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Abstract

The Clean Water Act (CWA) led to significant improvements in surface water qual-
ity, but at a cost exceeding the estimated benefits. This paper is the first to quantify the
impact of the Clean Water Act on a direct measure of health and to consider whether
incorporating health benefits alters the conclusion of a cost-benefit analysis. We use
a difference-in-differences framework to compare infant health outcomes upstream and
downstream from wastewater treatment facilities before and after the facility receives
a CWA grant. We show that improvements in surface water quality were larger for
facilities that were newly required under the CWA to upgrade their treatment technol-
ogy. We leverage this information in a triple difference design, using counties up and
downstream from facilities that were not bound by the CWA’s treatment technology
requirements as an additional control group. We find that reductions in surface wa-
ter pollution from the CWA are associated with an 8 gram increase in average birth
weight. These results are driven by counties whose public water supply systems draw
from surface water rather than groundwater. A back-of-the-envelope calculation finds
that the monetary benefits of the CWA’s effects on infant health are below 29 billion
dollars, or 19 percent of the amount necessary to consider the Clean Water Act grants
program cost-effective.

The Clean Water Act is a landmark, yet controversial, policy. Originally enacted in

1948 as the Federal Water Pollution Control Act, Congress significantly expanded the CWA

in 1972 to prohibit the discharge of “point source” pollution (i.e. pollution that can be

traced back to a specific discharge point) into navigable waters. Improvements in water

quality stemming from the CWA have come at a high cost; projects funded through grants

to wastewater treatment facilities between 1960 and 2005 cost about $870 billion over their

lifetimes (in 2017 dollars) (Keiser and Shapiro, 2019). In total, US government and industry

have spent over $1.9 trillion to abate surface water pollution (Keiser et al., 2019). Existing

cost-benefit analyses of the Clean Water Act do not estimate positive benefit/cost ratios

(e.g. Lyon and Farrow (1995); Freeman (2010)), but none of these analyses account for
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improvements in health caused by the Clean Water Act, because the health benefits of the

CWA have never been quantified.

Historically, policies targeting improvements in child health generate high returns to

public funds (Hendren and Sprung-Keyser, 2019), and previous economics literature shows

that even small increases in child and infant health can lead to large improvements in later

life outcomes.1 Health benefits often account for a large portion of the total benefits of

environmental regulation, with health effects accounting for over 95 percent of all benefits

of air pollution regulation (Keiser et al., 2019).

This paper is the first to incorporate direct health benefits into a cost-benefit analysis of

the CWA and consider how health effects might alter the cost-benefit ratio of the policy. We

quantify these effects using a difference-in-differences framework that compares infant health

outcomes upstream and downstream from wastewater treatment facilities before and after

the facility received a CWA grant. We also show that improvements to surface water quality

associated with CWA grants were largely driven by facilities that were required to comply

with the CWA’s new treatment technology standards. This motivates a triple difference

design that uses counties up and downstream from facilities where treatment technology

requirements were not binding as an additional control group.

Existing research estimates the benefits of improved surface water using hedonic analysis

that measures the effect of CWA grants on nearby housing prices. Comparing areas up

and downstream from wastewater treatment facilities, Keiser and Shapiro (2018) finds that

the CWA’s grant program led to a reduction in downstream pollution and an increase in

downstream housing prices, but these increases were substantially smaller than the CWA’s

costs. By quantifying how downstream residents value water quality, Keiser and Shapiro

(2018) improves upon previous cost-benefit calculations that only accounted for changes in

pollution. However, as noted in Keiser et al. (2019), hedonic analysis assumes housing values

1For example, Behrman and Rosenzweig (2004) documents the effect of intrauterine nutrient intake on
adult health and earnings and Royer (2009) finds cross-generational effects of low birth weight. Comparing
lighter and heavier twins, Black et al. (2007) shows that a 10 percent increase in birth weight reduces one
year mortality by approximately five deaths per 1,000 births. It is also associated with a 1 percent increase in
adult earnings. Also comparing twins, Figlio et al. (2014) finds that a ten percent increase in birth weight is
associated with a one twentieth standard deviation increase in high school test scores. Additionally, hospital
stays for regular weight births are, on average, $8319 cheaper than those for low birth weight births (Almond
et al., 2005).
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reflect the implicit value that households place on the quality of nearby surface water. If

households are uninformed about nearby surface water quality or do not understand the

benefits of reduced surface water pollution, housing values will not reflect the health benefits

of the program. In this historic context, it is unlikely that households fully understood the

range and extent of the negative health effects from surface water contamination, especially

the negative impacts on developing fetuses in utero. By directly estimating the health effects

of the CWA, our results compliment those in Keiser and Shapiro (2018) by quantifying one

of the largest benefits of the CWA that hedonic analysis is least likely to capture.

Public water systems, including those that draw from a surface water source such as

a lake or river, often violate health-based water quality standards, and there is evidence

that these violations impact infant and child health (Currie et al., 2013; Grossman and

Slusky, 2019; Marcus, 2019). A report by the US Geological Survey (USGS) found that

more than one in five source-water samples from public water system source wells contained

one or more contaminants at concentrations dangerous to human health. In an analysis of

matched water samples from 94 public source wells and their associated public water systems,

the same organic contaminants detected in source water consistently appeared at similar

concentrations in drinking water after treatment (Toccalino and Hopple, 2010). With over

70 percent of community water system users receiving drinking water from a surface water

source as of 1970 (Dieter, 2018), addressing surface water pollution reduces the likelihood of

exposure to contaminated drinking water in utero. This can affect birth weight directly, by

reducing fetal exposure to contaminants that affect development, and indirectly, by reducing

the likelihood that a mother will become ill while pregnant.

We focus on infant health for several reasons. Infant health measures have important

and long-lasting impacts on a wide range of outcomes, including one-year mortality, test

scores, and adult earnings (Black et al., 2007; Figlio et al., 2014). In addition, infant health

is sensitive to a wide range of environmental factors (see, for example, Chay and Greenstone

(2003), Currie et al. (2011, 2013), and Knittel et al. (2016)). While adult health depends on

both current and historical exposure to pollution and responds to changes in environmental

factors slowly, changes to infant health can arise quickly after pollution declines, since infant

health depends only on exposure during the in utero period. Finally, infant health is one of
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the only health measures with geographic information that can be consistently and widely

tracked back to the 1970s.

This paper combines data on Clean Water Act grants to wastewater treatment facilitates

with information on facility-level compliance with treatment technology requirements im-

posed by the CWA. This newly combined data allows us to study whether CWA grants had

a larger impact on surface water quality and health downstream from facilities that were

required to upgrade their wastewater treatment technology. Unlike previous research, which

focused on the CWA grants program (Keiser and Shapiro, 2018) or treatment technology

regulation (Jerch, 2018) in isolation, this allows us to look at the effect of multiple CWA

policies working together, rather than the Act’s constituent parts working independently.

We expect grants to lead to the largest surface water quality improvements in areas

downstream from facilities that have not yet upgraded to new treatment technology required

by the CWA. We show that this is the case using water pollution data from the EPA. CWA

grants are only associated with a statistically significant decline in dissolved oxygen deficit, a

common measure of surface water quality, for waters downstream from facilities for which the

new treatment technology requirement was binding. These declines are statistically larger

than changes to water quality downstream from all other facilities. We look for heterogeneous

health effects across these facilities, and leverage variation in treatment technology in a triple

difference specification that uses facilities where CWA treatment technology requirements

were not binding as an additional control group.

Across specifications, we consistently find that CWA grants had a statistically significant

impact on birth weight. Our results show that reductions in surface water pollution from the

CWA are associated with an 8 gram increase in average birth weight. Using data on public

water systems source wells, we show that these results are driven by counties whose public

water systems draw from surface rather than groundwater. We also find suggestive evidence

that reduced exposure to surface water pollution from water recreation contributed to these

effects.

Our results, along with those in Alsan and Goldin (2019), demonstrate that treatment

at drinking water plants is not the only way to improve health through water policy. Until

now, evidence of the complimentary between drinking water initiatives and sewerage im-
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provements, along with most of our understanding of the effect of water quality on human

health came from studies of the late nineteenth and early twentieth century (Troesken, 2001,

2002; Cutler and Miller, 2005; Beach et al., 2016). By studying the CWA, which came

into effect long after filtration and chlorination of drinking water became widespread, we

show that the complementary between clean water and sewerage policies holds well into the

twentieth century and is not limited to settings where drinking water is untreated.

