an

adjustment for uncertainty that is either unresolved, or only resolved well into the future.9

In a third approach, Hassler et al. (2018) conduct an analysis of uncertainty by comparing

policy outcomes across two parameter intervals, one pertaining to damages and another to climate

sensitivity. Instead of putting a probability distribution over parameters, they evaluate policy

outcomes at the extreme points of parameter space. Their analysis can be thought of as a

simple illustration of robust decision making allowing for arbitrary probabilities over the unknown

parameters and is a revealing starting point to the policy problem they investigate. Our analysis of

the policy problems is explicitly dynamic and imposes probabilistic restraints on the probabilities

that could be assigned over a potentially large set of alternative model configurations. The

9Nordhaus (2018) noted the inability of his framework to address such endogenous feedbacks and unresolved
uncertainty, and highlights the potential value to using the type of recursive methods we employ in our analysis as
a way to address such issues.
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dynamic decision theory formulation we use collapses our resulting sensitivity analysis to a low

dimensional representation in terms of ambiguity and misspecification aversion parameters.

5.2 Components of uncertainty

Posing our model in continuous-time leads to a simplified characterization of robustness. Given

our interest in recursive methods, in what follows, we will describe in turn implications for mis-

specifying a Brownian motion, a jump process and an ambiguity adjustment for the local mean

of the dynamical system. We will then explore a more structured approach that allows us to

target uncertainty in how to weight alternative models of climate dynamics. Since this also leads

us to assess implications for the local mean, we may make direct comparisons between a more

structured approach to model ambiguity and a less structured approach exploring potential model

misspecification.10

5.2.1 Misspecified Brownian motion

Following James (1992), Hansen and Sargent (2001) and others, the potential misspecification

of a Brownian motion has a particularly simple form. It is known from the famed Girsanov

Theorem that a change in distribution represented by a likelihood ratio for Brownian motions

induces a drift distortion. Under such a change in probability distribution, dWt is changed from

a Brownian increment to a Brownian increment with a drift or local mean that can be state (or

model) dependent, which we denote Htdt. Thus, to explore the consequences of misspecification,

we modify our (locally) normally distributed shocks by entertaining possible mean distortions.

Entertaining arbitrary changes in the drift without a constraint or a penalty, leads to an unin-

teresting and inflexible decision problem. Here we follow one of the preference specifications in

Hansen and Sargent, which is also a continuous-time version of dynamic variational preferences

of Maccheroni et al. (2006), whereby we use an expected log-likelihood ratio measure of discrep-

ancy called relative entropy to restrain the search over alternative possible drift specifications.

For Brownian motion models, the relative entropy penalty is ξb
2 |Ht|

2dt where ξb is penalty pa-

rameter that governs the decision maker concern for misspecification and 1
2 |Ht|

2dt is the local

contribution to relative entropy. This formulation leads to a straightforward adjustment to a

Hamilton-Jacobi-Bellman equation used for continuous-time optimization.

Let ψ denote a value function defined as a function of a Markov state Xt. Suppose the local

Brownian contribution to the state evolution dXt is σxpXtqdWt. Then a drift distortion Htdt

contributes
´

BψpXtq

Bx

¯

¨ pσxHtq dt to the value function evolution. As part of recursive robustness

10See Hansen and Sargent (2020b) and Cerreia-Vioglio et al. (2021) for decision theoretic discussions of the
distinct roles for model ambiguity and misspecification concerns.
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adjustment, we solve

min
h

ˆ

Bψ

Bx

˙

¨ pσxhq `
ξb
2
|h|2.

The solution to this minimization problem is:

h˚ “ ´
1

ξb
σx
1

ˆ

Bψ

Bx

˙

(1)

with minimized objective:

´
1

2ξb

ˆ

Bψ

Bx

˙1

σxσx
1

ˆ

Bψ

Bx

˙

. (2)

The solution h˚ locates the direction, σx
1
´

Bψ
Bx

¯

that alters the local evolution evolution of the

value function in the most adverse manner, and it scales this direction inversely with the penalty

parameter ξb. The implied change in the local evolution for dψpXtq is

´
1

ξb

ˆ

Bψ

Bx

˙1

σxσx
1

ˆ

Bψ

Bx

˙

We impose an aversion to the misspecification of Brownian risk by including the term (2) in the

HJB equation.

5.2.2 Misspecified jump process

To specify a Markov jump process requires both a) a state-dependent intensity governing the

probability of a jump and b) the distribution over the post jump state. Both of these could be

mistaken. We capture both forms of potential misspecification by introducing positive random

variables Gmt ě 0 for each alternative damage model m with local evolution of the state given by

IpYtq
M
ÿ

m“1

Gmt π
p
m rψm ´ ψs

where πpm, for m “ 1, 2...,m are the baseline probabilities and IpYtq is the baseline intensity for

the jump process. The altered probabilities resulting from the concern about misspecification are

given by
Gmt π

p
m

Gt
m “ 1, 2, ...,M

where Gt is a normalization defined by

Gt
.
“

M
ÿ

m“1

Gmt π
p
m;
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and the altered intensity of the jump process is given by IpYtqGt.
Thus the choice of the Gmt ’s alters both the jump probabilities and the jump intensities in

a manner that is mathematically tractable. The local relative entropy discrepancy for a jump

process is:

IpYtq
M
ÿ

m“1

πpm p1´G
m
t `G

m
t logGmt q ě 0

This measure is nonnegative because the convex function g log g exceeds its gradient g´1 evaluated

at g “ 1.

To determine a local contribution to an HJB equation, we follow Anderson et al. (2003) by

solving

min
gmě0:m“1,2,...,M

I
M
ÿ

m“1

gmπpm pψm ´ ψq ` ξpI
M
ÿ

m“1

πpm p1´ g
m ` gm log gmq

where ξp ą 0 is a penalty parameter limiting the search over the Gmt ’s with realized values given

by the gm’s. The minimizers are:

g˚m “ exp

„

1

ξp
pψ ´ ψmq



,

which do not depend directly on the intensity I.11 Notice that the g˚m tilt exponentially towards

the states for which the post jump value function ψm is low relative to the pre jump value function

ψ. The implied minimized objective is:

ξpI
M
ÿ

m“1

πpm

ˆ

1´ exp

„

1

ξp
pψ ´ ψmq

˙

“ ´ξpI

řM
m“1 π

p
m exp

´

´ 1
ξp
ψm

¯

´ exp
´

´ 1
ξp
ψ
¯

exp
´

´ 1
ξp
ψ
¯

We add this outcome to the HJB equation of the decision maker to adjust for robustness to jumps

misspecification.

