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Abstract
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system (operated by the US Department of Veterans Affairs). We utilize the ambulance design
of Doyle et al. (2015) to examine the effect of VA vs. non-VA emergency care on mortality in
this high-risk population. We find a VA advantage: a 28-day mortality reduction of 46% (4.5
percentage points, with a 95% confidence interval of 1.1 to 8.0). Survival gains persist for at
least a year after the initial ambulance ride, and they accrue despite lower spending in the VA.
Evidence suggests that the VA advantage arises in part from some combination of continuity of
care and health IT. These results have policy relevance—as the federal government is deciding
whether to maintain the existing VA system or to expand finance of private care outside of the
VA—and they shed light on sources of inefficiency in private-sector health care in the US.
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1 Introduction

A key question in the design of health care systems across the world is whether care should be

provided by government or by the private sector. In the US, the choice between public and private

provision has become a top policy issue for the Department of Veterans Affairs (VA). Seeking to

improve veteran access to health care, policymakers have debated whether the VA should expand

the capacity of its own system—the Veterans Health Administration—or shift health-care delivery to

private providers.

An extensive descriptive literature (e.g., Reid 2010; Blank et al. 2017) has compared health care

outcomes in public vs. private systems. More generally, economists long have debated the appro-

priate size and role of the public sector in the economy, highlighting theoretical arguments about

competitive pressure, ownership structure, and differences in the objectives and constraints in the

public vs. private sector (Alchian 1965; Stigler 1965). Nevertheless, rigorous empirical evaluations

of the performance of public vs. private health care providers have been relatively rare, in no small

part because public and private providers of health care usually serve different patient populations,

either by statute or by patient selection.

In this paper, we focus on “dually eligible” veterans aged 65 and older who can receive health

care at both VA facilities and private hospitals that accept Medicare. We use the ambulance design

proposed by Doyle et al. (2015) to study the causal effect of receiving emergency care at the VA

vs. a non-VA facility. Our approach compares veterans sharing key characteristics—zip code of

residence, prior VA and non-VA utilization, and location of pick-up (e.g., their home residence vs.

a nursing home)—who receive the same dispatched level of ambulance service (i.e., advanced vs.

basic life support) from different ambulance companies. Our main analytic sample includes 401,319

911-dispatched ambulance rides from 2001 to 2014, for veterans with prior attachment to the VA and

in a zip code served by at least two ambulance companies. As in Doyle et al. (2015), we show that the

leave-out share of dually eligible veterans transported to the VA by the assigned ambulance company

is a strong predictor of hospital assignment. Under the plausible assumption that ambulances are

quasi-randomly assigned within zip codes and in cells of key characteristics, this design allows us to

study the effect of VA vs. non-VA emergency care on health outcomes.

We find that in the high-mortality population of elderly veterans with emergencies, there is a VA

advantage—a 46% reduction in 28-mortality relative to baseline (4.5 p.p., with a 95% confidence

interval of 1.1 to 8.0 p.p). Importantly, we show that our instrumental variables (IV) estimates of the
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VA effect are robust to the inclusion of a long list of characteristics of the index patient and of other

patients transported by the same ambulance company. The latter set of ambulance co-rider controls

can account for unobserved patterns of selection across ambulance companies (Altonji and Mansfield

2018). The IV estimates are larger in magnitude than the corresponding OLS estimates, which center

around 0.024 p.p., with tight confidence intervals. This difference suggests that VA “always takers”

(patients who go to the VA even with an ambulance company with a low VA rate) have worse health

than VA “never takers.”

A critical question for interpreting the benefit of VA care is whether its mortality effects fade over

longer horizons—as would happen if VA emergency care only temporarily displaces the mortality of

fragile patients under “harvesting” (Schwartz 2000). To address this, we use an insight from Abadie

(2002) to estimate the weekly potential death rates in the year after the initial ambulance ride among

compliers, i.e., patients whose destination hospital is determined by the ambulance company. With

this tool, we disentangle the short-term vs. long-term effects of the VA in the setting of competing

risks. Despite a high long-term mortality rate (one in three veterans will be dead within one year

of the ambulance ride), we find that the mortality impact of presenting at the VA is concentrated in

the first week, suggesting VA survival gains from care addressing temporary emergency conditions.

We find no evidence of harvesting, suggesting that the survival gains are long-lasting. Relying on

intuition from Kitagawa (2015), we also use this potential outcomes framework to develop a sharper

test of IV validity than the tests typical in the applied literature.1 Finally, we use this framework to

document small but systematic differences in underlying mortality hazards for VA always takers and

VA never takers that account for differences between OLS and IV estimates of the VA advantage that

we find to grow with longer time horizons.

The key potential threat to our research design is that veterans who are taken to the VA are health-

ier than who are taken to non-VA hospitals. This could arise if the choice of a specific ambulance

company from among those that serve a given zip code is correlated with the risk of death. We present

four main pieces of evidence to rule out this concern. First, we show balance in characteristics of pa-

tients assigned to companies with different propensities of taking patients to the VA. Second, we con-

duct an extensive analysis along the lines suggested by Altonji et al. (2005), evaluating the stability

1Specifically, we use the fact that, under IV validity, all indicators for potential outcomes must occur with positive
probability among compliers (Balke and Pearl 1997; Kitagawa 2015). In the setting of survival, this implies that the
incremental mortality risk must be positive for compliers in every week after the ambulance ride and in both VA and non-
VA assignment. This prediction may fail if there are violations of monotonicity arising for example because ambulance
companies with higher VA propensities are less likely to send veterans with certain potential mortality outcomes to the VA.
Chan et al. (2019) show that this approach may detect violations in IV validity that remain hidden under standard “judges
design” tests of monotonicity (e.g., Arnold et al. 2018).
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of our estimates as we add controls to the models, including controls that measure the characteristics

of other patients transported by the company. Third, we use our analysis of long-run survival patterns

to show that after the first week, compliers who go to the VA have virtually the same mortality rates

as those who go to non-VA hospitals—ruling out significant differences in underlying health between

the two groups. Finally, in heterogeneity analyses, we show that the VA saves lives relative to non-VA

alternatives regardless of whether the particular VA hospital or its non-VA alternatives have advanced

capabilities (indicated by, e.g., stroke center status or trauma center level) that would be expected to

induce selection of high-risk patients. In fact, more often than not, we find that patients transported to

a hospital with advanced capabilities have lower mortality, the opposite of selection patterns revealed

by studying predicted mortality.

In the final section of the paper we then turn to an evaluation of the mechanisms behind the VA

advantage. We consider three broad classes of mechanisms. First, the VA might be better suited to

treating conditions specific to veterans. Second, along the lines of Doyle et al. (2015), VA hospitals

could achieve better outcomes by spending more. Third, better access to patient information and coor-

dination of care may improve the productivity of VA-delivered care, particularly in high-uncertainty

and high-stakes environments such as emergency care. The Veterans Health Administration is the

nation’s largest integrated delivery system with a longstanding health information technology (IT)

system. In contrast, only 1.5% of non-VA hospitals in the US maintained a comprehensive electronic

health record as of 2009 (Jha et al. 2009).

To evaluate the first explanation—that the VA system is uniquely suited to care for veterans—we

note that, although we do not observe non-veterans being treated in the VA, we observe a detailed set

of veteran and neighborhood characteristics that predict whether a veteran is more likely to be attached

to the VA. We find a VA advantage for patients with very different patterns of prior utilization and

comorbidities, although there is consistent evidence that medically needier patients (e.g., those with

substance abuse and mental health problems) and those with greater attachment to the VA benefit

more. We evaluate the second explanation by examining the cost of care in the VA and non-VA

sectors, using information on actual spending by taxpayers and veterans. We find that VA emergency

care actually costs less, reducing cumulative spending at 28 days by $2,548 or about 21%. This

suggests that the VA is more productive, achieving better outcomes at lower cost.

The third explanation centers on the idea that coordination and continuity of care in an integrated

delivery system may improve health outcomes—an explanation consistent with the larger impacts

of the VA on medically needy patients and those with greater prior attachment. To provide further
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evidence on this, we draw on a secondary sample of veterans who have prior attachment to a specific

non-VA hospital but no recent use of the VA. As noted, these veterans have little chance of receiving

emergency care at a VA hospital but may return to the hospital they visited most in the prior year,

where their records may be more easily accessed, or to another facility. Ambulance-based assignment

to a patient’s most-visited prior hospital (i.e., their “modal” hospital) indeed reduces 28-day mortality,

though only modestly (by about 0.6 p.p.). We infer that the VA survival benefit arises from more than

just repeated use of the same facility; instead, it may reflect better care coordination and/or more

effective information retrieval in the VA health care system.

To probe these channels, we exploit two policy reforms that aimed to improve care co-ordination

and information technology among US hospitals. In 2009 the Health Information Technology for Eco-

nomic and Clinical Health (HITECH) Act stimulated a large increase in health IT adoption among

non-VA hospitals, and in 2011 Medicare began experimenting with alternative payments to “Account-

able Care Organizations” (or ACOs) (Blumenthal 2010; Greaney 2011). Consistent with technologi-

cal and organizational changes to the non-VA system, we find that the modal-hospital survival benefit

increases from a negligible effect prior to 2010 to about 1.9 p.p.—approximately one-half of the VA

survival benefit—after 2010. We find evidence linking the increase in the modal-hospital survival

benefit to health IT adoption but not to ACO participation.

Our findings contribute to three sets of related literature. First, the public vs. private provision

of health care is a central question for the field of comparative health policy, which compares health

care systems across the world to inform the design of health care systems (Blank et al. 2017). The lit-

erature in this field has been mainly descriptive.2 Comparing the performance of health care systems

is intrinsically difficult because populations differ across different countries, because many factors

outside of health care contribute to health outcomes, and because health care systems usually differ

in many dimensions. To our knowledge, our results provide the first quasi-experimental evidence on

the effect of health care delivered by the government vs. private providers.

Second, an important literature has sought to measure the quality of care in the VA, which bud-

geted $84 billion for medical care in 2020.3 Following a well-known reorganization and investment

in health IT in the mid-1990s (Mccarthy and Blumenthal 2006), this literature has documented fa-

2As an example of the amount of material devoted to such comparative studies, the European Observatory on Health
Systems and Policies (www.euro.who.int) produces policy commentary and “health system reviews” on the health care
systems of individual countries.

3Spending continues to grow, in large part due to a growing veteran population with health care needs. The 2019
enacted budget allocated $77 billion for VA medical care, and the 2021 proposed budget requests $94 billion for medical
care. For the last ten years, spending on medical care has nearly doubled. Summary budget numbers can be found at
https://www.va.gov/budget/docs/summary/fy2021VAbudgetInBrief.pdf.
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vorable VA quality, compared to care outside of the VA, in terms of process measures and health

outcomes (e.g., Jha et al. 2003). The question of performance in the VA health care system has be-

come particularly relevant in recent years, as the Department considers ways to improve access to

care for veterans and as Congress has sought to increase private health-care delivery for veterans

(113th Congress 2014; 115th Congress 2018). So far, however, this literature has mainly compared

outcomes of veterans receiving care in the VA system to outcomes of non-veterans receiving care

outside of the VA.

A third and very large literature studies why health care in the US appears to be a low-productivity

outlier among developed countries, spending more as a percentage of GDP than any country but with

poor outcomes relative to this spending (Garber and Skinner 2008). Experts have drawn attention to

the fragmentation in health care financing and delivery in the US, as well as the lack of information

on quality that consumers and policymakers can use to evaluate providers (Cebul et al. 2008; Cutler

2010).4 Responding to these arguments, policymakers have incentivized adoption of health IT and

coordination of care. Whether such policy levers can improve health outcomes, however, remains

an open empirical question.5 We show that the VA has lower mortality and spending, indicating

higher productivity, and our results further suggest an important and previously undocumented com-

plementarity between information technology and continuity of care. Finally, our results tentatively

suggest that government incentives to adopt health IT may push private industry toward providing

better health care, although a survival gap between private providers and the VA remains.

The remainder of this paper proceeds as follows. Section 2 describes the setting and data. Section

3 presents our main analysis of the VA survival benefit. Section 4 examines complier characteris-

tics, heterogeneity in treatment effects, and long-term vs. short-term effects on mortality. Section 5

presents evidence on mechanisms driving the VA survival benefit. Section 6 discusses policy impli-

cations and concludes.
4Most of these arguments have been made conceptually. An empirical literature has estimated correlations across regions

or across patients between levels of fragmentation and spending (e.g., Hussey et al. 2014). A literature in economics shows
that physician behavior depends on the organization of health-care delivery (e.g., Gaynor et al. 2004; Chan 2016). Recently,
Agha et al. (2019) have used a movers-based strategy to examine the causal effect of regions on health care spending. They
find that regions with higher fragmentation cause higher spending.

5A recent empirical literature documents modest reductions in spending and improvements in patient satisfaction among
provider forming ACOs (McWilliams et al. 2014b, 2016; Trombley et al. 2019). An older literature on health maintenance
organizations (HMOs) documents impacts on spending and technology adoption in the 1990s (Baker 2001; Cutler et al.
2000), although policy analysts have noted that HMOs were primarily insurance products, not necessarily tied to providers,
that focused more on limiting utilization than on improving quality (Luft 2010). Finally, a mixed literature on health IT
adoption has shown health improvements in some cases (e.g., Miller and Tucker 2011) but null results in general (e.g.,
Agha 2014). To our knowledge, our paper is the first to assess the complementarity between health IT and continuity of
care.
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2 Setting and Data

2.1 The Veterans Health Administration and US Health Care

The Veterans Health Administration (VHA) of the US Department of Veterans Affairs (VA) provides

health care for 9 million veteran enrollees every year. The VHA is the nation’s largest integrated

health-care delivery system, including 170 medical centers and more than 1,000 outpatient sites of

care. The VHA had a budget of $84 billion in 2020 for medical care.

Two features of the VHA distinguish it from the rest of the US health-care delivery system. First,

the VHA is owned and administered by the government, while the rest of US health care system

is largely run by private parties. Second, health care is integrated at the VHA. The VHA directly

employs all of its physicians and health care workers. In contrast, physicians outside of the VA are

mostly independent of the hospitals at which they work and can affiliate at will with multiple hos-

pitals. Health care in the VHA is organized by region and coordinated across inpatient, emergency

department, and outpatient locations, as well as across different services and specialties of care. Fol-

lowing a well-known reorganization in the mid-1990s, the VHA implemented one of the first and most

widely used electronic health record (EHR) systems in the US, and it continues to spend $5.7 billion

yearly on its health information technology (IT) infrastructure. The VHA also spends around $800

million yearly on research and development in disease-specific areas (e.g., substance abuse, chronic

disease, infectious disease), coordination of care, quality measurement and improvement, access to

care, and veteran-specific concerns (e.g., suicide, homelessness).

Outside of the VA, the US health care system is marked by a high level of complexity involving

multiple private and public (federal, state, and local) parties. The US spends more on health care per

capita than any other country—50% greater than the second-highest country, Norway—but has lower

life expectancy than most other high-income countries (Rice et al. 2013). Compared to other high-

income countries, the private sector plays a greater role in the US health care system. Despite some

recent reforms, health care financing in the US remains largely fee-for-service. Moreover, notwith-

standing a large and well-trained workforce, as well as many advanced institutions of secondary and

tertiary care, experts have noted poor coordination of care and strikingly low adoption of health IT

(Cebul et al. 2008; Cutler 2010). Prior to the Affordable Care Act (ACAs), only 1.5% of US hospitals

maintained a comprehensive EHR (Jha et al. 2009). In the wake of the ACA, federal policies have

attempted to spur care coordination and health IT adoption in the private sector (Blumenthal 2010;

Greaney 2011).
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2.2 Comparing VA and Non-VA Care

Over the past decade, lawmakers have enacted major reforms that allow veterans to receive VA-funded

care at private facilities (113th Congress 2014; 115th Congress 2018).6 These reforms broaden the

role of the VA to that of an insurer of care for veterans (similar to the role of Medicare for the elderly),

with concomitant functions such as authorizing care, processing claims, and ex post monitoring of

claims for waste and fraud.

Related to these initiatives, the quality of VA vs. non-VA care has been a longstanding subject

of interest to policymakers and researchers. Almost uniformly, the health services literature has doc-

umented that the VA provides care that is of the same or higher quality than the private sector, as

measured by a wide variety of process measures and health outcomes.7 However, these comparisons

are potentially confounded by differences, due to eligibility and self-selection, between the popula-

tions that utilize care in the VA and in non-VA facilities. Indeed, the vast majority of existing research

has compared the care of veterans in the VA with the care of non-veterans in non-VA facilities.8

We use two key ideas to extend the literature on comparisons between VA and non-VA care. First,

we focus on dually eligible veterans who are aged 65 and older. These veterans can receive care in the

VHA and at non-VA hospitals using Medicare. A prior literature has shown that many dually eligible

veterans use both types of care, particularly if they live close to both VA and non-VA facilities (Hynes

et al. 2007). Second, we build on the ambulance design strategy of Doyle et al. (2015) to sidestep

concerns about the endogenous selection of where to obtain care. Specifically, we study veterans

who arrive at a hospital via a 911-dispatched ambulance, comparing veterans from the same zip code

who could have obtained services from different ambulance companies with different propensities to

transport patients to a VA hospital. Importantly, Doyle et al. (2015) document that the company dis-

patched to serve a given patient may be chosen independently of the patient’s characteristics, due to

rotational assignment, direct competition between available providers, or software that may consider

the placement of available ambulance units at the time of the 911 call (Chiang et al. 2006; Ragone

6There have been additional well-funded efforts to shift care further into the private sector (Rein et al. 2018; Kefe 2018;
Shulkin 2018; Gordon 2019). According to an official recommendation to the Congress-established Commission on Care,
some have even proposed that “if veteran choice dictates it over time, the long term goal of the transformation is the total
transition to community care” (Blom 2016).

7See Shekelle et al. (2010), Trivedi et al. (2011), and O’Hanlon et al. (2017) for systematic reviews. The literature
includes dozens of studies on hundreds of quality of care process measures, as well as several studies on health outcomes.

8Two studies are noteworthy for having better identification. Nuti et al. (2016) compare outcomes for veterans in VA
hospitals with outcomes for non-veterans in non-VA hospitals but restrict comparisons between VA and non-VA hospitals
in the same metropolitan statistical areas. In an older study, Wright et al. (1999) look at 47,598 dually eligible veterans with
a myocardial infarction. These studies find no difference or slightly better mortality outcomes in VA hospitals. Of note, a
related literature suggests that veterans generally have poorer health than non-veterans (e.g., Agha et al. 2000).
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2012). Ambulance companies also exhibit different tendencies to transport patients to different hos-

pitals, based on their ownership, headquarter location, and other characteristics (Skura 2001). We

further describe our quasi-experimental design and assess its assumptions in Section 3.

2.3 Data

We use data from two main sources—Medicare claims and VHA administrative data—for the uni-

verse of enrolled veterans in the VHA from the years 2000 to 2014. We observe all Medicare claims

for any dually enrolled veteran. These claims data include the beneficiary’s zip code and demographic

information (age, race, and gender), as well as a record of medical services, as each defined by an

encounter date, Current Procedural Terminology (CPT) code(s), diagnostic (International Classifica-

tion of Diseases, Ninth Revision, or ICD-9) codes, and provider identity. On the VHA side, we have

a complete record of clinical encounters in the electronic health record system that we transform into

a corresponding set of encounter dates, CPT codes, ICD-9 codes, and provider identities.9

We begin by selecting ambulance ride events for dually eligible veterans, as recorded in the Medi-

care claims.10 We restrict attention to “lights and sirens” emergency ambulance rides that originate

from 911 dispatch calls.11 As in Doyle et al. (2015), we extract the date of the ambulance ride and

the identity of the ambulance company, based on its tax identification number (TIN). We use the am-

bulance company identity to develop our instrumental variable for the propensity of the ambulance

company to deliver patients to the VA or to non-VA hospitals. We also extract information on inter-

ventions provided by the ambulance (e.g., intravenous fluids, intubation), the level of care (advanced

life support or basic life support), the pick up location (e.g., private residence, nursing home, skilled

nursing facility, accident), and the ambulance diagnosis (ICD-9) codes assigned by the ambulance

personnel.

We then link these ambulance rides to emergency department (ED) visits at VA and non-VA

hospitals. This constitutes our main treatment of interest. For each patient we collect information on

medical conditions and outpatient, ED, and inpatient utilization over the prior year, as recorded in the

Medicare claims and VHA records. We use the ICD-codes for past medical conditions to identify

9The VHA system includes patient home address information. However, we use the zip code information from the
Medicare claims records as our source of home location, since this information is updated frequently and has been widely
used in previous studies, including Doyle et al. (2015).

