
A Second-best Argument for Low Optimal Tariffs *

Lorenzo Caliendo Robert C. Feenstra

Yale University and NBER UC Davis and NBER

John Romalis Alan M. Taylor

University of Sydney and ABFER UC Davis, NBER, and CEPR

December 1, 2020

Abstract

We derive a new formula for the optimal uniform tariff in a small-country, heterogeneous-firm

model with a traded and a nontraded sector, and with roundabout production in both. Tariffs

are applied on the imported differentiated inputs in the traded sector, which are bundled with

domestic inputs to produce a nontraded finished good. First-best policy requires that markups

on domestic intermediate inputs are offset by subsidies. We compare the optimal second-best

tariff – when such subsidies are not used – to the first-best tariff from a one-sector, no roundabout

model. Under a wide range of parameter values the second-best import tariff is lower. In a 186-

country, 15-sector quantitative version of our model, the optimal uniform tariff has a median

value of 10% (7.5% for countries with above-median shares of manufacturing production), and

it is negative for five countries.

Keywords: trade policy, monopolistic competition, gains from trade, input-output linkages

JEL Codes: F12, F13, F17, F61

*Contact information: Caliendo: lorenzo.caliendo@yale.edu; Feenstra, rcfeenstra@ucdavis.edu; Romalis,
john.romalis@sydney.edu.au; Taylor, amtaylor@ucdavis.edu. We thank Kyle Bagwell, John Fernald, Andrés
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1 Introduction

The use of tariffs to protect traded goods such as manufactures has a long history. In his famous

Report on Manufactures, Alexander Hamilton argues for moderate tariffs combined with direct

subsidies to promote manufacturing. Opposition to the proposed subsidies came from Thomas Jef-

ferson and James Madison, who favored even higher tariffs, and Madison’s administration produced

the first protectionist tariff in the United States (Irwin, 2004). The administration of President

Donald Trump enacted tariffs, often at 25%, to protect several manufacturing industries and against

a broad range of products from China. Significantly, the Chinese products were initially selected

to minimize the direct impact on consumer prices, leaving American businesses facing the brunt of

tariffs on their imported inputs (Fajgelbaum, Goldberg, Kennedy and Khandelwal, 2020).

Does modern trade theory offer any new answer to this old question of whether to protect

the traded sector? To answer this, we investigate a small-country model with two sectors – one

traded and the other nontraded – and with heterogeneous firms, monopolistic competition and

CES preferences (as in Melitz, 2003). We adopt a Pareto distribution for productivity (as in

Chaney, 2008) and also roundabout production (as in Caliendo and Parro, 2015). The differentiated

intermediate inputs in each sector are bundled into a finished good that is sold to home consumers

and firms in that sector, but not traded, while the differentiated inputs are traded in one sector.

Demidova and Rodŕıguez-Clare (2009) obtain a formula for the optimal uniform tariff in a small

country with one sector and no roundabout production, which we denote by topt. They argue that

this single tariff instrument offsets two distortions: the need to correct for the markup on domestic

intermediate inputs; and the externality present because imported inputs bring surplus that is

not taken into account in domestic spending. That single instrument is no longer sufficient in an

economy with input-output linkages, however: in that case, a combination of domestic subsidies to

buyers of the inputs, or on the final good bundled from them, and a tariff is needed to achieve the

first-best. When those domestic subsidies are not used, then we find that the second-best optimal

tariff is below topt for a wide range (but not all) of parameter values.

We obtain the optimal uniform, second-best tariff as a fixed-point of a formula that has two new

terms: a M term that reflects the relative monopoly distortion between the traded and nontraded
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sectors; and a R term that reflects roundabout production in the traded sector, which amplifies

the monopoly distortion there. In a 186-country, 15-sector quantitative version of the model, the

optimal uniform tariff has a median value of only 10% (or 7.5% for countries with above-median

shares of manufacturing production), and is negative for five countries: Bhutan, Myanmar, New

Caledonia, Hong Kong, and Spain.

Costinot, Rodŕıguez-Clare and Werning (2020) analyze optimal tariffs with very general tastes

and technologies, and they show that optimal tariffs can be lowered (and even made negative) by

having multiple sectors, a non-Pareto distribution for productivity, or linear foreign preferences.

They are the first to extend the analysis to nonuniform tariffs, and they find that the importing

country should use an import subsidy on the least efficient foreign exporters. Haaland and Venables

(2016) demonstrated a potential second-best role for reduced trade taxes to offset a monopoly

distortion, building on earlier work by Flam and Helpman (1987). Lashkaripour and Lugovsky

(2020) analyze optimal tariffs in a multisector economy with input-output linkages, and they also

investigate second-best tariffs in some settings. But so far the literature has not addressed the

realistic case that we examine: second-best tariffs in the presence of roundabout production and

a nontraded sector, with endogenous entry into both sectors. That is the critical gap that we aim

to fill, by providing a formula for the second-best tariff in this setting and by characterizing the

generality of low optimal tariffs.

2 Two-Sector Economy with Roundabout Production

We analyze a two-sector Melitz (2003)-Chaney (2008) model with roundabout production, similar

to Arkolakis, Costinot, and Rodŕıguez-Clare (2012, section IV) and Costinot and Rodŕıguez-Clare

(2014). We summarize key equations here and Appendix A contains the full model. There are two

countries, k = i, j, and two sectors s = 1, 2, where sector 1 is traded and sector 2 is nontraded.

County i is a small open economy, and the foreign country j 6= i is the rest of the world. In the

foreign country, for simplicity we assume a single traded sector, s = 1.

In both sectors, firms produce differentiated inputs under monopolistic competition, which are

costlessly bundled into a finished good in CES fashion, with elasticity σs > 1. The finished good
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is non-traded, and it is sold to domestic consumers as final goods and also to domestic firms as

intermediate inputs, used to produce differentiated inputs (e.g. firms produce machinery parts

using machines). In sector 1, the traded differentiated inputs are subject to iceberg costs and the

imported varieties are subject to a tariff, where one plus the ad valorem tariff for country i imports

from j is denoted by tji1; for simplicity, there is no foreign tariff.

The finished output in each sector has quantity Qis, price index Pis, and value Yis ≡ PisQis.

With roundabout production, the marginal cost of producing a differentiated input for a firm with

productivity ϕs = 1 in sector s is

xis ≡ wγisi P 1−γis
is , (1)

where 0 < γis ≤ 1 is the labor share. We refer to (1) as the input cost index.

A mass of firms Nis incur sunk labor costs of entry feis to receive a productivity draw from a

Pareto distribution, Gs(ϕs) = 1 − ϕ−θss , with ϕs ≥ 1 and θs > σs − 1. As is familiar from the

Melitz-Chaney model, firms choose to produce the differentiated input for the domestic market or

to export if their productivities exceed some cutoff levels, and in each case, the firms then incur

additional fixed labor costs.

Consumers have Cobb-Douglas preferences over final goods in the two sectors:

Ui = Cαii1 C
1−αi
i2 , (2)

where αi > 0 is the expenditure share on the traded sector 1. Consumer income Ii includes labor

income (the only factor of production) wiLi, plus rebated tariff and tax revenue Bi, while free entry

ensures that expected firm profits equal zero.

Domestic consumer demand for finished goods equals αiIi in sector 1 and (1 − αi)Ii in sector

2. Let λijs denote the expenditure share of differentiated inputs that country j purchases from

country i, so λiis = 1 − λjis is the domestic expenditure share with λji2 ≡ 0 and λii2 ≡ 1 in

the nontraded sector 2. Then the total production cost of all differentiated inputs in sector 1 in

country i is σ1−1
σ1

∑
k=i,j λik1Yk1; namely, the domestic sales and exports of differentiated inputs in

sector 1, adjusted by markups. Given the share (1− γis) of costs in (1) going to the finished good,

the demand for that good in sector 1 comes from domestic consumers and from domestic firms

4



producing those differentiated inputs for sale in both countries:

Yi1 = αi(wiLi +Bi) + γ̃i1 (λiisYi1 + λij1Yj1) ,with γ̃is ≡ (1− γis)
(
σs − 1

σs

)
< 1, (3)

while in the nontraded sector 2 this equation is simply Yi2 = (1 − αi)(wiLi + Bi) + γ̃i2Yi2. The

parameter γ̃is eliminates markups from the value of intermediate inputs before computing the cost

share, (1− γis), devoted to the finished good as an input.

The expenditure shares and the cutoff productivities are determined in equilibrium (see Ap-

pendix A), and we normalize the foreign wage at unity. The term λij1Yj1 appearing in (3) is the

value of country i exports of the differentiated inputs. Under balanced trade, this must equal the

net-of-tariff value of imports. Letting tji1 denote one plus the ad valorem import tariff used by

country i, then λij1Yj1 =
λji1
tji1

Yi1. Entry is proportional to the demand for those inputs for home

sale, λii1Yi1, plus the demand for exports, λij1Yj1 =
λji1
tji1

Yi1. Solving for Yi1 from (3) we find that

entry is

Ni1 =
αi(σ1 − 1)

fei1θ1 σ1

[
Li

1−αi
Λii1

+ (αi − γ̃i1)

]
, with Λi1 ≡

(
λii1 +

λji1
tji1

)
. (4)

Since λiis + λjis = 1, then Λi1 = 1 in free trade (with tji1 = 1) and autarky (tji1 → +∞ so

λii1 = 1 and λji1 = 0). It follows that Ni1 is equal at these two points. But for 1 < tji1 < +∞

then Λi1 < 1, so that Λi1 is a ∪-shaped function of the tariff. We show (see Appendix A.2) that

Λi1 achieves its minimum at the same tariff at which tariff revenue Bi/wi is maximized. It follows

from (4) that entry is a ∪-shaped function of the tariff, just like Λii1, unless there is no nontraded

sector and αi = 1, in which case entry is constant. The intuition for this result is Lerner symmetry,

whereby the import tariff acts like an export tax, and starting from free trade the tariff depresses

entry into the traded sector. Entry into the nontraded sector is

Ni2 =
(1− αi)(σ2 − 1)

fei2θ2 σ2(1− γ̃i2)

(
Li +

Bi
wi

)
, (5)

which is a ∩-shaped function of the tariff because revenue Bi/wi has that pattern.

5



3 First-best Uniform Policies

3.1 Closed Economy

Before analyzing the first-best policy with trade, we initially treat country i as a closed economy.

The markup on the differentiated inputs is fully passed-through to the price of the bundled, finished

goods in each sector. That distortion then operates on two margins: consumer purchases of finished

goods; and firm purchases of finished goods as inputs, where the higher price on the finished good is

further passed-through to raise the price of intermediate inputs, creating a double-marginalization

of the markup on intermediate inputs. Rather than correcting the monopoly distortion at its source

(i.e. in the price of differentiated inputs), it will be instructive to correct it by using tax/subsidies on

purchases of the finished goods on these two margins. So we consider both consumer and producer

tax/subsidies on purchases of the finished goods, where one plus the ad valorem rates are denoted

by tcis and tpis, respectively. The input price index in (1) then becomes

xis = wγisi (tpisPis)
1−γis . (6)

When these tax/subsidy instruments are used, their first-best values (see Appendix B) are

tpis =

(
σs − 1

σs

)
< 1, and

tci1
tci2

=
tpi1
tpi2
. (7)

The optimal producer subsidies tpis < 1 exactly offsets the markups on differentiated inputs which

would otherwise be fully passed-through to finished goods prices.1 Likwise, optimal consumption

tax/subsidies tcis are needed so that, in relative terms, these prices offset the markups implicit in

finished goods’ prices faced by consumers.

3.2 Small Open Economy

We initially consider a one-sector economy, s = 1, with no roundabout production. Demidova and

Rodŕıguez-Clare (2009) identify two distortions in this economy. The first is the markup charged

on the differentiated inputs. That distortion can be corrected by subsidizing domestic buyers of

1The need for such subsidies in a dynamic monopolistic competition model was noted by Judd (1997, 2002).
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those inputs, where one minus the ad valorem subsidy is

t∗ii1 = ρ1 with ρi ≡
σi − 1

σi
< 1. (8)

Gros (1987) finds that with homogeneous firms the first best policy is an import tariff of t1 ≡ 1/ρ1,

which is equivalent to the subsidy in (8).

With heterogeneous firms, however, Demidova and Rodŕıguez-Clare (2009) find that there is

a second distortion: each new foreign variety brings surplus, which domestic buyers do not take

account of in their spending. One way to correct this externality is to use an import subsidy, and

they find that one minus the optimal ad valorem subsidy is

t∗ji1 =
θ1ρ1

(θ1 − ρ1)
< 1, (9)

where the inequality follows from θ1 > σ1 − 1. They argue that that an equivalent policy to using

t∗i1, t
∗
ji1 is to multiply the tariff t1 = 1/ρ1 by the import subsidy in (9), and then both distortions

are corrected by a single instrument, which is the optimal tariff:2

topt ≡ t1 × t∗ji1 =
θ1

(θ1 − ρ1)
> 1. (10)

In a one-sector model with roundabout production, however, this equivalence no longer holds:

while the relative price of imports is the same by using t∗ii1, t
∗
ji1 < 1 or using topt > 1, the absolute

price of the bundled finished good Pi1 to firms is lower in the former policy. One way to achieve the

same relative price of imports while also offsetting the markup implicit in the price of the finished

good is to “scale-up” t∗ii1 and t∗ji1 by dividing by ρ1, thereby obtaining tii1 = 1 and topt, and then

use a subsidy of ρ1 on the finished good to offset this scaling-up. This policy is equivalent to what

Demidova and Rodŕıguez-Clare (2009) propose, but in the presence of roundabout production, the

subsidy of ρ1 on the finished good is optimal in (7) for the closed economy.

Is subsidizing the finished good by ρ1 and applying the tariff of topt also a first-best policy for

the small open economy? To answer this question in the one-sector model, we modify our model

2The same small-country formula for the optimal tariff as (10) is obtained by Felbermayr, Jung and Larch (2013),
who show that the optimal tariff in a large country is higher.
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assumptions (in this subsection only) to suppose that the fixed and sunk costs in sector 1 do not

use only labor, but rather, are proportional to the input cost index xi1 in (6). This assumption

ensures that changes in tpi1 does not lead to any changes in the cutoff productivities (i.e. no selection

effects). In that case, we find that the first-best production subsidy is

tp∗i1 = ρ1

(
λii1 +

λji1
tji1

)
= ρ1Λi1. (11)

So for the traded sector, we apply a subsidy of ρ1 in (11) but we also reduce the price of the finished

good by an amount that reflects the tariff on imported inputs. Substituting this first-best producer

subsidy into the expression for utility, we find that utility is an increasing transformation of that

obtained in the one-sector model without roundabout production.3 It follows that the optimal tariff

is the same in both cases, and therefore equals topt.

To summarize, the first-best producer subsidy in (11) supports the familiar one-sector, no

roundabout optimal tariff topt. This result is similar in spirit to Lashkaripour and Lugovsky (2020)

who analyze first-best policies in a multisector economy with input-output linkages. Their results

show that: (i) first-best policies must include a subsidy to buyers of the bundled finished good; (ii)

in a small open economy, the first-best tariff policy is not affected by having input-output linkages.4

Their results apply in a setting with restricted entry, however, whereas we show (Appendix B) that

(11) with topt is first-best in the two-sector economy with endogenous entry, where we also apply

tp∗i2 = ρ2 and tc∗i1/t
c∗
i2 = tp∗i1 /t

p∗
i2 to complete the first-best policies.5

3We require that assumption that γi1σ1 > 1, which means that the extent of roundabout production cannot be
too great; see Appendix B.

4See their section 4 and especially footnote 23, which explains that for a small open economy the equations for
the first-best taxes and tariffs are identical with and without input-output linkages.

5While our first-best results depend on the assumption that the fixed and sunk costs of entry in sector 1 are
proportional to xi1 – so that changes in the subsidies do not generate any selection effects – we conjecture that they
are true more generally provided that other first-best policies are applied to ensure that the cutoff productivities are
at their socially optimal levels. Lashkaripour and Lugovsky (2020, Appendix I) rely on this assumption.
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4 Second-Best Uniform Policies

4.1 Closed Economy

In the closed economy we consider the second-best case where only consumption tax/subsidies are

applied. Because of double-marginalization of the markups charged on differentiated outputs, the

sector s elasticity σs effectively becomes σ̃is ≡ 1 + γis(σs − 1), and the markup is σ̃is
(σ̃is−1) . The

solution for the optimal consumption tax/subsidies (see Appendix B) is

tci1
tci2

=

(
σ̃1 − 1

σ̃1

)/(
σ̃2 − 1

σ̃2

)
for σ̃is ≡ 1 + γis(σs − 1). (12)

To interpret (12), the sector with the lowest effective elasticity must have the lowest tax (i.e. greatest

subsidy) to offset the effective monopoly distortion, which is inversely measured by γis(σs−1). Even

if the elasticities σs ≡ σ > 1 are identical then the sector with the strongest roundabout production

(lowest γis) must be subsidized in consumption, because it has the highest effective markup due

to double-marginalization. The intuition from the second-best case will be useful as we examine

tariffs on trade, as we turn to next.