5.2.3 Local ambiguity aversion

To assess the consequences of the heterogeneous responses from alternative climate models, we

use what are called recursive smooth ambiguity preferences proposed by Klibanoff et al. (2009).

For an important special case of these preferences, Hansen and Sargent (2007) provide a robust

prior/posterior interpretation of these preferences. This alternative interpretation has advantages

both in terms of calibration and representation of social valuation. In deploying such preferences,

we use a robust prior interpretation in conjunction with the continuous-time formulation of smooth

ambiguity proposed by Hansen and Miao (2018).

11The value function ψ does depend implicitly on the intensity, which in turn alters the distorted intensity.
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In our application, we will entertain L alternative climate models, and will confront ambiguity

in what weights to assign to these L models. To be specific, suppose that we have L different

climate models where the local mean or drift is µ`x for model `. Let πa` denote the baseline

probability of drift model L. Standard model averaging would use:

L
ÿ

`“1

πa`µ
`
x

as the drift for decision making. Our decision maker is uncertain, however, about what weights

to assign but uses an initial set of weights as a baseline. For instance, in our computations we

will treat a collection of models with equal probability under a baseline and look for a robust

adjustment to these probabilities. Under the robust prior/posterior interpretation of the smooth

ambiguity model, the decision maker with value function ψ solves:

min
π`,`“1,2,...,L

L
ÿ

`“1

π`

„ˆ

Bψ

Bx

˙

¨ µ`x ` ξa plog π` ´ log πa` q



(3)

where ξa is a penalty parameter used to restrain the search over the weights to assign to assign

to the alternative models. The minimizing probabilities satisfy:

ωa` 9 πa` exp

„

´
1

ξa

ˆ

Bψ

Bx

˙

¨ µ`x



,

where the minimizing probabilities are reweighted based on the implied value function drift for

model `. Small values of the penalty parameter ξa result in an enhanced re-weighting. The

minimized objective is:

´ξa log
L
ÿ

`“1

πa` exp

„

´
1

ξa

ˆ

Bψ

Bx

˙

¨ µ`x



In contrast to the robustness adjustment used for model misspecification, this approach adds

more structure to the drift distortions to the evolution dψpXtq:

´

Bψ
Bx

¯

¨

”

řL
`“1 pω

a
` ´ π

a
` qµ

`
x

ı

smooth ambiguity

´ 1
ξb

´

Bψ
Bx

¯1

σxσx
1
´

Bψ
Bx

¯

misspecification

We have introduced three different parameters pξb, ξp, ξaq that guide our sensitivity analysis.

From a decision theoretic perspective, these are “preference parameters” that govern aversion to

uncertainty broadly conceived. Anderson et al. (2003) impose that ξb “ ξp and suggest ways to

calibrate the robustness component based on statistical detection challenges. Since our application

of smooth ambiguity and misspecified Brownian motion induce drift distortions for the value
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function, we can set the penalty parameters pξb, ξpq so that the drift distortions for the continuation

values are comparable. Finally, for the calibration of the smooth ambiguity parameter, we are

guided by an approach from robust Bayesian analysis attributed to Good (1952) that inspects the

implied distortions for a priori plausibility.

In our pedagogical discussion so far, we have seemingly ignored possible interactions between

damage uncertainty and climate uncertainty. In fact, these interactions will be present as climate

change uncertainty will impact the value function contributions given by the ψm’s and by ψ.

Moreover, the continuation value functions, ψm, that condition on damage function curvature

contribute to the boundary condition for ψ pertinent when the temperature anomaly is less than

the threshold.

5.3 A valuation adjustment for uncertainty

There is much discussion in the literature on environmental economics about what discount rate

to use. In our analysis so far, there is a single discount rate used to define the preferences of a

fictitious social planner. But the discussions in the literature usually refer to present discounted

value formulas for marginal valuation. We represented the robust adjustments in terms of altered

probabilities which we compute in conjunction with the HJB equations used for optimization. As

Barnett et al. (2020) demonstrate, these same probabilities provide the uncertainty adjustments

for social valuation. Thus, to account for uncertainty, broadly conceived, we are pushed beyond

the question of what discount rate to use because the necessary adjustment is most conveniently

depicted as an altered probability measure.

6 A climate component of a planner’s decision problem

To illustrate how uncertainty can impact the analysis of a climate economic system, we consider

the partial differential equations that provide a recursive characterization of the value function.

As we indicated previously, these partial differential equations take the form of HJB equations.

As we explain in Appendix B, the planners value function is additively separable with components

that can be computed separately. We focus here on the component that includes the emissions

as a control and the temperature anomaly and damages as states. Let rEt “ pιy ¨ Ztq Et, which we

will use as a transformed control variable.

We start with the equation for value function contribution, ψpy, nq “ φpyq` pη´1q
δ n. The HJB
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equation of interest for y ă ȳ prior to Poisson jump is:

0 “ max
ẽ
´ δφpyq ` η log ẽ

`
dφpyq

dy

L
ÿ

`“1

πa` θ`ẽ`
1

2

d2φpyq

pdyq2
|ς|2ẽ2

`
pη ´ 1q

δ

«

pγ1 ` γ2yq
L
ÿ

`“1

πa` θ`ẽ`
1

2
γ2|ς|

2ẽ2

ff

` Ipyq
M
ÿ

m“1

πpm rφmpyq ´ φpyqs (4)

The second and third lines include the terms for the dynamics for y and n respectively. The

fourth line gives the jump contribution.