While the monetary benefits of improvements to infant health are substantial, incorpo-

rating infant health alone would not alter the final conclusion of a cost-benefit analysis of

the CWA. A back-of-the-envelope calculation bounds the monetary benefits of the CWA on

infant health under 29 billion dollars, 19 percent of the amount necessary to consider the

Clean Water Act grants program cost-effective. However, if grant funds were targeted only

towards facilities requiring upgrades to treatment technology, where downstream water qual-

ity improvements were found, the health benefits alone account for as much as 29 percent of

the amount necessary for grants to be considered cost effective.

1 Background

The transition to public provision of drinking water in the late nineteenth century led to

large reductions in diarrheal diseases and typhoid fever, and occurred when urban mortality

rates fell more rapidly than at any other time in US history (Ferrie and Troesken, 2008).

Improvements in water filtration and chlorination were responsible for nearly half the total

mortality reduction, three quarters of the infant mortality reduction, and two thirds of the

child mortality reduction in major cities in the late nineteenth and early twentieth centuries

(Cutler and Miller, 2005). Beyond reductions in mortality, reduced exposure to contaminated

water in utero and childhood can have affects throughout life. Beach et al. (2016) finds that

eradicating early-life exposure to typhoid fever would have increased earnings in later life by

one percent and increased educational attainment by one month.

These historical reductions in mortality were driven by a combination of clean water ini-

tiatives, which removed contaminants at drinking water treatment plants before distributing

water for consumption and washing, and effective sewerage, which reduced contamination
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of drinking water at the source (Alsan and Goldin, 2019). By the time the CWA came into

effect, almost all publicly provided drinking water was filtered and chlorinated, but surface

water, which most community water systems source from, was still severely polluted. By

improving sewerage systems and reducing pollution of source water at a time when drinking

water treatment was widespread, the CWA provides a new context to examine the comple-

mentarity between sewerage infrastructure and clean water.

The Clean Water Act aimed to slow the flow of contaminants from point sources, such

as municipal waste treatment facilities and industrial pollution sources, into rivers and

lakes. Changes to industrial pollution regulation did not vary cross-sectionally, requiring

all polluters to obtain a permit from the National Pollutant Discharge Elimination System

(NPDES) before discharging waste water. Although much of the contamination of US water-

ways comes from sources that cannot be traced back to a specific facility, such as agricultural

runoff, the Clean Water Act placed little regulation on these “non-point” pollution sources.

This paper focuses on the part of the CWA regarding municipal waste treatment, where

the policy had different effects across facilities and time. Most communities in the US employ

a system of sewers and wastewater treatment plants where sewers collect municipal wastew-

ater from homes, businesses and industries and deliver it to wastewater treatment facilities

for treatment and discharge into local waterways (USEPA, 2004). The CWA addressed

pollution from municipal waste treatment plants through two arms: grants to wastewater

treatment facilities, and regulation of wastewater treatment technology. Newly combined

data on which facilities were bound by new treatment technology requirements and the

placement and timing of grants facilitates our research design.

1.1 Grants

From 1972 to 1988, the EPA distributed $153 billion (in 2014 dollars) worth of grants to

wastewater treatment facilities for capital upgrades. The EPA allocated CWA grant money

to states according to a formula based on total population, forecast population, and wastew-

ater treatment needs (Rubin, 1985). States distributed grants to wastewater treatment

facilities according to priority lists based on the severity of nearby surface water pollution,

the size of the population affected, the need for conservation of the affected waterway, and
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that waterway’s specific category of need (USEPA, 1980).

Since state governments wrote their own priority lists, they had some discretion about

where they distributed funds, so it is unlikely that we can treat grant placement as ran-

dom. This motivates our research design; instead of treating grant timing and location as

exogenous, our main specification compares the difference in birth outcomes in areas up

and downstream from a given wastewater treatment facility before and after grant receipt

between facilities that were required to make treatment technology upgrades and all other

facilities. We also explore whether earlier grants were associated with larger health effects

due to their higher priority status.

1.2 Regulation

In 1972, over half of US municipal wastewater treatment facilities reported using relatively

inexpensive, but less effective, primary treatment. Primary treatment, depicted in Figure

1a, forces wastewater through a series of screens to remove large debris, then allows organic

material to settle out in sedimentation tanks. While this removes large detritus and heavy

biosolids, it still discharges all but the heaviest organic material into waterways (USEPA,

1998).

The Clean Water Act required all municipal treatment plants to upgrade to secondary

treatment by 1977.2 Plants use secondary treatment technology (Figure 1b) in addition to

primary treatment where, after screens filter out large debris, wastewater sits in an aeration

tank where bacteria in the water consumes organic material. Secondary treatment removes

about 85 percent of organic matter from wastewater, much more than primary treatment

removes. Additionally, effluent from secondary treatment is usually disinfected with chlorine

before it is discharged into receiving waters, which kills more than 99 percent of harmful

bacteria (USEPA, 1998).

At the time the CWA came into effect, 53 percent of plants in the 1972 Clean Watershed

Needs Survey reported only using primary treatment. Federal guidelines did not instruct

2This goal was not met by 1977, however almost all facilities used at least secondary treatment technology
by the end of our study period. In 1988, only 48 of the over 17,000 wastewater treatment facilities in the US
were using only primary treatment, and these 48 facilities served less than one percent of the US population
(Daigger, 1998).
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states to account for a facility’s treatment technology when distributing funds (USEPA,

1980), and since grant receipt depended on the needs of a waterway rather than the needs

of a specific facility, many facilities already using secondary treatment still received CWA

grants.

It would have been difficult for facilities already using secondary treatment in 1972

to make substantial improvements to downstream surface water quality using CWA grant

money. This is reflected in data from the 1972 Clean Watershed Needs Survey (CWNS),

which was conducted before the EPA distributed any CWA grants. Table 1 shows that,

as compared to facilities where upgrades were required, facilities already using secondary

treatment were more likely to indicate that they would use CWA grant money to increase

staff or improve operations and management. Additionally, Flynn and Smith (2020) finds

that CWA grants to facilities already using secondary treatment crowded out funds that

municipalities were already spending on sewerage capital rather than causing an increase in

sewerage capital spending.

Treatment plants using only primary treatment in 1972 had the most to gain from CWA

grants in terms of reductions in downstream pollution. We refer to these facilities as pre-CWA

“non-compliant” facilities. The potential benefits of upgrading to secondary treatment were

well understood, but waste treatment capital upgrades were expensive. One study by the

National Environmental Research Center estimated that upgrading to secondary treatment

technology could increase a facility’s operating costs by up to 60 percent, and require capital

investments of as much as 30 percent of the initial cost of the facility (National Environmental

Research Center, 1972). CWA grants provided the resources that non-compliant facilities

needed to offset these costs.

Since non-compliant facilities had a clear channel through which to improve surface water

quality and were more likely to spend CWA grant money on capital upgrades, we expect

the reductions in downstream pollution associated with CWA grants to be largest for non-

compliant facilities. This motivates a triple difference design that uses areas downstream

of facilities that were not indicated as pre-CWA non-compliant in the 1972 CWNS as an

additional control group. Even if grants are placed endogenously, or if individuals sort

into downstream communities, so long as states distributed grants to facilities based on the
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same unobservable characteristics regardless of treatment technology, using compliance as a

third difference will capture unobserved changes to up and downstream counties occurring

contemporaneously with CWA grants. We find supporting evidence for this assumption by

showing that there are no differential changes in demographic characteristics of births after

grant receipt in downstream counties relative to upstream across non-compliant and all other

facilities.

2 Data

CWA Grants and Municipal Wastewater Treatment Plants

We examine the effects of the Clean Water Act on infant health using data on all 33,429

grants that the EPA distributed to 14,285 wastewater treatment plants. This data comes

from the EPA’s Grant Information Control System (GICS), and contains detailed information

on the project that each grant funded. Most facilities received multiple grants, so we define

a facility as “treated” after it receives it’s first CWA grant, and treatment is an absorbing

state.

Using a unique facility code, we merge grant data with the Clean Watershed Needs Survey.

The CWNS is an assessment of the capital investment needed nationwide for publicly-owned

wastewater treatment facilities to meet the water quality goals of the Clean Water Act.

This linked data provides information on a facility’s geographic location, whether or not

it received a grant and when, and whether the facility was using primary or secondary

treatment technology in 1972.