4.2 Small Open Economy

We now add the nontraded sector 2, and we suppose that the only policy instrument available is

an uniform import tariff (or subsidy) in the traded sector. Because we are no longer using the

instruments tii1, tpi1 or tci1, for convenience we drop subscripts from the import tariff tji1 and simply

denote it by ti with an optimal second-best value t∗i . The fact that a subsidy on the finished good –

as required in (11) – is not used creates one reason for lowering the optimal tariff below topt, since

that is a second-best way to reduce the price of the finished good purchased by firms.

Entry provides a second reason to expect that t∗i < topt. As we showed in section 2, starting

from free trade a tariff in sector 1 leads firms to exit that sector and move into sector 2. That will

lead to a welfare loss if the monopoly distortion is greater in the traded sector. Let D(ti) denote

the marginal welfare impact of firms entering the traded sector – holding selection (i.e. the cutoff
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productivities) constant – relative to the share of spending on that sector (αi). We find that

D(ti) =

[
σ̃i1

(σ̃i1 − 1)
− σ̃i2

(σ̃i2 − 1)

Λii1(1− γ̃i1)

1− γ̃i1Λii1
− Ed

]
(13)

where Ed > 0 and all such script-variables depend on sector 1 parameters and λii1 (and therefore

depend on the tariff). The first term appearing in (13), σ̃i1
(σ̃i1−1) , is the effective markup in sector

1, and the second term is the effective markup in sector 2 multiplied by Λi1(1−γ̃i1)
1−γ̃i1Λii1

(which is ≤ 1

for ti ≥ 1) that reflects tariff revenue. The third term −Ed < 0 appears because the tariff is an

inefficient instrument to influence entry, so it has a deadweight loss.

We see from (13) that D(ti) > 0 so that entry into the traded sector leads to a welfare gain –

and exit leads to a welfare loss – when that effective markup there is sufficiently above the effective

markup in the nontraded sector. For the 186 country quantitative model used in the next section,

we find that γi1(σ1−1) in manufacturing (one of the industries in the traded sector) and γi2(σ2−1)

in the nontraded sector (services) both have median values of about unity. It follows that D(ti) < 0

at the median values, so it is inefficient to lower the tariff to promote entry into manufacturing. But

for about 10% of countries we find that D(ti) > 0 when comparing manufacturing with services,

which creates an argument for encouraging entry into manufacturing by lowering the tariff.

In the theory, we want to allow the effective distortion in the traded sector to be greater or less

than that in the nontraded sector. We will impose an upper-bound on the inverse distortion of the

traded sector as compared to the nontraded sector:

(σ̃i1 − 1)

σ̃i1
< κi

(σ̃i2 − 1)

σ̃i2
, (14)

where the parameter κi ≥ 1 will be specified in Theorem 1 below. Our aim is to choose κi high

enough to include a wide range of effective distortions in (14).

We can now state a general formula for the optimal second-best tariff t∗i , as compared to topt.

Specifically, t∗i is obtained as a fixed point of the equation

t∗i = topt F (t∗i ), with F (ti) ≡
[

1− (1− γi1)R(ti)

1 + (1− αi)M(ti)

]
, (15)
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where M(ti) captures the impact of the higher monopoly distortion in the traded versus the non-

traded sectors, and is defined by

M(ti) ≡M×
(
Em −

(ti − 1)

ti
θ1

)
D(ti)

A(ti)
with M > 0, Em > 0, (16)

and A(ti) is defined by

A(ti) ≡ αi − γ̃i1 + (1− αi)Ea with Ea > 0, (17)

and R(ti) is defined by

R(ti) = R×
[
θ1 − ρ1 (1− λii1)

Λi1
− θ1ρ1

]
with R > 0. (18)

To explain these terms more carefully, recall that the distortion term D(ti) measures the

marginal welfare impact of firms moving from the nontraded to the traded sector, and notice

that it enters (1−αi)M(ti), which appears in the denominator of (15), reflecting the impact of the

relative monopoly distortion on the optimal tariff. When αi = 1 so there is only the traded sector,

then this term vanishes, because there is no impact of the relative distortion between traded and

nontraded goods. But there is still roundabout production in traded goods alone, and the impact

of that roundabout production on the optimal tariff is captured by the term R(ti), appearing in

the numerator of (15).

More specifically, when αi = 1 and γi1 = 1 in (15), then we are back in the one-sector, no-

roundabout model and that formula immediately gives t∗i = topt. Outside of that special case, there

will be a lower optimal tariff, t∗i < topt, whenever (1−αi)M(t∗i ) ≥ 0 and (1−γi1)R(t∗i ) ≥ 0 with one

of these inequalities holding strictly. For example, suppose that αi = 1 so there is only a traded

sector, but γi1 < 1 so there is some roundabout production. Then we can show that R(t∗i ) > 0 at

the fixed point of (15), so that roundabout production lowers the optimal tariff.

Next, suppose we add the nontraded sector so that αi < 1, in which case the denominator of

F (t∗i ) equaling [1 + (1−αi)M(t∗i )] comes into play. If the relative distortion in the traded sector is

positive, D(t∗i ) > 0, then provided that the other terms in (16) are positive we will have M(t∗i ) > 0,
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so the denominator further reduces the optimal tariff. One of those other terms is A(ti). Recall

that we initially defined D(ti) as the marginal impact of entry into sector 1 relative to the size

of that sector (αi), and we loosely interpret A(ti) as the effective size of sector 1. As a regularity

condition we need to impose A(ti) > 0, which is guaranteed by the sufficient conditions specified

in the following result.

Theorem 1.

(a) Pure roundabout: If αi = 1 and γi1 < 1, then R(t∗i ) > 0 and the optimal tariff is t∗i < topt.

(b) No roundabout: If γi1 = γi2 = 1 then (i) D(t∗i ) > 0 and the optimal tariff is t∗i < topt when

σ1 < σ2

[
σ1(θ1 − ρ1)

σ1θ1 − ρ1

]
< σ2, (19)

(ii) if σ1 ≥ σ2 then D(t∗i ) < 0 and the optimal tariff is t∗i > topt.

(c) Two sectors with roundabout: Assume that αi < 1 and the following two conditions hold:

γi1 ≥
1

1 + σ1
ρ1

(θ1 − ρ1) (1− ρ1)
, (20)

αi ≥ min

γ̃i1, −γi1θ1 + ρ1

(
1 + 1−γi1

σ1γi1

)
θ1(1−ρ1)

ρ1
+ ρ1

(
1 + 1−γi1

σ1γi1

)
 . (21)

Then A(ti) > 0 for ti > t′i, where t′i < 1 is an import subsidy. Furthermore, if there is enough

roundabout production so that

γi1 ≤ 1− ρ1[
θ1(1− ρ1) + ρ2

1

]
(θ1 − ρ1)

< 1, (22)

and the bounds in (14) hold where we specify κi as

κi =

[
δi +

γ̃i1θ1 (αi(1− ρ1) + γi1ρ1)
(
θ1 (1− ρ1) +

(
topt − γ̃i1

)
ρ1

)
(1− αi) (1− γ̃i1)2

]
(topt − γ̃i1)

(1− γ̃i1)
, (23)

for δi ≡
1−ρ21γi1(1−γi1)

(
1− ρ1

(topt)2

)−1

topt+ 1
σ1

, then the optimal tariff is t∗i < topt with R(t∗i ) > 0.
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Part (a) has already been discussed, and shows that roundabout production in a one-sector

model always lowers the optimal tariff. Part (b) deals with the opposite case where there is no

roundabout production, in which case A(ti) > 0 is guaranteed. Condition (19) used in part (b)(i)

ensures that the relative distortion in the traded sector sufficiently exceeds that in the nontraded

sector so that D(ti) > 0 for ti ∈ [1, topt]. In that case, the relative monopoly distortion is the only

factor operating to reduce the optimal tariff and we find that t∗i < topt because D(t∗i ) > 0 and the

denominator of F (t∗i ) exceeds unity. On the other hand, if the traded sector is less distorted than

the nontraded sector, with σ1 ≥ σ2, then we have the reverse outcome with D(t∗i ) < 0 and t∗i > topt.

In part (c) we allow for two sectors and roundabout production, and now we need A(ti) > 0.

To ensure A(ti) > 0 for ti > t′i, where t′i < 1 is an import subsidy specified in the proof, we

require the sufficient conditions (20) and (21): the former is a lower-bound on γi1 and the latter is

a lower-bound on αi (but also depending on γi1). These two lower-bound constraints are illustrated

as dashed lines in Figure 1, as drawn for σ1 = 4.4 and θ1 = 5.1.

The dots in Figure 1 are the values of αi and γi1 from the EORA dataset providing input-

output matrices for 186 countries in 2010 and 15 sectors (Lenzen, Moran, Kanemoto and Geschke,

2013).6 The traded sectors include manufacturing, agriculture and mining (including petroleum

extraction), while all service industries are treated as nontraded.7 Aggregating within these traded

and nontraded sectors, we obtain the dots in Figure 1. We see that the two lower-bounds constraints

(20) and (21) are satisfied for all countries, so that the regularity condition A(ti) > 0 holds.

Now we check whether t∗i < topt holds in part (c), which allows for the nontraded sector and

roundabout production in both sectors. We already know from part (b) – where we excluded

roundabout production – that it is possible to find the reverse outcome t∗i > topt if the traded

sector is less distorted than the nontraded sector (σ1 ≥ σ2). We would like to know, however, if a

small amount of roundabout production is enough to overwhelm that relative distortion, so that

t∗i < topt due to R(t∗i ) > 0 regardless of the sign of D(t∗i ). Part (c) answers that question in the

affirmative. The needed amount of roundabout production is shown by the constraint (22), which is

6EORA has 190 countries including the Rest of the World, which we omit, along with Belarus, Moldova and the
Former Soviet Union because their input-output tables are nonsensical.

7While we made this assumption in our quantitative model of the next section, it is not needed to satisfy the
various constraints in Theorem 1. We have investigated αi and γi1 when treating some services as traded. This
approach shifts the dots in Figure 1 to the right, making it easier to satisfy the constraints.
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an upper-bound on γi1 as graphed in Figure 1 and is very weak: all countries in our sample satisfy

this constraint, with Kuwait (KWT) near the borderline of (22) due to high γi1 (little roundabout

production) in petroleum extraction and thus in overall traded production.

Figure 1: Parameter Restrictions
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To ensure that t∗i < topt in part (c), we also need to put a constraint on the relative distortion

across sectors, as was indicated by (14) with κi ≥ 1. The needed value of κi is indicated by (23),

which has a large median value of 9.1 in our sample of 186 countries. The line for which κi = 1 is

shown in Figure 1 with the thin solid region κi ≤ 1 illustrated by that line and the region above it:

for parameters in this region, we find that t∗i > topt the traded sector is less distorted in effective

terms than the nontraded sector (σ̃1 ≥ σ̃2). In other words, if the extent of roundabout production

in the tradable sector is very limited – as illustrated by the thin solid region that is less than

found for any country in our sample – then t∗i > topt whenever the traded sector is effectively less
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distorted. But in the shaded region of parameters illustrated in Figure 1, which includes the data

for all countries in our sample given our chosen parameters, then we find that t∗i < topt in our

two-sector model.8

We conclude this section by noting that the optimal tariff can be negative. In our working paper

(CFRT, 2020), we examine the conditions to ensure that the optimal tariff is negative, and we find

that it occurs for two types of countries: a Highly Linked Economy that has high roundabout

production (low γi1) and is very open (low λii1); and a Remote Economy, with a small traded

sector and with λii1 → 1, so that the economy is nearly closed to trade due to high iceberg costs,

as may occur for very distant countries. We have found examples of both types in our quantitative

analysis that is discussed next.

5 Second-best Uniform Tariffs in a General, Calibrated Model

The quantitative model from our working paper (CFRT, 2020) uses the EORA dataset. Table

1 contains the model elasticities and summary statistics, after grouping the 15 sectors into four

broader sectors. The estimates of σs and θs for goods are from Caliendo and Parro (2015), and

satisfy the relationship θs/ (σs − 1) = 1.5. Gervais and Jensen (2019) find that services have

elasticities of substitution about one-quarter smaller than for manufacturing. We follow them, by

setting σs = 2.8 for services and, given θs/ (σs − 1) = 1.5, setting θs = 2.7. We therefore have σs

for traded goods exceeding σs for services, generating higher markups in the nontraded sector.9

We slightly generalize the Melitz-Chaney model by allowing for nested CES with the upper-level

elasticity of substitution ωs, between the aggregates of home and foreign varieties, differing from

the lower-level elasticity σs, across different foreign (or home) varieties. Setting ωs = σs/1.25 best

reproduces global trade growth between 1990 and 2010. With this structure we obtain the one-

sector, no-roundabout, small-country formula for the optimal tariff from Costinot, Rodŕıguez-Clare

8In the region of Figure 1 shown in white, we are unsure whether the second-best tariff is greater or less than
topt because Theorem 1 only provides sufficient conditions for each case. We have numerically computed the optimal
tariff using a calibrated version of the two-sector model with the equilibrium conditions specified in Appendix A.6,
and depending on the choice of parameters, we find that t∗i < topt in most (or all) of the white region.

9EORA allows for trade in service sectors, but we excluded that trade from our quantitative model.
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and Werning (2020), which for nested CES is:10

topt =
ω1[

ω1 − (σ1−1)
θ1

] . (24)

Table 1: Elasticities and Linkages by Broad Sector

Statistic Agriculture Mining Manufacturing Services

θs 8.61 13.03 5.05 2.70
σs 6.74 9.69 4.36 2.80
αis (p10) 0.00 0.00 0.15 0.66
αis (median) 0.01 0.00 0.20 0.79
αis (p90) 0.05 0.01 0.28 0.84
γis (p10) 0.31 0.29 0.24 0.46
γis (median) 0.51 0.46 0.28 0.56
γis (p90) 0.76 0.74 0.38 0.69
σ̃is = 1 + γis(σs − 1) (p10) 2.77 3.56 1.81 1.83
σ̃is = 1 + γis(σs − 1) (median) 3.93 4.98 1.96 2.01
σ̃is = 1 + γis(σs − 1) (p90) 5.37 7.42 2.28 2.24

We measure γis from our theoretical model by treating “labor” in that model as an aggregate

factor that includes both labor and capital services. Accordingly, Table 1 reports the shares of

industry revenue from EORA that go to value-added, γis, which for manufacturing varies across

countries from 24% at the 10th percentile to 38% at the 90th. Also reported is the effective

elasticity σ̃is ≡ 1 + γis(σs − 1) in each sector. We find that the median effective elasticity in

Manufacturing (1.96) is only slightly lower than the median effective elasticity in Services (2.01),

with much heterogeneity across countries, and both of these broad sectors are more distorted than

the two primary sectors, agriculture and mining.

The optimal tariffs in the quantitative model are computed numerically. Specifically, we start

at a world free trade equilibrium, calculated using 2010 input-output tables, and use a grid search

over positive and negative tariffs for each country. We evaluate the welfare effects from imposing

unilateral uniform tariffs across sectors of between -20% to +40% in increments mostly of 2.5% one

country at a time and summarize results in Figure 2.

Five countries have negative optimal tariffs in 2010: Bhutan; Myanmar; New Caledonia; Hong

Kong; and Spain. Bhutan, Myanmar and New Caledonia seem to fit our description of remote

10See their footnotes 21 and 20 and set x∗FF = 1.
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economies, while Hong Kong and Spain are highly-linked economies. Our median 2010 optimal

tariff is 10%. For comparison we also plot optimal uniform tariffs using the one-sector formula

from (24). Using our parameters for each sector yields optimal tariffs of 16.0% for agriculture;

10.6% for mining; 27.3% for manufacturing; and 52.4% for services. We plot two horizontal lines

for the optimal tariffs topt in Manufacturing and in Mining (which includes petroleum extraction).

Figure 2: Optimal One-sector Tariffs and from the Quantitative Model
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Our median optimal tariff t∗i of 10% is less than two-fifths of topt in (24) which is 27.3% for

Manufacturing parameters (the dominant sector in trade). There is much variation across countries.

Economies with at least the median proportion of manufacturing production tend to have lower

optimal tariffs, with a median of 7.5%, or just over one-quarter of equation (24) for Manufacturing.

In contrast, the 13 countries where Mining (including petroleum extraction) accounts for at least

10% of production have a median optimal tariff of 20%, which greatly exceeds topt in (24) of

10.6% for that sector’s parameters. We believe that the high optimal tariff in Mining reflects a

combination of large exporters exploiting the terms of trade, and the need to tax production in

that sector to move resources into more distorted sectors. For countries that specialize in exporting

from that sector – including the OPEC countries – the optimal tariff is much higher than indicated

by the small-country formula in (24). But for those countries that specialize in manufacturing, the

numerical optimal tariffs are considerably lower than topt in nearly all cases.
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6 Conclusions

We began by asking whether modern trade theory has anything new to say about arguments for

protecting the traded sector. We did not mention a line of recent literature that to some extent

argues in favor of such protection. Specifically, this is the firm-delocation literature that combines a

monopolistically competitive traded sector with a competitive traded outside good (see e.g. Melitz

and Ottaviano, 2008, section 4; Bagwell and Lee, 2020). The traded numeraire good pins down

relative wages between countries, so the country applying tariffs is “small” in the sense that its

wages do not respond to its tariff. In this literature, encouraging entry into traded goods requires

positive import tariffs. Essentially, the ability to attract firms into the home country takes the

place of a conventional terms-of-trade motive for tariffs, so that the optimal tariff is positive even

though wages are fixed. Of course, with multiple countries pursuing this motive for protection,

there is ample scope for trade agreements to reduce the deadweight losses due to the tariffs (Ossa,

2011; Bagwell and Staiger, 2015).