The first-order conditions for emissions are:

η

ẽ
“ ´

dφpyq

dy

L
ÿ

`“1

πa` θ` ´
d2φpyq

pdyq2
|ς|2ẽ´

pη ´ 1q

δ

«

pγ1 ` γ2yq
L
ÿ

`“1

πa` θ` ` γ2|ς|
2ẽ

ff

. (5)

Recall that ẽ “ pιy ¨ zqe. Multiplying (5) by ιy ¨ z,

η

e
“´

dφpyq

dy
pιy ¨ zq

L
ÿ

`“1

πa` θ` ´ pιy ¨ zq
2d

2φpyq

pdyq2
|ς|2e

´
pη ´ 1q

δ

«

pιy ¨ zq pγ1 ` γ2yq
L
ÿ

`“1

πa` θ` ` pιy ¨ zq
2γ2|ς|

2e

ff

(6)

In terms of cost-benefit accounting, we think of the left side of (6) as the marginal benefit and the

right side as the marginal cost induced because emissions today alter temperature and damages in

the future. These latter impacts are conveniently represented in terms of marginal contributions

of current period emissions on the value function evolution expressed as function of py, nq. In

what follows, when we evaluate the emissions along the socially optimal trajectory, we exploit the

equating of marginal benefits to marginal costs and use the right side of (6) to represent the social

cost of carbon. When we impose a decision rule for emissions that is not optimal, we will continue

to use the right side of (6) to represent the social cost of carbon.12 There is a counterpart to this

12Given our recursive formulation, we are naturally led to think in terms of policy rules. If there is an allocation
rule for emissions as a function of the state of the climate, albeit one that is inefficient, then this feedback will alter
φ and hence its derivative with respect to temperature. This feedback could come from market/policy interactions
not spelled out here. With this feedback and outside of a setting where we can apply the Envelope Theorem,
the right side necessarily takes account of how future changes in the climate impact future emissions and not just
damages. Moreover, feedback in emissions alters the climate dynamics. Given these considerations, the right side
of equation (6) is perhaps better conceived as a measure of future net costs based on future considerations. This
allocative feedback is in contrast to an exogenously specified path of emissions independent of the future climate
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formula that holds when the planner confronts model ambiguity and misspecification concerns.

Equation (4) is expressed in terms of the pre jump contribution φ to the value function. It

depends on the continuation value functions φm pertinent after the tail of damage function is

realized. These continuation value functions solve equations:

0 “ max
ẽ
´ δφmpyq ` η log ẽ

`
dφmpyq

dy

L
ÿ

`“1

πa` θ`ẽ`
1

2

d2φmpyq

pdyq2
|ς|2ẽ2

`
pη ´ 1q

δ

˜

rγ1 ` γ2y ` γ
m
3 py ´ ȳqs

L
ÿ

`“1

πa` θ`ẽ`
1

2
pγ2 ` γ

m
3 q |ς|

2ẽ2

¸

for m “ 1, 2, ...,M .

Given the localized nature of the jump intensity, we expect

φ pȳq «
M
ÿ

m“1

πpmφm pȳq .

where the approximation becomes more accurate as ρ becomes small. For our computations

without uncertainty adjustments, we consider the limiting case in which this approximation is

imposed as a boundary condition when y “ y.

To explore the consequences of uncertainty and sensitivity to some of the subjective inputs,

we add the following terms to the equations of interest:

• Brownian misspecification: include

´
1

2ξb

ˇ

ˇ

ˇ

ˇ

„

dφpyq

dy
`
pη ´ 1q

δ
pγ1 ` γ2yq


ˇ

ˇ

ˇ

ˇ

2

|ς|2ẽ2.

• Jump misspecification: replace Ipyq
řM
m“1 π

p
m rφmpyq ´ φpyqs with:

´ξpI

řM
m“1 π

p
m exp

´

´ 1
ξp
φm

¯

´ exp
´

´ 1
ξp
φ
¯

exp
´

´ 1
ξp
φ
¯

• Climate model ambiguity: replace

L
ÿ

`“1

πa` θ`

„

dφpyq

dy
`
pη ´ 1q

δ
pγ1 ` γ2yq



ẽ

anomalies. The commonly posed exogenous trajectories would lead to a different computation of the social cost of
carbon.
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with ambiguity adjusted certainty equivalent:

´ξa log
L
ÿ

`“1

πa` exp

ˆ

´
1

ξa
θ`

„

dφpyq

dy
`
pη ´ 1q

δ
pγ1 ` γ2yq



ẽ

˙

In what follows, we will impose these terms separately and together with the first and second

or second and third. The first and third give unstructured and structured ways to impose drift

distortions. While their comparison is interesting, we see little rationale to impose both of them

simultaneously. When the uncertain jump adjustment is made, we expect:

φpyq « ´ξp log
M
ÿ

m“1

πpm exp

„

´
1

ξp
φmpyq



where the right side is the certainty equivalent for an ambiguity adjusted post jump continuation

value. For our computations with uncertainty adjustments, we impose this as a boundary value. A

list of parameters we hold fixed for the computations that follow are given in Appendix B. Figure

4 illustrates the “value matching” that we imposed where the blue dashed line is the certainty

equivalent continuation value function with a robust adjustment for model misspecification. In

this figure, the certainty equivalent used in the value matching is lower than even the high damage

model but still distant from the extreme value model. In the next section, we will have more to

say about the parameter settings for ξb, ξp, ξa.
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Figure 4: Continuation value function for a model with jump misspecification and ambiguity
aversion. Baseline probabilities for damage functions are 1/3, 1/3, 1/3.

The logarithm of the social cost of carbon has three components:

logSCCt “ logCt ´ logNt ´ log Et ` rlog η ´ logp1´ ηqs (7)

where logCt is the fictitious undamaged consumption and grows approximately linearly with

quantiles that have different approximate slopes. This component will remain the same across

our calculations. We will feature the second and third contributions as they vary with the aversions

to uncertainty.

7 Sensitivity

While the penalty parameters pξb, ξp, ξaq provide a convenient way to represent the consequence of

uncertainty aversion, their numerical values are hard to interpret directly. For this reason, we will

follow in part the lead of the robust Bayesians by finding it revealing to inspect the plausibility

of the implied minimizing probabilities. These altered probabilities are not intended to be the

beliefs of a social planner, but rather they reflect how large the misspecification concern is in the

assignment of the benchmark probabilities. If such probabilities are easily dismissed as being too

extreme, then the penalty parameters were set too low. Anderson et al. (2003) complement this
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approach by asking how challenging it would be for a statistician to distinguish the worst-case

model from the baseline model with data histories of different lengths.