10VHA policy is that patients with outside insurance should have ambulance services paid for by that insurance. In our
dually eligible population, therefore, ambulance rides will be recorded in the Medicare claims.

11We select ambulance rides with HCPCS codes A0322, A0328, A0330, A0362, A0368, A0370, A0427, A0429, A0433,
or Q3019. We restrict to modifiers “RH”, “SH”, “NH”, and “EH”, corresponding to rides to a hospital from a residential
location, a scene of an accident or acute event, a skilled nursing facility, and an extended care facility, respectively.

8



31 Elixhauser indices (Elixhauser et al. 1998) of comorbidities, noting the source of each condition

(i.e., from visits to the VA, to non-VA facilities, or both). These comorbidities range from common

conditions such as hypertension to rarer conditions such as lymphoma.

Our main outcome measure is mortality. We obtain information on exact date of death from three

sources: records of inpatient deaths from the VA and Medicare claims; records of death from the Vet-

erans Benefits Administration (VBA), and records of death from the Social Security Administration

(SSA). The latter two sources are particularly reliable, as they determine whether the veteran will re-

ceive payments from either the VBA or the SSA, and draw on reports from family, funeral directors,

post offices, financial institutions, other federal agencies, and state vital records agencies.

To construct our main analytical sample of 401,319 ambulance rides, we make the following

restrictions, which we detail further in Appendix Table A.1. First, we remove patients who live in zip

codes more than 20 miles away from the nearest VA hospital or more than 20 miles away from the

nearest non-VA hospital. We also drop patients who traveled more than 50 miles from their zip code

to the hospital. Second, we require that patients live in zip codes served by at least two ambulance

companies with at least 20 rides, at least 5% of rides transported to a VA hospital, and at least 5%

transported to a non-VA hospital. Finally, for our baseline analysis of VA vs. non-VA care, we drop

veterans with no VA outpatient, ED, or inpatient care in the prior year, since fewer than 1% of these

veterans are ever transported to the VA. In our secondary analysis of veterans who may be transported

to modal or non-modal hospitals outside of the VA, in Section 5, we study an analogous sample of

1,414,217 ambulance rides of veterans who did not use VA care in the previous year and who live

in zip codes with at least two non-VA hospitals within 20 miles. Appendix Table A.14 describes the

selection process for this sample.

Table 1 describes the characteristics of the veterans and the episode associated with their am-

bulance ride at different steps in the creation of the main analytical sample. The average 28-day

mortality rate at each step is relatively high, between 9.7 and 11.5 p.p., reflecting the illness acuity of

elderly veterans who arrive by 911-dispatched ambulance. This mortality rate remains relatively sta-

ble despite the overall reduction in sample size across restrictions for our main sample. Similarly, the

weekend rate, which is the proportion of ambulance rides arriving on a weekend day, is remarkably

stable and close to two-sevenths, which reflects the unplanned nature of these health events (Card

et al. 2009). The main impact of our sample restrictions is to increase the share of rides going to

a VA hospital. In some of the steps, such as the step imposing zip-code distance restrictions, the

sample becomes more concentrated in urban areas with shorter distances to nearby VA and non-VA
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hospitals. Blacks also comprise a larger share of the sample. Patient characteristics otherwise remain

stable across sample restriction steps.

3 Benchmark Analysis

3.1 Quasi-Experiment

Following Doyle et al. (2015), our main empirical strategy relies on the assignment of ambulances

to patients in emergencies and the role of ambulance companies in determining the hospital that a

patient is taken to for emergency care. As detailed in Doyle et al. (2015), several companies typically

serve the same narrow geographic area. The assignment of a particular company may be quasi-

experimentally determined such that the identity of the assigned ambulance company is plausibly

unrelated to patient characteristics. Furthermore, ambulance companies exhibit “preferences” for

delivering patients to certain hospitals, due to their ownership or the location of their operations.

We define conditioning sets within which ambulance assignment may be as good as random. First

we condition on the origin zip code 𝑧 (𝑖) of ambulance ride 𝑖, so that we compare patients from the

same zip code who are picked up by different ambulance companies. Second, we categorize the

ambulance by whether it offers advanced life support (ALS) or basic life support (BLS) based on

ambulance HCPCS codes. We further categorize rides by the pickup site category (e.g., residential

address, nursing home, scene of an accident), the day of the week, and month-year interactions (e.g.,

January 2010). Finally we condition on measures of the patient’s primary care, ED, and inpatient

utilization over the past year at VA and non-VA facilities.12 For simplicity we refer to the joint set of

controls for the type of ambulance, pickup site, date of pickup, and patient prior utilization as X0
𝑖
.

Unlike Doyle et al. (2015), we do not include patient demographics, prior medical conditions, or

ambulance diagnoses in the set of baseline controls. Instead, we “hold out” these variables—many

of which are highly predictive of mortality—and show that they are balanced across local ambulance

companies with differing propensities to send patients to the VA, conditional on
(
𝑧(𝑖),X0

𝑖

)
.

Our treatment of interest is delivery to a VA hospital, which we denote by the indicator 𝐷𝑖 ∈ {0,1}

for ambulance ride 𝑖. Ride 𝑖 is provided by company 𝑗 (𝑖) ∈ J𝑧 (𝑖) ,where J𝑧 is the set of companies that

serve zip code 𝑧.13 Associated with each ride and company is a potential treatment indicator 𝐷𝑖 ( 𝑗);
12The latter set of prior utilization measures may capture ambulance service areas within large zip codes, which may in

turn account for correlations between prior use of VA vs. non-VA care and the identity of ambulance companies.
13We define ambulance companies an “ambulance company” as the interaction between an ambulance company tax

identification number (TIN) and the health referral region (HRR) of the ride. This accounts for a few large corporations
with a single TIN that serve multiple regions.
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thus 𝐷𝑖 = 𝐷𝑖 ( 𝑗 (𝑖)). Our main outcome is 28-day mortality of the patient, denoted by 𝑌𝑖 ∈ {0,1}. The

associated potential outcomes, 𝑌𝑖 (𝑑), depend on whether the patient was transported to a VA hospital

(𝑑 = 1) or not (𝑑 = 0), with 𝑌𝑖 = 𝑌𝑖 (𝐷𝑖)

Under the assumptions that different ambulance companies have systematically different tenden-

cies to transport patients to the VA, and that the assignment of 𝑗 (𝑖) is as good as random, conditional

on
(
𝑧 (𝑖) ,X0

𝑖

)
, the identity of the ambulance company can be used to construct a a valid instrumental

variable for 𝐷𝑖 . More formally, we consider the following conditions for IV validity (Imbens and

Angrist 1994), which we assess in Section 3.2:

Condition 1 (IV Validity). For a random sample of ambulance rides 𝑖 provided by ambulance com-

panies 𝑗 , the following conditions hold:

(i) Relevance: 𝐸
[
𝐷𝑖 ( 𝑗)

��𝑧 (𝑖) ,X0
𝑖

]
is a nontrivial function of 𝑗 ∈ J𝑧 (𝑖) .

(ii) Independence and Exclusion: The vector of potential outcomes, (𝑌𝑖 (0) ,𝑌𝑖 (1) , 𝐷𝑖 ( 𝑗)), is inde-

pendent of the assigned ambulance company, 𝑗 (𝑖) ∈ J𝑧 (𝑖) , conditional on
(
𝑧 (𝑖) ,X0

𝑖

)
.

(iii) Monotonicity: Conditional on
(
𝑧 (𝑖) ,X0

𝑖

)
, for any 𝑗 and 𝑗 ′, 𝐷𝑖 ( 𝑗) ≥ 𝐷𝑖 ( 𝑗 ′) for all 𝑖, or 𝐷𝑖 ( 𝑗) ≤

𝐷𝑖 ( 𝑗 ′) for all 𝑖.

As is standard in the judges-design literature (e.g., Kling 2006, Dahl et al. 2014), to deal with finite

samples, we construct a leave-out (or jackknife) instrumental variable that reflects the propensity of

the ambulance company 𝑗 (𝑖) assigned to ride 𝑖 to transport other patients to the VA. We compute this

as the average fraction of other patient who were picked up by company 𝑗 (𝑖) and went to the VA.

Specifically, for ambulance ride 𝑖 transporting patient 𝑘 (𝑖) we define the leave-out probability 𝑍𝑖 of

transport to the VA:

𝑍𝑖 =
1

𝐾 𝑗 (𝑖) −1

∑︁
𝑖′∈I𝑗 (𝑖)

1 (𝑘 (𝑖′) ≠ 𝑘 (𝑖))𝐷𝑖′

𝑁𝑘 (𝑖′) , 𝑗 (𝑖)
, (1)

where 𝐾 𝑗 is the total number of patients transported by company 𝑗 , 𝑁𝑘, 𝑗 is the total number of rides

taken by patient 𝑘 with company 𝑗 , and I𝑗 is the set of rides transported by ambulance company 𝑗 .

We estimate 𝑍𝑖 using the sample of dually eligible veteran ambulance rides described in Column 1 of

Table 1.

Under Condition 1, an IV estimate based on 𝑍𝑖 , conditioning on
(
𝑧 (𝑖) ,X0

𝑖

)
, recovers a local aver-

age treatment effect (LATE) of the VA on mortality among compliers (i.e., the set of rides 𝑖 such that

𝐷𝑖 ( 𝑗) > 𝐷𝑖 ( 𝑗 ′) for some 𝑗 , 𝑗 ′ ∈ J𝑧 (𝑖) ). For comparison, we also consider the observational “treat-
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ment effect” of going to the VA on mortality of patients who arrive at hospital in a 911-dispatched

ambulance, controlling for
(
𝑧 (𝑖) ,X0

𝑖

)
:

𝑌𝑖 = 𝛽𝐷𝑖 +X0
𝑖 𝛿0 + 𝜁0,𝑧 (𝑖) + 𝜀0,𝑖 (2)

where 𝜁0,𝑧 represents an unrestricted effect for rides originating in zip code 𝑧. Estimating Equation

(2) by OLS yields 𝛽𝑂𝐿𝑆 , while instrumenting 𝐷𝑖 with 𝑍𝑖 yields 𝛽𝐼𝑉 . The gap between 𝛽𝑂𝐿𝑆 and

𝛽𝐼𝑉 will depend on differences in the potential outcomes between never takers (i.e., patients who go

to a non-VA facility regardless of the ambulance company) and always takers (i.e., patients who go to

the VA regardless of the ambulance company), as well as on differences in treatment effects between

compliers and non-compliers. We explore this gap more directly in Section 4.

3.2 First Stage, Balance, and Reduced Form

We begin our empirical analysis by demonstrating instrument relevance, Condition 1(i), with the

following first-stage regression:

𝐷𝑖 = 𝜋1𝑍𝑖 +X0
𝑖 𝛿1 + 𝜁1,𝑧 (𝑖) + 𝜀1,𝑖 . (3)

The coefficient 𝜋1 reflects the impact of ambulance company preferences on the probability that

the ride goes to the VA, conditional on our baseline controls for ambulance type, pickup site, zip

code, date categories, and veteran prior utilization. Figure 1, Panel A, shows a binned scatterplot of

residualized 𝐷𝑖 on the y-axis with respect to residualized 𝑍𝑖 on the x-axis and reports �̂�1 = 0.882 (s.e.

0.034). The first-stage relationship between 𝐷𝑖 and 𝑍𝑖 is very predictive and close to linear.

To assess independence, Condition 1(ii), we test whether 𝑍𝑖 is correlated with patient character-

istics that are correlated with mortality. Specifically, we construct an estimate of predicted mortality

𝑌𝑖 using “hold-out” patient characteristics, including patient demographics and 31 Elixhauser indices

for prior medical conditions.14 We then fit models for 𝑌𝑖 based on the same right-hand-side specifi-

cation as in Equation (3). Panel B of Figure 1 shows (with hollow dots) that there is no relationship

between 𝑌𝑖 and 𝑍𝑖 , controlling for
(
𝑧 (𝑖) ,X0

𝑖

)
. In contrast, the same panel shows (with solid dots) that

14Patient demographics include age, gender, and race and ethnicity. Age is captured two-year age bins from 65 years
to 100 years. Race and ethnicity is captured with three dummies for white, Black, and Hispanic; the omitted category is
Asian/other. We use the 31 Elixhauser indices as described in Elixhauser et al. (1998), interacting each index with the
source of the record indicating the comorbidity. There are three possible sources: VA only, Medicare claims only, and VA
and Medicare claims. This results in 3×31 = 93 dummies. Hold-out patient characteristics are described in Appendix Table
A.3.
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the reduced-form relationship between actual mortality, 𝑌𝑖 , and 𝑍𝑖 is significantly negative, under the

same controls. Specifically, for the reduced-form relationship,

𝑌𝑖 = 𝜋2𝑍𝑖 +X0
𝑖 𝛿2 + 𝜁2,𝑧 (𝑖) + 𝜀2,𝑖 , (4)

we find �̂�2 = −0.040 (s.e. 0.016). This suggests that quasi-random assignment to an ambulance

company more likely to transport to the VA results in an intention-to-treat reduction in mortality.

The exclusion condition in Condition 1(ii) asserts that ambulance companies do not affect out-

comes other than through their effect on whether a patient arrives at a VA or non-VA hospital. Implic-

itly, however, our notation also assumes that each complier has a well-defined non-VA hospital that

is stable across ambulance companies. In Appendix A.1.1, we evaluate the robustness of our results

to potential violations of the strict exclusion assumption implicit. Specifically, we assess and find no

evidence of any correlation between 𝑍𝑖 and ambulance treatments captured in summary charges or

between 𝑍𝑖 and ambulance propensities to deliver patients to different non-VA hospitals.15

To assess the monotonicity assumption given by Condition 1(iii), we follow the standard practice

in the judges-design literature to show that the first-stage relationship between 𝐷𝑖 and 𝑍𝑖 remains

positive for subgroups of patients defined by different observable characteristics (e.g., Arnold et al.

2018; Bhuller et al. 2020). We detail these analyses in Appendix A.1.2. In Section 4, we present a

stronger test of monotonicity (and IV validity) based on potential outcomes. Following the reasoning

in Kitagawa (2015), this test amounts to showing a positive density for the potential outcome of death

in a given week, conditional on survival to the end of the previous week, for compliers who go to VA

or non-VA facilities.

3.3 Mortality Effect

With this background, we now move to our main results on patient mortality. In Table 2, we show

both OLS and IV estimation results for Equation (2). Panel A of the table shows 𝛽𝑂𝐿𝑆 from Equation

(2), while Panel B shows 𝛽𝐼𝑉 = �̂�2/�̂�1 from the first-stage and reduced-form regressions in Equations

(3) and (4). Column 1 shows our baseline specification, controlling for zip code and the variables in

X0
𝑖
. The OLS estimate is 𝛽𝑂𝐿𝑆 = −0.024 (s.e. 0.001), while the IV estimate is 𝛽𝐼𝑉 = −0.045 (s.e.

15Following Kolesar et al. (2015), these analyses correspond to the weaker assumption that there are no systematic cor-
relations between our instrument and other ambulance-specific treatments that impact our outcome of interest. Specifically,
under this weaker version of exclusion, we require that ambulance companies with higher values of 𝐸

[
𝐷𝑖 ( 𝑗)

��𝑧 (𝑖) ,X0
𝑖

]
do

not also systematically apply treatments during the ambulance ride that affect mortality, or systematically deliver patients
to higher- or lower-quality non-VA alternatives.
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0.018).16 Relative to the mean 28-day mortality of 9.7 p.p., both estimates imply a sizeable reduction

in mortality for compliers who are taken to the VA.

The other columns in Table 2 show OLS and IV estimates as we include additional controls to the

models: (i) patient demographics (age, race, gender), (ii) ambulance diagnostic (ICD-9) codes, (iii)

Elixhauser comorbidity indicators, and (iv) ambulance and co-rider controls, which are all described

in Appendix Table A.3. The latter controls are meant to capture any unobservable patient selection

at the ambulance company level by using characteristics of other rides and patients under the same

ambulance company, following the reasoning in Altonji and Mansfield (2018). Specifically, these

controls address the potential concern that sicker patients tend to be allocated to certain ambulance

companies that may be more or less likely to take patients to the VA.

Reassuringly, both 𝛽𝑂𝐿𝑆 and 𝛽𝐼𝑉 remain stable as we add additional controls. Figure 2 illustrates

this stability as controls are added in a more granular fashion, and Appendix Figure A.2 shows sta-

bility of the IV estimates as we permute the order in which the extra controls are added. The stability

of both the OLS and IV estimates suggests lack of selection on observable characteristics; under the

reasoning of Altonji et al. (2005), this stability suggests limited scope for selection on unobservable

characteristics that predict potential 28-day mortality. However, the substantive gap between the OLS

and IV estimates, with IV being larger in magnitude, suggests either that never takers are healthier

than always takers (i.e., selection runs counter to treatment effects on mortality) or that the LATE

among compliers is larger than the unconditional average treatment effect (ATE).17 We investigate

these possibilities in the next section and in Section A.4.

4 Survival Analysis

In this section we develop and apply a survival analysis framework to understand the dynamics of

potential survival outcomes following the ambulance ride. Rather than focusing exclusively on mor-

tality at 28 days, as in Section 3, we broaden our analysis to understand how mortality events unfold

over time. We use this framework to make several insights. First, we determine the time course of

VA effects on mortality. Second, we use the empirical results of this framework to provide further

16Appendix Figure A.1 shows the IV estimate visually, by plotting the predicted first-stage probability of treatment from
Equation (3) on the x-axis and predicted reduced-form effect on mortality from Equation (4) on the y-axis. The slope of
this visual IV relationship corresponds to 𝛽𝐼𝑉 = −0.045.

17We note that a Hausman test for equality of the two estimates has a t-statistic of only 1.0, so based on this evidence
alone, the gap between OLS and IV could be simply due to sampling error. In the next section, however, we show a dynamic
pattern of IV and OLS estimates, over the year after the initial ambulance ride, that points more definitively to systematic
differences.

14



validation of Condition 1, beyond the standard benchmark analysis in Section 3.2. Third, we investi-

gate the implications of heterogeneity in mortality risks between compliers and non-compliers of our

ambulance quasi-experiment.

4.1 Approach

Consider a set of potential survival outcomes 𝑆𝑖 (𝑡;𝑑) ∈ {0,1} under VA care (𝑑 = 1) and non-VA

care (𝑑 = 0) for each week 𝑡 ∈ {1, . . . ,52} following the ambulance ride.18 By definition, if 𝑆𝑖 (𝑡;𝑑) <

𝑆𝑖 (𝑡 −1;𝑑), then the patient in ambulance ride 𝑖 would die in the 𝑡th week following the ambulance

ride if exposed to treatment 𝑑. Of course, potential survival outcomes must weakly decrease over

time, i.e., 𝑆𝑖 (𝑡;𝑑) ≤ 𝑆𝑖 (𝑡 −1;𝑑) for all 𝑖, 𝑑, and 𝑡.

As with mortality outcomes, for each ambulance ride 𝑖, we can only observe the set of survival

outcomes corresponding to 𝑑 = 𝐷𝑖: 𝑆𝑖 (𝑡) = 𝐷𝑖𝑆𝑖 (𝑡;1) + (1−𝐷𝑖) 𝑆𝑖 (𝑡;0). However, appealing to

Abadie (2002), we can recover the expected survival outcomes for the set of compliers C whose hos-

pital choice depends on which ambulance company picks them up. In particular, under Condition 1,

we can estimate 𝑠𝐼𝑉 (𝑡;1) ≡ 𝐸 [ 𝑆𝑖 (𝑡;1) | 𝑖 ∈ C] by two-stage least squares using the first-stage Equa-

tion (3) and a reduced-form equation similar to Equation (4) but with dependent variable 𝑆𝑖 (𝑡)𝐷𝑖 .

Similarly, we can estimate 𝑠𝐼𝑉 (𝑡;0) ≡ 𝐸 [ 𝑆𝑖 (𝑡;0) | 𝑖 ∈ C] using the same first stage model but replac-

ing the reduced-form outcome variable in Equation (4) with 𝑆𝑖 (𝑡) (𝐷𝑖 −1). Note that by construction,

the IV estimand of the VA treatment effect on 28-day mortality in Section 3, satisfies

𝛽𝐼𝑉 = 𝑠𝐼𝑉 (4;1) − 𝑠𝐼𝑉 (4;0) .