The major differences between this class of models and our own are: (i) the nontraded service

sector does not fix relative wages between countries; and (ii) roundabout production. Lerner

symmetry applies to our traded sector, so that import tariffs are equivalent to export taxes and

inhibit entry into that sector. That logic does not apply when the numeraire good is traded, which

gives firm-delocation models a very different flavor: the firm-delocation models act like partial

equilibrium because wages are fixed, and perhaps are most appropriate to narrowly targeted tariffs,

whereas our results depend on Lerner symmetry, which is a general equilibrium result and depends

on having broad tariffs applied to the traded sector. Determining the most appropriate range of

applications for each class of models is one important area for further research.
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APPENDIX

A Two-Sector Small Open Economy Model

We focus on a small open economy model, with two sectors s = 1, 2 and roundabout production

in both sectors. County i is the small home economy and the foreign country j 6= i is the rest of

the world. In the foreign country, for simplicity we assume a single traded sector denoted by s = 1

with no roundabout production and no import tariff.

A.1 Description of Economy

Figure 3: Schematic production structure
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The structure of the country i economy is illustrated in Figure 3. Firms in sector 1 of country i

can source differentiated inputs from countries k = i, j for i 6= j, and the CES production functions

over the differentiated inputs purchased from each country k and in total are

Qi1 ≡

∑
k=i,j

Q
σ1−1
σ1

ki1


σs
σs−1

with Qki1 ≡

Nk1

∞∫
ϕ∗ki1

qki1 (ϕ)
σ1−1
σ1 g1(ϕ)dϕ


σ1
σ1−1

, (25)
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where Nk1 are the mass of entrants in each of countries k who sell at the prices pki1 (ϕ), depending

on their productivities ϕ with Pareto distribution g1(ϕ). The cutoff productivity ϕ ≥ ϕ∗ki1 needed

to sell from country k to i will be derived below. The CES price indexes over the differentiated

inputs purchased from each country k = i, j and in total are

Pi1 ≡

∑
k=i,j

P 1−σ1
ki1

 1
1−σ1

and Pki1 ≡

Nk1

∞∫
ϕ∗ki1

pki1 (ϕ)1−σ1 g1 (ϕ) dϕ


1

1−σ1

. (26)

The mass of input varieties sold from country k = i, j to i for firms with productivity ϕ ≥ ϕ∗ki1 is

Nki1 ≡ Ni1[1−G1(ϕ∗ki1)] = Ni1ϕ
∗−θ1
ki1 , (27)

using the Pareto distribution G1(ϕ) = 1 − ϕ−θ1 with ϕ ≥ 1. Notice that the entry of firms Nk1

appearing in (25) and (26) can be converted into the mass of varieties by multiplying and dividing

by [1 − G1(ϕ∗ki1)], in which case the unconditional densities g1(ϕ) become conditional densities

g1(ϕ)/[1−G1(ϕ∗ki1)]. In sector 2 we use the analogous definitions of Qii2, Pii2, and Nii2.

The total value of production of the finished good in country i and sector s is Yis = PisQis, and

the CES demand for intermediates of variety ϕ sold from country k = i, j to i is given by

qkis(ϕ) =

(
pkis(ϕ)

Pis

)−σs Yis
Pis

. (28)

In sector 2, however, the intermediates used in country i are purchased only from country i. A firm

in i supplying differentiated inputs has the marginal costs xis/ϕ, with the costs of input bundle

supply xis given by (1). We assume that fixed and sunk costs of the firm require only labor and

are denoted by fiks and feis, respectively. In country j, we ignore roundabout production and there

is only sector 1, so that xj1 ≡ wj and the fixed and sunk labor costs are fjk1 and fej1.

The profits in country k′ = i, j from supplying differentiated inputs to country k = i, j are

πk′ks(ϕ) = max
pk′ks(ϕ)≥0

{
pk′ks(ϕ)

tk′ks
qk′ks(ϕ)− xk′s

ϕ
τk′ks qk′ks(ϕ)− wk′ fk′ks

}
, (29)

where τk′ks are iceberg trade costs with τiis ≡ τjjs ≡ 1, and tji1 is one plus the ad valorem tariff
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charged for country i imports from j in sector 1, with all other tariffs at unity: tkjs ≡ 1, k = i, j.11

The first-order conditions for profit maximization yield

pk′ks(ϕ)

tk′ks
=

σs
σs − 1

xk′s τk′ks
ϕ

, (30)

qk′ks(ϕ) =

(
σs

σs − 1

xk′s τk′kstk′ks
ϕ

)−σs Yks

P 1−σs
ks

. (31)

Substituting these expressions back into profits, we can readily solve for the cutoff productivity

ϕ∗k′ks at which profits are zero:

πk′ks(ϕ
∗
k′ks) = 0 =⇒ ϕ∗k′ks =

(
σs

σs − 1

)(
σswk′fk′kstk′ks

YksP
σs−1
ks

) 1
(σs−1)

xk′s τk′kstk′ks. (32)

We follow Melitz (2003) in defining the average productivity as

ϕ̄k′ks ≡

 ∞∫
ϕ∗
k′ks

ϕσs−1 gs(ϕ)[
1−Gs(ϕ∗k′ks)

]dϕ


1
σs−1

= Ksϕ
∗
k′ks,with Ks ≡

(
θs

θs − σs + 1

) 1
σs−1

, (33)

where the constant Ks is obtained by computing the integral using the Pareto distribution.

We can substitute (31) into (25) to obtain the output of the finished good:

Qis = Kσs
s

(
σs

σs − 1

)−σs ( Yis

P 1−σs
is

)Nisϕ
∗−θs
iis

(
xis
ϕ∗iis

)1−σs
+ Njsϕ

∗−θs
jis

(
wj τjis tjis

ϕ∗jis

)1−σs


σs
σs−1

,

(34)

where in the nontraded sector 2 the second terms in brackets does not appear, and this should also

be understood in the next two equations. Using (26) and (30) we obtain an expression for Pis:

Pis =

(
ϕ∗iis

−θsNis

(
σs

σs − 1

xis
ϕ̄iis

)1−σs
+ ϕ∗jis

−θsNjs

(
σs

σs − 1

wjtjis
ϕ̄jis

)1−σs
) 1

1−σs

. (35)

We can multiply this by (34) to obtain a preliminary expression for the value of production of the

11We briefly allowed for a domestic tax/subsidy of tiis 6= 1 in our discussion of first-best policies in the main text,
but that instrument is not used otherwise.
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finished goods in country i and sector s, Yis ≡ PisQis:

Yis = Kσs−1
s

(
σs

σs − 1

)1−σs
(

Yis

P 1−σs
is

)Nisϕ
∗−θs
iis

(
xis
ϕ∗iis

)1−σs
+ Njsϕ

∗−θs
jis

(
wj τjis tjis

ϕ∗jis

)1−σs
 .

To simplify this expression, we can use (32) twice to obtain

Yis

P 1−σs
is

= σswifiis

(
σs

σs − 1

xis
ϕ∗iis

)σs−1

= σswjfjistjis

(
σs

σs − 1

wj τjistjis
ϕ∗jis

)σs−1

.

and substituting above we obtain

Yis = Kσs−1
s σs

(
Nisϕ

∗−θs
iis wi fiis + Njsϕ

∗−θs
jis wj fjis tjis

)
. (36)

The value of finished output in each sector, Yks, is sold to consumers and also back to domestic

firms. That finished output is costlessly bundled from home and (for sector 1) imported differenti-

ated inputs. Let λk′k1 denote the share of country k total expenditure in sector 1 on intermediate

goods from country k′. Using conditions (30)–(35) we can obtain the following expressions for the

expenditure shares for inputs sold by country k′ = i to country k = i, j:

λik1 = ϕ∗ik1
−θ1 Ni1

(
σ1

σ1 − 1

τik1xi1
ϕ̄ik1 Pk1

)1−σ1
(37)

= ϕ∗ik1
−θ1 Ni1

(
σ1wi fik1

Yk1

)(
θ1

θ1 + 1− σ1

)
, (38)

and for country i imported inputs:

λji1 = ϕ∗ji1
−θ1 Nj1

(
σ1

σ1 − 1

τji1wj tji1
ϕ̄ji1 Pi1

)1−σ1
(39)

= ϕ∗ji1
−θ1 Nj1

(
σ1wjfji1tji1

Yi1

)(
θ1

θ1 + 1− σ1

)
. (40)

The model is closed by making use of the market clearing condition described in the main text

in (3), which in sector 2 is simply Yi2 = (1−αi)(wiLi +Bi) + γ̃i2Yi2, together with trade balances.

Duty-free imports in sector 1 of country i are Eji1 = (λji1Yi1)/tji1 while exports are Eij1 = λij1Yj1,
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so that trade balance requires

λji1Yi1
tji1

= λij1Yj1. (41)

Note that using (38) and (40), then trade balance (41) implies

ϕ∗ij1
−θ1 Ni1wi fij1 = ϕ∗ji1

−θ1 Nj1wj fji1. (42)

Again using (38) and (40) with home sales Eii1 = λii1Yi1 and exports Eij1 = λij1Yj1, we obtain an

expression for total sales of intermediate inputs in sector 1 by country i:

Eii1 + Eij1 =
∑
k=i,j

ϕ∗ −θ1ik1 Ni1

(
θ1σ1wi fik1

θ1 + 1− σ1

)
.

This equation is simplified by making use of free entry in country i. Expected profits must equal

the sunk costs of entry, so that for a country i firm:

∑
k=i,j

∞∫
ϕ∗ik1

πik1(ϕ)g1(ϕ)dϕ = wif
e
i1. (43)

To evaluate this integral we follow the approach of Melitz and Redding (2014), who note that CES

demand implies that πik1(ϕ)+wifik1 = [πik1(ϕ∗ik1) + wifik1] (ϕ/ϕ∗ik1)σ1−1. It follows from (29) that

πik1(ϕ) =
[
(ϕ/ϕ∗ik1)σ1−1 − 1

]
wifik1, and so the above entry condition becomes:

∑
k=i,j

J1(ϕ∗ik1)fik1 = fei1 with Js(ϕ
∗) ≡

∞∫
ϕ∗

[(
ϕ

ϕ∗

)σs−1

− 1

]
g1(ϕ)dϕ. (44)

Completing the integral above using the Pareto distribution, we arrive at

(
σ1 − 1

θ1 − σ1 + 1

) ∑
k=i,j

ϕ∗−θ1ik1 fik1 = fei1, (45)

from which we can obtain an equation governing the mass of entrants Nis, namely

Ni1 = (Eii1 + Eij1)

/[
wi f

e
i1

(
θ1 σ1

σ1 − 1

)]
. (46)
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In sector 2 the mass of entrants is governed by the same equation but without Eij2 appearing

Ni2 = Eii2

/[
wi f

e
i2

(
θ1 σ2

σ2 − 1

)]
. (47)

The productivity cutoff ϕ∗ii2 in (44) and (45) is likewise determined by summing over country k = i

only, obtaining

J2(ϕ∗ii2)fii2 =

(
σ2 − 1

θ2 − σ2 + 1

)
ϕ∗−θ2ii2 fii2 = fei2. (48)

A.2 Entry and Λi1

As explained in the main text, the term λij1Yj1 appearing in (3) is the value of country i exports of

the differentiated inputs. Under balanced trade, this must equal the net-of-tariff value of imports.

Letting tji1 denote one plus the ad valorem import tariff used by country i, then λij1Yj1 =
λji1
tji1

Yi1.

Tariff revenue is Bi =
tji1−1
tji1

λji1Yi1. Using all these terms in (3), we can solve for real output Yi1/wi

as

Yi1
wi

=
αiLi

1− αi + (αi − γ̃i1)Λi1
, with Λi1 ≡

(
λii1 +

λji1
tji1

)
. (49)

Since λiis + λjis = 1, then Λi1 = 1 in free trade (with tji1 = 1) and autarky (tji1 → +∞ so

λii1 = 1 and λji1 = 0). It follows that Yi1/wi is equal at these two points. But for 1 < tji1 < +∞

then Λi1 < 1, so that Λi1 is a ∪-shaped function of the tariff. We show below that Λi1 achieves

its minimum at the same tariff at which tariff revenue Bi/wi is maximized. Then we see from

the numerator (49) that real output can be either a ∩-shaped or ∪-shaped function of the tariff

depending on whether αi > (<)γ̃i1.

This ambiguity does not extend, however, to the entry of firms producing differentiated inputs

in sector 1. Using the result in (46), and noting that home sales are Eii1 = λii1Yi1 and exports

are Eij1 = λij1Yj1, we can solve for entry into sector 1 as shown in (4). For sector 2, the market

clearing condition is Yi2 = (1− αi)(wiLi +Bi) + γ̃i2Yi2, which directly leads to

Yi2 =
1− αi
1− γ̃i2

Ii. (50)

Then making use of (47) with (50) we immediately obtain (5) in the main text.
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It remains to be shown that tariff revenue Bi has its maximum at the same tariff at which Λii1

has its minimum, as asserted in the main text. To show this, we note that because λiis = 1− λjis,

then

Λi1 = λiis +
λji1
tji1

= 1−
(
tji1 − 1

tji1

)
λjis.

It follows that Yi1Λi1 = Yi1 −Bi, and then making use of (49) in the main text we obtain

Bi = Yi1 (1− Λi1) =
αiwiLi (1− Λi1)

1− γ̃i1 − (αi − γ̃i1)(1− Λi1)
=

αiwiLi
1−γ̃i1

(1−Λi1) − (αi − γ̃i1)
. (51)

It follows that Bi is monotonically decreasing in Λi1, so their critical points are at the same

maximum-revenue tariff.

A.3 Domestic Production Share and T (tji1)

We now introduce the share of production (value-added) devoted to differentiated intermediate

inputs that are sold domestically in country i, which will be used many times in our derivations.

The expenditure share on imported intermediate inputs is λji1 in (39), so λji1Yi1 measures the value

of imports inclusive of tariffs (and iceberg costs). We can instead evaluate imports at the net-of-

tariff prices by dividing by tji1 obtaining λji1Yi1/tji1 = (1− λii1)Yi1/tji1, which equals exports and

can be summed with λii1Yi1 to obtain the total value of production. It follows that the share of

production sold to domestic firms – or the domestic production share – is

λ̃ii1 ≡
λii1

λii1 + (1−λii1)
tji1

=
tji1λii1

1 + λii1(tji1 − 1)
. (52)

We now claim that this share can be measured by

λ̃ii1 =
ϕ∗ii1

−θ1fii1

ϕ∗ii1
−θ1fii1 + ϕ∗ij1

−θ1fij1
. (53)

To show this, we first rewrite the domestic expenditure share λii1 using (36), (38) for k = i, (40)

and trade balance (42) as

λii1 =
ϕ∗ii1

−θ1 fii1

ϕ∗ii1
−θ1 fii1 + ϕ∗ij1

−θ1 fij1tji1
. (54)
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For the above two equations we obtain the relationship

tji1 =
(1− λii1)

λii1

λ̃ii1(
1− λ̃ii1

) , (55)

and as a result

1− tji1 =
λii1 − λ̃ii1

λii1

(
1− λ̃ii1

) . (56)

From these two equations we can readily confirm the second equality in (52), which shows that it

is equivalent to (53), so that is a correct formula for the domestic production share.

We can use this production share to define a simple function of the tariff T (tji1) given by

T (tji1) ≡ 1− γ̃i1 + (tji1 − 1)
(

1− λ̃ii1
)
. (57)

Notice that T (tji1) = 1− γ̃i1 in free trade (with tji1 = 1) and autarky (tji1 → +∞ so λii1 = 1 and

λji1 = 0), but T (tji1) > 1− γ̃i1 for 1 < tji1 =< +∞. It follows that T (tji1) is a ∩-shaped function

of the tariff between these two points, which is the same shape as tariff revenue Bi. In fact, T (tji1)

and Bi have their critical points at the same tariff, as we show just below.

In Appendix B we shall continue to use Λi1 to characterize entry into sector 1 and overall

welfare, but in the rest of the Appendix we find it convenient to instead use the function T (tji1).

These two concepts are inversely related, which can be seen by using (55) and (56) to obtain

tji1 =
λ̃ii1
λii1

(1− λii1)

(1− λ̃ii1)
= [(tji1 − 1)(1− λ̃ii1) + 1]

(1− λii1)

(1− λ̃ii1)
.

Using this expression and T (tji1) from (57), with λji1 = 1− λii1 we can solve for

Λi1 ≡ λii1 +
λji1
tji1

= 1− (tji1 − 1)[(T (tji1) + γ̃i1)− 1]

(tji1 − 1)(T (tji1) + γ̃i1)
=

1

(T (tji1) + γ̃i1)
. (58)

We see that Λi1 and T (tji1) are inversely related, as asserted. Since 1− Λi1 =
T (tji1)−(1−γ̃i1)
T (tji1)+γ̃i1

from
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the above equation, we can substitute this into (51) to obtain

Bi =
αiwiLi[T (tji1)− (1− γ̃i1)]

[T (tji1)− (1− γ̃i1)](1− αi) + 1− γ̃i1
=

αiwiLi

1− αi + 1−γ̃i1
[T (tji1)−(1−γ̃i1)]

. (59)

We see that Bi is monotonically increasing in T (tji1), so they have their critical points at the same

maximum-revenue tariff. Note that if we take αi = 1 so we are in a one-sector model, then Bi and

T (tji1) are especially simple affine transformations of each other, given by

Bi = wiLi

(
T (tji1)

1− γi1
− 1

)
.