7.1 Robust perspective

We initially abstract from smooth ambiguity by essentially setting ξa “ 8. In the continuous

time robustness framework of Anderson et al. (2003), the penalty parameters ξb and ξp are equal,

which leaves us with one parameter. As they also note, there is a preference equivalence between

a concern for model misspecification and risk aversion in the recursive utility formulation of Kreps

and Porteus (1978) and Epstein and Zin (1989) when there is a unitary elasticity of substitution

as we have assumed here. Our macroeconomic model, by design, can capture what is called “long-

run risk” in the macro-finance literature in the absence of climate change. See Bansal and Yaron

(2004). The long-run risk literature explores the valuation consequence of growth rate uncertainty

using a recursive utility model of investor preferences. The preference specification presumes a

full commitment to the baseline probabilities, but the rationale for this commitment appears to

be weak when confronting specific forms of growth rate uncertainty. The long-run risk literature

often imposes a seemingly large risk aversion parameter that arguably can look more plausible

when reinterpreted as a concern of model misspecification.

We start by imposing ξp “ ξb “ 5. The implied risk aversion under recursive utility is twenty

one, which is certainly large but typically not dismissed as too large in the empirical literature

on long-run risk. The Brownian drift induced by a robustness concern is negligible, but there is a

notable re-weighting of the three damage functions. We plot the altered probabilities over damage

models in Figure 5. Not surprisingly, the probabilities are ordered depending upon the severity

of the damage specification. The probability on the extreme damage specification is monotone

increasing in the temperature anomaly. While Brownian drift adjustment for misspecification

is very small for the temperature, it is quite sizable for the counterpart adjustment to the con-

sumption/capital dynamics. Borrowing and updating a specification of growth rate uncertainty

of Hansen et al. (2008), Hansen and Sargent (2020a) fit a simple consumption/capital model to

aggregate data designed to measure macroeconomic growth-rate uncertainty. Their model is the

undamaged version of the model we pose here, with two shocks. One shock is to the stochastic

process for growth rate productivity and the other is an independent shock to only the capital

productivity. These shocks imply two of the consumption shocks in Bansal and Yaron (2004).13

13Bansal and Yaron (2004) also include a shock to stochastic volatility that we abstract from here and consider
implications for changing the intertemporal elasticity of substitution.
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Figure 5: Distorted probabilities of damage functions for a model with Brownian motion and
jump misspecification. ξb “ ξp “ 5. Baseline probabilities for damage functions are 1/3, 1/3, 1/3.

The implied drift distortions for the stochastic capital evolution are:

h “

«

´.715

´.170

ff

productivity growth rate shock distortion

capital productivity shock distortion.

While temperature distortions are negligible, the long-run risk model leaves the door open to

much more sizable distortions, particularly for macroeconomic growth-rate uncertainty. Given the

relative magnitudes of the adjustments, it is the growth uncertainty channel that is of particular

importance to the decision maker. Though .715 is large in comparison to the unit standard

deviation of the shock, should we double the penalty parameter ξb this number would be about

half the size, and we would still get a notable slanting of the damage function specification

probabilities. While we find this comparison between misspecification and risk aversion in the

presence of growth rate uncertainty to be revealing, an uncomfortable feature of the long-run risk

formulation in the macro asset pricing literature is that the long-run risks are a bit of a “black

box.”

Remark 7.1. to assess the magnitude of the distortion, Anderson et al. (2003) suggest to mea-
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suring the implied magnitude of the statistical divergence measure of Chernoff (1952). Chernoff

computed the asymptotic decay rate in mistakenly distinguishing one model from another given a

history of data. When the decay rate is small, the models are hard to tell apart from data. It is

an ex ante measure of distance between probability models. Since the implied Brownian motion

drift distortions show very little state dependence and diffusions are locally normal, the Chernoff

rate is approximately

Chernoff “
|h|2

8
“ .068

The half life associated with this is about ten years. Doubling the penalty parameter ξb would

increase this half life to be about forty.

Statistical divergence measures seem less relevant when applied to our Poisson jump limit and

its penalization parameter ξp. Given that we effectively restricted the process to a single jump,

there is a very limited role for learning about the potential misspecification.

We now put aside the growth uncertainty channel in the long-run risk model and focus on

the uncertainty in the temperature dynamics and damage function specification. Moreover, the

statistical challenges for the geo-scientific inputs look quite different than those pertinent to

determining the alternative damage specifications. For this reason, we break the link between

ξp and ξb by allowing for a much smaller penalty ξb while leaving ξp “ 5. We report results

for ξb “ 0.3 with the implied drift distortion of .114. This distortion is essentially constant as

a function of the state variable and hence over time. A smaller value of ξb will induce a larger

change in the drift.14

We consider another configuration in which ξb “ ξp “ 0.3. With a ξp parameter of this

magnitude, the tilted probabilities load up almost entirely on the extreme damage specification

while the Brownian distortion remains essentially at .114.

We report the emissions trajectories for four configurations of robustness penalties in Figure

6:

• baseline: ξb “ ξp “ 8;

• ξb “ ξp “ 5;

• ξb “ 0.3, ξp “ 5 :

• ξb “ 0.3, ξp “ 0.3.

The lower three trajectories show how a misspecification averse planner chooses to emit more

slowly.

14The half life of the Chernoff entropy for this distortion is about 400 years.
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Figure 6: Emissions trajectories under different penalty configurations. The trajectories are
simulated under the baseline probabilities abstracting from the intrinsic randomness.

Figure 7 reports the logarithm of the implied social cost of carbon net of stochastic growth

contribution contributed by “undamaged consumption.” Specifically, this figure plots trajectories

for

logC0 ´ logNt ´ log rEt ` log η ´ logp1´ ηq

under the evolution implied by the baseline probabilities. In comparing this formula to formula

(7), the one used for the figure abstracts from the stochastic contributions induced by Brownian

motion and by fluctuations in ιy ¨ Zt and is translated at date zero so that its exponential at the

initial date is comparable with other measures of the social cost of carbon. From this figure, we

see that the additional uncertainty increases this cost by about twenty percent as measured by

the difference in logarithms times one hundred. The omitted consumption component is common

to all of the calculations and its inclusion would not alter the logarithmic differences.
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Figure 7: Social cost of carbon expressed in logarithms. The trajectories are computed with
baseline probabilities and simulated with zero Brownian risk.