Given the potential survival outcomes, we can then estimate potential hazard rates for mortality,

under VA and non-VA assignment:

ℎ𝐼𝑉 (𝑡;𝑑) ≡ 𝐸 [1− 𝑆𝑖 (𝑡 +1;𝑑) | 𝑆𝑖 (𝑡;𝑑) = 1, 𝑖 ∈ C]

=
𝑠𝐼𝑉 (𝑡;𝑑) − 𝑠𝐼𝑉 (𝑡 +1;𝑑)

𝑠𝐼𝑉 (𝑡;𝑑) , (5)

for 𝑑 ∈ {0,1} and 𝑡 ∈ {1, . . . ,52} , corresponding to weekly mortality hazard rates up to one year after

the initial ambulance ride. Under Condition 1, differences between {ℎ𝐼𝑉 (𝑡;1)}𝑡 and {ℎ𝐼𝑉 (𝑡;0)}𝑡
can be interpreted as the causal effect of VA assignment, among compliers, on the set of mortality

18We adopt the convention that a death within the first 7 days is a death in week 1. Thus a death within 28 days is a death
by the end of week 4.
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hazard rates.19

As in Section 3, we calculate conditional risk-adjusted OLS survival functions and mortality haz-

ard rates. We estimate 𝑠𝑂𝐿𝑆 (𝑡;𝑑) ≡ 𝐸 [ 𝑆𝑖 (𝑡;𝑑) |𝐷𝑖 = 𝑑] = 𝐸 [ 𝑆𝑖 (𝑡) |𝐷𝑖 = 𝑑] by OLS of Equation (2),

replacing the outcome variable with 𝑆𝑖 (𝑡)𝐷𝑖 for 𝑠𝑂𝐿𝑆 (𝑡;1) and with 𝑆𝑖 (𝑡) (𝐷𝑖 −1) for 𝑠𝑂𝐿𝑆 (𝑡;0).

Our OLS estimand of the VA effect on 28-mortality, 𝛽𝑂𝐿𝑆 , is similarly equal to 𝑠𝑂𝐿𝑆 (4;1)−𝑠𝑂𝐿𝑆 (4;0).

Corresponding mortality hazard rates can also be calculated based on observed risk-adjusted survival:

ℎ𝑂𝐿𝑆 (𝑡;𝑑) ≡ 𝐸 [1− 𝑆𝑖 (𝑡 +1;𝑑) | 𝑆𝑖 (𝑡;𝑑) , 𝐷𝑖 = 𝑑]

=
𝑠𝑂𝐿𝑆 (𝑡;𝑑) − 𝑠𝑂𝐿𝑆 (𝑡 +1;𝑑)

𝑠𝑂𝐿𝑆 (𝑡;𝑑)
. (6)

Compared to the potential survival functions and mortality hazards , the OLS analogues also incor-

porate outcomes for the always takers and never takers whose choice of hospital is unaffected by the

specific ambulance company that picked them up. Specifically, 𝑠𝑂𝐿𝑆 (𝑡;1) and ℎ𝑂𝐿𝑆 (𝑡;1) reflect sur-

vival outcomes for a combination of always takers and compliers, while 𝑠𝑂𝐿𝑆 (𝑡;0) and ℎ𝑂𝐿𝑆 (𝑡;0)

reflect survival outcomes for a combination of never takers and compliers.

4.2 Time Course of Mortality Effects

Since we examine potential survival outcomes one year after an ambulance ride, for the analysis in

this section we restrict analysis to ambulance rides of patients with no prior ride within one year.20

In Figure 3, we show our estimated potential survival curves and potential hazard rates in weeks 0 to

52 for compliers assigned to the VA and those assigned to a non-VA hospital. The potential survival

curves, shown in Panel A, reveal a high risk of mortality among compliers. Mortality at 28 days

among compliers assigned to a non-VA hospital is greater than the sample mean of 9.7 p.p., and

cumulative mortality at one year is approximately 30 p.p. However, despite the substantial mortality

risk over the subsequent year, the gap in survival between VA- and non-VA-assigned compliers (i.e.,

the mortality treatment effect) is fully realized at 28 days and remains stable for the rest of the year.

19We emphasize that any gap between ℎ𝐼𝑉 (𝑡,1) and ℎ𝐼𝑉 (𝑡,0) at some later time horizon (e.g., 𝑡 = 12) could arise
because treatments at the VA affected the population of compliers who survive to week 𝑡 − 1 and are therefore at risk of
death in week 𝑡, or because of a treatment effect on the week 𝑡 hazard, holding the population fixed.

20This restriction attributes survival for a given patient in a given week to the “upstream” ambulance ride, rather than
attributing the survival event to both upstream and downstream ambulance rides. This changes (decreases) the sample in
Appendix Table A.1 to 254,782 rides and 188,299 patients. In Appendix Figure A.8, we show that this restriction (or any
other restriction on prior rides) does not lead to qualitative differences in our estimated OLS or IV treatment effects on
mortality over time. Qualitatively, regardless of the number of days within which we require no prior ride, the IV estimates
are larger than 4 p.p. at 28 days and remain mostly stable within the year following the ambulance ride; the OLS estimates
are between 2.0 and 2.5 p.p. at 28 days and essentially disappear by one year following the ambulance ride. We evaluate
the implications of the long-term difference between IV and OLS treatment effects in Section 4.4.

16



In Panel B, we examine the implied hazard rates and show that the differences in mortality are

concentrated in the first week following the ambulance ride. Thereafter the hazard rates for both VA-

and non-VA-assigned compliers remain relatively high and are indistinguishable from each other.

This similarity suggests that the 4.5 p.p. VA reduction in mortality at 28 days in our benchmark

analysis results entirely from events within the first week following the ambulance ride.

The potential hazard profiles in Figure 3 suggest that mortality risks for the compliers in our

analysis comprise two separate risks: (i) a relatively high short-term risk component that is affected

by VA vs. non-VA assignment, and (ii) a relatively stable long-term risk component that is the same

between compliers who go to the VA and those who go to a non-VA hospital. If the latter risk reflects

underlying patient health and is independent of the risk that led to the ambulance call, then we would

expect the long-run weekly mortality rate (after, e.g., three months) to be the same for veterans who

were quasi-randomly assigned to VA and non-VA hospitals; we formalize this as a test in Section 4.3.

The potential hazard rates also allow us to assess whether excess mortality at non-VA hospitals

involves “harvesting,” or mortality displacement, in which deaths for patients at the VA are simply

delayed (Schwartz 2000; Honore and Lleras-Muney 2006). Under this hypothesis, survival gains

from VA care observed at 28 days are temporary and will fade in the long-term. Such mortality

displacement would imply that the hazard of dying increases among VA-assigned compliers after a

time. We find no evidence of this in the potential hazard rates in Panel B of Figure 3. In Appendix

A.2, we formally test that ℎ𝐼𝑉 (𝑡;1) ≤ ℎ𝐼𝑉 (𝑡;0) for all 𝑡 and cannot reject this null hypothesis of no

harvesting.21 This suggests that the VA prevents rather than displaces deaths, leading to a persistent

survival benefit. Visually, this is confirmed by the fact that the gap between the potential survivor

functions in Panel A is very stable after 28 days.

4.3 Extended IV Validity

We can also use the estimated potential survival outcomes to test the validity of our IV strategy based

on ambulance assignment. Under Condition 1, the density of any characteristic, including charac-

teristics defined by potential outcomes, must be positive among compliers of the quasi-experiment

(Balke and Pearl 1997; Imbens and Rubin 1997):

Pr ( 𝑋𝑖 = 𝑥,𝑌𝑖 = 𝑦 | 𝑖 ∈ C) ≥ 0, (7)

21Our test builds on the suggestion of Wolak (1987) to form a test statistic based on a quadratic form that represents the
deviations of the data from the predictions of a constrained model that imposes the inequality restrictions. We use a simple
bootstrap procedure to derive critical values of the test.
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for all possible characteristics 𝑥 ∈ X and all possible potential outcomes 𝑦 ∈ Y. Kitagawa (2015) pro-

poses a formal test of this implication, and Chan et al. (2019) show that applying this test to potential

outcomes can provide a stronger test of the conditions for IV validity, particularly the monotonicity

assumption in Condition 1(iii).22

In our setting, we partition survival potential outcomes into weeks of potential mortality for 52

weeks following the ambulance ride, for both VA- and non-VA-assigned compliers. Since survival

can only decrease over time, the potential mortality hazard rates for any week must be positive (i.e.,

ℎ𝐼𝑉 (𝑡;𝑑) ≥ 0 for all 𝑡 ∈ {1, . . . ,52}, 𝑑 ∈ {0,1}). A complier survival rate that appears to increase (i.e.,

that ℎ𝐼𝑉 (𝑡;𝑑) < 0 for some 𝑡 or 𝑑) could arise if patient risk of death in some week 𝑡 is correlated

with the assigned ambulance’s propensity to take patients to the VA (a violation of independence), or

if ambulances with different overall propensities to transport patients to the VA also choose different

groups of inframarginal patients, who systematically differ in their risk of death in some week 𝑡, to

take to the VA (a violation in monotonicity). In Appendix A.2, we formally test the joint inequality

constraint that ℎ𝐼𝑉 (𝑡;𝑑) ≥ 0 for all 𝑡 ∈ {1, . . . ,52}, 𝑑 ∈ {0,1}, and cannot reject this null hypothesis,

with a bootstrap-based p-value of 1.00.

If the short-term and longer-term mortality risks facing veterans are independent (as is typically

assumed in a competing risks model) and treatment at the VA only affects the short-term risk com-

ponent, then Condition 1 also implies that ℎ𝐼𝑉 (𝑡;1) = ℎ𝐼𝑉 (𝑡;0) for 𝑡 ≥ 𝑡, for some 𝑡 after the acute

ambulance episode. Specifically, if the short-term risk component dies out after some time 𝑡, and if

the assignment of compliers to VA and non-VA hospitals is as good as random, then the death rates of

the two groups of compliers should be the same after 𝑡. Visually, it appears that the potential hazard

rates of the compliers are very similar in weeks 𝑡 ∈ {2, . . . ,52}. Consistent with this impression, in

Appendix A.2, we show that we cannot reject that ℎ𝐼𝑉 (𝑡;1) = ℎ𝐼𝑉 (𝑡;0) for all weeks 𝑡 ≥ 2, with a

bootstrap-based p-value of 0.31.

4.4 Heterogeneity in Mortality Risks

Finally, we take a closer look at death rates during the year after the ambulance ride to better under-

stand the differences between our main OLS and IV estimates of the VA advantage. As shown in

22Specifically, testing Equation (7) with respect to potential outcomes 𝑦 ∈ Y may be more likely to detect violations of
Condition 1 than standard tests of monotonicity, focusing on patient characteristics, that we employ in Appendix A.1.2. The
intuition behind this is that testing Equation (7) with respect to potential outcomes will reveal violations in Condition 1 that
relate not only to observed patient characteristics but also to unobserved patient characteristics. Violations in quasi-random
assignment or monotonicity may be more likely to occur along potential outcomes if agents act according to an objective
function based on potential outcomes.
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Panel A of Figure 4, we find that, remarkably, OLS survival curves cross about nine to ten months

after the ambulance ride. This reflects a reversal in the sign of the OLS-estimated VA treatment effect:

While patients arriving at the VA experience an immediate survival benefit that peaks at 14 days after

the ambulance ride, the survival benefit eventually reverses, such that patients arriving at the VA are

more likely to die within a year.

Consistent with this observed survival pattern, Panel B of Figure 4 reveals a cross-over in the

observed hazard rates of death for patients who are taken to VA and non-VA hospitals. In the first week

after the ambulance ride, the death rate is lower for patients at the VA, though the gap between the VA

and non-VA hazards is smaller than the corresponding potential-outcomes gap for compliers shown

in Figure 3. Thereafter, the hazard rate for patients at the VA, ℎ𝑂𝐿𝑆 (𝑡;1), is consistently higher than

the hazard rate for those who went to a non-VA hospital, ℎ𝑂𝐿𝑆 (𝑡;0). This gap suggests differences

in baseline risk between always takers and never takers that are initially offset by the short-term

VA advantage but reemerge, soon after the first week. While these differences in baseline mortality

hazards may be slight on a weekly basis, they accumulate over time to generate large differences in

long-term survival.

To identify differences in the baseline mortality risk between VA-assigned compliers and always

takers, we compare ℎ𝐼𝑉 (𝑡;1) and ℎ𝑂𝐿𝑆 (𝑡;1); to identify differences between non-VA-assigned com-

pliers and never takers, we compare ℎ𝐼𝑉 (𝑡;0) and ℎ𝑂𝐿𝑆 (𝑡;0). In Appendix A.2 we show that we can-

not reject the null hypothesis that ℎ𝐼𝑉 (𝑡;1) = ℎ𝑂𝐿𝑆 (𝑡;1) for 𝑡 ≥ 2. However, we can strongly reject

the null hypothesis that ℎ𝐼𝑉 (𝑡;0) = ℎ𝑂𝐿𝑆 (𝑡;0) for 𝑡 ≥ 2. This implies that never takers are healthier

than compliers who are assigned to non-VA facilities. Moreover, the average value of ℎ𝐼𝑉 (𝑡;0), for

𝑡 ≥ 2, is significantly larger than the corresponding average value of ℎ𝑂𝐿𝑆 (𝑡;0), for 𝑡 ≥ 2. This illu-

minates why the OLS estimate of the VA survival effect is downward biased in magnitude compared

to the LATE, a finding first suggested in our benchmark comparison between 𝛽𝐼𝑉 and 𝛽𝑂𝐿𝑆 in Sec-

tion 3.3 albeit with less precision. Since the difference ℎ𝐼𝑉 (𝑡;0) − ℎ𝑂𝐿𝑆 (𝑡;0) is positive throughout

our one-year observation window, the OLS bias increases in magnitude the longer the time horizon,

eventually causing the sign of the OLS-estimated survival effect to reverse.

5 Mechanisms

This section probes further into the mechanisms behind the large VA mortality advantage. We first

examine characteristics of compliers in our quasi-experiment. Second, we use a simple Olsen (1980)
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control function approach to estimate the average treatment effect (ATE) and compare it with the

LATE estimated in Section 3. Third, we examine treatment effect heterogeneity by hospital and pa-

tient characteristics. Fourth, we ask whether the VA produces superior health outcomes by spending

more; spending less would imply mechanisms that improve productivity. Fifth, we perform an analy-

sis of health IT and integrated care among veterans using non-VA care, as potential mechanisms that

may set the VA apart from non-VA care.

5.1 Complier Characteristics

We perform a standard complier analysis examining characteristics of compliers relative to the overall

sample.23 Table 4 shows results for various characteristics. Compliers are more likely to be Black,

to have lower income, to have a prior VA ED visit, and to suffer from mental illness and substance

abuse. Compliers have slightly fewer recorded Elixhauser comorbidities and are less likely to receive

Advanced Life Support (ALS); they are also marginally younger and have marginally lower predicted

mortality. In Appendix Table A.7, we show similar patterns comparing always takers and never takers,

following an approach in Dahl et al. (2014) that we describe in Appendix A.3.

Researchers and policymakers have noted greater incidence of mental health and substance abuse

issues among veterans (Adamson et al. 2008). Recognizing this need, Congress allocated $152 mil-

lion for increasing mental health care programming in 1999; in the following two decades, VHA sta-

tions expanded mental health services and hired thousands of mental health providers (106th Congress

1999; U.S. Government Accountability Office 2015). This capacity to treat mental health disorders

contrasts with the non-VA health care sector, where mental health services have long been under-

funded and underprovided (Huskamp and Iglehart 2016).

5.2 Selection Model

We consider a structural model of selection in order to assess how VA treatment effects vary with a

veteran’s propensity to go to the VA and to infer the ATE. Following the “marginal treatment effects”

(MTE) terature (see, e.g., Heckman and Vytlacil (2007) for a review), we exploit our multivalued

ambulance instrument in order to characterize the relationship between treatment effects and veterans

who are induced to go to the VA.

23Specifically, we employ the same approach from Abadie (2002) that we introduced in Section 4.1. Under IV validity
in Condition 1, we can estimate 𝐸 [ 𝑋𝑖 | 𝑖 ∈ C] for some characteristic 𝑋𝑖 by two-stage least squares, involving the first-stage
Equation (3) and a reduced-form equation replacing the outcome variable in Equation (4) with 𝑋𝑖𝐷𝑖 .
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Specifically, we allow for a flexible slope in the returns to VA care among compliers who are

induced into VA care, ranging from ambulances with low propensities to deliver patients to the VA to

those with high propensities. Using a control function model, we also extrapolate this relationship in

treatment effects to always takers and never takers, thereby imputing the ATE from the semiparametric

structure of the model. We provide further details of our approach in Appendix A.4.

We find evidence of moderate “selection on gains,” in which veterans with larger mortality reduc-

tions from going to the VA are more likely to go to the VA. In Appendix Figure A.7, we show the

MTE function ranging from veterans who are most likely to use the VA to those who are least likely

to use the VA. Veterans induced to go to the VA by lower-propensity ambulances have higher returns

to VA care than veterans who are induced by high-propensity ambulances. In Appendix Table A.8,

we find a substantial ATE, only marginally smaller than the LATE, across a variety of specifications.

5.3 Heterogeneity by Hospitals and Patients

We next assess heterogeneity in the VA mortality effect by hospitals in a patient’s choice set and by

patient characteristics. We consider a wide range of characteristics, in three categories: (i) charac-

teristics of non-VA hospitals serving a given zip code, weighting the hospitals by volume of patients

from the zip code; (ii) characteristics of the VA hospital serving a given zip code; and (iii) patient

characteristics.

For each of these characteristics 𝑥, we construct a binary indicator variable, 𝐼𝑥,𝑖 ∈ {0,1}. For

example, for the non-VA hospital characteristic of number of staffed beds, we create a binary indicator

variable for whether the volume-weighted average number of staffed beds across non-VA hospitals in

a zip code is above or below median. We include a demeaned 𝐼𝑥,𝑖 ≡ 𝐼𝑥,𝑖 − �̂�𝑖

[
𝐼𝑥,𝑖

]
in the following

linear control function regression:

𝑌𝑖 = 𝛽𝑥𝐷𝑖 + 𝜌𝑥𝐷𝑖 𝐼𝑥,𝑖 + 𝜋𝑥 𝐼𝑥,𝑖 +𝛾𝑥𝜀1,𝑖 +X0
𝑖 𝛿𝑥 + 𝜁𝑥,𝑧 (𝑖) + 𝜖𝑥,𝑖, (8)

where 𝜀1,𝑖 is the first-stage error from Equation (3). Controlling for the endogeneity of selection,

this approach yields estimates of binary heterogeneous treatment effects along several dimensions.24

Since 𝐼𝑥,𝑖 has a mean of 0, we can interpret 𝛽𝑥 as the LATE, controlling for 𝐼𝑥,𝑖; 𝜌𝑥 is the difference

in the VA effect on mortality between 𝐼𝑥,𝑖 = 1 and 𝐼𝑥,𝑖 = 0. We calculate standard errors by bootstrap,

drawing blocks of data by zip code.

24For a discussion of this general approach, see Wooldridge (2015), Section III.
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We find treatment heterogeneity that is both statistically significant and intuitive. In Appendix

Tables A.9 and A.10, we observe that the VA advantage is marginally smaller in zip codes featuring

non-VA hospitals with advanced capabilities (e.g., advanced trauma level, teaching hospital status,

or STEMI center status), a finding consistent with a causal VA survival advantage, rather than an

alternative that reflects selection of healthier patients to the VA.25 As for heterogeneity by VA hospital

characteristics (Appendix Table A.11), results suggest that the VA advantage pertains across a broad

spectrum of VA hospitals but is perhaps slightly greater in larger hospitals. Across patients (Appendix

Table A.12), the VA advantage is likely as large for minority veterans (Black and Hispanic) as for non-

minority veterans. The VA survival benefit appears marginally greater for veterans who suffer from

mental illness or substance abuse, who have more prior visits at the VA, or who have higher predicted

mortality. However, the differences in the VA survival benefit across all of these dimensions are

small compared to the overall scale of the survival benefit. Importantly, the VA survival benefit is not

limited to select medical conditions that stereotypical users of the VA might have; even patients who

are less than likely to use the VA experience a VA survival benefit.

5.4 Effect on Spending and Utilization

In light of the important literature on the returns to spending in health care (e.g., Garber and Skinner

2008), we examine the causal effect of VA vs. non-VA care on spending. The motivation behind this

analysis is similar to that in Doyle et al. (2015), who sought to understand whether higher-spending

hospitals achieve better health outcomes. To perform this analysis, we rely on both internal VA cost

data and Medicare payment data from claims. Internal VA cost accounting apportions costs by VA

utilization data and scales the cost of each encounter so that total spending matches actual budgeted

spending within each VHA station.26 On the Medicare side, we include payments made both by the

veteran (i.e., coinsurance and deductible) and by the government. Therefore, we measure the cost of

both VA and non-VA health care in terms of dollars spent by the government and the veteran.