Spatial Data on Waterways

We define treatment in terms of flow direction. Waterways downstream from a wastewater

treatment facility that received a CWA grant are in our treated group, while waterways

upstream from wastewater plants will be in our control group. We determine if an area is up

or downstream from a facility with the National Hydrography Data Set (NHD), an electronic

atlas that maps out the location and flow direction of all waterways in the contiguous United

States.
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We follow both the EPA and other researchers studying the Clean Water Act by focusing

on areas 25 miles up and downstream from treatment facilities.3 Keiser and Shapiro (2018)

found that changes in pollution levels associated with CWA grants are concentrated within

25 miles downstream of wastewater treatment plants. Similarly, this is the distance used

by an EPA engineering study on the spread of contaminants from point sources (USEPA,

2001).

Water Pollution

We examine how CWA grants affected trends in downstream pollution, and the relation-

ship between pre-CWA wastewater treatment technology and downstream pollution with

pollution data from STORET legacy, which includes over 200 million readings from pol-

lution monitoring stations across the US. We include readings from pollution monitors on

rivers and lakes located 25 miles up or downstream from any facility in the CWNS data.

We focus on changes in dissolved oxygen deficit, a continuous measure of water quality

defined as 100 minus dissolved oxygen saturation (dissolved oxygen level divided by water’s

maximum oxygen level). Water loses dissolved oxygen when microorganisms consume oxy-

gen to decompose pollution, and upgrading treatment technology reduces the amount of

organic material that a facility releases, so we would expect treatment technology upgrades

to correspond with a decrease in downstream dissolved oxygen deficit.

Infant Health

We use birth certificate data from NCHS to measure infant health. These data contain

information on birth weight, as well as birth order and mother’s age and race. NCHS data

also contain county of residence for each birth, which allows us to link births to CWA

treatment. We collapse birth weight data to county means, calculating the average birth

weight, the probability of being born weighing less than 2500 grams, the percent of non-

white births, and the probability of being a mother’s first, second, third, or fourth birth in

each county year.4

3Our results are robust to concentrating on areas 5 or 10 miles downstream from treatment facilities. See
Appendix.

4Data in years prior to 1972 constitutes a 50 percent sample of all births in the US. Years after 1972
contain information on every birth in the US from some states, and a 50 percent sample from the remaining
states. Six states had full sample data in 1972, and all states and the District of Columbia had full sample
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Population Density

We expect the health effects of improved surface water quality to be concentrated near

treated waterways. The exposed fraction of a county’s population depends on the number

of individuals living near a treated waterway, so defining treatment in a binary way at the

county level would include many untreated births in our treatment group. This could cause

our reduced form estimates to understate the CWA’s true effect. Instead, we use census

block level population density data from the US Census Bureau to scale our results by the

percent of a county’s population living within a mile of a treated waterway, which is shown

in Figure 2.

3 Methods

3.1 Pollution

Before comparing birth outcomes up and downstream from wastewater treatment facil-

ities, we examine the first stage relationship between grant receipt and downstream water

quality with equation 1.

Qpdy = α0 +
−2∑

t=−5

πt1{y − y∗p = t} ∗ dd +
7∑

t=0

γt1{y − y∗p = t} ∗ dd +Wpdy + αpd + αy + εpdy

(1)

In our pollution estimates, there are two observations for each treatment plant p for each

year y. One observation describes mean water quality upstream (dd = 0) and one observation

describes mean water quality downstream (dd = 1). Time relative to treatment is defined by

1{y− y∗p = t} which is a dummy variable that equals 1 for pollution monitors t years before

or after a nearby facility received a CWA grant, and Qpdy is a measure of dissolved oxygen

deficit.

data by 1985. Table A3 shows the year in which each state switched to a full sample. To ensure that our
results are not driven by the changes in samples, we re-estimate our main specifications on a data set that
takes a 50 percent sample of births from state-years that report full sample data. See Appendix for details.
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We include year and plant-by-downstream fixed effects, αy and αpd, respectively. This

allows waters both up and downstream from a given wastewater treatment plant to have

different mean levels of dissolved oxygen deficit, which controls for time invariant pollution

sources that are only up or downstream from a plant. Since dissolved oxygen deficit varies

inversely with temperature, Wpdy measures temperature at the time the pollution reading

was taken.

The πt and γt describe the relationship between dissolved oxygen deficit and CWA grants

in downstream waterways for the four years before and eight years after grant receipt. We

omit the dummy for the year before treatment (D−1), normalizing the πt and γt to zero in

that year. The πt show the trend in dissolved oxygen deficit before treatment, and the γt

describe how dissolved oxygen deficit evolved in downstream waterways after treatment.

While Keiser and Shapiro (2018) includes a much more thorough discussion of the effect

of CWA grants on pollution, this event study gives us a sense of how pollution downstream

from facilities that received CWA grants evolved during our study period. We can further

explore whether downstream pollution evolved similarly between non-compliant facilities and

all other facilities following grant receipt.

We can summarize this event study by estimating

Qpdy = α0 + γgpy ∗ dd + βWpdy + αy + αpd + εpdy (2)

where gy equals one after a facility receives it’s first CWA grant.5

3.2 Infant Health

We check for the existence of parallel trends in birth weight prior to treatment and

examine how birth weight evolved in counties downstream from treated facilities after grant

5Our pollution specifications compare waterways downstream from facilities that received CWA grants to
waterways upstream from these facilities and areas up and downstream from facilities that did not receive
CWA grants. Alternatively, we could compare waterways downstream from facilities to waterways upstream
from the same facility by including a facility-by-year fixed effect in equations 1 and 2. Results from estimating
these specifications, presented in the Appendix, are relatively similar to those in Section 4.
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receipt with the following event study

Ycy = α0 +
−2∑

t=−4

πt1{y − y∗c = t}+
8∑

t=0

γt1{y − y∗c = t} ∗ pctcy + βXcy + αc + αy + εcy (3)

where 1{y − y∗c = t} measures time relative to a county c being downstream from a facility

that received a grant, Ycy is an average birth outcome in county c in year y, and pctcy is

the percent of county c’s population living within a mile of a treated waterway in year y.

Controls in Xcy include the percent of births that were a mother’s first, second, third, or

fourth, and county averages of mother’s age and race. Observations are at the county-year

level. Since we collapse birth weight data to county means, we weight all of our results by

the total number of births that occurred in a county-year.

After presenting this flexible framework, we impose a difference-in-difference structure.

We begin with the most general control group, comparing counties downstream from a

wastewater treatment facility to all other counties by estimating

Ycy = α0 + γpctcy + βXcy + αc + αy + εcy (4)

The presence of local area trends specific to a facility’s location could mean that an up-

stream county is only a good counterfactual for a county located downstream from the same

facility. We address this concern in our next specification by collapsing our data to the facil-

ity rather than the county level. We take the mean birth weight in all counties downstream

from a facility and subtracting the mean birth weight in all counties upstream from the same

facility in each year, then estimate the following event study with this difference, ∆Ypy, as

the outcome variable

∆Ypy = α0 +
−2∑

t=−4

πt1{y − y∗p = t}+
8∑

t=0

γt1{y − y∗p = t} ∗ pctpy + βXpy + αp + αy + εpy (5)

where p indexes facilities, and pctpy measures the percent of downstream counties’ popula-

tions living within a mile of a treated waterway. We include year and facility fixed effects,

αy and αp, respectively.6

6Controls in facility-level specifications are averages from all births in up and downstream counties. Our
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We then estimate the associated difference-in-difference7

∆Ypy = α0 + γpctpy + βXpy + αp + αy + εpy (6)

This research design exploits a birth’s location relative to a wastewater treatment facility

by comparing average birth outcomes before and after a facility received a CWA grant

between counties up and downstream from that facility. The primary identifying assumption

of this design is that, in the absence of CWA grants, birth weight would have evolved similarly

in up and downstream counties. We explore whether this assumption is likely to hold in our

basic difference-in-difference framework, as well as a triple difference framework that uses

facility compliance with new treatment technology standards as a third difference, by putting

demographic characteristics on the left-hand side.