A.4 Labor Allocation

We now derive expressions for labor market demand in sectors 1 and 2:

Li1 = Ni1f
e
i1 +Ni1fii1

∞∫
ϕ∗ii1

g (ϕ) dϕ+Ni1fij1

∞∫
ϕ∗ij1

g (ϕ) dϕ

+γi1 (σ1 − 1)Ni1

∑
k=i,j

 ∞∫
ϕ∗ik1

πik1

wi
(ϕ) g (ϕ) dϕ+ fik1

∞∫
ϕ∗ik1

g (ϕ) dϕ

 ,
Li2 = Ni2f

e
i2 +Ni2fii2

∞∫
ϕ∗ii2

g (ϕ) dϕ

+γi2 (σ2 − 1)Ni2

 ∞∫
ϕ∗ii2

πii2
wi

(ϕ) g (ϕ) dϕ+ fii2

∞∫
ϕ∗ii2

g (ϕ) dϕ

 .
Using the free entry condition (43), we obtain

Li1
Ni1

= (1 + γi1 (σ1 − 1))
(
fei1 + fii1ϕ

∗
ii1
−θ1 + fij1ϕ

∗
ij1
−θ1
)
, (60)

Li2
Ni2

= (1 + γi2(σ2 − 1))
(
fei2 + fii2ϕ

∗
ii2
−θ2
)
. (61)
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Also using (45), entry into sectors 1 and 2 becomes

Ni1 =
(σ1 − 1)

(1 + γi1 (σ1 − 1)) θ1

Li1
fei1

, (62)

Ni2 =
(σ2 − 1)

(1 + γi2(σ2 − 1))θ2

Li2
fei2

. (63)

Combining the expressions, we obtain

Li1
Li2

=
Ni1

Ni2

((1+γi1(σ1−1))θ1fei1)
(σ1−1)

(1+γi2(σ2−1))θ2fei2
(σ2−1)

. (64)

To characterize the labor allocation across sectors, we need to use entry. We have already solved

for Y2i in (50), and the analogous expression for Y1i (which is a simplified version of (49) where we

do not substitute for tariff revenue) is Yi1 = αi
1−γ̃i1Λi1

Ii. Use these results in (46) and (48) and recall

that home sales are Eii1 = λii1Yi1 and Eii2 = Yi2 while exports are Eij1 = λij1Yj1. Substituting

this expressions into (64), labor allocation across sectors can be written as

Li1
Li2

=
αi

(1− αi)

(1− γ̃i1)
(
λii1 +

λji1
tji1

)
1− γ̃i1

(
λii1 +

λji1
tji1

) . (65)

The tariff formula (55) derived earlier can be used to simplify the expression for labor allocation.

Using (55) in (65), we obtain

Li1
Li2

=
αi

(1− αi)

(1− γ̃i1)
(

1+(tji1−1)λii1
tji1

)
1− γ̃i1

(
1+(tji1−1)λii1

tji1

)

=
αi

(1− αi)

(1− γ̃i1)

(
1

(1−λ̃ii1)tji1+λ̃ii1

)
1− γ̃i1

(
1

(1−λ̃ii1)tji1+λ̃ii1

) .

Then we can also express the labor allocation as a fraction of total labor supply:

Li2
Li1 + Li2

=

(
Li1
Li2

+ 1

)−1

=

(
1− λ̃ii1

)
tji1 + λ̃ii1 − γ̃i1(

1− λ̃ii1
)
tji1 + λ̃ii1 − γ̃i1 + αi

1−αi (1− γ̃i1)
, (66)
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Li1
Li1 + Li2

=
1

1−αi (αi − γ̃i1) + γ̃i1(
1− λ̃ii1

)
tji1 + λ̃ii1 + 1

1−αi (αi − γ̃i1)
. (67)

A.5 Income and Intermediate Demand

The tariff formula (55) can also be used to derive an alternative expression for income Ii, which

depends on tariff revenue given by

Bi = (tji1 − 1)
λji1
tji1

Yi1. (68)

From trade balance we have
λji1Yi1
tji1

= λij1Yj1, and using (38) and (62) we obtain

Bi = (tji1 − 1)λij1Yj,1 = (tji1 − 1)ϕ∗ij1
−θ1 Ni1 (σ1wifij1)

(
θ1

θ1 + 1− σ1

)
=

(tji1 − 1)σ1 (σ1 − 1) fij1
(1 + γi1 (σ1 − 1)) (θ1 + 1− σ1) fei1

wiLi1ϕ
∗
ij1
−θ1 .

Then income Ii = wiLi +Bi equals

Ii = wiLi + (tji1 − 1)
σ1

1 + γi1 (σ1 − 1)

fij1ϕ
∗
ij1
−θ1

(θ1+1−σ1)
(σ1−1) fei1

wiLi1 = wiLi + (tji1 − 1)

(
1− λ̃ii1
1− γ̃i1

)
wiLi1.

Combining with (67), we have

Ii
wiLi1

=

(
1− λ̃ii1

)
tji1 + λ̃ii1 + 1

1−αi (αi − γ̃i1)

1
1−αi (αi − γ̃i1) + γ̃i1

+ (tji1 − 1)

(
1

1− γ̃i1

)(
1− λ̃ii1

)
,

=
(1− αi) (tji1 − 1)

(
1− λ̃ii1

)
+ 1− γ̃i1

αi (1− γ̃i1)
+ (tji1 − 1)

(
1− λ̃ii1

)
1− γ̃i1

=
1

αi
+

(tji1 − 1)
(

1− λ̃ii1
)

αi (1− γ̃i1)
.

Using T (tji1) ≡ 1− γ̃i1 + (tji1 − 1)
(

1− λ̃ii1
)

from (57), we then obtain

Ii =
wiLi1
αi

T (tji1)

(1− γ̃i1)
. (69)
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Next, we derive the expression for the value of the finished goods used as an intermediate input

in sector 1

Intermediate demand = Ni1 (1− γi1)

 ∞∫
ϕ∗ii1

xi1qii1 (ϕ)

ϕ
g (ϕ) dϕ+

∞∫
ϕ∗ij1

xi1τij1qij1 (ϕ)

ϕ
g (ϕ) dϕ

 ,

and using the expression for profits:

xi1τij1qij1 (ϕ)

ϕ
= (σ1 − 1)πij1 (ϕ) + (σ1 − 1)wifij1,

we obtain

Intermediate demand = Ni1 (1− γi1) (σ1 − 1)
∑

k=i,j

∞∫
ϕ∗ik1

(πik1 (ϕ) + wifik1) g (ϕ) dϕ.

Then using the free entry condition (43), we have

Intermediate demand = Ni1 (1− γi1) (σ1 − 1)wi

(
fei1 + fii1ϕ

∗
ii1
−θ1 + fij1ϕ

∗
ij1
−θ1
)
.

Using labor market clearing (60), the intermediate demand is given by

Intermediate demand = wiLi1
(1− γi1) (σ1 − 1)

(1 + γi1 (σ1 − 1))
.

It follows that the total demand for finished goods in sector 1 is

Yi1 = αiIi + wiLi1
(1− γi1) (σ1 − 1)

(1 + γi1 (σ1 − 1))
.

After combining these expressions with (36) and (42), then Ii is given in terms of sector 1 variables

by

Ii =
wiLi1
αi

(σ1 − 1)

(1 + γi1 (σ1 − 1))

(
Kσ1−1

1

σ1

θ1fei1

(
ϕ∗−θ1ii1 fii1 + ϕ∗ij1

−θ1 fij1 tji1

)
− (1− γi1)

)
. (70)

For sector 2, there are no exports so that dividing the numerator and denominator of the ratio
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(σ2−1)
1+γi2(σ2−1) by σ2 to obtain ρ2

1−γ̃i2
, then income can also be written in terms of sector 2 variables as

Ii =
wiLi2
1− αi

ρ2

1− γ̃i2

(
Kσ2−1

2

σ2

θ2fei2
ϕ∗−θ2ii2 fii2 − (1− γi2)

)
=

wiLi2
(1− αi)

, (71)

because Kσ2−1
2

(
σ2−1
θ2fei2

)
ϕ∗−θ2ii2 fii2 = 1 from (33) and (48).

A.6 Equilibrium Conditions

We use the definition of small open economy following Demidova and Rodŕıguez-Clare (2013), where

we impose a fixed demand curve for country i exports to country j. In particular the wages, prices,

entry, and expenditure at county j are not affected by changes in the trade policy of i. Formally,

the equilibrium conditions of the small open economy are the following.

Definition 1. An equilibrium of small open economy, two sector roundabout model is characterized

for a set of prices (wi, xi1, xi2, Pi1, Pi2) productivity thresholds
(
ϕ∗ii1, ϕ

∗
ii2, ϕ

∗
ji1, ϕ

∗
ij1

)
, expenditures

(Yi1, Yi2) , mass of firms (Ni1,Ni2) , and expenditure shares (λii1, λji1) such that solve the following

equilibrium conditions taking as given {Pj1, Yj1, Nj1, wj}:

(Zero cut-off)

ϕ∗ii1 =

(
σ1

σ1 − 1

)(
σ1wifii1
Yi1

) 1
σ1−1 xi1

Pi1
,

ϕ∗ji1 =

(
σ1

σ1 − 1

)(
σ1wjfji1
Yi1

) 1
σ1−1 wjτji1 (tji1)

σ1
σ1−1

Pi1
,

ϕ∗ii2 =

(
σ2

σ2 − 1

)(
σ2wifii2
Yi2

) 1
σ2−1 xi2

Pi2
,

ϕ∗ij1 =

(
σ1

σ1 − 1

)(
σ1wifij1
Yj1

) 1
σ1−1 xi1τij1

Pj1
,

(Input costs)

xi1 = (wi1)γi1 (Pi1)1−γi1 ,

xi2 = (wi2)γi2 (Pi2)1−γi2 ,
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(Expenditures)

Yi1 = α
wiLi

1− γ̃1

(
1+(tji1−1)λii1

tji1

)
− α (tji1 − 1) 1−λii1

tji1

,

Yi2 = γ̃iYi2 + (1− α)

(
tji1 − 1

tji1
(1− λii1)Yi1 + wiLi

)
,

with γ̃1 = (1− γi1) σ1−1
σ1

,

(Price index)

Pi1 =

(
ϕ∗ii1

−θ1Ni1

(
σ1

σ1 − 1

xi1
ϕ̄ii1

)1−σ1
+ ϕ∗ji1

−θ1Nj1

(
σ1

σ1 − 1

wjtji1
ϕ̄ji1

)1−σ1
) 1

1−σ1

,

Pi2 =

(
ϕ∗ii2

−θ2Ni2

(
σ2

σ2 − 1

xi2
ϕ̄ii2

)1−σ2
) 1

1−σ2

,

(Entry)

Ni1 =

1+λii1(tji1−1)
tji1

wi1fei1

(
θ1σ1
σ1−1

)Yi1,
Ni2 =

Yi2

wi2fei2

(
θ2σ2
σ2−1

) ,
(Expenditure shares)

λii1 = ϕ∗ii1
−θ1Ni1

(
σ1

σ1 − 1

xi1
Pi1ϕ̄ii1

)1−σ1
,

note that ϕ̄iis = Ksϕ
∗
iis, with Ks =

(
θs

θs+1−σs

) 1
σs−1

,

(Trade balance)

wi =
ϕ∗ji1

−θNj1wjfji1

ϕ∗ij1
−θNi1fij

.

B Closed Economy Model

In the closed-economy model we allow for multiple sectors s = 1, ..., S, where we use αis > 0 to

denote the consumption share in each sector with with
∑S

s=1 αis = 1. We now introduce producer

and consumer tax/subsidies on purchases of the finished good. The producer tax/subsidy means
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that the input cost index is modified from (1) as

xis = wγisi (tpisPis)
1−γis , (72)

where Pis denotes the price of the finished goo after bundling the intermediate inputs, and before

the application of any tax/subsidies.

Without loss of generality, we assume that the government budget is balanced so that Bi = 0. In

the market clearing condition (3), there is no trade so that λiis = 1 and λijs = 0, and the consumer

and firm purchases must be divided by tcis and tpis, respectively, to obtain the net-of-tax purchases.

Further multiplying these purchases by the ad valorem tax rates tcis − 1 and tpis − 1, respectively,

we obtain the balanced budget

0 =
S∑
s=1

(tcis − 1)
αiswiLi
tcis

+ (tpis − 1)
γ̃sYis
tpis

. (73)

The term αiswiLi/t
c
is on the right of (73) is the value of consumer purchases of the finished good.

Dividing this by the duty-free price index of the finished good, Pis, we obtain consumption in each

sector, and so the objective function for the planner is

max
tcis,t

p
is>0

S∏
s=1

Cαisis =

S∏
s=1

(
αiswiLi
tcisPis

)αis
, (74)

subject to the constraint (73).

To determine the optimal policies, we need an expression for the price index in each sector

under autarky. Recall from (26) that Piis is the CES price index for differentiated inputs purchased

from domestic firms in each sector. Using the input price index in (72), we can substitute prices

from (30) into (26) to obtain

Piis = (Niis)
1

(1−σs)

(
σs

σs − 1

)
wγisi (tpisPis)

1−γis

ϕ̄is
. (75)
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In a closed economy we have Piis = Pis, and so we can solve for the price index Pis from (75)as

Pis = wi

[(
1

Niis

) 1
(σs−1)

(
σs

σs − 1

)
(tpis)

1−γis

ϕ̄iis

] 1
γis

. (76)

This expression includes the average productivities, but these are not affected by the consumer

or producer taxes because from (33) they are proportional to the cutoff productivities, which are

determined by the free-entry condition like (48) but in each sector:

Js(ϕ
∗
iis)fiis = fEis . (77)

Entry into each sector, Nis, is endogenous and is determined by (46), where the expenditure on

the differentiated inputs in the closed economy, Eiis, equals the net-of-tax value of the final good

that are bundled from them, Yis, and we ignore the term Eijs. In the market clearing condition (3),

with no trade then λiis = 1 and λijs = 0, and the consumer and firm purchases must be divided

by tcis and tpis, respectively, to obtain the net-of-tax purchases

Yis =
αis
tcis
wiLi +

γ̃is
tpis
Yis, (78)

recalling that we have set Bi = 0 so that wiLi is consumer income. We solve for Yis = αiswiLi
tcis[1−(γ̃is/t

p
is)

,

and then entry from (46) is

Nis = (αisLi)

/[
tcis

(
1− γ̃is

tpis

)
feis

(
θs σs
σs − 1

)]
. (79)

Substituting (79) into (27), (76) and (74) and ignoring constants, we obtain the objective function

max
tcis,t

p
is>0

S∏
s=1

{
tcis

[
tcis

(
1− γ̃is

tpis

)] 1
γis(σs−1)

(tpis)
(1−γis)
γis

}−αis
. (80)

As explained in the main text, we solve the problem (80) subject to (73) twice: first, by choosing

the optimal consumer and producer tax/subsidies; and second, by choosing the consumer tax tcis

without any producer tax, tpis ≡ 1. The solutions are recorded in (7) and (12).
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C First-best Policies in a Small Open Economy

TO BE COMPLETED

D Changes in the Second-Best Tariff

We now assume that no consumer or producer tax/subsidies apply to purchases of the finished good

in either sector, and the only policy instrument used is the tariff tji1 on imports of the differentiated

inputs in sector 1. For convenience we drop subscripts from the import tariff tji1 and simply denote

it by ti. In this Appendix we perform the comparative statics with respect to a change in the tariff

to obtain the first-order condition (15), and in Appendix E we develop the proof of Theorem 1.

We first derive an expression for the price index that is going to be used in order to express

welfare as a function of productivity thresholds. From (35) the sector 1 price index is

Pi1 =

(
ϕ∗ii1

−θ1Ni1

(
σ1

σ1 − 1

xi1
ϕ̄ii1

)1−σ1
+ ϕ∗ji1

−θ1Nj1

(
σ1

σ1 − 1

wjtji1
ϕ̄ji1

)1−σ1
) 1

1−σ1

,

We combine the entry thresholds ϕ∗ji1, and ϕ∗ii1, to obtain

(
σ1

σ1 − 1

wjτji1 ti
ϕ∗ji1

)1−σ1

=
σ1wj fji1 ti
σ1wi fii1

(
σ1

σ1 − 1

xi1
ϕ∗ii1

)1−σ1
. (81)

Using this expression together with trade balance (42) and (1) we obtain

Pi1 =

(
σ1

σ1 − 1

1

K1

(
Ni1

fii1

) 1
(1−σ1)

) 1
γi1

(ϕ∗ii1)
− 1
γi1 wi

(
fii1ϕ

∗−θ1
ii1 + ϕ∗ij1

−θ1 fij1ti

) 1
γi1(1−σ1) . (82)

Similarly, we obtain

Pi2 =

(
σ2

σ2 − 1

1

K2

(
Ni2

fii2

) 1
(1−σ2)

) 1
γi2

( ϕ∗ii2)
− 1
γi2 wi

(
fii2ϕ

∗−θ2
ii2

) 1
γi2(1−σ2) .