Using the same instrumental variables approach as in our benchmark analysis, we study the effect

of VA vs. non-VA care on daily VA and non-VA spending over time since the ambulance ride.

25Specifically, we expect hospitals with advanced capabilities to attract patients at greater risk of death. Therefore, under
a hypothesis that the VA survival advantage reflects selection of healthier patients, we would observe higher mortality at
non-VA hospitals (i.e., a greater VA survival advantage) when the non-VA hospitals for a zip code have advanced capabili-
ties, and we would observe a smaller VA survival advantage when the VA hospital for a zip code has advanced capabilities.
Instead, if anything, we observe the opposite patterns.

26The apportioning is based on a regression prediction of non-VA spending on relative value units (RVUs) associated
with CPT codes, diagnosis-related group (DRG) weights, patient characteristics, and admission lengths of stay. This
methodology is detailed in Wagner et al. (2003).
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Specifically, we combine VA and Medicare spending in various intervals of days since the ambulance

ride, and we divide this combined spending by the number of days in the interval to arrive at a daily

spending flow during the interval, which we use as an outcome variable in Equation (4). Figure 5

shows the effect of the VA on the combined daily spending flow. It shows that, if anything, the VA

reduces spending by more than $120 per day in the first ten days following the ambulance ride. Table

3 further shows that the VA reduces 28-day combined spending by $2,548, or by 21% of the mean

28-day spending. The reduction in spending reflects a lower probability of inpatient admission and

fewer hospital days associated with VA care, although VA care results in slightly more outpatient

visits in the following 28 days.27

The result that the VA saves lives while reducing spending is significant for two reasons. First, the

result speaks directly to the policy question of whether the VA should privatize its care in a Medicare-

type arrangement. The potential role of the VA as an insurer of private care has featured heavily in

recent policy proposals and laws (113th Congress 2014; 115th Congress 2018). We show that, at

least for the patients in our design, this privatization arrangement would be dominated by the status

quo, as it would lead to both higher spending and worse health outcomes. Second, this joint finding

suggests that the general mechanism behind the VA survival benefit is not higher spending but higher

productivity. Our evidence points to productive inefficiency, rather than “flat of the curve” spending

that underlies the relatively low-returns to US health care. This implication complements a growing

literature on productivity differences across personnel (Chan et al. 2019; Silver 2020) and hospitals

(Chandra and Staiger 2007, 2020) by showing an important productivity difference between health

care systems.

5.5 Health IT and Integrated Care

Our final analysis investigates the role of health IT and integrated care in explaining the VA survival

advantage. A substantial literature has reported the qualitative importance of these mechanisms in the

VA’s “transformation” into a high-quality health care organization in the mid-1990s (e.g., Jha et al.

2003). The lack of information flow and the high degree of fragmentation across providers in the US

private health care sector have long been highlighted as potential roots of inefficiency (Cebul et al.

2008; Jha et al. 2009; Cutler 2010). These information-based mechanisms would be consistent with

27Although the average Medicare outpatient visit costs less than the average VA outpatient visit, the average Medicare
inpatient day costs more than the average VA inpatient day. In our main analytic sample described in Appendix Table A.1,
the average VA outpatient visit costs $181.39, and the average VA inpatient day costs $1,580.27. In the same sample, the
average Medicare outpatient visit costs $108.32 (lower than the average VA cost), but the average Medicare inpatient day
costs $1,816.54 (higher than the average VA cost).
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greater health care productivity of the VA, particularly for regular users and patients whose conditions

are more responsive to informed management (e.g., substance abuse).

Ideally, we would study these mechanisms by observing the VA’s implementation of health IT

and its reorganization into more integrated care in the mid-1990s. However, these reforms predate

our data.28 Similarly, it is not possible to examine the VA’s effect on mortality among veterans who

have no prior utilization at the VA, since it is exceedingly rare for these veterans to be transported

to the VA by ambulance, as shown in Appendix Figure A.8. Nevertheless, this figure also shows

that veterans may utilize more than one non-VA hospital system and that veterans may or may not

be transported to their modal non-VA hospital, defined as the hospital system at which they had the

largest number of utilization days in the prior year.

Our analytic strategy thus centers on a sample of veterans with no prior VA utilization but with

some prior non-VA utilization.29 While these veterans will almost certainly be transported to a

non-VA hospital, we assess mortality outcomes as a function of whether they are quasi-randomly

assigned—via a similar ambulance instrument as the one we use in our benchmark analysis—to their

modal non-VA hospital. This modal-hospital effect on mortality arguably captures at least some of

the potential effect of continuity of care in the private sector. In order to more explicitly investigate

the role of health IT and integrated care, we further exploit two changes induced by incentives in

federal laws and payment policies during our study period. First, the HITECH Act of 2009 dra-

matically increased the share of hospitals using health IT (Blumenthal 2010).30 Second, in 2011,

Medicare began to incentivize care integration via alternative payment arrangements to “Accountable

Care Organizations” (ACOs) (Greaney 2011).

As an analog to our benchmark VA instrument in Equation (1), we construct an instrument that

reflects a given ambulance company’s leave-out propensity to deliver patients to the index patient’s

modal non-VA hospital. Let ℎ (𝑖) denote the hospital that ambulance ride 𝑖 is transported to, and let

28Indeed, the VHA’s adoption of a common health IT platform (VistA) in the mid-1990s paved the way for research on
health services within the VHA system, including this study.

29We detail the sample selection process for this analysis in Appendix Table A.13 and present patient and ride character-
istics in this sample Appendix Table A.14. Since we require that veterans in this sample have no prior VA utilization, while
the sample in our benchmark analysis only includes veterans with prior VA utilization, this sample is completely disjoint
from the sample in our benchmark analysis. We only include zip codes with at least two non-VA hospitals within 20 miles,
but we make not requirement on proximity to a VA hospital. Compared to our benchmark sample, this sample features
a negligible probability of transport to a VA hospital (0% as opposed to 33%) yet remarkably similar rates of weekend
transport of 28-day mortality.

30Jha et al. (2009) document in 2009 that 1.5% of US non-federal hospitals have an electronic health record (EHR) system
present in all clinical units and an additional 7.6% have an EHR system present in at least one clinical unit. According
to the Office of the National Coordinator on Health Information Technology (ONC), by 2014, 97% of such hospitals
had possessed an EHR technology meeting requirements of the Department of Health and Human Services, and 76% of
hospitals had implemented the EHR system in at least one clinical unit (Charles et al. 2015).
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ℎ𝑚 (𝑖) represent the modal non-VA hospital used by patient 𝑘 (𝑖) in ride 𝑖. Our treatment of interest

is 𝐷𝑚
𝑖
≡ 1 (ℎ (𝑖) = ℎ𝑚 (𝑖)), which indicates whether ambulance ride 𝑖 transports its patient 𝑘 (𝑖) to his

modal hospital. Our instrumental variable for this treatment is:

𝑍𝑚
𝑖 =

1
𝐾 𝑗 (𝑖) ,𝑧 (𝑖) −1

∑︁
𝑖′∈I𝑗 (𝑖) ,𝑧 (𝑖)

1 (𝑘 (𝑖′) ≠ 𝑘 (𝑖)) 1(ℎ (𝑖′) = ℎ𝑚 (𝑖))′
𝑁𝑘 (𝑖′) ,𝑧 (𝑖′) , 𝑗 (𝑖′)

. (9)

where 𝐾 𝑗 ,𝑧 is the number of patients transported by company 𝑗 from zip code 𝑧, 𝑁𝑘,𝑧, 𝑗 is the number

of rides taken by patient 𝑘 originating in zip code 𝑧 with company 𝑗 , and I𝑗 ,𝑧 is the set of rides

transported by ambulance company 𝑗 from zip code 𝑧. This is the leave-out probability that ambulance

company 𝑗 (𝑖) transports other patients from the same zip code to the modal hospital ℎ𝑚 (𝑖) of patient

𝑘 (𝑖).31 We use the following first-stage and reduced-form equations, similar to Equations (4) and (3):

𝐷𝑚
𝑖 = 𝜋𝑚1 𝑍

𝑚
𝑖 +𝛾𝑚1 𝑍

𝑚

𝑖 +X0
𝑖 𝛿

𝑚
1 + 𝜁𝑚1,𝑧 (𝑖) + 𝜀

𝑚
1,𝑖; (10)

𝑌𝑖 = 𝜋𝑚2 𝑍
𝑚
𝑖 +𝛾𝑚2 𝑍

𝑚

𝑖 +X0
𝑖 𝛿

𝑚
2 + 𝜁𝑚2,𝑧 (𝑖) + 𝜀

𝑚
2,𝑖 , (11)

where we include an additional control variable:

𝑍
𝑚

𝑖 =
1

𝐾𝑧 (𝑖) −1

∑︁
𝑖′∈I𝑧 (𝑖)

1 (𝑘 (𝑖′) ≠ 𝑘 (𝑖)) 1(ℎ (𝑖′) = ℎ𝑚 (𝑖))
𝑁𝑘 (𝑖′) ,𝑧 (𝑖′)

,

where 𝐾𝑧 is the number of patients from zip code 𝑧, 𝑁𝑘,𝑧 is the number of rides taken by patient

𝑘 originating in zip code 𝑧, and I𝑧 is the set of rides originating in zip code 𝑧 This is the leave-out

probability that patients from the same zip code 𝑧 (𝑖) are transported to hospital ℎ𝑚 (𝑖), unconditional

on the ambulance company. The modal-hospital effect may also capture hospital quality or hospital-

patient match effects. We further assess the modal hospital effect both (i) by including hospital fixed

effects in Equations (10) and (11) and (ii) by splitting rides 𝑖 into samples based on whether the ride

was before or after the hospital ℎ (𝑖) adopted health IT or joined an ACO.

In the sample of veterans with only non-VA prior utilization (Panel B of Appendix Table A.13), we

demonstrate in Appendix Figure A.9 a well-behaved first-stage relationship between 𝐷𝑚
𝑖

and 𝑍𝑚
𝑖

and

balance between predicted mortality, 𝑌𝑖 , and 𝑍𝑚
𝑖

, conditional on
(
𝑍
𝑚

𝑖 ,X0
𝑖
, 𝑧 (𝑖)

)
.32 The IV estimate

31As with the benchmark instrument, we construct this instrument from data in the overall sample of ambulance rides with
dually eligible veterans (Column 1, Table 1 and A.14). For patients with multiple hospitals that tie for highest utilization in
the prior year, we designate the set of these highest-use hospitals as the “modal hospital.”

32Analogously to Figure 1, this figure presents binned scatterplots of the first-stage regression in Equation (10), the
reduced-form regression in Equation (11), and a balance regression with predicted mortality as the outcome variable and
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of the modal-hospital effect on mortality is −0.006 (s.e. 0.004), which is less than 20% of the VA

effect on mortality. The visual IV graph in Appendix Figure A.10 shows that the overall relationship

between the reduced form and first stage is not particularly striking.33 However, computing the same

IV estimate separately by years, we show in Figure 6 a stronger modal-hospital effect emerges after

the passage of the HITECH Act of 2009, which led to a rapid rise in electronic medical record systems.

The modal-hospital effect is close to 0 and stable prior to 2009; following 2009, the modal-hospital

effect grows to about half the size of the VA effect on mortality.

In Table 6, we examine how the modal-hospital effect relates to dates of hospital health IT or ACO

adoption.34 We estimate the modal-hospital effect in four subsamples defined by whether or not each

veteran’s modal hospital had adopted health IT, at the time of his ride, and similarly by whether or not

each veteran’s modal hospital had joined an ACO. We also use a control function approach to estimate

separate modal-hospital effects, depending on health IT or ACO adoption, in the overall sample and

with hospital fixed effects (see Appendix A.6 for details). The results in the table provide suggestive

evidence that the growth in the modal-hospital effect is associated with health IT adoption, holding

hospitals fixed; the relationship with ACO adoption appears similar but is imprecise. While most

estimates in the table control for hospital fixed effects, we find that results are essentially unchanged

regardless of their inclusion.

6 Conclusion

The structure of health-care delivery to US veterans provides a distinctive research opportunity, al-

lowing us to study fundamentally different systems of health care that coexist for a large patient

population. Specifically, millions of older veterans (those at least aged 65) are dually eligible for care

in a public system, operated by the Veterans Health Administration, or in private-sector hospitals,

financed by Medicare. The ambulance setting provides plausible quasi-experimental assignment of

the same design matrix.
33Analogously to Figure 2 and Appendix Figure A.2 in the benchmark analysis, Appendix Figure A.11 shows stability

in OLS and two-stage least squares estimates with increasing controls, and Appendix Figure A.12 shows robustness of
two-stage least squares estimates under an exhaustive set of control combinations.

34We measure health IT adoption from a dataset from the Office of the National Coordinator of Health Information
Technology (ONC). This dataset merges hospital attestation data from the Medicare EHR Incentive Program with certified
EHR product information from ONC’s Certified Health IT Product List (CHPL), and we code the use of any certified
product as health IT adoption. We find that greater than 95% of non-VA hospitals in the last year of our sample. We
measure ACO participation from the Medicare Shared Savings Program (MSSP) Accountable Care Organizations (ACO)
dataset. Consistent with other research, we find that only 11% of non-VA hospitals participated in ACOs by the last year
of our sample (Colla et al. 2016). The lack of effect of ACO participation that we find is also consistent with a recent
literature showing limited changes in utilization patterns and largely null effects on outcomes under ACOs (McWilliams
et al. 2014a,b, 2016; Trombley et al. 2019).
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veterans to these health care systems. Our work has current policy relevance, as the Department of

Veterans Affairs is now considering whether to bolster its existing public delivery system or to replace

it, either partially or fully, with a system of financing private care. Our work has implications more

broadly for understanding the impact of public vs. private health care on mortality and spending.

We find a significant VA advantage: our preferred instrumental variables estimate, based on veter-

ans who are induced by their ambulance company to use the Veterans Health Administration (VHA),

shows a 4.5 p.p. survival gain at 28 days (confidence interval 1.1 to 8.0 p.p.), implying about a

46% reduction in mortality relative to the overall average. In a novel survival analysis of this quasi-

experiment, we show that these survival gains occur in the first week following the ambulance ride and

appear to be long-lasting. We further use this survival analysis framework to validate our IV quasi-

experiment and to demonstrate differences in long-term mortality hazards between VA and non-VA

users who are non-compliers. Our analysis of long-term hazards provides a compelling explanation

for the difference in magnitude between IV and OLS estimates of the VA effect on 28-day mortality.

Although we find some intuitive margins of heterogeneity in the VA advantage, the VA outperforms

the non-VA alternative in a wide variety of locations with different types of non-VA hospitals and for

all types of patients we consider, not only for patients with stereotypical medical conditions.

Importantly, we also find that the VA reduces total spending, including government costs and pa-

tient out-of-pocket expenses, by 21% relative to non-VA providers, which points to higher productiv-

ity in the VHA than in the private sector. Using our quasi-experiment, we shed light on mechanisms,

many of which have been raised more descriptively or qualitatively (e.g., Jha et al. 2003). We interpret

our findings as consistent with the idea that the VA advantage arises from continuity of care, health

IT, and organization. For example, we find that compliers are more likely to have prior VA care and

have larger survival gains from VA assignment than average; in a selection model that rationalizes

this finding, we show veterans who are more likely to use the VA also have larger survival gains. In-

terestingly, we show that a similar effect occurs in the private sector for veterans who primarily use a

private hospital system. These veterans also experience reduced mortality when quasi-experimentally

assigned to their modal private hospital, but only in a period following adoption of health IT due to

government incentives, and even then on a smaller scale (approximately half the size) than the overall

VA advantage.

Our results contribute more broadly to two streams of literature on the efficiency of production.

First, we contribute to the descriptive analysis that compares the performance of the US health care

system to systems in other developed countries (Blank et al. 2017). By almost all accounts, compar-
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isons of US health outcomes and health care spending are unfavorable with those of other developed

countries (Garber and Skinner 2008; Rice et al. 2013). Our analysis points to a potentially large

source of inefficiency in the US context: its private provision of health care. Of note, several devel-

oped countries that outperform the US also feature private provision, although the US system arguably

has the most complex configuration of financing and delivery, with the highest levels of uninsurance

and administrative costs. It is also important to note that, since we study care financed generally by

the government, our analysis is silent on the contribution of health care financing to overall system

performance, though analogous and interacting inefficiencies may arise from fragmented and private

health care financing in the US (Cebul et al. 2008).

Second, we provide empirical support in the context of health care for the general idea of produc-

tion complementarities among three innovations in production: information technology (IT), work-

place reorganization, and products and services (Bresnahan et al. 2002). The VHA adopted a com-

prehensive health IT system almost two decades before the vast majority of private hospitals in the

US. This reform was accompanied by an integration of care involving both reorganizing the delivery

system and redefining services involved in patient care. For private hospitals, redefining health care

products and services is limited by fee-for-service payment systems and the difficulty of measuring

quality (Cutler 2010). Hospitals without a broad network of clinics and an overarching mandate for a

population’s health may find it difficult to reorganize and redefine its services. Our result that health

IT in private hospitals may improve survival—but only for patients that the hospitals have previously

treated—is consistent with production complementarities. Complementarities in health care produc-

tion pose barriers for replicating the VA advantage in the fragmented private landscape of US health

care.
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Figure 1: First Stage, Balance, and Reduced Form

A: First Stage
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Note: Panel A shows a binned scatterplot of arrival at a VA hospital on the y-axis against the ambulance
leave-out propensity to arrive at a VA hospital on the x-axis. The figure is a graphical representation of the
first-stage regression in Equation (3). Panel B shows binned scatterplots of 28-day mortality and predicted
28-day mortality on the y-axis against the ambulance leave-out propensity to arrive at a VA hospital on the x-
axis. Mortality bin means are shown in solid circles, while predicted mortality bin means are shown in hollow
circles. The figure represents the reduced-form regression in Equation (4) and the corresponding balance
regression replacing mortality with predicted mortality. The sample includes 400,769 ambulance rides and
1,267 combinations of ambulance company identifiers and Dartmouth Atlas Hospital Referral Regions (HRRs).
The sample selection is given in Appendix Table A.1. Baseline controls are detailed in Appendix Table A.2
and include patient zip code dummies, ALS/BLS dummies, source of the ambulance ride, time categories, and
patient prior utilization.
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Figure 2: OLS and IV Specifications
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Note: This figure shows OLS and IV estimates of the effect of the VA on 28-day mortality, represented in
Equation (2) as 𝛽, with progressive sets of controls. Numbered incremental controls correspond to categories
or subcategories of variables that are presented in order in Appendix Tables A.2 and A.3. Estimates are shown
along solid lines, while 95% confidence intervals are shown in dashed lines. All specifications use the baseline
sample, given in Appendix Table A.1.
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Figure 3: Complier Potential Outcomes
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Note: This figure shows potential outcomes for ambulance compliers who arrive at a VA hospital and those
who arrive at a non-VA hospital. Panel A shows survival outcomes as a function of days from the ambulance
ride. “Day 0” indicates survival on the day of the ambulance ride; subsequent days indicate survival at one-
week intervals from the ambulance ride. Denote 𝑆𝑖 (𝑡;𝑑) ∈ {0,1} as an indicator for whether patient 𝑖 survives
up to time 𝑡 after the ambulance ride, depending on whether the patient arrives at the VA (𝑑 = 1) or a non-
VA hospital (𝑑 = 0). Observed survival is 𝑆𝑖 (𝑡) = 𝐷𝑖𝑆𝑖 (𝑡;1) + (1−𝐷𝑖) 𝑆𝑖 (𝑡;0). We estimate complier VA
survival, or 𝐸 [ 𝑆𝑖 (𝑡;1) | 𝑖 ∈ C], by a IV regression with a dependent variable of 𝑆𝑖 (𝑡)𝐷𝑖 , the endogenous VA
treatment 𝐷𝑖 , and the same first-stage and reduced-form design matrix implied by Equations (3) and (4). We
estimate complier non-VA survival, or 𝐸 [ 𝑆𝑖 (𝑡;0) | 𝑖 ∈ C], by a similar IV regression with a dependent variable
of 𝑆𝑖 (𝑡) (𝐷𝑖 −1). All regressions use a sample of ambulance rides with no prior ride in the last year and the
same baseline controls as described in Figure 1. Panel B presents implied weekly mortality hazard rates, as
given by Equation (5).
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Figure 4: Observed Risk-Adjusted Outcomes
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Note: This figure shows observed risk-adjusted outcomes for patients who arrive at a VA hospital and those
who arrive at a non-VA hospital. Panel A shows survival outcomes as a function of days from the ambulance
ride. “Day 0” indicates survival on the day of the ambulance ride; subsequent days indicate survival at one-
week intervals from the ambulance ride. Denote 𝑆𝑖 (𝑡;𝑑) ∈ {0,1} as an indicator for whether patient 𝑖 survives
up to time 𝑡 after the ambulance ride, depending on whether the patient arrives at the VA (𝑑 = 1) or a non-
VA hospital (𝑑 = 0). Observed survival is 𝑆𝑖 (𝑡) = 𝐷𝑖𝑆𝑖 (𝑡;1) + (1−𝐷𝑖) 𝑆𝑖 (𝑡;0). We estimate VA survival, or
𝐸 [ 𝑆𝑖 (𝑡) |𝐷𝑖 = 1], by an OLS regression with a dependent variable of 𝑆𝑖 (𝑡)𝐷𝑖 and the same design matrix
implied by Equation (2); we estimate non-VA survival, or 𝐸 [ 𝑆𝑖 (𝑡) |𝐷𝑖 = 0], by a similar OLS regression with
a dependent variable of 𝑆𝑖 (𝑡) (𝐷𝑖 −1). All regressions use a sample of ambulance rides with no prior ride in
the last year and the same baseline controls as described in Figure 1. Panel B presents implied weekly mortality
hazard rates, as given by Equation (6).
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Figure 5: Spending
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Note: This figure shows the effect of the VA on daily spending flow from both VA and non-VA sources by
days after the ambulance ride. The first stage and reduced form of the IV regression are given in Equations
(3) and (4), where the outcome variable in Equation (4) is daily spending flows during each of interval period.
The sample includes 400,769 ambulance rides and 1,267 combinations of ambulance company identifiers and
Dartmouth Atlas Hospital Referral Regions (HRRs). The sample selection is given in Appendix Table A.1.
Baseline controls are detailed in Appendix Table A.2 and include patient zip code dummies, ALS/BLS dum-
mies, source of the ambulance ride, time categories, and patient prior utilization. Estimates are shown in the
solid line, while 95% confidence intervals are shown in dashed lines.
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Figure 6: Modal Hospital Effect and Health IT Adoption