Even if individuals positively sorted into downstream communities after grant receipt,

it is unlikely that this sorting is differential across facilities’ treatment technology compli-

ance. Table 2 tests for this directly by examining the effect of treatment on demographic

characteristics that are correlated with birth weight by estimating

∆xpy = γpctpy + αp + αy + εpy (7)

where ∆xpy is the difference between demographic characteristic in counties up and down-

stream from facility p in year y. Column 1 of Table 2 reports the result from estimating

this equation on a sample of non-compliant facilities and column 2 reports the result from

estimating the same equation on all other facilities. Column 3 presents results from the

associated triple difference,

∆xpy = α0 + γDD
0 pctpy + γDDDpctpy ∗ tp + αytp + αp + αy + εpy (8)

Columns 1 and 2 show that areas downstream from facilities that received CWA grants

had smaller non-white populations, slightly older mothers, and fewer higher order births.

results are robust to controlling for the difference between average demographic characteristics in up and
downstream counties instead.

7This specification is equivalent to adding facility by year fixed effects to equation 4.
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While we control for these demographic characteristics directly, there might have also been

shifts in unobservable characteristics of individuals downstream relative to upstream follow-

ing grants, which could bias specifications that rely only on comparisons between up and

downstream communities. The triple difference coefficients presented in column 3 are small

and statistically insignificant for all observed demographic outcomes, indicating that there

was no observable differential sorting into downstream areas across non-compliant and all

other facilities after grant receipt.

These results provide some evidence that our identification assumption for the following

triple difference specification is likely to hold. In this specification, the first difference comes

from where and when CWA grants were distributed, the second comes from if a birth occurred

up or downstream from a wastewater treatment facility, and the third difference comes from

the facility’s pre-CWA wastewater treatment technology.

We check for common trends in our triple difference specification with the following event

study,

∆Ypy =α0 +
−2∑

t=−4

θt1{y − y∗p = t} ∗ tp +
8∑

t=0

ηt1{y − y∗p = t} ∗ pctpy ∗ tp (9)

+
−2∑

t=−4

πt1{y − y∗p = t}+
8∑

t=0

γt1{y − y∗p = t} ∗ pctpy

+ βXpy + φXpy ∗ tp + αy ∗ tp + αp + αy + εpy

tp is an indicator that equals one for non-compliant facilities, and the remaining variables

are defined analogously to the previous specifications. We then summarize this event study

by estimating

∆Ypy = α0 + γDD
0 pctpy + γDDDpctpy ∗ tp + βXpy + φXpy ∗ tp + αy ∗ tp + αp + αy + εpy (10)

4 Results

Figure 3 shows how trends in downstream pollution changed after a facility received

a CWA grant by presenting estimates of the πt and γt from equation 1. After a facility

15



received it’s first grant, we see a gradual decrease in pollution downstream from that facility.

Consistent with the gradual improvements in downstream pollution depicted in these event

studies, the EPA estimates that upgrades paid for with CWA grants could take anywhere

from 2 to 10 years from grant application to project completion, so some areas may experience

longer lags between grant receipt and treatment (USEPA, 2002).

Figure 4 presents event study coefficients from estimates of equation 3 with county average

birth weight as the dependent variable. The precisely estimated null effects in the four years

before grant receipt strongly support a research design that leverages location on a waterway

relative to wastewater treatment facilities by showing the existence of parallel trends in birth

weight in up and downstream communities prior to treatment. This suggests that the parallel

trends would have continued in the absence of treatment. The estimates begin to increase

two years after the arrival of CWA grants, and continue to rise for six years after treatment.

Importantly, this gradual improvement follows a similar shape to the trend in pollution

shown in Figure 3.

The impact of the CWA on birth weight may not be uniform across the distribution of

birth weight. Even though Figure 4 shows a modest increase in average birth weight, the

overall health of the population may improve substantially if there are fewer low birth weight

infants.

Figure 5 presents event study coefficients from re-estimating equation 3 with the prob-

ability of low birth weight as the dependent variable. There is no evidence of a pre-trend.

Similar to the results in Figure 4, we see a small decrease in the probability of low birth

weight after treatment.

Panel A of Table 3 shows that the effects on birth weight are robust across a variety of

specifications. First, column 1 compares births in counties downstream from grant facilities

to those in any other county by estimating equation 4 using a sample of births from every

county in the contiguous US. Column 2 adds demographic controls to this specification.

Births occurring in counties that are not near wastewater treatment facilities might not

make a good control group. In column 3, we drop counties that are not up or downstream

from a wastewater treatment facility and re-estimate equation 4. This compares births in a

downstream county to those in any upstream county. The results are similar to those from
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the full sample.

Counties upstream from the same facility are likely to make even better counterfactuals

than counties upstream from any facility. Column 4 estimates equation 6, which compares

birth weight in counties up and downstream from the same facility. The point estimate is

slightly larger in magnitude with a smaller confidence interval. In addition, Figure 6 shows

the event study results for birth weight from estimating equation 5. Again, there is no

evidence of a pre-trend prior to grant receipt, and we see a small and significant increase in

birth weight in downstream, relative to upstream, counties after the facility receives a grant.

Panel B of Table 3 presents results from re-estimating our difference-in-difference specifi-

cations with probability of low birth weight as the dependent variable. The point estimates

are consistently negative, although not always significant, and range from -.09 to -.29 per-

centage points. About 7 percent of births in our sample were low birth weight, so this

represents a change of 1 to 4 percent from the mean. Figure 7 shows the event study results

for low birth weight from estimating equation 5. Similar to the birth weight results, the

probability of low birth weight appears to decrease after grant receipt and this decline grows

over time.

4.1 Triple Difference

Before introducing pre-CWA compliance as a third difference, we examine the relationship

between pre-CWA wastewater treatment technology and downstream pollution.

Figure 8 presents results from re-estimating equation 1 on subsamples of non-compliant

and all other facilities. Figure 8a shows flat trends before treatment and a decrease in dis-

solved oxygen deficit downstream from non-compliant facilities after grant receipt. Looking

at Figure 8b, we see no evidence of a change to pollution in waterways downstream from

compliant facilities after they received a CWA grant, as we expected. In addition, there

does not appear to be any trend in pollution prior to grant receipt in waters downstream

from compliant facilities, which might have arisen from early adoption of more advanced

treatment technology.

Table 4 reports estimates of equation 2 for the full sample, non-compliant facilities and

all other facilities in columns 1, 2 and 3, respectively, and coefficients from the associated
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triple difference in column 4. Dissolved oxygen deficit only decreased significantly for non-

compliant facilities, and the effect size for non-compliant facilities is consistent with the

decrease in dissolved oxygen deficit downstream from any facility that received a CWA

grant found in Keiser and Shapiro (2018). Since dissolved oxygen deficit is defined as 100

minus dissolved oxygen saturation, this results show that waters downstream from non-

compliant facilities had 1.7 percentage point higher oxygen saturation after grant receipt

relative to areas upstream from non-compliant facilities that received grants and waters up

and downstream from non-compliant facilities that did not receive grants. The coefficient for

compliant facilities in column 2 is small and statistically insignificant, and the reduction in

dissolved oxygen deficit downstream from non-compliant facilities is statistically larger than

for all other facilities, as shown by the significant negative triple difference coefficient in

column 3. This is consistent with the hypothesis that grants led to the largest improvement

in downstream water quality for non-compliant facilities.

We then estimate our triple difference specification on birth outcomes. Columns 1 and 2

of Table 5 present results from estimating equation 6 on samples of pre-CWA non-compliant

facilities and all other facilities, respectively. Consistent with our pollution results in Table 4,

we see a large and statistically significant improvement in birth weight downstream from non-

compliant facilities. The effect in areas downstream from all other facilities is also positive,

but smaller. The improvements in infant health in areas downstream from these facilities may

be driven by the demographic shifts shown in Table 2. Since there were similar demographic

changes in areas downstream from non-compliant facilities, the difference between the effects

downstream from non-complaint and all other facilities likely comes from the differences in

surface water quality shown in Table 4.

We summarize the effect of changes in surface water quality downstream from non-

compliant facilities by estimating equation 10 on the pooled sample, which leverages all

of our variation in one regression. Our estimate of γDDD, reported in column 3 of Table

5, will be equivalent to the difference of the estimates of equation 6 from each sub-sample.

As with the pollution estimate, the improvements in birth outcomes downstream from non-

compliant facilities are statistically larger than improvements downstream from all other

facilities.
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The corresponding event studies from estimating equation 9 are shown in Figures 9 and

10. As before, there is no evidence of pre-trends prior to receiving a grant. For birth weight,

there is a statistically significant increase in downstream (relative to upstream) counties after

a non-compliant facility receives a grant (relative to other facilities). For low birth weight,

the point estimates are similar in shape but are statistically insignificant.