Using expressions (70) and (71) for income and the above expressions for the price indexes, we
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substitute these into indirect utility or welfare, which from (2) is given by

Ui =

(
αiIi
Pi1

)αi ((1− αi)Ii
Pi2

)1−αi
.

Define the term,

Θ ≡


(σ1−1)

(1+γi1(σ1−1))(
σ1
σ1−1

1
K1

(
1
fii1

) 1
(1−σ1)

) 1−σ1
γi1(1−σ1)


αi 1(

σ2
σ2−1

1
K2

(
1
fii2

) 1
(1−σ2)

) 1
γi2

(ϕ∗ii2)
− 1
γi2

(
fii2 ϕ

∗−θ2
ii2

) 1
γi2(1−σ2)


1−αi

which is a constant because ϕ∗ii2 is constant from (44). We then obtain the welfare expression,

Ui = Θ

 K
σ1−1
1 σ1
θ1fei1

(
ϕ∗−θ1ii1 fii1 + ϕ∗ij1

−θ1 fij1 ti

)
− (1− γi1)(

fii1ϕ
∗−θ1
ii1 + ϕ∗ij1

−θ1 fij1ti

) 1
γi1(1−σ1)

(ϕ∗ii1)
1
γi1


αi (

Li1

(Ni1)
1

γi1(1−σ1)

)αi

×

(
Li2

(Ni2)
1

γi2(1−σ2)

)1−αi

.

There is new term in this expression, given by

(
Li1

(Ni1)
1

γi1(1−σ1)

)αi (
Li2

(Ni2)
1

γi2(1−σ2)

)1−αi

=

(
(1 + γi1 (σ1 − 1)) θ1f

e
i1

(σ1 − 1)
(Ni1)

1+γi1(σ1−1)

γi1(σ1−1)

)αi ((1 + γ2 (σ2 − 1)) θ2f
e
i1

(σ2 − 1)
(Ni2)

1+γi2(σ2−1)

γi2(σ2−1)

)1−αi

using (62), (63).
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Totally differentiating welfare, Ûi can be written as

Ûi = αi

1 +
1− γi1

αiIi
wiLi1

(1+γi1(σ1−1))
(σ1−1)

+
1

γi1 (σ1 − 1)

((1− λii1)
(
−θ1ϕ̂

∗
ij1+t̂i

)
− θ1λii1ϕ̂

∗
ii1

)
+
αi
γi1

ϕ̂∗ii1 + αi
1 + γi1 (σ1 − 1)

γi1 (σ1 − 1)
N̂i1 + (1− αi)

1 + γ2 (σ2 − 1)

γi2 (σ2 − 1)
N̂i2

= αi

1 +
(1− γi1) (σ1 − 1)

(1 + γi1 (σ1 − 1)) + σ1 (ti − 1)
(

1− λ̃ii1
) +

1

γi1 (σ1 − 1)


×
(
(1− λii1)

(
−θ1ϕ̂

∗
ij1+t̂i

)
− θ1λii1ϕ̂

∗
ii1

)
+

1

γi1
ϕ̂∗ii1

+αi
1 + γi1 (σ1 − 1)

γi1 (σ1 − 1)
N̂i1 + (1− αi)

1 + γ2 (σ2 − 1)

γi2 (σ2 − 1)
N̂i2, (83)

where the equality is obtained by using the following expression

1 +
1− γi1

αiIi
wiLi1

(1+γi1(σ1−1))
(σ1−1)

+
1

γi1 (σ1 − 1)
= 1 +

1− γi1(
1 +

σ1(ti−1)(1−λ̃ii1)
(1+γi1(σ1−1))

)
(1+γi1(σ1−1))

(σ1−1)

+
1

γi1 (σ1 − 1)

= 1 +
(1− γi1) (σ1 − 1)

(1 + γi1 (σ1 − 1)) + σ1 (ti − 1)
(

1− λ̃ii1
) +

1

γi1 (σ1 − 1)
,

Now the strategy is to obtain expressions for ϕ̂∗ii1, and ϕ̂∗ij1. First, totally differentiate the free

entry condition (45) and use (53) to obtain

ϕ̂∗ii1 = −

(
1− λ̃ii1
λ̃ii1

)
ϕ̂∗ij1. (84)

Then we totally differentiate the price index (82) to obtain

P̂i1 =
1

γi1 (1− σ1)
N̂i1 + ŵi +

1

γi1


(

1− λ̃ii1
)

λ̃ii1

(
θ1

(1− σ1)
λii1 + 1

)
− θ1 (1− λii1)

(1− σ1)

 ϕ̂∗ij1

+
1

γi1 (1− σ1)
(1− λii1) t̂i. (85)

Next, totally differentiate the expression for ϕ∗ij1 in (32) and recall that country i is a small open

economy so that the country j price index, value of output and input-cost index are fixed. It follows
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that ϕ̂∗ij1 is given by

ϕ̂∗ij1 −
(

1

σ1 − 1
+ γi1

)
ŵi = (1− γi1) P̂i1. (86)

Now combine (85) and (86) to obtain

ϕ̂∗ij1
1− γi1

− 1

1− γi1

(
1

σ1 − 1
+ γi1

)
ŵi =

1

γi1 (1− σ1)
N̂i1 + ŵi +

1

γi1

(
1− λ̃ii1
λ̃ii1

(
θ1λii1
1− σ1

+ 1

)
− θ1 (1− λii1)

1− σ1

)
ϕ̂∗ij1

+
1− λii1

γi1 (1− σ1)
t̂i. (87)

From trade balance (42), we have

ϕ̂∗ji1 = ϕ̂∗ij1 −
1

θ1
ŵi −

1

θ1
N̂i1. (88)

From the equality for ϕ̂∗ji1 and ϕ̂∗ii1 (81), we can see that

ϕ̂∗ji1 = ϕ̂∗ii1 −
(

1

σ1 − 1
+ γi1

)
ŵi − (1− γi1) P̂i1 +

σ1

σ1 − 1
t̂i.

Combining (84) and (86), ϕ̂∗ji1 is given by

ϕ̂∗ji1 = − 1

λ̃ii1

(
1

σ1 − 1
+ γi1

)
ŵi −

1

λ̃ii1
(1− γi1) P̂i1 +

σ1

σ1 − 1
t̂i,

and after using (88), we obtain

ϕ̂∗ij1−
1

θ1
ŵi −

1

θ1
N̂i1 = − 1

λ̃ii1

(
1

σ1 − 1
+ γi1

)
ŵi −

1

λ̃ii1
(1− γi1) P̂i1 +

σ1

σ1 − 1
t̂i.

Then from (86) we have

ϕ̂∗ij1 =
λ̃ii1

1 + λ̃ii1

1

θ1

(
ŵi + N̂i1

)
+

λ̃ii1

1 + λ̃ii1

σ1

σ1 − 1
t̂i. (89)
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Using (87) and multiplying both sides by (1− γi1) we have

−
(

σ1

σ1 − 1

)
ŵi =

−1 +
1− γi1
γi1

 θ1

(1− σ1)

(
λii1 − λ̃ii1

λ̃ii1

)
+

(
1− λ̃ii1

)
λ̃ii1

 ϕ̂∗ij1

+
1− γi1

γi1 (1− σ1)
N̂i1 +

(1− γi1)

γi1 (1− σ1)
(1− λii1) t̂i.

Combining this expression with (89) and using ρ1 ≡ σ1−1
σ1

, we finally obtain

ŵi = E1t̂i + E2N̂i1,

where

E1 =
1− 1−γi1

γi1
1−λ̃ii1
λ̃ii1

(
1− 1

σ1
1−λii1λ̃ii1

1−λ̃ii1
+
(

1
σ1
− θ1

σ1−1

)
(1− ti)λii1

)
1+λ̃ii1
λ̃ii1

− ρ1
θ1

+ 1−γi1
γi1

1−λ̃ii1
λ̃ii1

(
ρ1
θ1
− 1

σ1
(1− ti)λii1

) , (90)

E2 =

1−γi1
γi1

1
σ1

1+λ̃ii1
λ̃ii1

+ ρ1
θ1
− 1−γi1

γi1
1−λ̃ii1
λ̃ii1

(
ρ1
θ1
− 1

σ1
(1− ti)λii1

)
1+λ̃ii1
λ̃ii1

− ρ1
θ1

+ 1−γi1
γi1

1−λ̃ii1
λ̃ii1

(
ρ1
θ1
− 1

σ1
(1− ti)λii1

) . (91)

Now substituting these expressions into (89), we obtain

ϕ̂∗ij1 =
λ̃ii1

1 + λ̃ii1

1

θ1
(1 + E2) N̂i1 +

λ̃ii1

1 + λ̃ii1

(
E1

θ1
+

1

ρ1

)
t̂i

=
λ̃ii1

1 + λ̃ii1

 1
ρ1

1+λ̃ii1
λ̃ii1

+ 1−γi1
γi1

1
θ1

1
σ1

1−λ̃ii1
λ̃ii1

(
1−λii1λ̃ii1

1−λ̃ii1
+ (ti − 1)λii1

)
1+λ̃ii1
λ̃ii1

− ρ1
θ1

+ 1−γi1
γi1

1−λ̃ii1
λ̃ii1

(
ρ1
θ1

+ 1
σ1

(ti − 1)λii1

)
 t̂i

+
λ̃ii1

1 + λ̃ii1

1

θ1
(1 + E2) N̂i1. (92)

Note that

λ̃ii1

1 + λ̃ii1

1

θ1
(1 + E2) =

1
θ1

1+γi1(σ1−1)
σ1γi1

1+λ̃ii1
λ̃ii1

− ρ1
θ1

+ 1−γi1
γi1

1−λ̃ii1
λ̃ii1

(
ρ1
θ1
− 1

σ1
(1− ti)λii1

) .
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Then from the welfare equation (83), using (84) we obtain

Ûi = αi

E3 (1− λii1) t̂i +

E3θ1

(
λii1 − λ̃ii1

λ̃ii1

)
− 1

γi1

(
1− λ̃ii1

)
λ̃ii1

 ϕ̂∗ij1


+αi

1 + γi1 (σ1 − 1)

γi1 (σ1 − 1)
N̂i1 + (1− αi)

1 + γi2 (σ2 − 1)

γi2 (σ2 − 1)
N̂i2, (93)

where

E3 ≡

1 +
(1− γi1) (σ1 − 1)

(1 + γi1 (σ1 − 1)) + σ1 (ti − 1)
(

1− λ̃ii1
) +

1

γi1 (σ1 − 1)

 . (94)

Inverting (92), t̂i is given by

t̂i = −
1
θ1

1+γi1(σ1−1)
σ1γi1

λ̃ii1
1+λ̃ii1

(
1
ρ1

1+λ̃ii1
λ̃ii1

+ 1−γi1
γi1

1
θ1

1
σ1

1−λ̃ii1
λ̃ii1

(
1−λii1λ̃ii1

1−λ̃ii1
+ (ti − 1)λii1

))N̂i1

+

1+λ̃ii1
λ̃ii1

− ρ1
θ1

+ 1−γi1
γi1

1−λ̃ii1
λ̃ii1

(
ρ1
θ1

+ 1
σ1

(ti − 1)λii1

)
λ̃ii1

1+λ̃ii1

(
1
ρ1

1+λ̃ii1
λ̃ii1

+ 1−γi1
γi1

1
θ1

1
σ1

1−λ̃ii1
λ̃ii1

(
1−λii1λ̃ii1

1−λ̃ii1
+ (ti − 1)λii1

)) ϕ̂∗ij1.
Write this expression for t̂i as

t̂i = −E4N̂i1 + E5ϕ̂
∗
ij1, (95)

where

E4 =

1
θ1

1+γi1(σ1−1)
σ1γi1

λ̃ii1
1+λ̃ii1

(
1
ρ1

1+λ̃ii1
λ̃ii1

+ 1−γi1
γi1

1
θ1

1
σ1

1−λ̃ii1
λ̃ii1

(
1−λii1λ̃ii1

1−λ̃ii1
+ (ti − 1)λii1

)) ,

E5 =

1+λ̃ii1
λ̃ii1

− ρ1
θ1

+ 1−γi1
γi1

1−λ̃ii1
λ̃ii1

(
ρ1
θ1

+ 1
σ1

(ti − 1)λii1

)
λ̃ii1

1+λ̃ii1

(
1
ρ1

1+λ̃ii1
λ̃ii1

+ 1−γi1
γi1

1
θ1

1
σ1

1−λ̃ii1
λ̃ii1

(
1−λii1λ̃ii1

1−λ̃ii1
+ (ti − 1)λii1

)) .
Using (56), E4 and E5 can be written as

E4 =

1
θ1

1+γi1(σ1−1)
σ1γi1

1
ρ1

+ 1
θ1

1−γi1
γi1

1
σ1

(1− λii1)
, (96)

E5 =

1+λ̃ii1
λ̃ii1

− ρ1
θ1

+ 1−γi1
γi1

1−λ̃ii1
λ̃ii1

(
ρ1
θ1

+ 1
σ1

(ti − 1)λii1

)
1
ρ1

+ 1−γi1
γi1

1
θ1

1
σ1

(1− λii1)
. (97)
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Now we simplify the welfare expression in (93). First, note that using (95), we obtain

Ûi = αi

E3 (1− λii1) E5 + E3θ1

(
λii1 − λ̃ii1

λ̃ii1

)
− 1

γi1

(
1− λ̃ii1

)
λ̃ii1

 ϕ̂∗ij1
+αi

[
1 + γi1 (σ1 − 1)

γ1 (σ1 − 1)
− E3 (1− λii1) E4

]
N̂i1 + (1− αi)

1 + γi2 (σ2 − 1)

γi2 (σ2 − 1)
N̂i2. (98)

We seek to express N̂i1, N̂i2 as a function of ϕ̂∗ij1. From the labor market clearing condition

Li1 + Li2 = Li and using (62) and (63), we have

0 =
Li2
Li
N̂i2 +

Li1
Li
N̂i1,

which implies that

N̂i2 = −Li1
Li2

N̂i1. (99)

In addition, recalling (62), (63) and (66), we obtain

Ni2wif
e
i2

(
θ2σ2

σ2 − 1

)
=

1

1− γ̃i2
wiLi2 =

1

1− γ̃i2
wiLi


(

1− λ̃ii1
)
ti + λ̃ii1 − γ̃i1(

1− λ̃ii1
)
ti + λ̃ii1 + 1

1−αi (αi − γ̃i1)


Here we define

li2 ≡

(
1− λ̃ii1

)
ti + λ̃ii1 − γ̃i1(

1− λ̃ii1
)
ti + λ̃ii1 + 1

1−αi (αi − γ̃i1)
=
Li2
Li
,

and then N̂i2 is given by

N̂i2 = l̂i2,

where

l̂i2 = (1− li2)
(1− ti) λ̃ii1 ˆ̃

λii1 +
(

1− λ̃ii1
)
tit̂i(

1− λ̃ii1
)
ti + λ̃ii1 − γ̃i1

,
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Combining this expression with (99), N̂i1 can be written as

N̂i1 = −Li2
Li1

(1− li2)

(1− ti) λ̃ii1 ˆ̃
λii1 +

(
1− λ̃ii1

)
tit̂i(

1− λ̃ii1
)
ti + λ̃ii1 − γ̃i1


= −

 (1− ti) λ̃ii1 ˆ̃
λii1 +

(
1− λ̃ii1

)
tit̂i(

1− λ̃ii1
)
ti + λ̃ii1 + 1

1−αi (αi − γ̃i1)
.


From (53) and (81), we can use

ˆ̃
λii1 = θ1

(
1− λ̃ii1

)
λ̃ii1

ϕ̂∗ij1, (100)

and combining with (95), we obtain

−
((

1− λ̃ii1
)
ti + λ̃ii1 +

1

1− αi
(αi − γ̃i1)

)
N̂i1

= (1− ti) λ̃ii1θ1

(
1− λ̃ii1

)
λ̃ii1

ϕ̂∗ij1 +
(

1− λ̃ii1
)
ti(E5ϕ̂

∗
ij1 − E4N̂i1).

Then we arrive at

N̂i1 =

(
1− λ̃ii1

)
((1− ti) θ1 + tiE5)((

1− λ̃ii1
)
ti (E4 − 1)− λ̃ii1 − 1

1−αi (αi − γ̃i1)
) ϕ̂∗ij1. (101)

Finally, from (66), (67) and (99), N̂i2 can be written as

N̂i2 = −
(

αi
1− αi

)
(1− γ̃1)(

1− λ̃ii1
)
ti + λ̃ii1 − γ̃i1

N̂i1. (102)

D.1 Total Change in Utility and Definition of D(ti)

We can use the above equations to obtain the total change in utility. Substituting (101) and (102)

into the second term of welfare in (98), we have

αi

(
1 + γi1 (σ1 − 1)

γ1 (σ1 − 1)
− E3 (1− λii1) E4

)
N̂i1 + (1− αi)

σ2

σ2 − 1
N̂i2 = D(ti)αiN̂i1,
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where

D(ti) ≡
1 + γi1 (σ1 − 1)

γi1 (σ1 − 1)
− 1− γ̃i2

γi2ρ2

1 + γi1 (σ1 − 1)

σ1

(
1− λ̃ii1

)
(ti − 1) + (1 + γi1 (σ1 − 1))

− E3E4 (1− λii1) .