A: Modal Hospital Effect by Year
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Note: Panel A of this figure shows the IV estimate of the modal non-VA hospital effect on 28-day mortality
by calendar year. The first-stage and reduced-form equations are given in Equations (10) and (11). The overall
sample is the same alternative sample designed to study choice among non-VA hospitals for patients with only
non-VA utilization in the prior year. Results for the overall IV estimates are shown in Appendix Figure A.9.
Details of the sample selection are given in Appendix Table A.13. Estimates are shown in connected dots,
while 95% confidence intervals are shown in dashed lines. Panel B of the figure shows the percent of rides
going to hospitals after health IT adoption in our analytic sample. Health IT adoption is defined from a dataset
from the Office of the National Coordinator of Health Information Technology (ONC). This dataset merges
hospital attestation data from the Medicare EHR Incentive Program with certified EHR product information
from ONC’s Certified Health IT Product List (CHPL), and we code the use of any certified product as health
IT adoption.
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Table 4: Complier Characteristics

Overall Compliers Ratio
Male 0.963 0.952 0.99

(0.006) [0.98 - 1.00]
Age 76.0 74.9 0.99

(0.433) [0.97 - 1.00]
Black 0.194 0.257 1.33

(0.028) [1.05 - 1.61]
Income $20,905 $16,972 0.81

($611) [0.75 - 0.87]
Rural zip code 0.051 0.091 1.78

(0.025) [0.82 - 2.75]
Residential source 0.705 0.647 0.92

(0.033) [0.83 - 1.01]
Comorbidity count 6.143 5.447 0.89

(0.113) [0.85 - 0.92]
Mental illness 0.43 0.44 1.04

(0.015) [0.97 - 1.11]
Substance abuse 0.144 0.163 1.13

(0.011) [0.97 - 1.28]
Prior VA ED visit 0.529 0.712 1.35

(0.012) [1.30 - 1.39]
Prior Medicare ED visit 0.482 0.336 0.70

(0.014) [0.64 - 0.75]
Ambulance rides in prior year 2.156 2.178 1.01

(0.084) [0.93 - 1.09]
Advanced Life Support 0.684 0.600 0.88

(0.024) [0.81 - 0.95]
Predicted VA user 0.847 0.939 1.11

(0.004) [1.10 - 1.12]
Predicted mortality 0.097 0.092 0.94

(0.004) [0.87 - 1.02]

Note: This table presents average complier characteristics and the ratio between this average and the average
among all veterans in the sample. Average complier characteristics and standard errors are calculated by
performing two-stage least squares using the first stage Equation (3) and a reduced-form equation replacing the
outcome variable in Equation (4) with 𝑋𝑖𝐷𝑖 , where 𝑋𝑖 is the characteristic corresponding to ride 𝑖. Regressions
use baseline controls described in Appendix Table A.2; the regression sample is the baseline sample described
in Appendix Table A.1. Standard errors for each average are presented in parentheses. The corresponding 95%
confidence intervals for each ratio are presented in brackets.
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Table 5: Non-VA Hospital Characteristics

Hospital Sample
National
average

Baseline
sample

Complier
weighted

Basic Characteristics
Admissions 18,368 18,442 12,736
Average daily census 271 261 180
Total staffed beds 379 371 257
Teaching hospital 0.52 0.50 0.36
Urban location 0.89 0.92 0.86

Payment and Organization
Capitated lives covered 11,400 8,197 7,111
Network participant 0.46 0.49 0.49
Hospital system 0.61 0.65 0.65
HMO 0.20 0.17 0.15
PPO 0.19 0.20 0.14
ACO 0.09 0.04 0.05

Health IT Adoption
Adoption by 2011 0.02 0.02 0.02
Adoption by 2012 0.07 0.07 0.07
Adoption by 2013 0.17 0.19 0.17
Adoption by 2014 0.33 0.36 0.34

Spending and Outcomes
Relative spending 1.00 1.01 1.02
Mortality rate 12.23 12.21 11.97
Readmission rate 18.14 18.16 18.49

Note: This table presents average characteristics of non-VA hospitals in different samples. The national average
weights hospital characteristics by their yearly admissions in the American Hospital Association (AHA) Annual
Survey. The average in the baseline sample weights hospital characteristics by rides in that sample, described
in Appendix Table A.1. The complier-weighted average is calculated by performing two-stage least squares
using the first stage Equation (3) and a reduced-form equation replacing the outcome variable in Equation (4)
with 𝑋𝑖𝐷𝑖 , where 𝑋𝑖 is the hospital characteristic corresponding to ride 𝑖. Hospital characteristics are described
in further detail in Appendix A.5.
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Appendix

A.1 IV Validity

A.1.1 Exclusion Restriction

Under the standard assumptions for IV validity in Imbens and Angrist (1994), ambulance compa-

nies would be subject to the exclusion restriction, in Condition 1(ii), that they only affect outcomes

by whether they transport patients to the VA, and not by other treatments that they may administer

during the ambulance ride or by their choice of non-VA hospitals. Following Kolesar et al. (2015),

we relax this assumption to allow for differences in potential treatments and non-VA hospital choices

across ambulance companies but require that such differences that may affect outcomes are not sys-

tematically related to ambulance propensity to transport to the VA.

Specifically, we include controls C𝑖 that are related to actions by the ambulance after pickup in

the first-stage and reduced-form relationships:

𝐷𝑖 = 𝜋1𝑍𝑖 +X0
𝑖 𝛿1 +C𝑖𝜂1 + 𝜁1,𝑧 (𝑖) + 𝜀1,𝑖;

𝑌𝑖 = 𝜋2𝑍𝑖 +X0
𝑖 𝛿2 +C𝑖𝜂2 + 𝜁2,𝑧 (𝑖) + 𝜀2,𝑖 .

Under each set of ambulance-related controls, we examine the stability of 𝛽𝐼𝑉 = �̂�2/�̂�1.

We consider four sets of controls in C𝑖 . First, we control for splines of ambulance charges re-

flected in their Medicare claims. Consistent with a health economics literature on productivity and

the returns to spending (Doyle et al. 2015; Chandra et al. 2016), we consider charges incurred by the

ambulance company as a sufficient statistic for the intensity of treatment during the ride.35 Second,

we control for splines of the mileage of the ride. Third, we control for indicators of the number of

non-VA hospitals to which the ambulance company transports patients from a zip code.

Fourth, we control for average measures of non-VA hospitals that the ambulance company delivers

its patients to. For each non-VA hospital ℎ, we measure average mortality and spending outcomes

𝑌 ℎ, among veterans outside of our benchmark analytic sample who only have non-VA prior utilization

(Panel B of Appendix Table A.13). We also measure the share, 𝑤 𝑗ℎ, that each ambulance company 𝑗

delivers patients to each non-VA hospital ℎ, also among veterans with non-VA-only prior utilization.

For each ride 𝑖, we then control for average non-VA hospital measures of mortality and spending,

calculated as
∑

ℎ𝑤 𝑗 (𝑖) ,ℎ𝑌 ℎ, weighted by the hospital-specific shares of the assigned ambulance 𝑗 (𝑖).
As in Section 5.4, we use information on Medicare claims to infer non-VA hospital spending.

Appendix Table A.4 shows estimates of the VA effect on mortality and on spending, using the

same baseline controls as in our benchmark analyses in Section 3 with the addition of various ambu-

35In principle, we also observe detailed CPT procedure codes for services rendered during the ambulance ride (e.g.,
supplemental oxygen, medications, or intravenous fluids). However, in 2002, Medicare changed to a simple payment
arrangement that depended only on a few characteristics of the ride, such as ALS vs. BLS level, mileage, and the use of
lights and sirens (Centers for Medicare & Medicaid Services 2002). Consistent with this payment policy, detailed CPT
codes for extra services are usually missing in the claims data.
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lance related controls. We find that results are highly robust to the addition of these controls.

A.1.2 Monotonicity

We test the monotonicity condition in Condition 1(iii) by tests standard in the judges-design literature

that demonstrate a positive first-stage relationship across subgroups of observations (Arnold et al.

2018; Bhuller et al. 2020). We define eight pairs of subsamples based on several important patient

characteristics: (i) age ≤ 80 years vs. age > 80 years; (ii) white vs. non-white race; (iii) comorbidity

count above vs. below median; (iv) either vs. neither mental illness or substance abuse present;

(v) VA visits in the prior year above vs. below median; (vi) Advanced Life Support vs. Basic Life

Support; (vii) prediction of VA user above vs. below median; and (viii) prediction of mortality above

vs. below median.

Under monotonicity, we expect that an ambulance that has a higher propensity to transport veter-

ans to the VA should weakly increase the probability of transport to the VA for any set of veterans.

Specifically, using the set of observations I𝑚 for each subsample 𝑚, we estimate a first-stage regres-

sion with respect to our baseline instrument, 𝑍𝑖 , from Equation (1):

𝐷𝑖 = 𝜋
𝑚
1 𝑍𝑖 +X0

𝑖 𝛿
𝑚
1 + 𝜁𝑚1,𝑧 (𝑖) + 𝜀

𝑚
1,𝑖 , (A.1)

and we assess whether �̂�𝑚1 ≥ 0.

We further assess monotonicity in each subsample 𝑚 by constructing a “reverse-sample” instru-

ment that only uses observations in the analytical sample (Step 6 in Appendix Table A.1) that are not

in I𝑚:

�̃�−𝑚
𝑖 =

1
�̃�−𝑚

𝑗 (𝑖)

∑︁
𝑖′∈Ĩ𝑗 (𝑖) \I𝑚

1 (𝑘 (𝑖′) ≠ 𝑘 (𝑖))𝐷𝑖′

�̃�𝑘 (𝑖′) , 𝑗 (𝑖)
. (A.2)

Within the analytical sample, Ĩ𝑗 denotes the set of rides assigned to 𝑗 , �̃�−𝑚
𝑗

is the number of patients

assigned to ambulance 𝑗 without characteristic 𝑚, and �̃�𝑘, 𝑗 is the number of rides by patient 𝑘 with

ambulance 𝑗 .36 In each subsample 𝑚, we also perform first-stage regressions of the form in Equation

(A.1) that use �̃�−𝑚
𝑖

instead of 𝑍𝑖 as the instrument.

Recall that the baseline instrument, 𝑍𝑖 , is computed in the much larger sample of dually eligible

veterans (Step 1 in Appendix Table A.1). Since the reverse-sample instruments are based on much

smaller patient populations, they may be weaker predictors of underlying ambulance propensities to

transport to the VA.

In Appendix Table A.5, we demonstrate a positive and statistically significant first-stage coef-

ficient in every subsample and for both the baseline instrument and the reverse-sample instrument.

Coefficient sizes are generally smaller for the reverse-sample instruments. In Appendix Table A.6,

we show first-stage relationships using two other instruments that are both based on the smaller ana-

36We use the analytical sample construct the reverse-sample instruments, so that the samples used to construct instru-
ments are roughly the same between pairs of characteristics (e.g., subsamples for comorbidity count above vs. below
median).
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lytical sample. Specifically, we construct a “baseline” instrument, �̃�𝑖 , and an “in-sample” instrument,

�̃�𝑚
𝑖

, from the analytical sample:

�̃�𝑖 =
1

�̃� 𝑗 (𝑖) −1

∑︁
𝑖′∈Ĩ𝑗 (𝑖)

1 (𝑘 (𝑖′) ≠ 𝑘 (𝑖))𝐷𝑖′

�̃�𝑘 (𝑖′) , 𝑗 (𝑖)
, and (A.3)

�̃�𝑚
𝑖 =

1
�̃�𝑚

𝑗 (𝑖) −1

∑︁
𝑖′∈Ĩ𝑗 (𝑖)∩I𝑚

1 (𝑘 (𝑖′) ≠ 𝑘 (𝑖))𝐷𝑖′

�̃�𝑘 (𝑖′) , 𝑗 (𝑖)
. (A.4)

First-stage coefficients for these instruments are also all positive and statistically significant. They are

similar in magnitude to the coefficients for the reverse-sample instruments, which suggests that lower

signal-to-noise ratios due to smaller sample sizes explain much of decrease in coefficient magnitude

for the reverse-sample instruments, compared to the baseline (overall-sample) instrument.

A.2 Statistical Tests of Hazard Functions

A.2.1 Potential Survival Rates and Hazard Rates

Following the notation in Section 4, let 𝑠𝐼𝑉 (𝑡;𝑑) ≡ 𝐸 [ 𝑆𝑖 (𝑡;𝑑) | 𝑖 ∈ C] denote the IV estimands of the

potential survival rates among compliers, where 𝑑 ∈ {0,1} indicates outcomes under VA care (𝑑 = 1)
or non-VA care (𝑑 = 0), for each week 𝑡 ∈ {0,1, . . . ,52}. We then define the corresponding estimands

of the potential mortality hazards as follows:

ℎ𝐼𝑉 (𝑡;𝑑) ≡ 𝑠𝐼𝑉 (𝑡 −1;𝑑) − 𝑠𝐼𝑉 (𝑡;𝑑)
𝑠𝐼𝑉 (𝑡 −1;𝑑) .

We use two-stage least squares to construct estimates of the potential survivor fractions at each time

horizon, 𝑠𝐼𝑉 (𝑡;𝑑) and then construct the corresponding potential hazard functions, ℎ̂𝐼𝑉 (𝑡;𝑑). We

also construct a set of 250 block bootstrap samples (selecting samples by zip code, with replacement),

and for replication sample 𝑟 ∈ {1, . . . , 𝑅}, we construct 𝑠𝑟
𝐼𝑉

(𝑡;𝑑) and ℎ̂𝑟
𝐼𝑉

(𝑡;𝑑). Using these samples

we construct the mean estimated potential hazard for each week across the replications:

ℎ
𝐵

𝐼𝑉 (𝑡;𝑑) = 1
𝑅

∑︁
𝑟

ℎ̂𝑟𝐼𝑉 (𝑡;𝑑) . (A.5)

We also construct the standard deviation of the bootstrap-estimated potential hazard for each week:

�̂�𝐵
𝐼𝑉 (𝑡;𝑑) =

√︄
1

𝑅−1

∑︁
𝑟

[
ℎ̂𝑟
𝐼𝑉

(𝑡;𝑑) − ℎ̂𝐵
𝐼𝑉

(𝑡;𝑑)
]2
. (A.6)

We construct similar objects for potential survival and hazard rates under OLS: 𝑠𝑂𝐿𝑆 (𝑡;𝑑) and

ℎ̂𝑂𝐿𝑆 (𝑡;𝑑), respectively. Using the same set of block bootstrap samples, we compute 𝑠𝑟
𝑂𝐿𝑆

(𝑡;𝑑)
and ℎ̂𝑟

𝑂𝐿𝑆
(𝑡;𝑑) in each bootstrap replication sample 𝑟 . We similarly construct the mean estimated

potential OLS hazard for each week across replications, ℎ
𝐵

𝑂𝐿𝑆 (𝑡;𝑑), and the standard deviation of
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bootstrap-estimated potential hazards, �̂�𝐵
𝑂𝐿𝑆

(𝑡;𝑑), in which we use OLS hazards ℎ̂𝑟
𝑂𝐿𝑆

(𝑡;𝑑) in for-

mulas otherwise the same as Equations (A.5) and (A.6).

A.2.2 Test of Mortality Displacement

To detect “mortality displacement” (Schwartz 2000), in which deaths of VA patients are simply de-

layed, we test the joint null hypothesis that ℎ𝐼𝑉 (𝑡;1) ≤ ℎ𝐼𝑉 (𝑡;0) for all 𝑡 ≥ 1. This null hypothesis

states that the mortality hazard under the VA never overtakes the mortality hazard under non-VA

hospitals, even in later periods, and it is consistent with no mortality displacement.

Restating the null hypothesis as

𝐻0,1 : ℎ𝐼𝑉 (𝑡;0) − ℎ𝐼𝑉 (𝑡;1) ≥ 0, for all 𝑡 ≥ 1, (A.7)

we use estimates ℎ̂𝐼𝑉 (𝑡;0) − ℎ̂𝐼𝑉 (𝑡;1) and consider the following test statistic of the null, based on

Wolak (1987):

𝑄1 ≡
52∑︁
𝑡=1
𝑤1,𝑡1

(
ℎ̂𝐼𝑉 (𝑡;0) − ℎ̂𝐼𝑉 (𝑡;1) < 0

) (
ℎ̂𝐼𝑉 (𝑡;0) − ℎ̂𝐼𝑉 (𝑡;1) (𝑡)

)2
, (A.8)

where 𝑤1,𝑡 is a strictly positive weight. This test statistic penalizes only negative differences ℎ̂𝐼𝑉 (𝑡;0)−
ℎ̂𝐼𝑉 (𝑡;1) < 0 that can be consistent with the null hypothesis that ℎ̂𝐼𝑉 (𝑡;0) − ℎ̂𝐼𝑉 (𝑡;1) ≥ 0, for all

𝑡 ≥ 1, only by statistical noise.

To derive a critical value for𝑄1, we use our bootstrap sample to form a set of recentered bootstrap

estimates of the potential hazards at each week:

ℎ̃𝑟𝐼𝑉 (𝑡;0) = ℎ̂𝑟𝐼𝑉 (𝑡;0) − ℎ𝐵𝐼𝑉 (𝑡;0) ;

ℎ̃𝑟𝐼𝑉 (𝑡;1) = ℎ̂𝑟𝐼𝑉 (𝑡;1) − ℎ𝐵𝐼𝑉 (𝑡;1) .

We then construct the empirical distribution of the test statistic, in Equation (A.8), under the recen-

tered bootstrap deviations:

𝑄𝑟
1 ≡

52∑︁
𝑡=1
𝑤1,𝑡1

(
ℎ̃𝑟𝐼𝑉 (𝑡;0) − ℎ̃𝑟𝐼𝑉 (𝑡;1) < 0

) (
ℎ̃𝑟𝐼𝑉 (𝑡;0) − ℎ̃𝑟𝐼𝑉 (𝑡;1)

)2
. (A.9)

We take the 95th percentile of this distribution as the critical value above which our test statistic 𝑄1

can reject the null hypothesis 𝐻0,1, in Equation (A.7).