The results from this triple difference show that going from having zero to 100 percent

of the county’s population living within a mile of a treated waterway is associated with a

8.21 gram increase in average birth weight in counties downstream from facilities that were

required to make upgrades to their treatment technology. Estimates of the effect on the

probability of low birth weight are not significant, but they do bound improvements above

a 0.236 percentage point decrease, or about 3 percent from the mean of low birth weight.

4.2 Mechanisms

If reductions in contaminated public drinking water are driving health improvements,

we would expect to find larger effects in areas that source public water from surface water

rather than groundwater, as CWA grants directly affected surface water quality. We use

USGS water use data from Solley et al. (1988) to divide our sample into counties that had

any public water system that drew from surface water in 1985, and counties whose public

water systems drew exclusively from ground water.8

Column 1 of Table 6 re-estimates equation 10 on counties that had some public water

systems that drew from surface water sources, while column 2 estimates the same specifica-

tion on counties whose public water systems drew from groundwater exclusively. The results

for areas drawing public water from surface water sources are similar to those from the full

sample, while results for areas using only groundwater are wrong-signed and insignificant,

implying that our results are almost completely driven by counties in which some public

water systems draw from surface water.

In addition to exposure through drinking water contamination, individuals may come into

contact with surface water pollution through recreational activities. If recreational exposure

8We use data from 1985 because it is the earliest year for which information on county level water usage
is available.
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is a primary channel through which these health effects occur, we might expect to find larger

health improvements in states with more water-related recreation. While we do not observe

water-related recreation activities directly, we can proxy for it using state-level per capita

water recreation spending from the US Bureau of Economic Analysis.9

We test this channel in Table 7 by separately estimating equation 4 on sub-samples

defined by terciles of state-level per capita water recreation spending.10 While we find

the largest and most significant results in states in tercile 3, which had the highest water

recreation spending, the confidence intervals for all three terciles overlap and estimates for

each tercile are not statistically distinguishable in the pooled sample for average birth weight.

Since 95 percent of all water recreational trips occur within 25 miles of one’s home

(Keiser and Shapiro, 2018), we re-estimate the results for wider bandwidths around treated

waterways. Increasing the definition of the exposed area to those within 10 or 25 miles of a

treated waterway attenuates our results, as shown in Table 8. The wider bandwidth is likely

to capture individuals at farther distances who recreate at the treated waterway, but it will

also capture many additional individuals who do not recreate at the treated waterway, which

may lead to this attenuation.11

While we cannot rule out exposure through a recreation channel, our results are driven by

counties with some public water sourced from surface water, and we are only able to detect

health improvements for narrow bandwidths from the treated waterway. This suggests that

the effect of reduced surface water pollution on health is highly concentrated near treated

waterways. Since community water systems tend to draw water from the nearest available

source to reduce the cost of pumping water (Toccalino and Hopple, 2010), this provides

suggestive evidence that drinking water contamination is the primary channel through which

CWA grants affected infant health.

9We focus on total spending for “Boating/Fishing” from 2012 to 2016, which includes canoeing/kayaking,
fishing, sailing, and other boating. While data from the 1970’s is not available, it is unlikely that cross-
sectional variation in per capita recreational spending is changing much over time.

10Because facilities near state borders may have downstream counties in neighboring states and the recre-
ation data is at the state level, we focus on equation 4 rather than specifications at the facility level.

11Kuwayama et al. (2018) provide related evidence that hedonic property models relying on treatment
areas defined by concentric circles may not accurately capture water’s recreational benefits.
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4.3 Heterogeneity

We examine the heterogeneity of our estimates across race in Table 9 by estimating

equation 10 on sub-samples of white and non-white births from counties with sizable non-

white populations.12 The point estimates for both white and non-white births are similar

to the estimates of effects on average birth weight for any race, and results by race are not

statistically distinguishable.

Next, we look for heterogeneity by the timing of grant receipt. If states wrote their

priority lists to address the most severe pollution problems first, we would expect grants

from the first few years of the CWA to have the largest effect on infant health. This is

especially true if we think there is a convex relationship between pollution and health.

We address this in columns 3 and 4 of Table 9. In column 3, we drop all observations

from facilities that received a grant after 1976 and re-estimate equation 6, and in column 4

we drop all observations from facilities that received a grant in or before 1976. The results

are similar, so there is little evidence of heterogeneous effects by grant timing.

5 Discussion & Conclusion

The preceding evidence suggests that the Clean Water Act led to small, but significant

improvements in infant health, with reductions in pollution associated with CWA grants

leading to an eight gram increase in average birth weight in counties downstream from facil-

ities that were required to make treatment technology upgrades, relative to other facilities.

Given that previous studies have found statistically significant relationships between water

quality and infant health, how do our results line up with the current literature, and how do

they affect our understanding of the relationship between water and health generally?

We know that reductions in the contamination of drinking water lead to improvements

in infant health. Specifically, Currie et al. (2013) found that in utero exposure to drinking

water from facilities where contaminants were detected is associated with a 0.32 percentage

12The sample is restricted to counties where both the white and non-white average birth weight is calculated
from 5 or more births. This ensures that we are making comparisons that rely on the same set of counties,
in which there are sufficient individuals in both racial groups, rather than making comparisons between
majority white and majority non-white communities. Results are not sensitive to this sample restriction.
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point increase in the the probability of low birth weight. We estimate somewhat smaller, but

similar sized effects for low birth weight. Consistent with this channel, we only find effects

in areas whose public water systems drew from surface water. These effects are largest for

areas downstream from facilities that were required to upgrade their treatment technology,

which saw the greatest improvements to surface water quality. This shows that, similar to

contamination of municipal water and ground water, surface water contamination affects a

direct measure of human health.

We can use this information on the relationship between surface water quality and infant

health to incorporate health benefits into a cost benefit analysis of the Clean Water Act.

In total, CWA grants to wastewater treatment facilities cost about $153 billion (in 2014

dollars). About 46.4 million births occurred in treated counties that had some public water

systems that drew from surface water sources between 1972 and 1988, and we estimate that

about 29.7 million of those births occurred within a mile of a treated waterway. While our

preferred specification does not show statistically significant changes to the probability of

low birth weight in areas that draw from surface water sources, it does bound improvements

below a 0.261 percentage point reduction in the probability of low birth weight (as shown in

Panel B of Table 6).

Almond et al. (2005) estimates that low birth weight increases hospital costs by $8319,

and increases 1 year mortality by 37 per 1000 births, and Oreopoulos et al. (2008) finds

that low birth weight reduces lifetime earnings by 3.8 percent. We combine these estimates

with the EPA’s value of a statistical life of $7.4 million and the census bureau’s work-life

earnings estimate of $2.4 million to calculate a back-of-the-envelope estimate of the infant

health benefits of the CWA. While a more comprehensive calculation of the health benefits

of the CWA would include other potentially impacted health outcomes, such as reduced

hospital admissions for gastrointestinal illness, reduced school absences, and other health

effects for adolescents and adults, we estimate the infant health benefits of the CWA are

bounded below 29 billion dollars, about 19 percent of the amount needed to make the CWA

cost effective.

The $153 billion dollar cost includes grants to compliant facilities that did not lead to

improvements in downstream water quality. Since we only see health effects downstream
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from non-compliant facilities that received grants, a more accurate cost benefit ratio might

come from comparing the health benefits of CWA grants to the costs of grants to non-

complaint facilities, which totaled about $101 billion (in 2014 dollars). Health effects alone

account for as much as 29 percent of the amount needed to make grants to non-compliant

facilities cost effective. Using increased housing prices to value the benefits of the CWA,

Keiser and Shapiro (2018) estimates a benefit to cost ratio of .26. If we assume that hedonic

estimates do not capture any health benefits, grants to non-compliant facilities might have

a benefit to cost ratio as high as .55 once improvements to infant health are incorporated.