7.2 Structured climate uncertainty

A possible source of the drift distortion is the uncertainty over the climate sensitivity parameter

implied by the alternative models. This leads us now to replace the unstructured drift distortion

with changes in how we weight the alternative climate models by closing down the drift distortion

channel by effectively setting ξb “ 8 and activating the smooth ambiguity channel. For this

example, the Brownian distortion can be interpreted as a mean shift in the temperature dynamics

Specifically, the drift distortion that we computed when ξb “ 0.3 would be equivalent to a mean

shift of about .25 in the histogram reported in Figure 2. This opens the door more structured

interpretation of the misspecification concern and opens the door to uncertainty decomposition

that we explore in the next section.

In the computations that follow, we set ξa “ .01. This numerical value itself has little meaning.

What is of more interest is the implied adjustment in the probabilities for the θ` parameters

associated with the 144 climate models. Recall that our baseline probabilities assign equal weight

to all 144 models. Figure 8 shows both the original histogram (in red) and the altered histogram

(in blue). As we expect, there is a shift to the right towards larger values of θ`, but arguably not

in an extreme fashion. While we allow for the altered histograms to depend on the state y, in
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fact we find very little variation in our calculations. The implied mean shift in the distribution

is essentially the same as that implied by the unstructured drift distortion. In effect, the tilted

histogram provides an interpretation for the robust drift distortion since we essentially chose the

penalty parameter ξa “ .01 to achieve this outcome.15 We chose the penalty parameter ξa “ .01

in part to achieve this outcome. The implied emissions and social cost of carbon trajectories will

be essentially the same as those depicted in Figures 6 and 7.

Decreasing ξa will lead to a larger shift upwards in the distribution of cross model climate

values of θ`’s.
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Figure 8: Histograms of climate sensitivity parameters. The red histogram is the outcome of
equally weighting all 144 climate models. The blue histogram is the outcome of the minimization
in our social planners problem.

Remark 7.2. We explored two extensions that turned out to have little quantitative consequence.

First, we introduced a second state variable as proposed in Remark 2.1. The additional state

variable was included to accommodate the initial rise in the impulse response of temperature to

an emissions pulse. Including this state variable with a half life of 6 years had very minor conse-

quences for emissions or the social cost of carbon. The second extension we explored was adding

a Hotelling (1931) constraint on the stock of reserves. Except for the low damage specification,

15For an example in which the structured uncertainty does simply imitate a model misspecification concern see
Hansen and Sargent (2020a).
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a Hotelling constraint has a negligible impact on our computations. McGlade and Ekins (2015)

provided estimates of fossil fuel resources or potential reserves, i.e., fossil fuels that are or will

be recoverable at any time with current or future technology. Using a value of reserves of 3000

GtC, nearly the same as the baseline quantity from the McGlade and Ekins analysis, and at the

very low end of potential reserves estimates they provide, we find almost no Hotelling constraint

impact on our results. This insensitivity is consistent with results from our endogenous reserve

model in Barnett et al. (2020). Were we instead to impose a carbon budget constraint divorced

from the stock of reserves, this could have a substantial impact, but we view this as an even more

extreme damage function.

8 Uncertainty decomposition

An advantage to the more structured approach implemented as smooth ambiguity is that it

allows us to “open the hood” so-to-speak on uncertainty. We build on the work of Ricke and

Caldeira (2014) by exploring the relative contributions of uncertainty in the carbon dynamics

versus uncertainty in the temperature dynamics. We depart from their analysis by studying the

relative contributions in the context of a decision problem. We include the damage specification as

a third source of uncertainty. We use the social cost of carbon as a benchmark for assessing these

contributions. For the uncertainty decomposition, we hold fixed the emissions trajectory and

hence also the implied damage trajectory and explore the consequences of imposing constraints

on minimization over the probabilities across the different models.

Let Pj for j “ 1, 2, ...J be a partition of the positive integers up to L. We will choose these

partitions to correspond to alternative models of carbon dynamics and temperature dynamics. We

previously discussed how to implement ambiguity aversion by solving minimization problem (3).

We now extend this idea to partitions of the uncertainty components. For any given such partition,

we solve a constrained version of the minimization problem (3) by targeting the probabilities

assigned to partitions while imposing the benchmark probabilities conditioned on each partition:

min
πj ,j“1,2,...,J

ˆ

Bψ

Bx

˙

¨

J
ÿ

j“1

πj
ÿ

`PPj

˜

πa`
ř

`PPj
πa`

¸

µ`x

` ξa

J
ÿ

j“1

πj
`

log πj ´ log πaj
˘

where:
πa`

ř

`PPj
πa`

` P Pj

are the baseline conditional probabilities for partition j. We only minimize the probabilities across

30



partitions while imposing the baseline conditional probabilities within a partition. The two states

in our problem are x “ py, nq and we look for a value function of the form ψpy, nq “ φpyq` pη´1q
δ n

while imposing that ẽ “ εpyq. For each partition of interest, we construct the corresponding HJB

equation that supports this minimization. As before, we impose a boundary condition at the

threshold y “ y, and we activate robustness adjustments for the damage function specification in

the same way as we have done previously.

From the first-order conditions for ẽ under the baseline probabilities, we can represent:

η

ẽ
“ ´

dφpyq

dy

L
ÿ

`“1

πa` θ` ´
d2φpyq

pdyq2
|ς|2ẽ`

p1´ ηq

δ

«

pγ1 ` γ2yq
L
ÿ

`“1

πa` θ` ` γ2|ς|
2ẽ

ff

. (8)

The formula on the right-hand side implicitly encodes expectations of the future captured by

the value function derivatives. Indeed, the social cost of carbon can be viewed as a forward-

looking asset price with an adverse social cash flow. Conveniently, when we activate ambiguity

and robustness adjustments, an analogous formula holds but with the worst-case probabilities

replacing the baseline probabilities. In effect, we are using the worst-case (subject to penalization)

probabilities in the valuation. For instance, under the structured uncertainty specification:

η

ẽ
`
dφpyq

dy

L
ÿ

`“1

ωa` θ` `
d2φpyq

pdyq2
|ς|2ẽ`

pη ´ 1q

δ

«

pγ1 ` γ2yq
L
ÿ

`“1

ωa` θ` ` γ2|ς|
2ẽ

ff

“ 0.

where the ωa` ’s are minimizing probabilities.