Following Wolak (1987), this distribution is formed under the data generating process implied

by the “least favorable null” for testing joint inequality constraints (Perlman 1969). Specifically, we

consider the least favorable data generating process that satisfies the null hypothesis 𝐻0, in Equation

(A.7), which is

𝐻0,1 : ℎ𝐼𝑉 (𝑡;0) − ℎ𝐼𝑉 (𝑡;1) = 0, for all 𝑡 ≥ 1. (A.10)
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If we obtain a test statistic 𝑄1 with improbable negative deviations that reject the least favorable null

hypothesis 𝐻0,1 in Equation (A.10), then we can also reject the null hypothesis 𝐻0,1 in Equation

(A.7).

We use the same weights 𝑤1,𝑡 in Equations (A.8) and (A.9) and set them as the inverse of the

estimated sampling variance of the recentered deviations:

𝑤−1
1,𝑡 =

1
𝑅−1

∑︁
𝑟

(
ℎ̃𝑟𝐼𝑉 (𝑡;0) − ℎ̃𝑟𝐼𝑉 (𝑡;1)

)2
. (A.11)

These weights standardize the statistical distribution of ℎ̂𝐼𝑉 (𝑡;0) − ℎ̂𝐼𝑉 (𝑡;1), so that the test statistic

distribution can be considered as chi-squared. Although we use critical values derived from the boot-

strap distribution, we find the scale of our test statistic to be more intuitive with this normalization.37

We show results in Panel A of Appendix Figure A.4. We find that 𝑄1 is within the distribution of

bootstrapped values of 𝑄𝑟
1. We therefore cannot reject the null of no mortality displacement.

A.2.3 Extended Test of IV Validity

In addition to standard tests of IV validity that are based on observable characteristics—including

tests of balance in Section 3.2 and monotonicity in Appendix A.1.2—we develop a tractable extended

test of IV validity using the insights in Balke and Pearl (1997) and Heckman and Vytlacil (2005,

Proposition A.5) that are based on potential outcomes.

Kitagawa (2015) summarizes these insights as follows for a binary instrument 𝑍 ∈ {0,1}, a binary

treatment 𝐷 ∈ {0,1} (increasing in probability with 𝑍), and an outcome 𝑌 ∈ Y. For any Borel set 𝐵

in Y, IV validity in Condition 1 implies that

Pr (𝑌 ∈ 𝐵,𝐷 = 1| 𝑍 = 1) −Pr (𝑌 ∈ 𝐵,𝐷 = 1| 𝑍 = 0) ≥ 0; (A.12)

Pr (𝑌 ∈ 𝐵,𝐷 = 0| 𝑍 = 0) −Pr (𝑌 ∈ 𝐵,𝐷 = 0| 𝑍 = 1) ≥ 0. (A.13)

Kitagawa (2015, Proposition 1.1) further states that tests of Equations (A.12) and (A.13) constitute

the strongest possible tests of IV validity in the sense that no other feature of the data can contribute

further to screening out invalid instruments.38

We note that, given the approach in Abadie (2002), testing Equations (A.12) and (A.13) is alge-

37Wolak (1987) proposes to use an optimal minimum distance test statistic that would use the full covariance matrix of
𝛿 (𝑡). We avoid this formulation due to finite-sample issues that would cause this covariance matrix to be poorly estimated
by the full covariance matrix of 𝛿𝑟 (𝑡), noted by Altonji and Segal (1996). Results are qualitatively similar when we choose
a weight of 𝑤𝑡 = 1 for all 𝑡, but we find that using 𝑤𝑡 from Equation (A.11)—i.e., normalizing each 𝛿 (𝑡) by its bootstrap
standard error—affords greater power in rejecting the null. This approach is equivalent to our best estimate of a diagonal
covariance matrix in place of the full covariance matrix.

38Chan et al. (2019) provides an applied example, in the setting of radiologists, in which standard monotonicity tests in
Appendix A.1.2 are satisfied but a simple version of this extended test of validity is not satisfied. They find that radiologists
who diagnose more cases with pneumonia do so in a wide range of subgroups of patients defined by observable charac-
teristics (i.e., standard tests of monotonicity) but that the same radiologists who diagnose more cases with pneumonia are
more likely to miss cases of pneumonia (i.e., Pr ( |𝑌 ∈ 𝐵,𝐷 = 0 𝑍 = 0) −Pr ( |𝑌 ∈ 𝐵,𝐷 = 0 𝑍 = 1) < 0).
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braically equivalent to testing, for all 𝐵 ⊂ Y,

Pr (𝑌𝑖 (0) ∈ 𝐵| 𝑖 ∈ C) ≥ 0; (A.14)

Pr (𝑌𝑖 (1) ∈ 𝐵| 𝑖 ∈ C) ≥ 0. (A.15)

Thus we use the Abadie (2002) approach to define a partition of mortality outcomes Y in terms of

weekly hazard rates, by the date of death (if any) following the ambulance ride. Such a partition

implies that potential hazard rates among compliers, ℎ𝐼𝑉 (𝑡;𝑑), are non-negative in every week 𝑡 ∈
{1, . . . ,52} under both VA assignment (𝑑 = 1) and non-VA assignment (𝑑 = 0).

That is, our extended test of IV validity amounts to testing the following joint null hypothesis of

inequality constraints:

𝐻0,2 : ℎ𝐼𝑉 (𝑡;𝑑) ≥ 0, for all 𝑡 ≥ 1, 𝑑 ∈ {0,1} . (A.16)

Following a similar approach as for mortality displacement in Appendix A.2.2, our test statistic is

𝑄2 ≡
1∑︁

𝑑=0

52∑︁
𝑡=1
𝑤2,𝑡1

(
ℎ̂𝐼𝑉 (𝑡;𝑑) < 0

) (
ℎ̂𝐼𝑉 (𝑡;𝑑)

)2
,

where 𝑤−1
2,𝑡 =

(
�̂�𝐵
𝐼𝑉

(𝑡;𝑑)
)2. We obtain the critical value for our test statistic by the distribution of

recentered bootstrapped estimates, defined above. For the 𝑟th bootstrap replication, the test statistic

is

𝑄𝑟
2 ≡

1∑︁
𝑑=0

52∑︁
𝑡=1
𝑤2,𝑡1

(
ℎ̃𝑟𝐼𝑉 (𝑡;𝑑) < 0

) (
ℎ̃𝑟𝐼𝑉 (𝑡;𝑑)

)2
.

We take the 95th percentile of the distribution of 𝑄𝑟
2 across replications 𝑟 ∈ {1, . . . , 𝑅} as the criti-

cal value for 𝑄2. As above, this test of inequality constraints is based upon a least favorable null

hypothesis. In this case, the least favorable null hypothesis is

𝐻0,2 : ℎ𝐼𝑉 (𝑡;𝑑) = 0, for all 𝑡 ≥ 1, 𝑑 ∈ {0,1} . (A.17)

We show results in Panel B of Appendix Figure A.4. We find that 𝑄2 is lower than any boot-

strapped value of 𝑄𝑟
2. This suggests not only that we cannot reject the null hypothesis 𝐻0,2 in Equa-

tion (A.16), but also that the realized data are significantly more favorable than the least favorable null

hypothesis 𝐻0,2 in Equation (A.17). In other words we can strongly reject the null that ℎ𝐼𝑉 (𝑡;𝑑) = 0,

for all 𝑡 ≥ 1, 𝑑 ∈ {0,1}, which means that ℎ𝐼𝑉 (𝑡;𝑑) > 0 for some 𝑡 ≥ 1, 𝑑 ∈ {0,1}.

A.2.4 Tests of Hazard Rate Equality

We finally perform tests of the equality of hazard rates after the first week after the ambulance ride.

Comparing hazard rates across different groups of veterans, we aim to shed light on heterogeneity in

longer-term mortality risk across these groups. To define these tests generally, consider two sets of

hazard rates, ℎ1 (𝑡) and ℎ2 (𝑡), for 𝑡 ≥ 2. We consider two types of null hypothesis.
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First, we assess mean differences in hazard rates between {ℎ1 (𝑡)}𝑡 and {ℎ2 (𝑡)}𝑡 , for 𝑡 ≥ 2, under

the null hypothesis that the mean hazard rate is the same between the two sets:

𝐻0,3 :
1
51

52∑︁
𝑡=2

(ℎ1 (𝑡) − ℎ2 (𝑡)) = 0. (A.18)

We test this null hypothesis by comparing 1
51
∑52

𝑡=2

(
ℎ̂1 (𝑡) − ℎ̂2 (𝑡)

)
against the bootstrapped distri-

bution of recentered differences. Specifically, for replication 𝑟 ∈ {1, . . . , 𝑅}, denote the bootstrap-

estimate hazard rates of (ℎ1 (𝑡) , ℎ2 (𝑡)) as
(
ℎ̂𝑟1 (𝑡) , ℎ̂

𝑟
2 (𝑡)

)
. Define the recentered bootstrap hazard rate

as

ℎ̃𝑟1 (𝑡) ≡ ℎ̂𝑟1 (𝑡) − ℎ
𝐵

1 (𝑡) and

ℎ̃𝑟2 (𝑡) ≡ ℎ̂𝑟2 (𝑡) − ℎ
𝐵

2 (𝑡) ,

where ℎ
𝐵

1 (𝑡) ≡ 1
𝑅

∑
𝑟 ℎ1 (𝑡) and ℎ

𝐵

2 (𝑡) ≡ 1
𝑅

∑
𝑟 ℎ2 (𝑡). The distribution of

{ 1
51
∑52

𝑡=2
(
ℎ̃𝑟1 (𝑡) − ℎ̃

𝑟
2 (𝑡)

)}
𝑟

determines the two-sided critical values for the mean hazard difference. By construction, this distri-

bution will have mean 0.

Second, we consider the joint null hypothesis that the difference between each pair of hazards is

equal to 0:

𝐻0,4 : ℎ1 (𝑡) − ℎ2 (𝑡) = 0, for all 𝑡 ≥ 2. (A.19)

Using estimates ℎ̂1 (𝑡) − ℎ̂2 (𝑡), we construct the following test statistic:

𝑄4 (ℎ1 (·) , ℎ2 (·)) ≡
52∑︁
𝑡=2
𝑤4,𝑡

(
ℎ̂1 (𝑡) − ℎ̂2 (𝑡)

)2
.

We compute the empirical distribution of𝑄4 under the null hypothesis by using recentered differences

ℎ̃𝑟1 (𝑡) − ℎ̃
𝑟
2 (𝑡). Each bootstrap replication 𝑟 yields

𝑄𝑟
4 (ℎ1 (·) , ℎ2 (·)) ≡

52∑︁
𝑡=2
𝑤4,𝑡

(
ℎ̃𝑟1 (𝑡) − ℎ̃

𝑟
2 (𝑡)

)2
.

We take the 95th percentile of the distribution of 𝑄𝑟
4 across replications 𝑟 ∈ {1, . . . , 𝑅} as the critical

value for 𝑄4. We set 𝑤−1
4,𝑡 =

1
𝑅−1

∑
𝑟

(
ℎ̃𝑟1 (𝑡) − ℎ̃

𝑟
2 (𝑡)

)2
to standardize the distribution of ℎ̂1 (𝑡) − ℎ̂2 (𝑡).

In Appendix Figures A.5 and A.6, we consider five comparisons of hazard rates, for 𝑡 ≥ 2, under

the null hypotheses of Equations (A.18) and (A.19), respectively. First, we test the null hypothesis that

ℎ𝐼𝑉 (𝑡;1) −ℎ𝐼𝑉 (𝑡;0) = 0, for all 𝑡 ≥ 2. Under quasi-experimental assignment of compliers (Condition

1), we expect not to reject this null if longer-term hazard rates reflect underlying health. Second, we

test the null hypothesis that ℎ𝑂𝐿𝑆 (𝑡;1) − ℎ𝑂𝐿𝑆 (𝑡;0) = 0, for all 𝑡 ≥ 2. While we show stability

of OLS results in Figure 2, this test may reveal differences in underlying health between veterans

assigned to the VA and those assigned to a non-VA hospital that are not captured by observable
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patient characteristics.

Third, we test the null hypothesis that ℎ𝐼𝑉 (𝑡;1) −ℎ𝑂𝐿𝑆 (𝑡;1) = 0, for all 𝑡 ≥ 2. This reveals differ-

ences in underlying health between compliers and VA-assigned veterans, which includes compliers

and always takers. Fourth, we similarly test the null hypothesis that ℎ𝐼𝑉 (𝑡;0) −ℎ𝑂𝐿𝑆 (𝑡;0) = 0, for all

𝑡 ≥ 2. This reveals differences in underlying health between compliers and non-VA-assigned veterans,

which includes compliers and never takers.

A.3 Non-Complier Characteristics

In this appendix section, we describe a simple approach to calculate characteristics of non-compliers,

following Dahl et al. (2014), and we discuss results. In our approach, we first residualize the leave-out

ambulance propensity to transport to the VA, 𝑍𝑖 , by our key controls,
(
𝑧 (𝑖) ,X0

𝑖

)
. Denote this residual

as 𝑍∗
𝑖
. We categorize always takers as rides with 𝑍∗

𝑖
below the 20th percentile that still went to the

VA (𝐷𝑖 = 1). We categorize never takers as rides with 𝑍∗
𝑖

above the 80th percentile that still did not

go to the VA (𝐷𝑖 = 0).
Among each group of always takers and never takers, we compute characteristics along the same

dimensions as those in our compliers analysis, in Table 4. Specifically, for each characteristic, we

compute mean values among the group of always takers and among the group of never takers, and

we compare these means with the overall mean by a ratio. We compute standard errors of these

means by drawing bootstrapped samples, blocked by zip code, and repeating this procedure with

each bootstrapped sample.

As shown in Appendix Table A.7, we mostly find results that are consistent with our earlier

results of complier characteristics and the fact that the majority of non-compliers are never takers:

Characteristics that are more common among compliers tend to be more common among always

takers and less common among never takers. For expositional brevity, when we omit mention of a

never-taker characteristic, we mean that they are the relative opposite of the corresponding always-

taker characteristic. Compared to the overall population, always takers are more likely to be Black

and have lower income. Always takers are more likely to have mental illness, and they have a slightly

higher rate of substance abuse, though the latter is not statistically significant. Always takers are more

likely to have prior VA ED visits and less likely to have prior non-VA ED visits.

A.4 Marginal and Average Treatment Effects

Consider the probability of going to the VA as a function of our instrument 𝑍𝑖 and key controls(
𝑧 (𝑖) ,X0

𝑖

)
: 𝑃 (𝑍𝑖), where we have omitted the key controls for brevity. Following Heckman and

Vytlacil (2005), we can state the treatment rule as

𝐷𝑖 = 1 (𝑃 (𝑍𝑖) ≥ 𝑈𝑖) , (A.20)
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where 𝑈𝑖 is uniformly distributed in the interval (0,1). Individuals with low 𝑈𝑖 relative to 𝑝 ≡
argmin𝑖 𝑃 (𝑍𝑖) are always takers, while individuals with high 𝑈𝑖 relative to 𝑝 ≡ argmax𝑖 𝑃 (𝑍𝑖) are

never takers.

In this appendix, we estimate two objects relative to selection, as defined by 𝑈𝑖 ∼𝑈 (0,1). The

marginal treatment effect (MTE) for rides with𝑈𝑖 = 𝑢 is

𝑀𝑇𝐸 (𝑢) ≡ 𝐸 [𝑌𝑖 (1) −𝑌𝑖 (0) |𝑈𝑖 = 𝑢] .

The average treatment effect (ATE) is

𝐴𝑇𝐸 =

∫ 1

0
𝑀𝑇𝐸 (𝑢) 𝑑𝑢.

We estimate 𝑀𝑇𝐸 (𝑢), for 𝑢 ∈
[
𝑝, 𝑝

]
, using variation in the propensity of ambulances to transport to

the VA. We estimate the ATE by extrapolating 𝑀𝑇𝐸 (𝑢) to 𝑢 ∈ [0,1] with a control function approach.

A.4.1 Marginal Treatment Effects

We first estimate marginal treatment effects using a local instrumental variables approach that exploits

outcomes along the distribution of ambulance propensity to transport to the VA. The intuition for this

approach is that 𝑀𝑇𝐸 (𝑢) can be stated as

𝑀𝑇𝐸 (𝑢) = 𝜕

𝜕𝑝
𝐸 [𝑌𝑖 |𝑃 (𝑍𝑖) = 𝑢] .

That is, if mortality decreases linearly with ambulance propensity to transport to the VA, then the

data would be consistent with constant treatment effects. On the other hand, if mortality decreases at

a faster rate for lower 𝑃 (𝑍𝑖), then the data would suggest “selection on gains,” in which veterans who

are more likely to benefit from VA care are also more likely to be transported to the VA given a set of

ambulances. The visual IV relationship in Appendix Figure A.1 suggests a slightly convex shape in

the relationship between mortality and 𝑃 (𝑍𝑖), which implies selection on gains.

We proceed with estimating a flexible relationship between 𝑌𝑖 and 𝑃 (𝑍𝑖) as follows. We compute

𝑃 (𝑍𝑖) = �̂�𝑖 from the first-stage Equation (3). We then residualize �̂�𝑖 by baseline controls, defined in

Appendix Table A.2, and denote the residual as �̂�∗
𝑖
. We similarly residualize 𝑌𝑖 by baseline controls

and denote the residual as 𝑌 ∗
𝑖

. For interpretation, we set 𝑌 ∗
𝑖

and �̂�∗
𝑖

to have the same respective means

as 𝑌𝑖 and 𝐷𝑖 . A regression of 𝑌 ∗
𝑖

on �̂�∗
𝑖

yields a point estimate that is numerically identical to the IV

estimate 𝛽𝐼𝑉 .39

Rather than fitting a straight line through points
(
�̂�∗

𝑖
,𝑌 ∗

𝑖

)
, we fit a flexible function with Gaussian

basis splines with four knots (𝑘1, 𝑘2, 𝑘3, 𝑘4) corresponding to the 5th, 35th, 65th, and 95th percentiles

39This regression corresponds to the indirect least squares version of IV and is also numerically identical to the visual IV
coefficient that corresponds to the two-stage least squares version of IV.
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of �̂�∗
𝑖
. Specifically, for each ride 𝑖, we form five basis functions

𝑓𝑛 (𝑝) = exp
(
− (𝑘𝑛 − 𝑘𝑛−1) (𝑝− 𝑐𝑛)2

)
,

where 𝑐𝑛 = 1
2 (𝑘𝑛−1 + 𝑘𝑛), 𝑘0 = min �̂�∗

𝑖
, and 𝑘5 = max �̂�∗

𝑖
. We regress

𝑌 ∗
𝑖 =

5∑︁
𝑛=1

𝛾𝑛 𝑓𝑛
(
�̂�∗

𝑖

)
+ 𝜀𝑖

and form a flexible prediction 𝑌 ∗ (𝑝) =∑5
𝑛=1 �̂�𝑛 𝑓𝑛 (𝑝).

This prediction yields a convenient analytical derivative for the MTE

�𝑀𝑇𝐸 (𝑢) =
5∑︁

𝑛=1
�̂�𝑛 𝑓

′
𝑛 (𝑢) = −

5∑︁
𝑛=1

2 (𝑘𝑛 − 𝑘𝑛−1)2 (𝑢− 𝑐𝑛) �̂�𝑛 𝑓𝑛 (𝑢) .

For each 𝑝 ∈ [0.05,0.20], corresponding to the range of �̂�∗
𝑖
, we compute 95% confidence in-

tervals of 𝑌 ∗ (𝑝) by taking the standard deviations of 𝑌 ∗ (𝑝) across 50 bootstrapped iterations (with

samples drawn by zip code, with replacement). Similarly, for each 𝑢 ∈ [0.05,0.20], we compute 95%

confidence intervals of �𝑀𝑇𝐸 (𝑢) by taking the standard deviations of �𝑀𝑇𝐸 (𝑢) across these same

bootstrapped iterations. We display both 𝑌 ∗ (𝑝) and �𝑀𝑇𝐸 (𝑢) in Appendix Figure A.7.