Including additional measures of health are likely to increase this ratio even further.
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Figures

(a)

(b)

Figure 1: Primary vs Secondary Treatment Technology

Source: USEPA (1998)
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Figure 2: Percent of County Population Living Within a Mile of a Treated Waterway in 1988
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Figure 3: Downstream Pollution

Notes: The dependent variable is dissolved oxygen deficit. The figure plots the estimated coefficients on
1{y − y∗p = t} ∗ dd from estimating Qpdy = α0 +

∑−2
t=−4 πt1{y − y∗p = t} ∗ dd +

∑8
t=0 γt1{y − y∗p = t} ∗ dd +

βWpdy + αpd + αy + εpdy.
There are two observations for each treatment plant p for each year y. One observation describes mean water
quality upstream (dd = 0) and one observation describes mean water quality downstream (dd = 1). Time
relative to treatment is defined by 1{y−y∗p = t} which is an indicator function that equals 1 for observations
from pollution monitors t years before or after the facility the monitor is up or downstream from received a
CWA grant, and Qpdy is a measure of dissolved oxygen deficit. dd is a dummy equaling one for observations
downstream from a facility. The model includes facility by downstream fixed effects and year fixed effects,
αpd and αy respectively, as well as controls for temperature. Panel A shows estimates from estimating this
equation on a sample of pre-CWA non-compliant facilities (those that were required to make wastewater
treatment capital upgrades) and Panel B shows estimates using all other facilities.
Source: (USEPA, 1967-1988)
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Figure 4: Birth Weight Downstream from Grant Facilities

Notes: The dependent variable is the the average birth weight in county c in year y. The figure plots the πt
and γt from estimating bwcy = α0+

∑−2
t=−4 πt1{y−y∗c = t}+

∑8
t=0 γt1{y−y∗c = t}∗pctcy+βXcy+αc+αy+εcy.

pctcy is a continuous variable that takes values from zero to one, and indicates the percent of county c’s
population living within a mile of a treated waterway in year y. The model includes county and year fixed
effects, αc and αy respectively, as well as controls for the percent of a county’s births in a given birth order,
and county averages of mother’s age and race and child gender. The estimates are weighted by total number
of births in a county-year.
Source: NCHS (1968-1988)
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Figure 5: Probability of Low Birth Weight Downstream from Grant Facilities

Notes: This Figure re-estimates the results in Figure 4 with the probability of being born weighing less than
2500 grams as the dependent variable.
Source: NCHS (1968-1988)
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Figure 6: Difference in Birth Weight Up and Downstream from Grant Facilities

Notes: The dependent variable is the difference in birth weight between up and downstream counties in
a given year. The figure plots the πt and γt from estimating ∆bwpy = α0 +

∑−2
t=−4 πt1{y − y∗p = t} +∑8

t=0 γt1{y − y∗p = t} ∗ pctpy + βXpy + αp + αy + εpy. pctpy is a continuous variable that takes values from
zero to one, and indicates the percent of downstream counties’ populations living within a mile of a treated
waterway in year y. The model includes facility and year fixed effects, αp and αy respectively, as well as
controls for the percent of up and downstream counties’ births in a given birth order, and averages of up and
downstream mother’s age and race and child gender. The estimates are weighted by total number of births
in counties up and downstream from a facility in year y.
Source: NCHS (1968-1988)
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Figure 7: Difference in Probability of Low Birth Weight Up and Downstream from Grant
Facilities

Notes: This Figure re-estimates the results in Figure 6 with the difference in the probability of being born
weighing less than 2500 grams between up and downstream counties as the dependent variable.
Source: NCHS (1968-1988)
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(a) Non-compliant

-4
-2

0
2

4
Di

ss
ol

ve
d 

O
xy

ge
n 

De
fic

it

-5 0 5 10
Years Since Treatment

Event study coefficients 95% CI

(b) All other Facilities

Figure 8: Downstream Pollution by Pre-CWA Compliance

Notes: This figure presents results from re-estimating the event study in Figure 3 on subsamples of facilities
defined by pre-CWA compliance. Panel A shows estimates from estimating this equation on a sample of
pre-CWA non-compliant facilities (those that were required to make wastewater treatment capital upgrades)
and Panel B shows estimates using all other facilities.
Source: (USEPA, 1967-1988)
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Figure 9: Birth Weight Triple Difference

Notes: The dependent variable is the difference in birth weight between up and downstream counties in
a given year. The figure plots the θt and ηt from estimating ∆Ypy = α0 +

∑−2
t=−4 θt1{y − y∗p = t} ∗ tp +∑8

t=0 ηt1{y − y∗p = t} ∗ pctpy ∗ tp +
∑−2

t=−4 πt1{y − y∗p = t}+
∑8

t=0 γt1{y − y∗p = t} ∗ pctpy + βXpy + φXpy ∗
tp + αy ∗ tp + αp + αy + εpy. pctpy is a continuous variable that takes values from zero to one, and indicates
the percent of downstream counties’ populations living within a mile of a treated waterway in year y. This
model includes controls for the percent of up and downstream counties’ births in a given birth order, and
averages of up and downstream mother’s age and race and child gender. The estimates are weighted by total
number of births in counties up and downstream from a facility in year y.
Source: NCHS (1968-1988)
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Figure 10: Probability of Low Birth Weight Triple Difference

Notes: This Figure re-estimates the results in Figure 9 with the difference in the probability of being born
weighing less than 2500 grams between up and downstream counties as the dependent variable.
Source: NCHS (1968-1988)
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Tables

Table 1: Clean Watershed Needs Survey

non-compliant all other facilities difference
(1) (2) (3)

new plant .4 .222 -.178∗∗∗

[-.209,-.148]
replacement plant .208 .119 -088∗∗∗

[-.114,-.064]
improve O&M/increase staff .316 .396 .080∗∗∗

[.050,.110]
N 6908 1101 8009

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table compares the percent of non-compliant and all other facilities that indicated they would
use CWA grant to pay for a new plant, a replacement plant, or improve plant operations.
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Table 2: Controls as Dependant Variables

non-compliant compliant DDD
(1) (2) (3)

Panel A. percent non-white
pct pop 1 mile -0.0223∗∗∗ -0.0176∗∗∗ -0.0176∗∗∗

[-0.0281,-0.0165] [-0.0229,-0.0123] [-0.0229,-0.0123]

pct pop 1 mile X non-compliant -0.00471
[-0.0126,0.00313]

mean 0.0922 0.0731 0.0828
standard deviation 0.136 0.136 0.136
Panel B. mother’s age
pct pop 1 mile 0.126∗∗∗ 0.0784∗∗ 0.0784∗∗

[0.0557,0.197] [0.0149,0.142] [0.0150,0.142]

pct pop 1 mile X non-compliant 0.0479
[-0.0470,0.143]

mean -0.216 -0.160 -0.188
standard deviation 0.776 0.816 0.797
Panel C. probability first or second birth
pct pop 1 mile -0.00210 0.00109 0.00109

[-0.00916,0.00496] [-0.00390,0.00608] [-0.00390,0.00608]

pct pop 1 mile X non-compliant -0.00319
[-0.0118,0.00545]

mean -0.00393 -0.00304 -0.00349
standard deviation 0.0392 0.0403 0.0398
Panel D. probability third or higher birth
pct pop 1 mile -0.0105∗∗∗ -0.00618∗∗∗ -0.00618∗∗∗

[-0.0145,-0.00646] [-0.00965,-0.00271] [-0.00964,-0.00271]

pct pop 1 mile X non-compliant -0.00429
[-0.00958,0.00100]

mean -0.000596 -0.0000211 -0.000311
standard deviation 0.0264 0.0277 0.0271
unit and year fixed effects X X X
collapsed to facility level X X X
N 34188 48132 82320

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table presents (weighted) estimates from the following model: ∆xpy = α0 + γDD
0 pctpy +

γDDDpctpy ∗ tp +αy ∗ tp +αp +αy + εpy. ∆xpy is a measure of the difference between demographic character-
istic in counties up and downstream from facility p in year y. Each panel represents a different demographic
variable.
Source: NCHS (1968-1988)
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Table 3: Difference in Difference

full sample up/downstream only
(1) (2) (3) (4)

Panel A county average birth weight
pct pop 1 mile 12.80∗∗∗ 6.718∗∗ 7.134∗∗∗ 13.33∗∗∗

[6.709,18.89] [2.444,11.82] [2.034,11.40] [10.11,16.55]
Panel B probability birth weight < 2500 grams
pct pop 1 mile -0.00288∗∗∗ -0.000874 -0.000963∗ -0.00223∗∗∗

[-0.00419,-0.00156] [-0.00198,0.0000584] [-0.00190,0.000152] [-0.00299,-0.00147]
controls X X X
unit and year fixed effects X X X X
collapsed to county level X X X
collapsed to facility level X
N 64239 64239 64008 82320