When we impose ẽ “ εpyq and solve constrained minimization problems with respect to prob-

abilities, the equality will cease to hold at minimized probabilities. Nevertheless, the right side of

(8) continues to reflect the change in probabilities both directly and indirectly through the com-

putation of φ. For our uncertainty decomposition, we compute the logarithm of this expression for

alternative partitions of the models. We start by activating separately uncertainty aversion over

the i) models of carbon dynamics, ii) the models of temperature dynamics and iii) the models or

economic damages. In each case we report the difference in logarithms between the computation

using the baseline probabilities and the solutions from the constrained probability minimizations.

Importantly, we change both probabilities and value functions in this computation. The results

are reported in Figure 9a. For comparison we include the analogous computation when we acti-

vate an aversion to all three sources of uncertainty. From this figure, we see that the uncertainty

adjustments in valuation account for twenty to thirty percent of the social cost of carbon. With

the penalties, ξp “ 5 and ξa “ .01, the contributions from temperature are essentially constant

over time with the temperature uncertainty contribution being substantially larger. The damage

contribution is initially well below half the total uncertainty, but this changes to more than half

after one hundred years. It is important to remember that these computations are performed

31



while imposing the planner’s solution for emissions and damages. So called “business-as-usual”

simulations would change substantially this uncertainty accounting.
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(a) The uncertainty partitions account separately for temperature, car-
bon and damage specifications.
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(b) The uncertainty partitions account for combinations of tempera-
ture, carbon and damage specifications.

Figure 9: Uncertainty decomposition for the logarithm of the marginal value of emissions (scaled
by 100). These computations impose ξa “ .01 and ξp “ 5. The figures report log differences be-
tween marginal values computed with baseline probabilities and corresponding values constructed
with probabilities minimized over the corresponding partitions.

Since the uncertainty components are not “additive,” we explore the joint impacts by parti-

tioning the uncertainty using the three different pairings of contributions. The results are reported

in Figure 9b. Not surprisingly, the combination of temperature and damage uncertainty has the
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biggest impact accounting for about three-fourths of the total uncertainty. In contrast, the com-

bination of temperature and carbon uncertainty accounts for somewhere between one-half and

one-third of the total uncertainty depending on how many years in the future we look at.

The quantitative importance of damages will increase as we reduce ξp. We see the ξp setting

as dictating how much wiggle room a decision maker wants to entertain for the weighting of the

alternative damage model specifications. For comparison, we set ξp “ 0.3 to match what we used

previously for ξb. With this change, minimizing probabilities are shifted almost entirely to the

“extreme damage” specification, given us effectly an upper bound on the uncertainty contribution

to the social cost of carbon. Now the overall uncertainty contribution ranges from thirty to sixty

percent as shown in Figure 10a. The damage uncertainty contribution alone accounts for more

than half of this where as the temperature and climate contributions remain about the same as

before. Temperature and damage uncertainty taken together account for most of the uncertainty

as reflected in Figure 10b.

33



0 20 40 60 80 100
Years

0

20

40

60

80

100

Lo
g 

di
ffe

re
nc

e 
(s

ca
le

d 
by

 1
00

)

total
damage uncertainty
temperature uncertainty
carbon uncertainty

(a) The uncertainty partitions account separately for temperature, car-
bon and damage specifications.

0 20 40 60 80 100
Years

0

20

40

60

80

100

Lo
g 

di
ffe

re
nc

e 
(s

ca
le

d 
by

 1
00

)

total
temperature and damage uncertainty
carbon and damage uncertainty
carbon and temperature uncertainty

(b) The uncertainty partitions account for combinations of tempera-
ture, carbon and damage specifications.

Figure 10: Uncertainty decomposition for the logarithm of the marginal value of emissions (scaled
by 100). These computations impose ξa “ .01 and ξp “ .3. The figures report log differences be-
tween marginal values computed with baseline probabilities and corresponding values constructed
with probabilities minimized over the corresponding partitions.

Remark 8.1. The uncertainty decomposition we implement depends on the underlying emissions

trajectory we impose. For the reported computations, we used the planner’s solution for when

all uncertainty components are considered. Since our planner cares about uncertainty, robustness

considerations lead our planner to avoid excessive exposure to uncertainty when possible. In our

particular setting, with uncertainty aversion the planner will prefer to avoid being vulnerable to
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damage function uncertainty, which can be achieved in part by delaying when the potentially steep

slope of the damage function becomes operative. Yet, the exposure components of uncertainty can

look very different for, say, business-as-usual trajectories of emissions or even socially optimal

trajectories of emissions that do not incorporate concerns about uncertainty. Thus, our decom-

positions are of potential interest for emissions trajectories other than those chosen as part of a

solution to an uncertainty averse planner’s problem.

9 A richer economic setting

While our main analysis has so far focused on a stylized model of the coupled climate-economy dy-

namics, our framework is also well-suited for exploring richer environments. Important modeling

extensions include additional macroeconomic components that allow for adaptation, technological

change, and multiple sectors. We have left off the table discussions of technological innovation

that could support the transition from dirty to clean capital and the reallocating production from

technologies that are vulnerable to climate change to ones that are more resilient. Modeling ex-

tensions that allow us to address a broader range of economic responses are important both for

assessing the role of policy and for accommodating market responses. Rather than constructing

an all purpose integrated assessment model, we describe a two-capital model setup that allows us

to confront some of the gaps left with our illustrative model.

We take as starting point the two capital, AK specification of Eberly and Wang (2012) that in-

cludes adjustment costs and hence sluggish reallocation. The resulting technologies are stochastic

subject to Brownian increment shocks and are used to output that is divided between investment

and consumption. It is a two capital extension of the undamaged consumption/investment model

that we have used so far. Although their model has stochastic growth, many parameter configu-

rations imply long-term stationary behavior of the relative capital stocks. The ratio of the capital

stock becomes a featured state variable for their model. We start with two capital stocks that

evolve as:

dKj,t “ Kj,t

«

µj,kpZtq ¨ dt`

ˆ

Ij,t
Kj,t

˙

dt´
κj
2

ˆ

Ij,t
Kj,t

˙2

dt` σj,kpZtq ¨ dW
k
t

ff

and Kj,t and Ij,t are technology specific capital and investment for i “ 1, 2. The output of each

production is proportional:

Ij,t ` Cj,t “ αjKj,t

For our first application, the planner has an instantaneous utility function that can be repre-

sented as:

log
”

pC1,tq
1´η

pE1,tqη ` pC2,tq
1´η

pE2,tqη
ı

´ p1´ ηq logNt
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where the two sources of emissions contribute to damages differentially. Here, we have in mind

coal and oil where coal use generates more emissions, and therefore leads to more climate damages

than oil. In the absence of climate change considerations, both technologies are attractive sources

of production. Taking account of climate change, a planner will shift production to the cleaner

of the two technologies. This model opens the door to considering uncertainty and policy as it

pertains to taxing or restraining coal production.