A.4.2 Average Treatment Effect

In order to estimate the ATE, we adopt a control function model in order to extrapolate treatment

effects to non-compliers. Specifically, we model potential outcomes as

𝐸 [𝑌𝑖 (𝑑) |𝑈𝑖 = 𝑢] = 𝛼𝑑 +𝛾𝑑 (𝐽 (𝑢) − 𝜇𝐽 ) +X0
𝑖 𝛿+ 𝜁𝑧 (𝑖) , (A.21)

where 𝑑 ∈ {0,1} and 𝑢 ∈ (0,1). 𝐽 (𝑢) is a strictly increasing, continuous function that maps selection

to potential outcomes, and 𝜇𝐽 ≡ 𝐸 [𝐽 (𝑈𝑖)]. Since 𝐸 [𝐽 (𝑢) − 𝜇𝐽 ] = 0, we can interpret 𝛼1 −𝛼0 as the

ATE. Kline and Walters (2019) show that the control function model in Equations (A.20) and (A.21)

can also rationalize the Imbens and Angrist (1994) LATE that we estimate in Section 3, regardless of

the choice of 𝐽 (𝑢).40

For our baseline specification, we adopt the linear selection function of 𝐽 (𝑢) = 𝑢 from Olsen

(1980), which we use with Equation (A.21) to state the following expectation, conditional on the

40Kline and Walters (2019) show algebraic equivalence between the control function LATE implied by Equation (A.21),
𝑝, and 𝑝, when the instrument is binary and there are no controls. They also generalize their result for multivalued instru-
ments. With controls, the equivalence may not hold in the standard regression approach in which controls are treated as
additively separable but will hold under a propensity score approach.
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first-stage error 𝜀1,𝑖 from Equation (3):41

𝐸
[
𝑌𝑖 |𝐷𝑖 = 𝑑, 𝜀1,𝑖 = 𝜀

]
= 𝛼𝑑 +𝛾𝑑𝐸

[
𝐽 (𝑢) − 𝜇𝐽 |𝐷𝑖 = 𝑑, 𝜀1,𝑖 = 𝜀

]
+X0

𝑖 𝛿+ 𝜁𝑧 (𝑖)
= 𝛼𝑑 −𝛾𝑑

𝜀

2
+X∗

𝑖 𝛿+ 𝜁𝑧 (𝑖) . (A.22)

This expectation corresponds to the following regression:

𝑌𝑖 = 𝛼Δ𝐷𝑖 +𝛾0

(
−
𝜀1,𝑖

2

)
+𝛾Δ

(
−
𝜀1,𝑖

2

)
𝐷𝑖 +X0

𝑖 𝛿+ 𝜁𝑧 (𝑖) + 𝑣𝑖 , (A.23)

plugging in the estimated first-stage residual 𝜀1,𝑖 from Equation (3). We can compute the ATE from

this equation as 𝛼Δ = 𝛼1 −𝛼0. We estimate Equation (A.23) by OLS to yield �̂�Δ = −0.037 , slightly

smaller in magnitude than the LATE estimate of −0.041 from Section 3. For inference on the differ-

ence between the ATE and the LATE, we recover a numerically equivalent LATE with the following

control function regression:42

𝑌𝑖 = 𝛽𝐶𝐹𝐷𝑖 +𝛾𝜀1,𝑖 +X0
𝑖 𝛿0 + 𝜁0,𝑧 (𝑖) + 𝑣𝑖 , (A.24)

where 𝛽𝐶𝐹 is estimated by OLS and is numerically equivalent to 𝛽𝐼𝑉 estimated by two-stage least

squares. For each bootstrapped replication, we estimate both the ATE, �̂�1− �̂�0, and its difference with

the LATE, 𝛽𝐶𝐹 , in order to obtain standard errors on both the ATE and the difference.

We also examine semiparametric specifications that allow for flexible relationships between the

first-stage residual and the structural error term. These alternative specifications allow nonlinear

relationships of 𝑔𝑑 (𝜀) ≡ 𝐸
[
𝜀0,𝑖

��𝐷𝑖 = 𝑑, 𝜀1,𝑖 = 𝜀
]
, where 𝜀0,𝑖 is the structural error term in Equation

(2). Specifically, we estimate regressions of the following form:

𝑌𝑖 = 𝛼Δ𝐷𝑖 +𝑔0
(
𝜀1,𝑖

)
(1−𝐷𝑖) +𝑔1

(
𝜀1,𝑖

)
𝐷𝑖 +X0

𝑖 𝛿+ 𝜁𝑧 (𝑖) + 𝑣𝑖 , (A.25)

where 𝑔𝑑
(
𝜀1,𝑖

)
, 𝑑 ∈ {0,1}, are flexible functions of the first-stage residual that are non-zero when

𝐷𝑖 = 0 and 𝐷𝑖 = 1, respectively. To estimate 𝑔𝑑
(
𝜀1,𝑖

)
, 𝑑 ∈ {0,1}, we use a vector of restricted cubic

spline functions or Gaussian basis functions, with three or five knots. Ensuring that 𝐸
[
𝑔𝑑

(
𝜀1,𝑖

) ]
= 0

by demeaning each spline or basis function, we can interpret 𝛼Δ as the ATE.

In Appendix Table A.8, we show estimates of the ATE and the ATE-LATE difference. ATE es-

timates are all smaller in magnitude than the LATE estimate from Section 3. We compute standard

errors on this difference with 50 bootstrapped iterations (selecting samples by zip code, with replace-

ment). The ATE-LATE difference is statistically significant in our baseline specification in Equation

41To see this, assume that the first stage regression in Equation (3) estimates a well-behaved 𝑃 (𝑍𝑖) ∈ (0,1) such that
𝐷𝑖 = 𝑃 (𝑍𝑖) + 𝜀1,𝑖 . Define 𝜆𝑑 (𝑝) ≡ 𝐸 [ 𝐽 (𝑈𝑖) − 𝜇𝐽 |𝐷𝑖 = 𝑑, 𝑃 (𝑍𝑖) = 𝑝]. We have 𝜆1 (𝑝) = 𝑝

2 − 1
2 =

𝑝−1
2 , and 𝜆0 (𝑝) =

𝑝+1
2 − 1

2 =
𝑝
2 . Note that 𝜆𝑑 (𝑝) = 𝑝−𝑑

2 = −𝜀
2 , where 𝜀 ≡ 𝑑 − 𝑝. This implies that 𝜀1,𝑖 = 𝐷𝑖 −𝑃 (𝑍𝑖) is a sufficient statistic

for (𝐷𝑖 , 𝑃 (𝑍𝑖)), and we can state the expectation 𝐽 (𝑈𝑖) − 𝜇𝐽 conditional on 𝜀1,𝑖 : 𝐸
[
𝐽 (𝑈𝑖) − 𝜇𝐽 | 𝜀1,𝑖 = 𝜀

]
= − 𝜀

2 .
42Blundell and Matzkin (2014) attribute the first proof of this equivalence between control function and two-stage least

squares approaches to estimating the LATE to Telser (1964).
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(A.23), though they are not statistically significant in the semiparametric specifications.

A.5 Hospital Characteristics

In this appendix, we provide further details on hospital characteristics that we use in our heterogeneity

analyses in Section 5.3. For each zip code and year, we use characteristics of the closest VA hospital

and a weighted average of the characteristics of associated non-VA hospitals. Weights for each non-

VA hospital are proportional to the number of ambulance rides originating from a given zip code to

the hospital in that year. Unless otherwise noted, characteristics are observed at the hospital-year

level.

We use the American Hospital Association (AHA) Annual Survey to collect the following VA and

non-VA hospital characteristics at the hospital-year level: (i) number of ED visits; (ii) total number

of facility admissions; (iii) number of available hospital beds; (iv) teaching hospital status; (v) trauma

center status; (vi) ED staff full-time equivalents (FTEs), which we use to construct ED staff per 100

ED visits given (i); (vii) nurse FTEs, which we use to construct nurses per 100 admissions given (ii);

(viii) hospitalist FTEs, which we use to construct hospitalists per 100 admissions; and (ix) intensivist

FTEs, which we use to construct intensivists per 100 admissions given (ii).

We construct a measure of advanced cardiac care, which we define as either the capability to

perform interventional cardiac catheterization or cardiac surgery as measured by the AHA Annual

Survey (at the hospital-year level) or listing as an ST-Elevation Myocardial Infarction (STEMI) center

by the American Heart Association (at the hospital level). We record whether each hospital is certified

as a Primary Stroke Center according to the Joint Commission, the American Heart Association, and

the American Stroke Association (at the hospital level).

For VA hospitals, we form measures of relative spending from the average cost of an inpatient-

day, available from the VA Health Economics Resource Center (HERC). For non-VA hospitals, we use

data from Data.Medicare.gov on Medicare spending per beneficiary at the hospital level. Similarly,

we obtain mortality and readmission rates from Data.Medicare.gov for non-VA hospitals and from

the VA’s Strategic Analytics for Improvement and Learning (SAIL). For each hospital’s mortality

rate, we take the mean of all available 30-day mortality rates, including disease-specific rates such

as heart attack and pneumonia; we form similar means for each hospital’s readmission rate based on

available 30-day readmission rates, including disease-specific rates. Because some years are missing

mortality or readmission rates, for each hospital and rate, we first form averages across years at the

hospital level.

For measures of non-VA hospital organization, we use AHA Annual Survey measures of network

status, hospital system status, and health maintenance organization (HMO) affiliation. We also ob-

tain whether the hospital participates in an Affordable Care Organization (ACO) from the Medicare

Shared Savings Program (MSSP) ACO provider-level dataset. We measure health IT adoption for

each hospital and year from electronic health record certified products measured in healthIT.gov.

Additional characteristics in Table 5 are also obtained from the AHA Annual Survey: (i) average daily
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census, (ii) urban location (i.e., hospital is not classified as either “micro” or rural), (iii) capitated lives

covered, and (iv) Preferred Provider Organization (PPO) affiliation.

A.6 Modal-Hospital Mechanisms

In Section 5.5, we investigate the role of health IT and integrated care in improving outcomes for

patients with prior care at a given non-VA hospital. As described in Appendix A.5, we measures dates

of hospital health IT adoption or ACO participation. During our sample period a sizable proportion

of hospitals adopted health IT and, to a much lesser extent, participated in an ACO. In Figure 6, we

show that the survival effect of a veteran being transported to his modal hospital emerges after the

passage the HITECH Act of 2009. This law led to a rapid rise in electronic medical record systems

in US hospitals, which had previously been close to absent among non-VA hospitals.

To investigate this further, we focused on four subsamples defined by whether or not each vet-

eran’s modal hospital had adopted health IT, at the time of his ambulance ride, and similarly by

whether or not each veteran’s modal hospital had joined an ACO. In each of these subsamples, we

performed the same IV regression of the effect of transport to a veteran’s modal hospital. Results

are shown in Table 6, Columns 1, 2, 4, and 5. We obtain all of these results after adding hospital

fixed effects in the first-stage and reduced-form regressions in Equations (10) and (11), respectively.

Results are qualitatively unchanged regardless of their inclusion.

In Columns 3 and 6 of Table 6, we also perform regressions in the overall sample (described

in Panel B of Appendix Table A.13). We maintain all of the interactions implicit in our subsample

results except that we allow hospital fixed effects to remain constant before and after adoption of

health IT or an ACO. We do so with the following control function approach. First, we estimate a

first-stage regression that interacts everything with adoption status, except for hospital fixed effects:

𝐷𝑚
𝑖 =

∑︁
𝑎∈{0,1}

1
(
Adopted𝑖 = 𝑎

) (
𝜋𝑚1,𝑎𝑍

𝑚
𝑖 +𝛾𝑚1,𝑎𝑍

𝑚

𝑖 +X0
𝑖 𝛿

𝑚
1,𝑎 + 𝜁

𝑚
1,𝑧 (𝑖) ,𝑎

)
+ 𝜉𝑚1,ℎ (𝑖) + 𝜀

𝑚
1,𝑖 . (A.26)

We then take estimated first-stage residuals 𝜀𝑚1,𝑖 and include them in an interacted control-function

model:

𝑌𝑖 =
∑︁

𝑎∈{0,1}
1
(
Adopted𝑖 = 𝑎

) (
𝛽𝑎𝐷

𝑚
𝑖 +𝛾𝑎𝜀𝑚1,𝑖 +X0

𝑖 𝛿𝑎 + 𝜁𝑧 (𝑖) ,𝑎
)
+ 𝜉ℎ (𝑖) + 𝜖𝑖 . (A.27)

As with our other control-function regressions, we compute standard errors by 50 bootstrapped itera-

tions, drawing samples by zip code blocks, with replacement.

Note that, if we omit hospital fixed effects from Equations (A.26) and (A.27), the coefficients 𝛽𝑎
from the control-function regression will numerically equal coefficients from IV regressions, omitting

hospital fixed effects, in subsamples either with observations from the “adoption sample” or with only

observations from the “no-adoption sample.” The inclusion of uninteracted hospital fixed effects in

Equations (A.26) and (A.27) allows us to model hospital fixed effects that are the same before and

after adoption, whereas fixed effects in each subsample regressions are not linked across subsamples.
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Figure A.1: Visual IV
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Note: This figure shows the visual IV plot corresponding to our baseline IV regression of the effect of the VA
on 28-day mortality. For each bin of the instrument, which is the ambulance leave-out propensity to arrive at a
VA hospital, we plot the mean 28-day mortality on the y-axis and the probability that the index patient arrives
at a VA hospital on the x-axis. VA arrival predictions correspond to a first-stage regression in Equation (3), and
mortality predictions correspond to a reduced-form regression in Equation (4). The best-fit line in the visual
IV plot replicates the IV estimate of the effect of the VA on 28-day mortality, which we perform to obtain
the standard error (in parentheses). This IV regression uses 400,769 observations and 1,267 combinations of
ambulance company identifiers and Dartmouth Atlas Hospital Referral Regions (HRRs). The baseline sample
selection is given in Appendix Table A.1. Controls include patient zip code dummies, ALS/BLS dummies,
source of the ambulance ride, time categories, and patient prior utilization, which are detailed in Appendix
Table A.2.
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Figure A.2: Combinations of Controls
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Note: This figure shows IV estimates of the VA effect on 28-day mortality on the y-axis, from Equation (2),
varying the number of controls included in the IV regression. Numbered incremental controls correspond
to categories or subcategories of variables that are presented in order in Appendix Tables A.2 and A.3. All
specifications include the five baseline controls. Specifications with fewer than 10 controls do not include
any leave-out (co-rider) controls. Specifications with ten or more controls include the five baseline controls
and index patient controls. Therefore, the figure represents 5 +

(
25 −1

)
+
(
26 −1

)
= 99 specifications. For

each number of controls 𝑛 for 𝑛 ∈ [5,10], we consider “5 choose 𝑛− 5” specifications. For each 𝑛 ≥ 10, we
consider “6 choose 𝑛−10” specifications. The mean IV estimate is shown with a dashed line; the minimum and
maximum IV estimates are shown with a short dashed line. We use our baseline sample, described in Appendix
Table A.1.
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Figure A.3: Treatment Effects by Time and Sample
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B: IV
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Note: This figure shows mortality treatment effects over varying days since the ambulance ride and in varying
samples restricting by prior rides. “Day 0” considers mortality on the day of the ambulance ride; subsequent
days indicate survival at one-week intervals from the ambulance ride. Panel A shows OLS results corresponding
to Equation (6). Panel B shows IV results corresponding to Equation (5). The vertical dashed line indicates
treatment effects on 28-day mortality, our baseline outcome. All regressions use a sample of ambulance rides
with no prior ride in the last year.
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Figure A.4: Joint Inequality Constraints

A: No Mortality Displacement
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B: No Negative Hazard Rate
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Note: This figure shows the test statistic for joint inequality constraints and bootstrapped-generated distribu-
tions of the test statistic under the least favorable version of the null hypothesis. Panel A shows the joint
inequality test of no mortality displacement, as defined by null hypothesis in Equation (A.7). Panel B shows
the joint inequality test of no negative hazard rates, as defined by the null hypothesis in Equation (A.16). The
test statistic for both tests is shown as a solid vertical line. The one-sided critical value, or 95th percentile of the
bootstrapped distribution of the test statistic under the least favorable version of the null hypothesis, is shown
as a dashed vertical line. Details of the test statistic and the bootstrap procedure for Panels A and B are given
in Appendices A.2.2 and A.2.3, respectively.
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Figure A.5: Mean Hazard Differences
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Note: This figure shows tests of equality of mean hazard rates for different sets of hazard rates, as defined
by the null hypothesis in Equation (A.18). Each panel corresponds to a comparison between sets of hazards
corresponding to VA or non-VA compliers or users. Details of the statistical procedure are given in Appendix
A.2.4. Hazard rates for compliers are estimated by two-stage least squares and denoted in the appendix by
ℎ̂𝐼𝑉 (𝑡;𝑑), where 𝑑 = 1 for compliers assigned to the VA and 𝑑 = 0 for compliers assigned to a non-VA hospital.
Hazard rates for users are estimated by OLS and denoted by ℎ̂𝑂𝐿𝑆 (𝑡;𝑑), where 𝑑 similarly denotes VA users
(𝑑 = 1) vs. non-VA users (𝑑 = 0). The solid black line shows the test statistic, and the histogram shows the
distribution of bootstrapped test statistics under the null hypothesis. Bootstrapped standard errors are given in
the caption.
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Figure A.6: Joint Equality Constraints

A: VA vs. Non-VA Compliers B: VA vs. Non-VA Users

0
5

1
0

1
5

P
e
rc

e
n
t

20 40 60 80 100

Test statistic

test stat. = 46.6

crit. value = 72.6

0
5

1
0

1
5

P
e
rc

e
n
t

20 35 50 65 80

Test statistic

test stat. = 6219.200000000001

crit. value = 70.6

C: VA Compliers vs. Users D: Non-VA Compliers vs. Users
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Note: This figure shows tests of joint equality of hazard rates for different sets of hazard rates, as defined
by the null hypothesis in Equation (A.19). Each panel corresponds to a comparison between sets of hazards
corresponding to VA or non-VA compliers or users. Details of the statistical procedure are given in Appendix
A.2.4. Hazard rates for compliers are estimated by two-stage least squares and denoted in the appendix by
ℎ̂𝐼𝑉 (𝑡;𝑑), where 𝑑 = 1 for compliers assigned to the VA and 𝑑 = 0 for compliers assigned to a non-VA hospital.
Hazard rates for users are estimated by OLS and denoted by ℎ̂𝑂𝐿𝑆 (𝑡;𝑑), where 𝑑 similarly denotes VA users
(𝑑 = 1) vs. non-VA users (𝑑 = 0). The solid line shows the test statistic, the histogram shows the distribution of
bootstrapped test statistics under the null hypothesis, and the dashed line shows the one-sided 95th percentile
critical value.
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Figure A.7: Marginal Treatment Effects

A: Flexible Visual IV
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B: Marginal Treatment Effects
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Note: This figure shows a flexible fit of the IV relationship between 28-day mortality and the ambulance
propensity to transport to a VA hospital. Panel A shows the visual IV relationship with residual 28-day mortality
on the y-axis and residual probability of being transported to a VA hospital on the x-axis. Both objects are
residualized by baseline controls, described in Appendix Table A.2. The probability of being transported to a
VA hospital is calculated from the first-stage relationship in Equation (3). The data underlying the fit in Panel
A are similar to those in the linear visual IV plot in Appendix Figure A.1. The fit is based on five Gaussian
basis splines. Panel B shows the implied marginal treatment effects, which are the analytical derivatives at each
point on the fit in Panel A. 95% confidence intervals are calculated by 50 bootstrapped interations (drawn by
zip codes, with replacement). Details are given in Appendix A.4.
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Figure A.9: Modal Hospital First Stage, Balance, and Reduced Form