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table presents (weighted) estimates from the following model: Ycy = α0 + γpctcy + βXcy +αc +
αy + εcy. In Panel A, the dependent variable is the average birth weight in a county-year, and in Panel B,
it’s the probability of being born weighing less than 2500 grams. pctcy is a continuous variable that takes
values from zero to one, and indicates the proportion of county c’s population that lived within a mile of
a treated waterway in year y. The model includes unit and year fixed effects, αc and αy respectively, and
columns 2 through 4 include controls for the percent of a county’s births in a given birth order bin, and
county averages of mother’s age and race and child gender. Columns 1 and 2 use data from every county in
the US, while columns 3 and 4 restrict the sample to counties that are up or downstream from a wastewater
treatment facility.
In columns 1 through 3, data is collapsed to the county level. In column 4, data is collapsed to the facility
level. This means that the results in columns 1 and 2 come from comparisons between counties downstream
from facilities that received grants and any other county, the results in column 3 come from comparisons
between counties downstream from facilities that received grants and any county upstream from a facility,
and the results in column 4 come from comparisons between counties downstream from facilities that received
grants and counties upstream from the same facility.
Source: NCHS (1968-1988)
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Table 4: Pollution Triple Difference

(1) (2) (3) (4)
full sample non-compliant all other facilities DDD

grant X downstream -0.670∗∗∗ -1.672∗∗∗ -0.110 -0.110
[-1.124,-0.217] [-2.467,-0.877] [-0.663,0.443] [-0.663,0.443]

grant X downstream X non-compliant -1.562∗∗∗

[-2.530,-0.593]
weather controls X X X X
facility by downstream fixed effects X X X X
year fixed effects X X X X
N 90143 27073 63070 90143

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table describes the effects of Clean Water Act grants on downstream pollution for all facilities,
non-compliant facilities (those that were required to make treatment technology upgrades) and all other
facilities in our sample. Columns 1, 2 and 3 estimate Qpdy = α0 +γgy ∗dd +βWpdy +αpd +αy +εpdy for areas
up and downstream from non-compliant and all other facilities separately. Qpdy is dissolved oxygen deficit,
gy is a dummy variable equaling one after a facility receives a CWA grant, and dd is a dummy equaling one
for observations downstream from a facility.
Column 4 presents estimates from the associated triple difference: Qpdy = α0+γDD

0 gy∗dd+γDDDgy∗dd∗tp+
βWpdy +βWpdy ∗tp+αy ∗tp+αpd+αy +εpdy where tp is a dummy variable equaling one for observations from
non-compliant facilities. All regressions include controls for water temperature, and facility by downstream
fixed effects and year fixed effects, αpd and αy.
Source: (USEPA, 1967-1988)
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Table 5: Triple Difference

non-compliant all other facilities DDD
(1) (2) (3)

Panel A. county average birth weight
pct pop 1 mile 13.36∗∗∗ 5.153∗∗ 5.153∗∗

[8.012,18.72] [1.129,9.177] [1.130,9.176]

pct pop 1 mile X non-compliant 8.211∗∗

[1.519,14.90]
Panel B. probability birth weight < 2500 grams
pct pop 1 mile -0.00216∗∗∗ -0.00138∗∗ -0.00138∗∗

[-0.00334,-0.000979] [-0.00244,-0.000325] [-0.00244,-0.000325]

pct pop 1 mile X non-compliant -0.000780
[-0.00236,0.000803]

demographic controls X X X
unit and year fixed effects X X X
collapsed to facility level X X X
N 34188 48132 82320

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table describes the effects of Clean Water Act grants on downstream birth weight. Columns 1
and 2 estimate ∆Ypy = α0 +γpctpy +βXpy +αp +αy + εpy for areas up and downstream from non-compliant
facilities (those that were required to make treatment technology upgrades) and all other facilities separately.
Column 3 estimates the associated triple difference: ∆Ypy = α0 + γDD

0 pctpy + γDDDpctpy ∗ tp + βXpy +
φXpy ∗ tp + αy ∗ tp + αp + αy + εpy. All regressions include demographic controls and unit and year fixed
effects, αc and αy respectively. Average birth weight is the dependent variable in Panel A, and probability
of low birth weight is the dependent variable in Panel B.
Source: NCHS (1968-1988)
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Table 6: Effects by Public Water Source

Surface Water Ground Water
(1) (2)

Panel A county average birth weight
pct pop 1 mile X non-compliant 8.893∗∗ -5.137

[1.874,15.91] [-21.34,11.06]
Panel B probability birth weight < 2500 grams
pct pop 1 mile X non-compliant -0.000952 0.000132

[-0.00261,0.000705] [-0.00375,0.00401]
demographic controls X X
unit and year fixed effects X X
collapsed to facility level X X
N 67032 15288

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table re-estimates the specification in column 3 of Table 5 on sub-samples of counties that had
some public water systems that draw from surface water and counties whose public water systems only draw
from groundwater.
Source: NCHS (1968-1988); Solley et al. (1988)

Table 7: Split by Recreational Spending Per Capita

(1) (2) (3)
Tercile 1 Tercile 2 Tercile 3

Panel A county average birth weight
pct pop 1 mile 0.163 4.701 15.19∗∗∗

[-7.608,7.934] [-1.908,11.31] [6.503,23.88]
Panel B probability birth weight < 2500 grams
pct pop 1 mile -0.000429 -0.000453 -0.00220∗∗∗

[-0.00193,0.00107] [-0.00234,0.00143] [-0.00385,-0.000561]
demographic controls X X X
unit and year fixed effects X X X
collapsed to county level X X X
N 21147 20160 22617

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table re-estimates the specification in column 2 of Table 3 on sub-samples defined by terciles of
state water-related recreational spending. Counties in states with the lowest spending are in Tercile 1, while
those in states with the highest spending are in Tercile 3.
Source: NCHS (1968-1988); BEA (2012-2017)
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Table 8: Other Bandwidths

(1) (2)
25 miles downstream

10 mile buffer
25 miles downstream

25 mile buffer
county average birth weight

pct pop 10 miles 1.132
[-1.878,4.142]

pct pop 25 miles -0.620
[-3.729,2.489]

demographic controls X X
unit and year fixed effects X X
collapsed to county level X X
N 64344 64344

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table presents (weighted) estimates from the following model: bwcy = α0 +γpctcy +βXcy +αc +
αy + εcy. pctcy is a continuous variable that takes values from zero to one, and indicates the proportion of a
county’s population that lived within some bandwidth of a treated waterway in a given year. In column 1,
this bandwidth is 10, and in column 2, it is 25.

Table 9: Heterogeneous Effects

(1) (2) (3) (4)
white nonwhite early grants later grants

pct pop 1 mile X non-compliant 11.37∗∗∗ 14.32 14.04∗∗ 11.95∗∗

[3.778,18.97] [-7.037,35.68] [1.241,26.84] [1.422,22.48]
demographic controls X X X X
unit and year fixed effects X X X X
collapsed to facility level X X X X
N 35406 35406 51639 31080
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table re-estimates the specifications in Table 3 on sub-samples of the population. Columns 1
and 2 divide the sample by race and only include counties that had a sizeable nonwhite population, and
columns 3 and 4 divide the sample by grant timing.
Source: NCHS (1968-1988)
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A Appendix

A.1 Robustness to Distance Downstream

In the main text, we follow Keiser and Shapiro (2018) and the EPA (USEPA, 2001) by

defining a waterway as treated if it is 25 miles downstream from a wastewater treatment

facility. We show that our results are not sensitive to this choice by re-estimating equation

10 defining treated waterways as those either 5 or 10 miles downstream from a treated facility

in Table A1. The results are similar to those presented in Section 4.

A.2 County Changes

Births records in NCHS data contain information on birth location at the county level.

Several counties split or combined during our study period. Following Forstall (1995), we

re-combine all counties that split or merge between 1968 and 1988. Changes are noted in

Table A2.

A.3 Changes in Reported Sample

Data in years prior to 1972 constitutes a 50 percent sample of all births in the US. Years

after 1972 contain information on every birth in the US from some states, and a 50 percent

sample from the remaining States. Six states had full sample data in 1972, and all States

and the District of Columbia had full sample data by 1985. Table A3 details the first year

in which each state reported full sample data.

Our main results are weighted by total number of births in a county. Total births for

observations from state-years reporting a 50 percent sample of births are defined as the

number of observations from that county-year multiplied by two.