Next, we change the configuration to consider clean versus dirty technologies. To do so, we

drop emissions from the second technology and replace it by an input available in fixed supply, τ .

The resulting instantaneous utility function is of the form:

log
”

pC1,tq
1´η

pE1,tqη ` pC2,tq
1´η τη

ı

´ p1´ ηq logNt

We suppose initially that there is a productivity advantage for the dirty technology, but that

there is a third investment opportunity devoted to research and development (R&D) that can

induce improvements in the production from the green sector. The outcome of accumulated

R&D investment is the eventual stochastic arrival of a more productive green technology where

the arrival is modeled as a jump process with intensity linked to the current stock of R&D.

This setting is reminiscent of the framework explored by Acemoglu et al. (2016), though their

focus is on the dynamics of innovation abstracting from capital reallocation and concerns about

uncertainty. This second application opens the door to studying potential subsidies for R&D in

the face of broadly conceived uncertainty.

As a third application, we suppose that one of the two production technologies is vulnerable to

climate change while the other one is not. Consumption and investment from the two technologies

are treated as perfect substitutes. We add an additional source of damages that might be triggered

in the future but for only the first technology. Thus, the first technology is more vulnerable to

climate change, as there is a productivity decline with an uncertain arrival time that becomes

more likely as temperature increases. Given the sluggishness in reallocating capital, there can

be non-trivial transitional consequences to this drop in productivity. This setting allows us to

explore the role of policy for monitoring or limiting this vulnerability in the presence of damage

uncertainties. See Fant et al. (2020) and Kling et al. (2021) for recent research quantifying

vulnerability of productive activities to climate change and the potential need for adaptation.

In a different vein, valuable quantitative research has been done building probabilistic models

of climate tipping points and assessing their risk consequences. See, for instance, Lenton et al.

(2008) and Cai et al. (2015). A model such as the one we described opens the door to the study of

heterogeneous vulnerability to tipping point uncertainty conceived of more broadly than is typical

in risk analyses.

While other studies have explored policy challenges introduced by related models, we will
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study the broad consequences of uncertainty in such environments. In each case, we can include

the analogous uncertainty concerns through model misspecification and ambiguity as before. By

enriching the dynamics, however, we also open the door to new channels by which uncertainty

comes into play and to alternative policy levers worthy of exploration.

10 Conclusion

In many dynamic settings, our understanding of the true underlying model relevant for economic

decision-making is limited because existing evidence is weak along some important dimensions.

As a result, the design and conduct of policy occurs in settings in which policy outcomes are

uncertain. We offer the economics of climate change as an example, but there are many others.

We turned to decision theory under uncertainty to serve as a guide for how we conduct uncertainty

quantification as it contributes to the design of policy. Furthermore, we showed how different

forms of uncertainty impact our quantification and provide a novel decomposition of the effects

of uncertainty which we use to highlight the relative importance of sources of uncertainty for the

determination of optimal policy by a social planner or policymaker.

Our analysis in this paper is made simpler here by posing the resource allocation problem

as one faced by a single policy maker or social planner. To push closer to a realistic policy

setting, multiple decision makers come into play, including alternative policy makers as well as

private sector consumers and investors. Since these different agents confront uncertainty from

different perspectives, their uncertainty concerns are expressed in different ways. Moreover, in

more realistic policy settings, political constraints prevent first-best solutions. While we fully

appreciate the need to extend our analysis of uncertainty to address these modeling challenges,

we have little reason to doubt that the uncertainty considerations should remain as first-order

concerns and not be shunted to the background as they often are in policy discussions.
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Appendix A Carbon and Temperature Model Sets

As mentioned previously, we use 16 models of temperature dynamics from Geoffroy et al. (2013)

and nine models of carbon dynamics models from Joos et al. (2013). We briefly describe the

model experiments used in these papers, list the models we include in our analysis, and provide

details for the reader to find additional information about these models and model experiments.

Geoffroy et al. (2013) approximates the temperature dynamics of 16 different models using a

two-layer energy-balance model (EBM) to study properties of atmosphere-ocean general circula-

tion models (AOGCMs). Table 1 lists the model name for each of the 16 models used in their

and our analysis and direct the reader to Geoffroy et al. (2013) and Seshadri (2017) for additional

details about each of the models.

The Geoffroy et al. (2013) EBM model uses the following specification:

cs
dT s

dt
“ F ´ γT s ´ εχpT s ´ T oq

co
dT o

dt
“ ´χpT o ´ T sq

F “ 5.35
`

logCO2 ´ logCO2

˘

where T s is the surface temperature, T o is the ocean temperature, CO2 is atmospheric carbon

dioxide, and CO2 is the preindustrial benchmark. The construction of F comes from the “Arrhe-

nius” equation (Arrhenius (1896)). The EBM model is solved for explicit solutions, calibrated to

fit the responses of 16 AOGCMs that participated in the CMIP5, and then validated by using

the AOGCM responses to the linear forcing experiments of one percent of CO2 per year. The

parameters they estimate in this simplified representation differ depending on the model used in

the calibration of the approximation, providing a measure of the heterogeneity and uncertainty

present in models of temperature dynamics. We use this specification along with Geoffroy et al.’s

estimates of the 16 temperature dynamics models in our simulations to capture the carbon-to-

temperature component of climate model uncertainty.

Joos et al. (2013) use a carbon cycle-climate model intercomparison analysis to study the

impulse response time-scales of Earth System models. From their analysis, we use the impulse

response functions of nine models based on a 100GtC emission pulse added to a constant CO2

concentration of 389 ppm.16 All of the models we use are Earth System Models of Intermediate

Complexity, except for the reduced form model Bern-SAR. We list the model name for each of the

models used in our analysis in Table 2 below. We direct the reader to Appendix A in Joos et al.