This initial definition D(ti) can be re-expressed using the function T (ti) in (57) to obtain the

alternative definition

D(ti) ≡
[

1 + γi1(σ1 − 1)

γi1(σ1 − 1)
−
(

1 + γi2(σ2 − 1)

γi2(σ2 − 1)

)
(1− γ̃i1)

T (ti)
− E3E4(1− λii1)

]
. (103)

Notice that the definition of D(ti) used in the main text, is obtained by further defining

Ed ≡ E3E4(1− λii1), (104)

where we use (58) to derive (1−γ̃i1)
T (ti)

= Λii1(1−γ̃i1)
1−γ̃i1Λii1

and we also use the effective markups σ̃is
(σ̃is−1)

defined in (12) so that expression (13) in the main text follows.

It follows that Ûi can be written as

Ûi = αi

[
Eφϕ̂∗ij1 +D(ti)N̂i1

]
, (105)

where

Eφ ≡ E3 (1− λii1) E5 + E3θ1

(
λii1 − λ̃ii1

λ̃ii1

)
−

(
1− λ̃ii1
γi1λ̃ii1

)
. (106)

We see that the total change in utility in (105) is written as the sum of two terms: the first

given by αiEφϕ̂∗ij1 reflects selection and includes all the changes in cutoff productivities; and second

αiD(ti)N̂i1 reflects entry. At the optimum, Ûi/
(
αiϕ̂

∗
ij1

)
= 0, which implies from (101) that

E3 (1− λii1) E5 + E3θ1

(
λii1 − λ̃ii1

λ̃ii1

)
− 1

γi1

(
1− λ̃ii1

)
λ̃ii1


= −D(ti)

(
1− λ̃ii1

)
((1− ti) θ1 + tiE5)(

1− λ̃ii1
)
ti (E4 − 1)− λ̃ii1 − 1

1−αi (αi − γ̃i1)
. (107)
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Using the tariff formula (55) repeatedly, we define

M̃(ti) =
γi1

(
E5 − (ti−1)

ti
θ1

)
(1− αi)

((
1− λ̃ii1

)
ti (1− E4) + λ̃ii1

)
+ αi − γ̃i1

λ̃ii1
λii1

D(ti), (108)

and then the first-order condition (107) becomes

E3 (1− λii1) E5 + E3θ1

(
λii1 − λ̃ii1

λ̃ii1

)
− 1

γi1

(
1− λ̃ii1

)
λ̃ii1

 =
(1− λii1) (1− αi)

γi1
M̃(ti).

Using 1−ti
ti

(1− λii1) = λii1−λ̃ii1
λ̃ii1

from (55), we get

(1− λii1)

γi1

[
γi1E3E5 + γi1E3θ1

(
1− ti
ti

)
− 1

λii1ti

]
=

(1− λii1) (1− αi)
γi1

M̃(ti),

E5 + θ1

(
1− ti
ti

)
− 1

λii1tiγi1E3
= (1− αi)

M̃(ti)

γi1E3
.

Using (97), we obtain

(
1− ti
ti

)
θ1

ρ1
+

1 + λ̃ii1

λ̃ii1
− ρ1

θ1
+

1− γi1
γi1

1− λ̃ii1
λ̃ii1

ρ1

θ1
−

1
ρ1

+ 1−γi1
γi1

1
θ1

1
σ1

(1− λii1)

λii1tiγi1E3

= (1− αi)
M̃(ti)

γi1E3

(
1

ρ1
+

1− γi1
γi1

1

θ1

1

σ1
(1− λii1)

)
.

We multiply both sides by ti and use (55) again to get

(1− ti)
θ1

ρ1
+

1 + λ̃ii1

λ̃ii1
ti −

ρ1

θ1
ti +

1− γi1
γi1

(1− λii1)

λii1

ρ1

θ1
−

1
ρ1

+ 1−γi1
γi1

1
θ1

1
σ1

(1− λii1)

λii1γi1E3

= (1− αi)
M̃(ti)ti
γi1E3

(
1

ρ1
+

1− γi1
γi1

1

θ1

1

σ1
(1− λii1)

)
.

Next we add and subtract 1
λii1

and use ti
λ̃ii1

= ti − 1 + 1
λii1

, to obtain

(1− ti)
(
θ1 − ρ1

ρ1

)
+ ti −

ρ1

θ1
ti +

1− γi1
γi1

(1− λii1)

λii1

ρ1

θ1
−

(
1
ρ1

+ 1−γi1
γi1

1
θ1

1
σ1

(1− λii1)

γi1E3
− 1

)
1

λii1

= (1− αi)
M̃(ti)ti
γi1E3

(
1

ρ1
+

1− γi1
γi1

1

θ1

1

σ1
(1− λii1)

)
.
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Note that

1
ρ1

+ 1−γi1
γi1

1
θ1

1
σ1

(1− λii1)

γi1E3
− 1 = (1− γi1)

1
γi1

1
θ1

1
σ1

(1− λii1) +
ρ1+(1−ti)(1−λ̃ii1)−1

(1−γi1)ρ1+(1−ti)(1−λ̃ii1)−1

γi1E3
.

Then the first-order condition becomes

(
θ1

θ1 − ρ1
− ti

)
(θ1 − ρ1)2

θ1ρ1
+

1− γi1
γi1

(1− λii1)

λii1

ρ1

θ1
−(1− γi1)

1
γi1

1
θ1

1
σ1

(1− λii1) +
ρ1+(1−ti)(1−λ̃ii1)−1

(1−γi1)ρ1+(1−ti)(1−λ̃ii1)−1

γi1E3

1

λii1

= (1− αi)
M̃(ti)ti
γi1E3

(
1

ρ1
+

1− γi1
γi1

1

θ1

1

σ1
(1− λii1)

)
.

Now we find the common denominator for the second terms on the left-hand side using (94):

1− γi1
γi1

(1− λii1)

λii1

ρ1

θ1
− (1− γi1)

1
γi1

1
θ1

1
σ1

(1− λii1) +
ρ1+(1−ti)(1−λ̃ii1)−1

(1−γi1)ρ1+(1−ti)(1−λ̃ii1)−1

γi1E3

1

λii1

=
(1− γi1)

γi1E3
ρ1

(1− λii1)

λii1

E3

θ1
−

1
γi1

1
θ1

1
σ1

(1− λii1) +
ρ1+(1−ti)(1−λ̃ii1)−1

(1−γi1)ρ1+(1−ti)(1−λ̃ii1)−1

ρ1

1

λii1


=

(1− γi1)

γi1E3

1

θ1

1

λii1

θ1 − θ1ρ1 − (1− λii1) ρ1 + (θ1 − ρ1 (1− λii1)) (ti − 1)
(

1− λ̃ii1
)

(1− γi1) ρ1 + (1− ti)
(

1− λ̃ii1
)
− 1

.

Then the first-order condition becomes

(
θ1

θ1 − ρ1
− ti

)
(θ1 − ρ1)2

θ1ρ1
− (1− γi1)

γi1E3

R̃(ti)

θ1
= (1− αi)

M̃(ti)ti
γi1E3

(
1

ρ1
+

1− γi1
γi1

1

θ1

1

σ1
(1− λii1)

)
,

where

R̃(ti) ≡
1

λii1

θ1 − θ1ρ1 − ρ1 (1− λii1) + (θ1 − ρ1 (1− λii1)) (ti − 1)
(

1− λ̃ii1
)

1− (1− γi1) ρ1 + (ti − 1)
(

1− λ̃ii1
)

 . (109)

The first-order condition can then be written succinctly using topt = θ1
θ1−ρ1 as

topt[1− (1− γi1)R(ti)] = ti[1 + (1− αi)M(ti)], (110)
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where we further define the terms M(ti) and R(ti) as follows.

D.2 Definition of M(ti) and A(ti)

Using M̃(ti) from (108), and replacing E5 with the new notation Em, we define M(ti) as

M(ti) ≡
θ1

(θ1 − ρ1)2

M̃(ti)

γi1E3

(
1 +

(1− γi1)

γi1

ρ1

θ1σ1
(1− λii1)

)

=
θ1

(
Em − (ti−1)

ti
θ1

)
(θ1 − ρ1)2 E3

(
1 +

ρ1(1− γi1)

θ1σ1γi1
(1− λii1)

)
λ̃ii1
λii1

D(ti)

A(ti)

= M×
(
Em −

(ti − 1)

ti
θ1

)
D(ti)

A(ti)
, (111)

where M is defined by

M≡ θ1

(θ1 − ρ1)2 E3

(
1 +

ρ1(1− γi1)

θ1σ1γi1
(1− λii1)

)
λ̃ii1
λii1

> 0, (112)

and Em ≡ E5 was defined in (97), which is repeated here as

Em =

1+λ̃ii1
λ̃ii1

− ρ1
θ1

+ 1−γi1
γi1

1−λ̃ii1
λ̃ii1

(
ρ1
θ1

+ 1
σ1

(ti − 1)λii1

)
1
ρ1

+ 1
θ1

1−γi1
γi1

1
σ1

(1− λii1)
> 0,

and term A(ti) is given by the denominator of M̃(ti) from (108)

A(ti) ≡ αi − γ̃i1 + (1− αi)
[(

1− λ̃ii1
)
ti (1− E4) + λ̃ii1

]
, (113)

and we define Ea ≡ [(1− λ̃ii1)ti (1− E4) + λ̃ii1] to obtain expression (17) in the main text.

These expressions give us the definition of M(ti) used in (16) in the main text. To establish

the sign of Ea, we use E4 from (96) to note that

E4 (1− λii1) =

1
θ1

1+γi1(σ1−1)
σ1γi1

(1− λii1)

1
ρ1

+ 1
θ1

1−γi1
γi1

1
σ1

(1− λii1)
< 1.
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Therefore, 1− E4 > 1− 1
(1−λii1) = − λii1

(1−λii1) , and it follows using (55) that

Ea = (1− λ̃ii1)ti (1− E4) + λ̃ii1 > −
ti(1− λ̃ii1)λii1

(1− λii1)
+ λ̃ii1 = 0. (114)

D.3 Definition of R(ti)

The term R(ti) appearing in (110) is a transformation of R̃(ti) from (109)

R(ti) ≡
ρ1

θ1 (θ1 − ρ1)

R̃(ti)

γi1E3
=

ρ1

θ1 (θ1 − ρ1)

1

λii1

(θ1 − ρ1 (1− λii1)) (T + γ̃i1)− θ1ρ1

(1− γ̃i1) T
ρ1

+ γi1γ̃i1
,

where the equality follows using T (ti) from (57) in (109). We rewrite this as

R(ti) = R× [(θ1 − ρ1 (1− λii1)) (T (ti) + γ̃i1)− θ1ρ1] , R ≡
ρ1

θ1(θ1−ρ1)λii1

(1− γ̃i1) T (ti)
ρ1

+ γi1γ̃i1
> 0. (115)

Then expression (18) in the main text follows by using use (58) to rewrite T (ti) + γ̃i1 = 1
Λii1

.

E Proof of Theorem 1

While a fixed point to (15) exists under general conditions,12 to establish the properties of this

fixed point we rely on a slightly different form of the equation. Taking the difference between the

numerator of F (ti) times topt and the denominator times ti, we obtain

H(ti) ≡ topt [1− (1− γi1)R(ti)]− ti [1 + (1− αi)M(ti)] . (116)

The function H(ti) is a continuous function of the tariff provided that A(ti) > 0 in the interval of

tariffs we are interested in, so that M(ti) does not have any discontinuities. Our general approach

in the next result is to find high and low tariffs at which the sign of H(ti) switches, and then we

apply the intermediate value theorem to obtain a point where H(t∗i ) = 0, which by construction is

a fixed-point of (15).

12 Let W (ti) denote utility Ui as a function of the tariff. Provided that W (ti) is continuous and differentiable, then
it will reach some maximum over the (compact) range of all possible tariffs and subsidies, and t∗i at that maximum
will satisfy the first-order condition (15).

50



In order to apply the intermediate value theorem, we need to consider values of ti below unity,

meaning an import subsidy, so the revenue cost of the subsidy needs to be deducted from labor

income wiLi to obtain net income Ii. With enough roundabout production, it seems possible that

at a very low tariff – meaning a very high import subsidy – the revenue-cost of the subsidy could

exhaust the labor income of the economy, so that net income Ii = wiLi −Bi is zero. In that case,

the there is no consumption by consumers in country i (though the labor endowment Li is still

provided), which is run like an overseas factory solely for the benefit of foreign consumers. We

need to check whether this extreme case can occur, and if it does, we denote that minimal tariff

(maximum import subsidy) by tmin
i ≥ 0. We give a more formal definition with:

Definition 2. tmin
i ≡ arg maxti≥0 {T (ti)|T (ti) = 0}, with λmin

ii1 denoting the value of λii1 at tmin
i .

To explain this definition, notice that using Bi from the main text in (59) that we can solve for

income Ii as

Ii = wiLi +Bi = wiLi

[
T (ti)

T (ti) + αi(T (ti)− (1− γ̃i1))

]
. (117)

We see that Ii = 0 ⇐⇒ T (ti) = 0. We do not rule out in Definition 2 the possibility that there

might be multiple tariffs at which T (ti) = 0, in which case tmin
i is chosen as the maximum of these.13

To solve for tmin
i , we use the market clearing condition (3) together with trade balance (41) to get

Yi1 = αiIi + γ̃i1

(
λii1Yi1 +

λji1
ti
Yi1

)
.

If we set Ii = 0 and use λii1 + λij1 = 1, then we solve for

1 = γ̃i1λ
min
ii1 + γ̃i1

1− λmin
ii1

tmin
i

=⇒ tmin
i =

γ̃i1(1− λmin
ii1 )

(1− γ̃i1λmin
ii1 )

. (118)

We see that tmin
i = 0 for γi1 = 1 because then γ̃i1 = (1− γi1)ρ1 = 0. More generally for 0 ≤ γi1 ≤ 1

we have 0 ≤ γ̃i1 ≤ ρ1, and it follows from (118) that 0 ≤ tmin
i ≤ γ̃i1. Because we solved for tmin

i

from the market clearing condition when Ii = 0, it follows from (117) that T (tmini ) = 0. Negative

income is not possible, so at higher tariffs we have Ii > 0 and then T (ti) > 0 from (117).

13If T (ti) is increasing in ti then tmin
i will be unique, and conditions to ensure that are provided in Lemma 7.
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Remark 2. We henceforth restrict our attention to tariffs in the range ti ≥ tmin
i , where Tmin ≡

T (tmin
i ) = 0 and T (ti) > 0 ⇐⇒ ti > tmin

i .

Before proceeding with the proof of Theorem 1, we make use of the T (ti) function to slightly

transform the terms used within D(ti) and M(ti), as defined in Appendix D.1 and D.2. We first

transform the elasticity E3 appearing in (94) using T (ti) in (57) to obtain

E3 =

(
T (ti) + γ̃i1
T (ti)

+
1

γi1(σ1 − 1)

)
> 0,

and so

E3T (ti) =

(
1 +

1

γi1 (σ1 − 1)

)
T + γ̃i1 = (1− γ̃i1)

T (ti)

γi1ρ1
+ γ̃i1.

Using the above equation with (103), and noting that 1+γi1(σ1−1)
γi1(σ1−1) = 1−γ̃i1

γi1ρ1
, we obtain

D(ti)T (ti) =
1− γ̃i1
γi1ρ1

[
T (ti)−

1 + γi2 (σ2 − 1)

γi2 (σ2 − 1)
γi1ρ1 −

(
T (ti) + γi1ρ1

γ̃i1
1− γ̃i1

)
(1− λii1) E4

]
.

(119)

Also, note that (113) can be rewritten using T (ti) from (57) as

A(ti) = αi − γ̃i1 + (1− αi)
[(
T (ti) + γ̃i1 − λ̃ii1

)
(1− E4) + λ̃ii1

]
. (120)

We now prove Theorem 1 by a series of Definitions, Lemmas and Remarks.

From (115) we have R(ti) = R × [(θ1 − ρ1 (1− λii1)) (T (ti) + γ̃i1)− θ1ρ1] , where R > 0. It

appears that the term [(θ1 − ρ1 (1− λii1)) (T (ti) + γ̃i1)− θ1ρ1] can be zero, particularly as T (ti) is

low, so that R(ti) = 0. For the proof of parts (a) and (c) in Theorem 1, we will make extensive use

of this low tariff, which is defined more formally as follows:

Definition 3. Define tR0
i ≡ arg maxti≥tmini

{R(ti)|R(ti) = 0} and denote TR0 ≡ T (tR0
i ), where it

is understood that TR0 uses the shares λ̃
R0
ii1 and λR0

ii1 which are evaluated at tR0
i .

This definition allows for the possibility that there could be multiple tariffs at which R(ti) = 0, in

which case tR0
i is chosen as the maximum of these points.
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Lemma 3. The tariff tR0
i is given by

tR0
i = 1 +

ρ1(
1− λ̃R0

ii1

) ρ1

(
1− λR0

ii1

)
θ1 − ρ1

(
1− λR0

ii1

) − (1− ρ1)(
1− λ̃R0

ii1

) , (121)

with tmin
i < tR0

i < 1 and R(ti) > 0 for ti > tR0
i .

Proof: Because R > 0 in (18), then R(ti) = 0 implies [(θ1 − ρ1 (1− λii1)) (T (ti) + γ̃i1)− θ1ρ1] = 0.