A: First Stage
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B: Balance and Reduced Form
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Note: Panel A shows a binned scatterplot of arrival at the veteran’s modal hospital against the ambulance leave-
out propensity to arrive at that hospital on the x-axis. The figure is a graphical representation of the first-stage
regression in Equation (10). Panel B shows binned scatterplots of 28-day mortality and predicted 28-day mor-
tality on the y-axis against the ambulance leave-out propensity to arrive at the veteran’s modal hospital on the
x-axis. Mortality bin means are shown in solid circles, while predicted mortality bin means are shown in hol-
low circles. The figure represents the reduced-form regression in Equation (11) and the corresponding balance
regression replacing mortality with predicted mortality. The sample includes 1,421,612 ambulance rides and
5,923 combinations of ambulance company identifiers and Dartmouth Atlas Hospital Referral Regions (HRRs).
The sample includes patients who have some utilization affiliated with a non-VA hospital and no utilization at
the VA in the prior year. The selection details of this sample is given in Appendix Table A.13. Controls include
patient zip code dummies, ALS/BLS dummies, source of the ambulance ride, time categories, and patient prior
utilization, which are detailed in Appendix Table A.2.
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Figure A.10: Modal Hospital Visual IV
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Note: This figure shows the visual IV plot corresponding to the IV regression of the effect of arrival at a
patient’s modal hospital on 28-day mortality. For each bin of the instrument, which is the ambulance leave-out
propensity to arrive at the patient’s modal hospital, we plot the mean 28-day mortality on the y-axis and the
probability that the index patient arrives at his modal hospital on the x-axis. Modal hospital arrival predictions
correspond to a first-stage regression in Equation (10), and mortality predictions correspond to a reduced-
form regression in Equation (11). The best-fit line in the visual IV plot replicates the IV estimate of the
effect of arrival at a patient’s modal hospital on 28-day mortality, which we perform to obtain the standard
error (in parentheses). This IV regression uses 1,421,612 observations and 5,923 combinations of ambulance
company identifiers and Dartmouth Atlas Hospital Referral Regions (HRRs). We use the sample of non-VA-
only utilizers, given in Appendix Table A.13. Controls include patient zip code dummies, ALS/BLS dummies,
source of the ambulance ride, time categories, and patient prior utilization, which are detailed in Appendix
Table A.2.
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Figure A.11: Modal Hospital OLS and IV Specifications
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Note: This figure shows the effect of arrival at a patient’s modal hospital on 28-day mortality estimated from
OLS and IV specifications, with progressive sets of controls. Numbered incremental controls correspond to
categories or subcategories of variables that are presented in order in Appendix Tables A.2 and A.3. Estimates
are shown along solid lines, while 95% confidence intervals are shown in dashed lines. All specification control
for hospital identities and use the sample of non-VA-only utilizers, given in Appendix Table A.13.
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Figure A.12: Modal Hospital Combinations of Controls
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Note: This figure shows IV estimates of the effect of arrival at a patient’s modal hospital on mortality on the
y-axis, with first-stage and reduced-form Equations (10) and (11), varying the number of controls included in
the IV regression. Control variables are detailed in Appendix Tables A.2 and A.3. All specifications include
the five baseline controls. Specifications with fewer than 10 controls do not include any leave-out controls.
Specifications with ten or more controls include the five baseline controls and index patient controls. Therefore,
the figure represents 5+

(
25 −1

)
+
(
26 −1

)
= 99 specifications. For each number of controls 𝑛 for 𝑛 ∈ [5,10],

we consider “5 choose 𝑛− 5” specifications. For each 𝑛 ≥ 10, we consider “6 choose 𝑛− 10” specifications.
The mean IV estimate is shown with a dashed line; the minimum and maximum IV estimates are shown with
a short dashed line. We use the sample of non-VA-only utilizers, given in Appendix Table A.13.
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Table A.2: Baseline Control Variables

Category Subcategory Variables
Location
(1,681 indicators)

Zip code
(1,678 indicators)

Zip code indicators (1,678 indicators)

Pickup source
(3 indicators)

Indicators for whether pickup is from residence,
residential (including domiciliary, custodial
facility), skilled nursing facility, or scene of
accident (omitted category)

Ambulance service
(3 indicators)

Indicators for whether ambulance is ALS special
(CPT codes A0427, A0330, A0370), ALS
non-special (CPT codes Q3019, A0368,
A0328), ALS level 2 (CPT code A0433), or
BLS (omitted category; CPT codes A0429,
A0362, A0322)

Time categories
(182 indicators)

Day of the week (6 indicators)
Month-year interactions (176 indicators)

Prior utilization
(6 indicators)

Indicators for utilization in prior year of
Medicare primary care, VA primary care
utilization, Medicare ED, VA ED, Medicare
inpatient, and VA inpatient services

Note: This table describes baseline controls variables, denoted as
(
𝑧 (𝑖) ,X0

𝑖

)
in Condition 1 and throughout the

text. We consider our quasi-experiment to be conditional on these variables, and we include these variables as
controls in all of our analyses.
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Table A.3: Hold-Out Control Variables

Category Subcategory Variables
Patient background
(60 variables)

Demographics
(31 indicators)

Age: 5-year age bins from 20-64 years, 2-year
age bins from 65-100 years (27 indicators)
Male gender
Race: indicators for white, Black, Hispanic, and
Asian/other (omitted category)

Socioeconomic status,
combat history, and
eligibility
(21 indicators)

Terciles of income and net worth (4 indicators)
Period of combat: WWII, Korean, Vietnam,
other (omitted category) (3 indicators)
Indicator for aid and attendance for in-home care
Priority group indicators (6 indicators)
Service connection: service connected, not
service connected, or non-veteran/other (omitted
category) (2 indicators)
6 missing indicators for each of the above
characteristics

Extended prior
utilization
(8 variables)

Counts of VA primary care visits, outpatient
visits, ED visits, and inpatient visits in prior year
Analogous counts of Medicare visits in prior
year

Prior diagnoses
(93 indicators)

31 Elixhauser indicators (dividing hypertension
indicator into 2 indicators for complicated and
uncomplicated hypertension), in four categories:
present in VA data only, present in Medicare
data only, and present in both VA and Medicare
data (31×3 = 93 indicators)

3-digit ambulance
diagnosis codes
(778 indicators)

3-digit ambulance diagnosis (ICD-9) codes (778
indicators)

Co-rider
characteristics
(33 variables)

Co-rider baseline
controls
(12 variables)

Co-rider pickup source proportions (3 variables)
Co-rider ambulance service proportions (3
variables)
Co-rider prior utilization proportions (6
variables)

Co-rider hold-out
controls
(21 variables)

Co-rider average continuous age
Co-rider proportion male gender
Co-rider race proportions (3 variables)
Co-rider 1-digit ambulance code proportions (15
variables)
Co-rider average predicted mortality

Note: This table describes hold-out control variables. These variables are used to test robustness of our findings,
particularly in Figures 2, A.2, A.12, and A.11.
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Table A.5: Monotonicity Tests

Instrument

First stage sample Observations VA share Baseline
Reverse-
sample

Age ≤ 80 239,611 0.347 0.931 0.508
(0.038) (0.022)

Age > 80 161,707 0.305 0.789 0.464
(0.041) (0.022)

White 314,064 0.304 0.821 0.221
(0.037) (0.016)

Non-white 87,176 0.426 0.992 0.596
(0.068) (0.041)

Comorbidity count (high) 185,477 0.295 0.760 0.442
(0.038) (0.019)

Comorbidity count (low) 215,842 0.360 0.948 0.648
(0.041) (0.029)

Mental illness or substance abuse 188,961 0.354 0.931 0.543
(0.040) (0.027)

No mental illness or substance abuse 212,358 0.309 0.815 0.490
(0.037) (0.022)

VA visits in prior year (high) 183,087 0.508 1.038 0.790
(0.050) (0.040)

VA visits in prior year (low) 218,232 0.181 0.718 0.296
(0.031) (0.015)

Advanced Life Support 274,690 0.301 0.836 0.279
(0.036) (0.024)

No Advanced Life Support 126,616 0.393 0.840 0.209
(0.048) (0.047)

Predicted VA user (high) 200,659 0.543 1.113 0.952
(0.054) (0.058)

Predicted VA user (low) 200,660 0.117 0.559 0.220
(0.030) (0.012)

Predicted mortality (high) 200,659 0.328 0.835 0.393
(0.036) (0.022)

Predicted mortality (low) 200,660 0.333 0.898 0.557
(0.046) (0.026)

Instrument sample
Dual

eligibles
Analytical

sample

Note: This table presents first-stage coefficients on different subsamples of patients. For each subsample, we
present results for two different instruments: (i) the baseline leave-out instrument, 𝑍𝑖 , given in Equation (1)
and calculated from observations among dually eligible veterans (Step 1 of Appendix Table A.1), and (ii) a
reverse-sample instrument, �̃�−𝑚

𝑖
, given in Equation (A.2) and calculated from observations in the analytical

sample (Step 6 of Appendix Table A.1) that are outside of the regression subsample. Each regression uses
baseline controls defined in Appendix Table A.2. Further details are given in Appendix A.1.2.
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Table A.6: Monotonicity Tests (Continued)

Instrument
First stage sample Observations VA share Baseline In-sample
Age ≤ 80 239,611 0.347 0.586 0.513

(0.021) (0.019)
Age > 80 161,707 0.305 0.494 0.376

(0.023) (0.021)
White 314,064 0.304 0.504 0.513

(0.019) (0.020)
Non-white 87,176 0.426 0.676 0.440

(0.032) (0.033)
Comorbidity count (high) 185,477 0.295 0.490 0.361

(0.019) (0.018)
Comorbidity count (low) 215,842 0.360 0.592 0.456

(0.022) (0.018)
Mental illness or substance abuse 188,961 0.354 0.592 0.458

(0.021) (0.019)
No mental illness or substance abuse 212,358 0.309 0.501 0.386

(0.020) (0.018)
VA visits in prior year (high) 183,087 0.508 0.691 0.493

(0.026) (0.019)
VA visits in prior year (low) 218,232 0.181 0.421 0.382

(0.018) (0.018)
Advanced Life Support 274,690 0.301 0.523 0.436

(0.020) (0.018)
No Advanced Life Support 126,616 0.393 0.531 0.286

(0.025) (0.019)
Predicted VA user (high) 200,659 0.543 0.743 0.566

(0.028) (0.020)
Predicted VA user (low) 200,660 0.117 0.331 0.352

(0.016) (0.027)
Predicted mortality (high) 200,659 0.328 0.513 0.386

(0.020) (0.017)
Predicted mortality (low) 200,660 0.333 0.570 0.410

(0.023) (0.019)

Instrument sample
Analytical

sample
Analytical

sample

Note: This table presents first-stage coefficients on different subsamples of patients. For each subsample, we
present results for two different instruments: (i) the baseline leave-out instrument, �̃�𝑖 , given in Equation (1),
and (ii) a in-sample instrument, �̃�𝑚

𝑖
, given in Equation (A.2) and calculated from leave-out observations in the

same regression subsample. Both instruments are calculated using observations in the analytical sample (Step 6
of Appendix Table A.1). Each regression uses baseline controls defined in Appendix Table A.2. Further details
are given in Appendix A.1.2.
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Table A.7: Always-Taker and Never-Taker Characteristics

Always takers Never takers
Mean Ratio Mean Ratio

Male 0.961 1.00 0.965 1.00
(0.002) [0.99 - 1.00] (0.001) [1.00 - 1.00]

Age 75.6 0.99 76.3 1.00
(0.158) [0.99 - 1.00] (0.153) [1.00 - 1.01]

Black 0.222 1.14 0.184 0.95
(0.012) [1.02 - 1.26] (0.010) [0.85 - 1.05]

Income $18,039 0.86 $22,397 1.07
($200) [0.84 - 0.88] ($232) [1.05 - 1.09]

Rural zip code 0.064 1.27 0.053 1.04
(0.015) [0.67 - 1.87] (0.011) [0.62 - 1.46]

Residential source 0.685 0.97 0.667 0.95
(0.011) [0.94 - 1.00] (0.009) [0.92 - 0.97]

Comorbidity count 5.85 0.95 6.44 1.05
(0.046) [0.94 - 0.97] (0.032) [1.04 - 1.06]

Mental illness 0.469 1.10 0.420 0.98
(0.006) [1.07 - 1.13] (0.004) [0.97 - 1.00]

Substance abuse 0.150 1.04 0.137 0.95
(0.005) [0.97 - 1.11] (0.004) [0.90 - 1.00]

Prior VA ED visit 0.823 1.56 0.383 0.72
(0.004) [1.54 - 1.57] (0.006) [0.70 - 0.75]

Prior Medicare ED visit 0.262 0.54 0.613 1.27
(0.006) [0.52 - 0.57] (0.004) [1.26 - 1.29]

Ambulance rides in prior year 2.212 1.03 2.210 1.03
(0.030) [1.00 - 1.05] (0.025) [1.00 - 1.05]

Advanced Life Support 0.576 0.84 0.707 1.03
(0.013) [0.81 - 0.88] (0.010) [1.01 - 1.06]

Predicted VA user 0.969 1.14 0.778 0.92
(0.001) [1.14 - 1.15] (0.002) [0.91 - 0.92]

Predicted mortality 0.096 0.99 0.103 1.07
(0.002) [0.96 - 1.03] (0.001) [1.05 - 1.08]

Note: This table presents average characteristics for always takers and never takers. Always takers are defined
as patients who present to the VA even when they receive a residualized instrument below the 20th percentile;
never takers are defined as patients who present to a non-VA hospital even when they receive a residualized
instrument above the 80th percentile. To form these residualized instruments, we residualize the baseline in-
strument, 𝑍𝑖 , given in Equation (1), by baseline controls, described in Appendix Table A.2. Observations are
drawn from the baseline sample described in Appendix Table A.1. For each row corresponding to a characteris-
tic, the table presents average characteristics and the ratio between this average and the overall sample average.
Overall sample means are given in Table 4. Standard errors are calculated by bootstrap, blocking observations
by zip codes, and are shown in parentheses. Corresponding 95% confidence intervals of the ratio are presented
in brackets. Further details are given in Appendix A.3.
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Table A.9: Heterogeneity by Non-VA Hospital Characteristics

Regression estimates Characteristic means
VA VA × 𝐼𝑥,𝑖 𝐼𝑥,𝑖 = 0 𝐼𝑥,𝑖 = 1

Volume, Size, and Capabilities
ED visits -0.045 0.000 39,387 85,592

(0.017) (0.002)
Admissions -0.045 -0.000 13,504 29,745

(0.016) (0.002)
Total staffed beds -0.045 -0.000 276 626

(0.017) (0.002)
Teaching hospital -0.045 -0.000 0.02 0.51

(0.017) (0.002)
Trauma center -0.045 0.004 0.28 0.93

(0.016) (0.002)
Advanced cardiac care -0.046 -0.000 0.64 1.00

(0.017) (0.002)
Stroke center -0.045 0.001 0.03 0.65

(0.017) (0.002)

Staffing
ED staff per 100 ED visits -0.045 -0.001 0.03 0.07

(0.017) (0.002)
Nurses per 100 admissions -0.045 0.003 2.18 3.41

(0.017) (0.002)
Physicians per 100 admissions -0.045 -0.000 0.04 0.34

(0.016) (0.002)
Hospitalists per 100 admissions -0.045 0.004 0.06 0.19

(0.017) (0.002)
Intensivists per 100 admissions -0.045 0.002 0.03 0.12

(0.017) (0.002)

Note: This table presents regression results investigating heterogeneous treatment effects along binary indi-
cators of average non-VA hospital characteristics associated with each zip code. For each zip code, hospital
characteristics are averaged with weights proportional to the number of rides going to each non-VA hospital
from the zip code. We then divide observations 𝑖, based on whether their zip codes 𝑧 (𝑖) have below- vs. above-
median averages, denoted by 𝐼𝑥,𝑖 = 0 and 𝐼𝑥,𝑖 = 1, respectively. Regression results correspond to Equation (8).
The coefficient on VA represents the LATE of going to the VA, and the coefficient on VA× 𝐼𝑥,𝑖 represents
the difference in the LATE between observations with 𝐼𝑥,𝑖 = 1 and observations with 𝐼𝑥,𝑖 = 0. Appendix Ta-
ble A.10 presents results for additional characteristics. Appendix A.5 provides further details on the hospital
characteristics.
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Table A.10: Heterogeneity by Non-VA Hospital Characteristics (Continued)

Regression estimates Characteristic means
VA VA × 𝐼𝑥,𝑖 𝐼𝑥,𝑖 = 0 𝐼𝑥,𝑖 = 1

Spending and Outcomes
Relative spending -0.045 -0.002 0.97 1.04

(0.017) (0.002)
Mortality rate -0.045 -0.003 11.62 12.89

(0.017) (0.002)
Readmission rate -0.045 -0.002 17.30 18.90

(0.017) (0.002)

Organization and IT
Network or hospital system -0.045 -0.002 0.65 1.00

(0.017) (0.002)
HMO or ACO -0.045 -0.002 0.00 0.47

(0.017) (0.002)
Health IT -0.046 -0.002 0.00 0.80

(0.016) (0.002)
Largest non-VA ≥ 80% -0.045 0.006 0.52 0.90

(0.016) (0.003)

Note: This table presents regression results investigating heterogeneous treatment effects along binary indi-
cators of average non-VA hospital characteristics associated with each zip code. For each zip code, hospital
characteristics are averaged with weights proportional to the number of rides going to each non-VA hospital
from the zip code. We then divide observations 𝑖, based on whether their zip codes 𝑧 (𝑖) have below- vs. above-
median averages, denoted by 𝐼𝑥,𝑖 = 0 and 𝐼𝑥,𝑖 = 1, respectively. Regression results correspond to Equation (8).
The coefficient on VA represents the LATE of going to the VA, and the coefficient on VA× 𝐼𝑥,𝑖 represents
the difference in the LATE between observations with 𝐼𝑥,𝑖 = 1 and observations with 𝐼𝑥,𝑖 = 0. Appendix Ta-
ble A.9 presents results for additional characteristics. Appendix A.5 provides further details on the hospital
characteristics.
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Table A.11: Heterogeneity by VA Hospital Characteristics

Regression estimates Characteristic means
VA VA × 𝐼𝑥,𝑖 𝐼𝑥,𝑖 = 0 𝐼𝑥,𝑖 = 1

Volume, Size, and Capabilities
ED visits -0.045 -0.001 8,626 23,107

(0.017) (0.002)
Admissions -0.044 -0.003 3,247 8,146

(0.016) (0.002)
Total staffed beds -0.044 -0.007 139 463

(0.017) (0.002)
Teaching hospital -0.045 -0.003 0.00 0.93

(0.017) (0.002)
Trauma center -0.052 0.006 0.00 1.00

(0.018) (0.004)
Advanced cardiac care -0.051 -0.004 0.00 1.00

(0.018) (0.002)

Staffing
ED staff per 100 ED visits -0.050 -0.002 0.02 0.12

(0.022) (0.003)
Nurses per 100 admissions -0.045 -0.000 5.26 16.77

(0.017) (0.002)
Physicians per 100 admissions -0.045 -0.001 1.49 5.39

(0.017) (0.002)
Hospitalists per 100 admissions -0.049 0.005 0.04 0.30

(0.022) (0.003)
Intensivists per 100 admissions -0.050 0.001 0.00 0.14

(0.022) (0.003)

Spending and Outcomes
Relative spending -0.045 -0.002 0.95 1.22

(0.016) (0.002)
Mortality rate -0.045 0.005 7.11 7.98

(0.017) (0.003)
Readmission rate -0.045 -0.003 11.70 12.70

(0.017) (0.002)

Note: This table presents regression results investigating heterogeneous treatment effects along characteristics
of the VA hospital associated with each zip code. For each VA hospital characteristic 𝑥, we divide observations
𝑖, based on whether 𝑥 is below vs. above the median, denoted by 𝐼𝑥,𝑖 = 0 and 𝐼𝑥,𝑖 = 1, respectively. Regression
results correspond to Equation (8). The coefficient on VA represents the LATE of going to the VA, and the co-
efficient on VA× 𝐼𝑥,𝑖 represents the difference in the LATE between observations with 𝐼𝑥,𝑖 = 1 and observations
with 𝐼𝑥,𝑖 = 0. Appendix A.5 provides further details on the hospital characteristics.
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Table A.12: Heterogeneity by Patient Characteristics

Regression estimates Characteristic means
VA VA × 𝐼𝑥,𝑖 𝐼𝑥,𝑖 = 0 𝐼𝑥,𝑖 = 1

Older than 80 -0.047 0.004 0.00 1.00
(0.017) (0.003)

Black -0.043 -0.002 0.00 1.00
(0.017) (0.003)

Hispanic -0.045 -0.008 0.00 1.00
(0.017) (0.008)

Income -0.048 0.000 $12,005 $33,760
(0.018) (0.000)

Comorbidity count -0.044 -0.014 3.90 9.28
(0.016) (0.002)

Mental illness or substance abuse -0.045 -0.005 0.00 1.00
(0.017) (0.002)

VA visits in prior year -0.044 -0.004 2.15 11.88
(0.017) (0.002)

Ambulance rides in prior year -0.043 -0.008 1.00 3.55
(0.017) (0.002)

Advanced Life Support -0.046 -0.013 0.00 1.00
(0.017) (0.002)

Predicted VA user -0.044 -0.005 0.70 1.00
(0.017) (0.003)

Predicted mortality -0.045 -0.018 0.04 0.15
(0.016) (0.002)

Note: This table presents regression results investigating heterogeneous treatment effects along patient char-
acteristics. For each VA hospital characteristic 𝑥, we divide observations 𝑖, based on whether 𝑥 is below vs.
above the median, denoted by 𝐼𝑥,𝑖 = 0 and 𝐼𝑥,𝑖 = 1, respectively. Regression results correspond to Equation (8).
The coefficient on VA represents the LATE of going to the VA, and the coefficient on VA× 𝐼𝑥,𝑖 represents the
difference in the LATE between observations with 𝐼𝑥,𝑖 = 1 and observations with 𝐼𝑥,𝑖 = 0.
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