Since changes from half to full sample often occurred contemporaneously with treatment,

we report results from re-estimating the results in Figure 9 using average birth outcomes

calculated using a 50 percent sample of births from state-years that reported full sample

data in Figure A1. We then re-estimate the results presented in Table 5 on this sample and

report the results in Table A4. The results are similar to those reported in Section 4.
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A.4 Alternative Pollution Specifications

Our pollution results in the main text rely on comparisons of waterways downstream

from facilities that received CWA grants to waterways upstream from these facilities, and

areas up and downstream from facilities that did not receive CWA grants. Alternatively, we

can compare waterways downstream from facilities to waterways upstream from the same

facility by adding a facility-by-year fixed effect to equations 1 and 2.

We present results from re-estimating the results in Figures 3 and 8 and Table 4 with

facility-by-year fixed effects in Figures A2 and A3 and Table A5, respectively.
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Figure A1: Birth Weight Triple Difference: Random Sample

Notes: This Figure re-estimates the results in Figure 9 after taking a fifty percent random sample of births
that occurred in state-years that reported a full sample of births. The years that each state switched from
a 50 percent sample to a full sample of births are detailed in Table A3.
Soure: NCHS (1968-1988)
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Figure A2: Downstream Pollution

Notes: The dependent variable is dissolved oxygen deficit. The figure plots the estimated coefficients on
1{y − y∗p = t} ∗ dd from estimating Qpdy = α0 +

∑−2
t=−4 πt1{y − y∗p = t} ∗ dd +

∑8
t=0 γt1{y − y∗p = t} ∗ dd +

βWpdy + αpd + αpy + εpdy.
Source: (USEPA, 1967-1988)
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(a) Non-compliant
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(b) All other Facilities

Figure A3: Downstream Pollution by Pre-CWA Compliance

Notes: This figure presents results from re-estimating the event study in Figure A2 on subsamples of facilities
defined by pre-CWA compliance. Panel A shows estimates from estimating this equation on a sample of
pre-CWA non-compliant facilities (those that were required to make wastewater treatment capital upgrades)
and Panel B shows estimates using all other facilities.
Source: (USEPA, 1967-1988)
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Table A1: Other Distances Downstream

non-compliant all other facilities DDD
(1) (2) (3)

Panel A. 5 miles downstream county average birth weight
pct pop 1 mile 14.68∗∗∗ 6.358∗∗∗ 6.358∗∗∗

[9.192,20.18] [2.190,10.53] [2.191,10.52]

pct pop 1 mile X non-compliant 8.326∗∗

[1.435,15.22]
N 35973 50379 86352
Panel B. 10 miles downstream county average birth weight
pct pop 1 mile 14.44∗∗∗ 6.167∗∗∗ 6.167∗∗∗

[8.986,19.90] [2.023,10.31] [2.024,10.31]

pct pop 1 mile X non-compliant 8.278∗∗

[1.429,15.13]
N 35154 49413 84567
demographic controls X X X
unit and year fixed effects X X X
collapsed to facility level X X X

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table presents (weighted) estimates from the following model: bwpy = α0 + γDD
0 pctpy +

γDDDpctpy ∗ tp + βXpy + φXpy ∗ tp + αy ∗ tp + αp + αy + εpy. pctcy is a continuous variable that takes
values from zero to one, and indicates the proportion of downstream counties’ populations that lived within
a mile of a treated waterway in a given year. In Panel A, a waterway is considered treated if it is within
5 miles downstream from a facility that received a Clean Water Act Grant. In Panel B, a waterway is
considered treated if it is within 10 miles downstream from a facility that received a Clean Water Act Grant.
Source: NCHS (1968-1988)
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Table A2: County Code Changes

State fips New County fips Old County fips Year Note
4 12 27 1983 La Paz County, AZ split off from Yuma county
13 510 215 1971 The city of Columbus, GA became a consolidated city-county
29 186 193 N/A Ste. Genevieve county, MO changed codes
32 510 25 1968 Ormsby County became Carson City
35 6 61 1981 Cibola County, NM split off from Valencia County
46 71 131 1979 Washabaugh County was annexed to Jackson County
51 83 780 1995 South Boston City rejoins Halifax County
51 510 13 N/A Alexandria City/Arlington County
51 515 19 1968 Bedford City splits from Bedford County
51 520 191 N/A Bristol City/Washington County
51 530 163 N/A Buena Vista City/Rockbridge County
51 540 3 N/A Charlottesville City/Albemarle County
51 560 75 N/A Clifton Forge City/Alleghany County
51 590 143 N/A Danville City/Pittsylvania County
51 630 177 N/A Fredericksburg City/Spotsylvania County
51 660 165 N/A Harrisonburg City/Rockingham County
51 670 149 N/A Hopewell City/Prince George County
51 680 31 N/A Lynchburg City/Campbell County
51 683 153 1975 Manassas City splits from Prince William County
51 685 153 1975 Manassas Park City splits from Prince William County
51 690 89 N/A Martinsville City/Henry County
51 710 N/A Norfolk City came from Norfolk County, which was ultimately combined into Chesapeake City
51 730 53 N/A Petersburg City/Dinwiddie County
51 735 199 1975 Poquoson City splits from York County
51 740 N/A Portsmouth City came from Norfolk County before it was Chesapeake City
51 750 121 N/A Radford City/Montgomery County
51 770 161 N/A Roanoke City/Roanoke County
51 775 161 1968 Salem City splits from Roanoke County
51 790 15 N/A Staunton City//Augusta County
51 800 123 1974 Nansemond County merges into Suffolk City
51 840 69 N/A Winchester City//Frederick County

Table A3: Sample Changes

State Name State NCHS Code State fips Code First Full Sample Year

Alabama 1 1 1976

Arizona 3 4 1985

Arkansas 4 5 1980

California 5 6 1985

Colorado 6 8 1973

Connecticut 7 9 1979

Delaware 8 10 1985

Washington DC 9 11 1984

Florida 10 12 1972

Georgia 11 13 1985

Idaho 13 16 1977

Illinois 14 17 1974
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Indiana 15 18 1978

Iowa 16 19 1974

Kansas 17 20 1974

Kentucky 18 21 1976

Louisiana 19 22 1975

Maine 20 23 1972

Maryland 21 24 1975

Massachusetts 22 25 1977

Michigan 23 26 1973

Minnesota 24 27 1976

Mississippi 25 28 1979

Missouri 26 29 1972

Montana 27 30 1974

Nebraska 28 31 1974

Nevada 29 32 1976

New Hampshire 30 33 1972

New Jersey 31 34 1979

New Mexico 32 35 1982

New York 33 36 1977

North Carolina 34 37 1975

North Dakota 35 38 1983

Ohio 36 39 1977

Oklahoma 37 40 1975

Oregon 38 41 1974

Pennsylvania 39 42 1979

Rhode Island 40 44 1972

South Carolina 41 45 1974

South Dakota 42 46 1980

Tennessee 43 47 1975

Texas 44 48 1976
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Utah 45 49 1978

Vermont 46 50 1972

Virginia 47 51 1975

Washington 48 52 1978

West Virginia 49 53 1976

Wisconsin 50 55 1975

Wyoming 51 56 1979

Table A4: Triple Difference: Random Sample

(1) (2) (3)
non-compliant all other facilities DDD

pct pop 1 mile 12.38∗∗∗ 4.448∗∗ 4.448∗∗

[7.015,17.74] [0.303,8.593] [0.304,8.592]

pct pop 1 mile X non-compliant 7.933∗∗

[1.157,14.71]
demographic controls X X X
unit and year fixed effects X X X
collapsed to facility level X X X
N 34188 48132 82320

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table re-estimates the specifications in Panel A of Table 5 after taking a fifty percent random
sample of births that occurred in state-years that reported a full sample of births. The years that each state
switched from a 50 percent sample to a full sample of births are detailed in Table A3.
Source: NCHS (1968-1988)
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Table A5: Pollution Triple Difference with Facility-by-Year Fixed Effects

(1) (2) (3) (4)
full sample non-compliant all other facilities DDD

grant X downstream -1.384∗∗ -2.670∗∗ -0.174 -0.174
[-2.736,-0.0310] [-4.763,-0.578] [-1.957,1.609] [-1.956,1.609]

grant X downstream X non-compliant -2.496∗

[-5.243,0.250]
weather controls X X X X
facilty by downstream fixed effects X X X X
year fixed effects X X X X
N 18530 6418 12112 18530

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This re-estimates the results from Table 4 with facility-by-year fixed effects.
Source: (USEPA, 1967-1988)
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