This condition is rewritten as

TR0 =
θ1ρ1

θ1 − ρ1

(
1− λR0

ii1

) − γ̃i1 =

(
θ1

θ1 − ρ1

(
1− λR0

ii1

) − (1− γi1)

)
ρ1 > 0, (122)

because the first ratio on the right is greater than 1 and so it exceeds (1− γi1) . It follows from

Remark 2 that tR0
i > tmin

i , and from Definition 3 that R(ti) > 0 for ti > tR0
i .

Using (57) we can solve for tR0
i to obtain obtain (121), which can also be written as

tR0
i = 1 +

1(
1− λ̃R0

ii1

) (−(1− ρ1)θ1 + ρ1

(
1− λR0

ii1

)
θ1 − ρ1

(
1− λR0

ii1

) )
< 1

where the final inequality follows from θ1 > (σ1 − 1)⇒ θ1 (1− ρ1) > ρ1

(
1− λR0

ii1

)
. QED

PROOF OF PART (a)

We assume that α = 1, and then H(ti) from (116) becomes H(ti) = topt− ti− topt(1−γi1)R(ti).

With R(tR0
i ) = 0 for tR0

i < 1, we obtain H(tR0
i ) = topt − tR0

i > 0. Checking the sign of R(topt),

because T (topt) > 1 − γ̃i1 it readily follows from (18) that R(topt) > 0. In that case we obtain

H(topti ) = −topt(1−γi1)R(topt) < 0 for γi1 < 1. Using the continuity of R(ti) and therefore of H(ti),

it follows from the intermediate value theorem that there exists a tariff t∗i with tR0
i < t∗i < topt at

which H(t∗i ) = 0. By construction, this tariff is a fixed point of (15). QED

PROOF OF PARTS (b) AND (c)

From (111) we have M(ti) =M×
(
Em − (ti−1)

ti
θ1

)
D(ti)
A(ti)

, where M > 0 from (112). It appears

to be possible that M(ti) = 0 for two reasons: either D(ti) = 0 at some tariff; or Em − (ti−1)
ti

θ1 at

some tariff. For the proof of parts (b) and (c) in Theorem 1, we will make extensive use of the first

53



of these points, where D(ti) = 0, which is defined more formally as follows:

Definition 4. Define

tD0
i ≡

 arg minti≥tmin
i
{D(ti) = 0} if this value exists,

+∞ otherwise,

and denote TD0 ≡ T (tD0
i ) and likewise for the shares λ̃

D0
ii1 and λD0

ii1 evaluated at tD0
i .

Once again, we allow for multiple solutions for the tariff where D(ti) = 0, and in this case we

choose tD0
i as the minimum of them. Next, we establish a result for the term Em − (ti−1)

ti
θ1 that

also appears within M(ti) = M×
(
Em − (ti−1)

ti
θ1

)
D(ti)
A(ti)

, and could possibly make this expression

equal to zero.

Lemma 4. Em− (ti−1)
ti

θ1 > 0 for all ti ∈ [tmin
i , topti ]. In addition, if γi1 = 1 then Em−

(t′′i −1)
t′′i

θ1 = 0

at a tariff t′′i > topti .

Proof: From (97) we see that

Em −
(ti − 1)

ti
θ1 =

1+λ̃ii1
λ̃ii1

− ρ1
θ1

+ 1−γi1
γi1

1−λ̃ii1
λ̃ii1

(
ρ1
θ1

+ 1
σ1

(ti − 1)λii1

)
1
ρ1

+ (1−γi1)(1−λii1)
γi1σ1θ1

− (ti − 1)

ti
θ1. (123)

Notice that the final term on the right is increasing in ti, so it takes its highest value over ti ∈

[tmin
i , topti ] at ti = topt, in which that term equals ρ1. It follows that

Em −
(ti − 1)

ti
θ1 ≥

1+λ̃ii1
λ̃ii1

− ρ1
θ1

+ 1−γi1
γi1

1−λ̃ii1
λ̃ii1

(
ρ1
θ1

+ 1
σ1

(ti − 1)λii1

)
1
ρ1

+ (1−γi1)(1−λii1)
γi1σ1θ1

− ρ1

=
ρ1

λ̃ii1

1− ρ1
θ1
λ̃ii1 + 1−γi1

γi1

(
1− λ̃ii1

)
ρ1
θ1

+ 1−γi1
γi1σ1

((
1− λ̃ii1

)
(ti − 1)λii1 − ρ1

θ1
(1− λii1) λ̃ii1

)
1 + ρ1

(1−γi1)(1−λii1)
γi1σ1θ1


=

ρ1

λ̃ii1

1− ρ1
θ1
λ̃ii1 + 1−γi1

γi1

(
1− λ̃ii1

)
ρ1
θ1

+ 1−γi1
γi1σ1

(
1− λ̃ii1

)
λii1

(
ti
topt − 1

)
1 + ρ1

(1−γi1)(1−λii1)
γi1σ1θ1


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where the final line follows using (55). The second two terms in the numerator are

1− γi1
γi1

(
1− λ̃ii1

)(ρ1

θ1
− λii1

σ1

(
1− ti

topt

))
≥ 1− γi1

γi1

1

θ1σ1

(
1− λ̃ii1

)
(ti (θ1 − ρ1)− (θ1 − (σ1 − 1)))

which is positive for ti ≥ 1 and proves that Em − (ti−1)
ti

θ1 > 0 for all ti ∈ [tmin
i , topti ].

To evaluate (123) at higher levels of the tariff, note that with γi1 = 1 we have that

lim
ti→∞

(
Em|γi1=1 −

(ti − 1)

ti
θ1

)
= ρ1

(
2− ρ1

θ1

)
− θ1 < 0

because
(

2− ρ1
θ1
− θ1

ρ1

)
< 0 for θ1

ρ1
> 1. It follows that for γi1 = 1 then there exists a tariff t′′i > topti

at which Em −
(t′′i −1)
t′′i

θ1 = 0. QED

PROOF OF PART (b)(i)

If γis = 1 for s = 1, 2 then from (96) and (97) we have we have E3 = σ1
(σ1−1) and E4 = ρ1

θ1σ1
.

Substituting these into (103) we obtain

D(ti) =

[
σ1

(σ1 − 1)
−
(

σ2

(σ2 − 1)

)
1

T (ti)
− 1

σ1θ1
(1− λii1)

]
(124)

>

[
σ1

(σ1 − 1)
− σ2

(σ2 − 1)
− 1

σ1θ1

]
,

where the inequality follows from T (ti) ≥ 1 for ti ∈ [1, topt] and λii1 < 1. It follows that D(ti) > 0

when condition (19) holds.

Notice that when γi1 = 1 and E4 = ρ1
θ1σ1

then A(ti) in (113) becomes

A(ti) ≡ αi + (1− αi)
[(

1− λ̃ii1
)
ti

(
1− ρ1

θ1σ1

)
+ λ̃ii1

]
> αi > 0, (125)

which is bounded away from zero so that M(ti) is continuous. Then because Em − (ti−1)
ti

θ1 > 0 for

ti ∈ [1, topt] from Lemma 4, it follows that M(ti) > 0 in that interval, and in particular M(topti ) > 0.

From (116) with γi1 = 1 it follows that H(topt) = −topt (1− αi)M(topt) < 0.

55



Now we make use of tD0
i which for γi1 = 1 is solved by setting (124) equal to zero, giving

σ1

(σ1 − 1)
−
(

σ2

(σ2 − 1)

)
1

T (tD0
i )
− 1

σ1θ1
(1− λii1) = 0. (126)

It follows that

T (tD0
i ) =

σ2
σ2−1

σ1
(σ1−1) −

(1−λii1)
σ1θ1

<
σ2
σ2−1

σ1
(σ1−1) −

1
σ1θ1

< 1

since condition (19) implies σ1
σ1−1 −

1
σ1θ1

> σ2
(σ2−1) . Because T (tD0

i ) = 1 +
(
tD0
i − 1

) (
1− λ̃ii1

)
when

γi1 = 1, it follows immediately that tD0
i < 1.

We have already shown H(topt) = −topt (1− αi)M(topt) < 0. Since tD0
i < 1 then M(tD0

i ) = 0

and so H(tD0
i ) = topt − tD0

i

[
1 + (1− αi)M(tD0

i )
]

= topt − tD0
i > 0. Using the continuity of M(ti)

and therefore of H(ti), it follows from the intermediate value theorem that there exists a tariff t∗i

with tD0
i < t∗i < topt at which H(t∗i ) = 0. By construction, this tariff is a fixed point of (15). QED

PROOF OF PART (b)(ii)

Under σ1 ≥ σ2, we have D(topti ) < 0 from (124). Using Lemma 4 it follows that M(topti ) < 0,

and therefore from H(ti) in (116), with γi1 = 1, we have H(topt) = −topt (1− αi)M(topt) > 0.

Now we check a higher tariff t′′i > topt from Lemma 4 at which Em − (ti−1)
ti

θ1=0 and therefore

M(t′′i ) = 0. From H(ti) in (116), with γi1 = 1, we have H(t′′i ) = topt − t′′i [1 + (1− αi)M(t′′i )] =

topt − t′′i < 0. Using from the continuity of M(ti) and therefore of H(ti), it follows from the

intermediate value theorem that there exists a tariff exists a tariff t∗i with topti < t∗i < t′′i at which

H(t∗i ) = 0. By construction, this tariff is a fixed point of (15). QED

PROOF OF PART (c)

We first establish conditions to ensure that A(ti) > 0, starting with the region ti ≥ topt.

Lemma 5. (1−E4)topt ≥ ρ1 when condition (20) holds, where E4 can be evaluated at any tariff. It

follows that A(ti) > αi(1− ρ1) + γi1ρ1 > 0 for all ti ≥ topt.

Proof: We want to ensure that (1− E4) ≥ ρ1
topt = ρ1(θ1−ρ1)

θ1
. Use (96) to obtain

1−
1
θ1

1+γi1(σ1−1)
σ1γi1

1
ρ1

+ 1
θ1

1−γi1
γi1

1
σ1

(1− λii1)
≥ ρ1 (θ1 − ρ1)

θ1
.
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Then we take λii1 = 1 to get a sufficient condition

1− ρ1

θ1

1 + γi1 (σ1 − 1)

σ1γi1
≥ ρ1 (θ1 − ρ1)

θ1
⇐⇒ σ1

ρ1
(θ1 − ρ1) (1− ρ1) ≥ 1− γi1

γi1
. (127)

which is equivalent to (20) in the main text. Now the magnitude of A(ti) is established from

A(ti) = αi − γ̃i1 + (1− αi)
[(

1− λ̃ii1
)
ti (1− E4) + λ̃ii1

]
≥ αi − γ̃i1 + (1− αi)

[(
1− λ̃ii1

)
topt (1− E4) + λ̃ii1

]
≥ αi − (1− γi1)ρ1 + (1− αi)

[(
1− λ̃ii1

)
ρ1 + λ̃ii1

]
> αi(1− ρ1) + γi1ρ1,

where the first inequality follows from ti ≥ topt, the second from (1 − E4)topt ≥ ρ1, and the final

inequality from [(1− λ̃ii1)ρ1 + λ̃ii1] > ρ1 . QED

Next, we define the tariff tA0
i at which A(ti) becomes zero, if it exists:

Definition 5. a) Define

tA0
i ≡

 arg maxti≥tmin
i
{A(ti) = 0} if this value exists,

tmin
i otherwise,

and denote TA0 ≡ T (tA0
i ) and likewise for the shares λ̃

A0
ii1 and λA0

ii1 , which are evaluated at tA0
i .

In this definition we are looking for tariffs at which A(ti) = 0, but there will be no such tariffs

if A(ti) > 0 for all ti ≥ tmin
i . In that case, tA0

i = tmin
i < 1. On the other hand, if there are multiple

tariffs at which A(ti) = 0, then tA0
i is the maximum of these. From Lemma 5 which relies on

condition (20) we know that tA0
i < topt. In Lemma 8 below, we will further show that condition

(21) ensures that tA0
i < tR0

i , and we know that tR0
i < 1 from Lemma 3, so tA0

i < 1.

Remark 6. The tariff tA0
i is the import subsidy referred to as t′i in the statement of Theorem 1(c).

Lemma 7. For ti ∈ (tmin
i , 1), T (ti) is monotonically increasing in ti provided that A(ti) > 0.

57



Proof: From (56) combined with (57), T (ti) is given by

T =
λ̃ii1
λii1
− γ̃i1, (128)

which we differentiate to obtain,

dT =
λ̃ii1
λii1

(
ˆ̃
λii1 − λ̂ii1

)
.

Totally differentiate (55), we can show that

λ̂ii1 =
(1− λii1)(
1− λ̃ii1

) (ˆ̃
λii1−

(
1− λ̃ii1

)
t̂
i

)
(129)

Then combining with (100), we obtain

λ̂ii1 − ˆ̃
λii1 =

θ1

λ̃ii1

(
λ̃ii1 − λii1

)
ϕ̂∗ij1 − (1− λii1) t̂i.

It follows that,

dT = − θ1

λii1

(
λ̃ii1 − λii1

)
ϕ̂∗ij1 +

λ̃ii1
λii1

(1− λii1)t̂i. (130)

Notice that the coefficient of t̂i in the final term is positive. We now show that ϕ̂ij1/t̂i is positive,

so then because λ̃ii1 < λii1 for ti < 1, we have established the monotonicity of T (ti).

Using (95) and (101), we have

t̂i =

Em − tiE4

(
1− λ̃ii1

)(
Em − (ti−1)

ti
θ1

)
((

1− λ̃ii1
)
ti (E4 − 1)− λ̃ii1 − 1

1−αi (αi − γ̃i1)
)
 ϕ̂∗ij1,

and so

ϕ̂∗ij1 =

((
1− λ̃ii1

)
ti (E4 − 1)− λ̃ii1 − 1

1−αi (αi − γ̃i1)
)

((
1− λ̃ii1

)
ti (E4 − 1)− λ̃ii1 − 1

1−αi (αi − γ̃i1)
)
Em − E4

(
1− λ̃ii1

)
(tiEm − (ti − 1) θ1)

t̂i.
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Multiply the numerator and denominator by −(1− αi) and use (113) to obtain

ϕ̂∗ij1 =
A

AEm + (1− αi)E4

(
1− λ̃ii1

)
(tiEm − (ti − 1) θ1)

t̂i.

Because E4 > 0 and Em > 0, then for ti < 1 we have ϕ̂ij1/t̂i > 0. QED

Lemma 8. A(ti) > 0 for ti ∈ [tR0
i , topt] provided that (20) and (21) hold.

Proof:

There are two cases to consider. The first case is where tA0
i = tmini so that A(ti) > 0 for all

ti > tmini . In that case, the lemma holds trivially.

The second case is where tA0
i > tmini . Then according to (113), A(tA0

i ) = 0 at the tariff

(1− αi)
((

1− λ̃ii1
)
tA0
i (1− E4) + λ̃ii1

)
+ αi − γ̃i1 = 0,

so that, (
1− λ̃ii1

)
tA0
i = −

αi

(
1− λ̃ii1

)
+ λ̃ii1 − γ̃i1

(1− E4) (1− αi)
. (131)

Using the definition of T (ti) in (57), we can rewrite (113) as

(1− αi)
(
TA0 −

(
1− λ̃ii1

)
tA0
i E4

)
+ αi (1− γ̃i1) = 0, so that,

TA0 =
(

1− λ̃ii1
)
tA0
i E4 −

αi
1− αi

(1− γ̃i1) .

Combining with (131), TA0 can be written as

TA0 = − 1

1− αi

E4 (1− αi)
(
λ̃ii1 − γ̃i1

)
+ αi (1− γ̃i1)

(1− E4)


= −

(
λ̃ii1 − γ̃i1

) E4

(1− E4)
− αi (1− γ̃i1)

(1− αi) (1− E4)
. (132)
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We know that the tariff tR0
i at which R(tR0

i ) = 0 occurs at

TR0 =
θ1ρ1

θ1 − ρ1

(
1− λR0

ii1

) − γ̃i1.
Our goal is to show that TA0 ≤ TR0, which will ensure that T (ti) is invertible in the range [tA0

i , 1]

using Lemma 7 with A(ti) > 0 in that range. The condition TA0 ≤ TR0 holds if

−
(
λ̃ii1 − γ̃i1

) E 4

(1− E4)
− αi (1− γ̃i1)

(1− αi) (1− E4)
≤ θ1ρ1

θ1 − ρ1

(
1− λR0

ii1

) − γ̃i1, or,

−λ̃ii1
E4

(1− E4)
− αi (1− γ̃i1)

(1− αi) (1− E4)
≤ θ1ρ1

θ1 − ρ1

(
1− λR0

ii1

) − γ̃i1 1

1− E4
.

Drop the share on the left and we get the sufficient condition

1

(1− E4)

(γ̃i1 − αi)
(1− αi)

≤ θ1ρ1

θ1 − ρ1

(
1− λR0

ii1

) . (133)

If γ̃i1 < αi, this restriction is satisfied. However, for γ̃i1 > αi, then we need E4 sufficiently small so

that the above condition holds.

From Lemma 5 we know that (1 − E4)topt < 1 and it follows that E4 < 1. Then the sufficient

condition for (133) is

(1− E4) ≥ (γ̃i1 − αi)
(1− αi)

[
1

ρ1
−
(
1− λR0

ii1

)
θ1

]
.