(2013) for detailed descriptions of these and other models used in their intercomparison analysis.

16We acknowledge Fortunat Joos for graciously providing the data for these and other response experiments on
his website: https://climatehomes.unibe.ch/˜joos/IRF intercomparison/results.html.
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Temperature Dynamics Models

BCC-CSM1–1

BNU-ESM

CanESM2

CCSM

CNRM-CM5

CSIRO-Mk3.6.0

FGOALS-s2

GFDL-ESM2M

GISS-E2-R

HadGEM2-ES

INM-CM4

IPSL-CM5A-LR

MIROC

MPI-ESM-LR

MRI-CGCM3

NorESM1-M

Table 1: List of temperature dynamics
models from Geoffroy et al. (2013) and
Seshadri (2017) used in our analysis.

Carbon Dynamics Models

Bern3D-LPJ (reference)

Bern2.5D-LPJ

CLIMBER2-LPJ

DCESS

GENIE (ensemble median)

LOVECLIM

MESMO

UVic2.9

Bern-SAR

Table 2: List of carbon dynamics models from Joos et al.
(2013) used in our analysis.
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Appendix B Solving for the value function components

In Section 6, we discussed a climate economics HJB equation in the state variable y. This is

part of a larger system that can be solved with two additional subsystems of equations. The

three subsystem solutions, when combined, give a solution to the composite HJB equation of the

planner.

B.1 Climate economics system parameters

Parameter Value

ς 1 r2.23 0s

γ1 .000177

γ2 .0044

γ13 .000

γ23 .039

γ33 .771

η .032

δ .01

Table 3: Climate economics system parameters

To understand better the implications of the ς specification note that for a constant emissions path,

the implied standard deviation associated with the coefficient of the Matthew’s approximation is

.446 at twenty five years, .315 for fifty years and .223 for one hundred years.

B.2 Consumption-capital dynamics

The undamaged version of consumption capital model, by design, has a straightforward solution.

We use the “guess and verify” method to derive a solution for this subsystem, guessing a value

function of υk log k ` ζpzq. The HJB equation for this component is:

0 “max
i

min
h
´δ rυk log k ` ζpzqs ` p1´ ηq rlog pα´ iq ` log ks `

ξb
2
|h|2

` υk

„

µkpzq ` i´
κ

2
piq2 ` σkpzq

1h´
|σkpzq|

2

2



`
Bζ

Bz
pzq

“

µzpzq ` σpzq
1h
‰

`
1

2
trace

„

σpzq1
B2ζ

BzBz1
pzqσpzq


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From this equation, we derive the constant scaling the capital component of the value function

υk and can see that it must be

υk “
1´ η

δ
.

Solving for the first-order conditions, we see that the first-order condition for h is

ξbh` σkυk ` σz
Bζ

Bz
“ 0,

and the first-order conditions for the investment-capital ratio is

´p1´ ηq

ˆ

1

α´ i

˙

` υk p1´ κiq “ 0.

Notice that the equation for the optimal h is therefore

h “ ´
1

ξb

„

σkυk ` σz
Bζ

Bz



and that the investment-capital ratio is constant. While there are two solutions for the first-order

conditions for i, only one is positive. In our illustration we set α “ .115 and κ “ 6.667.

The solution for h will be state dependent if we allow for σk or σz to depend on z or if

there is nonlinearity in the drift specifications. Such dependence is common in the macro finance

literature as a form of stochastic volatility. In the computations that follow, we will abstract from

this dependence and impose linear dynamics for z. We impose that

µkpzq “ ´.043` .04pιk ¨ zq

and

σk “ .01
”

.87 .38
ı

dW k
t

where dW k is a two dimensional subvector of the Brownian increment vector dW . The evolution

for the process ιk ¨ Z is given by a continuous-time autoregression:

d pιk ¨ Ztq “ ´.056 pιk ¨ Ztq dt`
”

0 .055
ı

dW k
t

In this case ζpzq “ ζ0 ` ζ1ιk ¨ z where ζ1 satisfies

´δζ1 ` υkp.04q ` ζ1p´.056q “ 0.
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The implied solution for h is constant and equal to:

h˚ “ ´
1

ξb

«

.85

3.58

ff

The implied consumption dynamics in this setting are consistent with the ones given in Hansen

and Sargent (2020a):17

d logCt “ .0194` .04Ztdt` .01
”

.87 .38
ı

¨ dW k
t .

B.3 Contribution of ιy ¨ z

There is one remaining contribution to the planners HJB equation. Note that while log ιy ¨ z is

included in the objective of the planner, this term has not been accounted for in our solution so

far. Thus there is a third contribution, ζ̃ to the value function that solves:

min
h
´ δζ̃pzq ´ η logpιy ¨ zq `

«

Bζ̃

Bz
pzq

ff

¨ rµzpzq ` σzpzqhs `
ξb
2
h1h

`
1

2
trace

«

σzpzq
1 B

2ζ̃

BzBz1
pzqσzpzq

ff

“ 0. (9)

To support this value function separation we impose that ιy ¨Z and ιk ¨Z are independent processes

with ιy ¨Z constructed as a function of the dW y increments and ιk ¨Z constructed in terms of the

dW k increments. Moreover, we assume that

ς 1σzpzq
1

«

Bζ̃

Bz
pzq

ff

“ 0 (10)

where ζ̃ is the solution to HJB equation
”

Bζ̃
Bz pzq

ı

.

As a special case suppose that ιy ¨ Zt evolves as Feller square root process with mean one:

dpιy ¨ Ztq “ ´χpιy ¨ Zt ´ 1qdt`
a

ιy ¨ Ztς̃ ¨ dW
y
t .

where ς̃ ¨ ς “ 0. Then the solution of interest to equation (9) can be expressed as a functional

equation in the scalar argument ιy ¨ z .

As part of a “guess and verify” solution method we add the three value function components

and the three components for the minimizing h together along with the proposed solutions for the

investment capital ratio i and for scaled emissions ẽ. In fact there may be good reasons to relax

17Hansen and Sargent (2020a) represent the dynamics in terms of a time unit of one quarter instead of one year,
and they report a different but observationally equivalent orthogonalization of the Brownian increments.
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assumption (10) and combine the climate economics HJB contribution and that coming from (9)

into a single HJB equation to be solved instead of two lower-dimensional functional equations.
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