If αi ≥ γ̃i1 then this condition is automatically satisfied, since then the right-hand side is less than

or equal to zero, while the left-hand side is positive. For αi < γ̃i1, we can take λR0
ii1 = 1 to get the

sufficient condition

1− E4 ≥
(γ̃i1 − αi)
(1− αi)

[
1

ρ1
− 1

θ1
+

1

θ1

]
≥ (γ̃i1 − αi)

(1− αi)

[
1

ρ1
− 1

θ1
+
λR0
ii1

θ1

]
.

We can substitute for E4 and the sufficient condition becomes

1−
1
θ1

+ 1
θ1

1−γi1
σ1γi1

1
ρ1

+ 1
θ1

1−γi1
γi1

1
σ1

(1− λii1)
≥ (γ̃i1 − αi)

(1− αi)ρ1
.
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A sufficient condition for this inequality is obtained by taking λii1 = 1 on the left, so

1−
1
θ1

+ 1
θ1

1−γi1
σ1γi1

1
ρ1

≥ (γ̃i1 − αi)
(1− αi)ρ1

=⇒ αi ≥
−γi1 + ρ1

(
1
θ1

+ 1
θ1

1−γi1
σ1γi1

)
1
ρ1
− 1 + ρ1

(
1
θ1

+ 1
θ1

1−γi1
σ1γi1

) .
We therefore obtain (21) as the sufficient condition for tA0

i < tR0
i , which ensures the A(ti) > 0 for

ti ∈ [tR0
i , topt]. QED

Lemma 9. D(tR0
i ) < 0. It follows by also using conditions (20) and (21) together with Lemma 4

that M(tR0
i ) < 0.

Proof: We evaluate D (ti) from (103) at tR0
i where we also evaluate the elasticities E3, and E4 at

tR0
i . Then D(tR0

i ) < 0 if the following expression is negative

1−
1+γi2(σ2−1)
γ2(σ2−1) γi1 (σ1 − 1)

σ1

(
1− λ̃ii1

) (
tR0
i − 1

)
+ (1 + γi1 (σ1 − 1))

−γi1 (σ1 − 1) (1− λii1)

1 + γi1 (σ1 − 1)

(
T (ti)+γ̃i1
T (ti)

+ 1
γi1(σ1−1)

)
1
θ1

1+γi1(σ1−1)
σ1γi1

1
ρ1

+ 1
θ1

1−γi1
γi1

1
σ1

(1− λii1)
< 0.

Using TR0 = θ1ρ1
θ1−ρ1(1−λR0

ii1)
− γ̃i1, then we require

1−
1+γi2(σ2−1)
γ2(σ2−1) γi1 (σ1 − 1)

σ1

(
1− λ̃ii1

) (
tR0
i − 1

)
+ (1 + γi1 (σ1 − 1))

−γi1 (σ1 − 1) (1− λii1)

1 + γi1 (σ1 − 1)

(
θ1ρ1

θ1ρ1−γ̃i1(θ1−ρ1(1−λR0
ii1))

+ 1
γi1(σ1−1)

)
1
θ1

1+γi1(σ1−1)
σ1γi1

1
ρ1

+ 1
θ1

1−γi1
γi1

1
σ1

(1− λii1)
< 0.

Given that 1+γi2(σ2−1)
γ2(σ2−1) > 1 then a sufficient condition is

1

σ1

(
1− λ̃ii1

) (
tR0
i − 1

)
+ (1 + γi1 (σ1 − 1))

+

(1− λii1)

(
θ1ρ1

θ1ρ1−γ̃i1(θ1−ρ1(1−λR0
ii1))

+ 1
γi1(σ1−1)

)
1
θ1

1
σ1γi1

1
ρ1

+ 1
θ1

1−γi1
γi1

1
σ1

(1− λii1)
≥ 1

γi1 (σ1 − 1)
.
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Using tR0
i = 1 + ρ1(

1−λ̃R0
ii1

) ρ1(1−λR0
ii1)

θ1−ρ1(1−λR0
ii1)
− (1−ρ1)(

1−λ̃R0
ii1

) , we simply this inequality as

θ1 − ρ1

(
1− λR0

ii1

)
σ1ρ2

1

(
1− λR0

ii1

)
+ γi1 (σ1 − 1)

(
θ1 − ρ1

(
1− λR0

ii1

))
+

(1− λii1)

(
θ1ρ1

θ1ρ1−γ̃i1(θ1−ρ1(1−λR0
ii1))

+ 1
γi1(σ1−1)

)
ρ1

γi1(σ1−1)
σ1γi1

ρ1
1
γi1

1
σ1

(1− λii1) γi1 (σ1 − 1) + γi1 (σ1 − 1)
(
θ1 − ρ1

1
σ1

(1− λii1)
) ≥ 1

γi1 (σ1 − 1)
.

With simplifications, this inequality is expressed as

θ1 − ρ1

(
1− λR0

ii1

)
σ1ρ2

1

(
1− λR0

ii1

)
+ γi1 (σ1 − 1)

(
θ1 − ρ1

(
1− λR0

ii1

)) +

(
θ1ρ1(1−λii1)(σ1−1)

γi1θ1+(1−γi1)ρ1(1−λR0
ii1)

+−σ1θ1 + ρ1 (1− λii1)

)
σ1ρ2

1 (1− λii1) + γi1 (σ1 − 1) (σ1θ1 − ρ1 (1− λii1))
≥ 0,

or,

1

σ1ρ2
1

(
1− λR0

ii1

)
+ γi1 (σ1 − 1)

(
θ1 − ρ1

(
1− λR0

ii1

)) ≥ (σ1−1)θ1γi1
γi1θ1+(1−γi1)ρ1(1−λR0

ii1)
+ 1

σ1ρ2
1 (1− λii1) + γi1 (σ1 − 1) (σ1θ1 − ρ1 (1− λii1))

.

Cross-multiplying terms we obtain

1 +
γi1 (σ1 − 1) (σ1 − 1) θ1

σ1ρ2
1

(
1− λR0

ii1

)
+ γi1 (σ1 − 1)

(
θ1 − ρ1

(
1− λR0

ii1

)) ≥ (σ1 − 1) θ1γi1

γi1θ1 + (1− γi1) ρ1

(
1− λR0

ii1

) + 1,

so that we finally obtain the inequality

γi1θ1 + (1− γi1) ρ1

(
1− λR0

ii1

)
≥ ρ1

(
1− λR0

ii1

)
+ γi1

(
θ1 − ρ1

(
1− λR0

ii1

))
which is true because by canceling common terms it holds as an equality. QED

To prove Theorem 1(c), we rely on two, final Lemmas.

Lemma 10. Provided that condition (22) holds, then

Dopt > δi

(
1− γ̃i1
γi1ρ1

)
− 1 + γi2 (σ2 − 1)

γi2 (σ2 − 1)

(
1− γ̃i1
topt − γ̃i1

)
, (134)
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where

δi ≡
1− ρ2

1γi1(1− γi1)
(

1− ρ1
(topt)2

)−1

topt + 1
σ1

. (135)

Proof: We define T opt ≡ T (topt) and Dopt ≡ D(topt). It follows from substituting the expenditure

share (38) for k = i into the production share (52) and then into T (ti) in (57) that

T opt = 1− γ̃i1 +

(
topt − 1

)
(1− λii1)

1 + (topt − 1)λii1
. (136)

It follows from (119) that

DoptT opt =

(
1− γ̃i1
γi1ρ1

)[
T opt (1− (1− λii1) E4)− 1 + γi2 (σ2 − 1)

γi2 (σ2 − 1)
γi1ρ1 − γi1ρ1

γ̃i1
1− γ̃i1

(1− λii1) E4

]
.

(137)

It should be understood that the shares appearing in these equations are also evaluated at topt.

Our strategy, however, is to treat these shares as parameters and differentiate DoptT opt with respect

to the share λii1 so as to obtain a lower-bound on DoptT opt. During this process, we are allowing

the production share to adjust parametrically according to (52).

The value DoptT opt changes with the share λii1 according to

∂DoptT opt

∂λii1
=

(
1− γ̃i1
γi1ρ1

)[
∂T opt

∂λii1
(1− (1− λii1) E4)−

(
T opt + γi1ρ1

γ̃i1
1− γ̃i1

)
∂ (1− λii1) E4

∂λii1

]
.

(138)

From (136) we have

∂T opt

∂λii1
= −

(
topt − 1

)
1 + (topt − 1)λii1

−
(
topt − 1

)2
(1− λii1)

[1 + (topt − 1)λii1]2

= −
(
topt − 1

)
topt

[1 + (topt − 1)λii1]2
.

Also from (96) we see that

(1− λii1) E4 =

(1−λii1)
θ1

+ 1
θ1

1−γi1
σ1γi1

(1− λii1)

1
ρ1

+ 1
θ1

1−γi1
γi1

1
σ1

(1− λii1)
=

1
θ1

+ 1
θ1

1−γi1
σ1γi1

1
ρ1(1−λii1) + 1

θ1
1−γi1
γi1

1
σ1

,
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so it follows that

∂ (1− λii1) E4

∂λii1
= −

1
θ1

+ 1
θ1

1−γi1
σ1γi1[

1
ρ1(1−λii1) + 1

θ1
1−γi1
γi1

1
σ1

]2

1

ρ1 (1− λii1)2

= −E4

1
ρ1(1−λii1)[

1
ρ1(1−λii1) + 1

θ1
1−γi1
γi1

1
σ1

] .
Substituting these expressions into (138), we obtain

∂DoptT opt

∂λii1
= −

(
1− γ̃i1
γi1ρ1

) (
topt − 1

)
topt

[1 + (topt − 1)λii1]2
[1− (1− λii1) E4]

+

(
T opt + γi1ρ1

γ̃i1
1− γ̃i1

)
E4

(
1−γ̃i1
γi1ρ1

)
1

ρ1(1−λii1)[
1

ρ1(1−λii1) + 1
θ1

1−γi1
γi1

1
σ1

]
= −

(
1− γ̃i1
γi1ρ1

) (
topt − 1

)
topt

[1 + (topt − 1)λii1]2

[
1

ρ1(1−λii1) −
1
θ1

1
ρ1(1−λii1) + 1

θ1
1−γi1
γi1

1
σ1

]

+

(
T opt + γi1ρ1

γ̃i1
1− γ̃i1

)
E4

(
1−γ̃i1
γi1ρ1

)
1

ρ1(1−λii1)[
1

ρ1(1−λii1) + 1
θ1

1−γi1
γi1

1
σ1

]
>

{
−

(
topt − 1

)
topt

[1 + (topt − 1)λii1]2
+

(
T opt + γi1ρ1

γ̃i1
1− γ̃i1

)
E4

} (
1−γ̃i1
γi1ρ1

)
1

ρ1(1−λii1)[
1

ρ1(1−λii1) + 1
θ1

1−γi1
γi1

1
σ1

] .
Using (136) it follows that ∂DoptT opt

∂λii1
> 0 if

E4
1 + γi1ρ1γ̃i1

1− γ̃i1
>

(
topt − 1

)
1 + (topt − 1)λii1

(
topt

[1 + (topt − 1)λii1]
− E4 (1− λii1)

)
. (139)

Substituting topt = θ1
θ1−ρ1 so that topt − 1 = ρ1

θ1−ρ1 , we simplify this expression to obtain

(
E4 −

ρ1

θ1 − ρ1(1− λii1)

)(
ρ1(1− λii1)

θ1 − ρ1(1− λii1)
+ 1

)
> E4

(
1− 1 + γi1ρ1γ̃i1

1− γ̃i1

)
.

Then we substitute (96) on the left and we use the bound from Lemma 5 on the right, which implies
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that E4 ≤ θ1−ρ1(θ1−ρ1)
θ1

, to obtain the sufficient condition

(
1
θ1

+ 1
θ1

1−γi1
σ1γi1

1
ρ1

+ 1
θ1

1−γi1
γi1

1
σ1

(1− λii1)
− ρ1

θ1 − ρ1(1− λii1)

)(
ρ1(1− λii1)

θ1 − ρ1(1− λii1)
+ 1

)

>
θ1 − ρ1 (θ1 − ρ1)

θ1

(
1− 1 + γi1ρ1γ̃i1

1− γ̃i1

)
.

We set λii1 = 0 on the left to obtain a further sufficient condition

1
θ1

+ 1
θ1

1−γi1
σ1γi1

1
ρ1

+ 1
θ1

1−γi1
γi1

1
σ1

− ρ1

θ1 − ρ1
>
θ1 − ρ1 (θ1 − ρ1)

θ1

(
1− 1 + γi1ρ1γ̃i1

1− γ̃i1

)

After extensive simplification, this inequality is written as

(1− γi1)2 ρ1 (θ1 − ρ1 (θ1 − ρ1)) (1 + γi1ρ1)
θ1 − ρ1

θ1
+ (1− γi1) (θ1 − 2ρ1) (1− (1− γi1) .ρ1)

> σ1γi1ρ1 (1− (1− γi1) ρ1)− σ1γi1 (1− γi1) (θ1 − ρ1 (θ1 − ρ1)) (1 + γi1ρ1) (θ1 − ρ1)

This inequality fails to hold at γi1 = 1, so lower values of γi1 are needed. The first set of terms on

the left will involve a cubic in γi1, so to avoid that a sufficient condition is obtained by ignoring

those (positive) terms, resulting in

(1− γi1) (θ1 − 2ρ1) (1− (1− γi1) ρ1)− σ1γi1ρ1 (1− (1− γi1) ρ1)

≥ −σ1γi1 (1− γi1) (θ1 − ρ1 (θ1 − ρ1)) (1 + γi1ρ1) (θ1 − ρ1) .

A further simplification is obtained by observing that (1 + γi1ρ1) on the right is made smaller by

replacing it with (1− (1− γi1) ρ1), and dividing out that common term to obtain

(1− γi1) (θ1 − 2ρ1) ≥ σ1γi1 [ρ1 − (1− γi1) (θ1 − ρ1 (θ1 − ρ1)) (θ1 − ρ1)] .

A sufficient condition for this inequality to hold is provided by (22).

It follows that we can take λii1 = 0 to obtain a lower-bound for DoptT opt, and also λ̃ii1 = 0

from (52). So we set both these shares at zero in (136) and (137) to obtain T opt|λii1=0 = topt − γ̃i1
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and using this in (137), we obtain

Dopt|λii1=0T
opt|λii1=0

=

(
1− γ̃i1
γi1ρ1

)[
(topt − γ̃i1) (1− E4|λii1=0) +

1 + γi2 (σ2 − 1)

γi2 (σ2 − 1)
γi1ρ1 − γi1ρ1

γ̃i1
1− γ̃i1

E4|λii1=0

]
.

We use these expressions to obtain a bound on Dopt of

Dopt =
DoptT opt

T opt
≥ Dopt|λii1=0T

opt|λii1=0

T opt

=

(
1− γ̃i1
γi1ρ1

) (topt − γ̃i1) (1− E4|λii1=0) + 1+γi2(σ2−1)
γi2(σ2−1) γi1ρ1 − γi1ρ1

γ̃i1
1−γ̃i1

E4|λii1=0

1− γ̃i1 + (topt − 1)
(

1− λ̃ii1
) .

We further set λ̃ii1 in the denominator at zero to obtain another lower bound on Dopt of

Dopt >

(
1− γ̃i1
γi1ρ1

) (topt − γ̃i1) (1− E4|λii1=0)− 1+γi2(σ2−1)
γi2(σ2−1) γi1ρ1 − γi1ρ1

γ̃i1
1−γ̃i1

E4|λii1=0

topt − γ̃i1
(140)

=

(
1− γ̃i1
γi1ρ1

)[
1− E4|λii1=0

(
1 +

γi1ρ1

(topt − γ̃i1)

γ̃i1
1− γ̃i1

)
− 1 + γi2 (σ2 − 1)

γi2 (σ2 − 1)

γi1ρ1

topt − γ̃i1

]
.

Evaluating the second term in this expression, we apply (20) which is equivalent to (127) to obtain

E4|λii1=0 ≤
ρ1 + (θ1 − ρ1) (1− ρ1)

θ1 + (θ1 − ρ1) (1− ρ1)
=
topt − ρ1

topt + 1
σ1

.

In addition, the denominator of the term 1+ γi1ρ1
(topt−γ̃i1)

γ̃i1
1−γ̃i1

is bounded below by using (20) again to

obtain γ̃i1 = (1 − γi1)ρ1 ≤ ρ1/t
opt and so

(
topt − γ̃i1

)
(1− γ̃i1) ≥

(
topt − ρ1

topt

) (
1− ρ1

topt

)
. It follows

that

1− E4|λii1=0

(
1 +

γi1ρ1

(topt − γ̃i1)

γ̃i1
1− γ̃i1

)
≥

1− ρ2
1γi1(1− γi1)

(
1− ρ1

(topt)2

)−1

topt + 1
σ1

≡ δi.

Substituting these results into (140) we have shown (134), with δi defined as in (135). QED

Lemma 11. When conditions (20) and (22) hold, then Hopt < 0 for all parameters satisfying (14)

when κi is chosen as stated in part (c) of Theorem 1.
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Proof: Using (116), the needed condition is that

− (1− αi)Mopt

(
Eoptm −

(
topt − 1

)
topt

θ1

)
Dopt

Aopt
< (1− γi1)Ropt,

where Mopt, Eoptm , Dopt, Aopt and Ropt are all evaluated at topt. Using Lemma 10, we can rewrite

this expression as

γi1(σ1 − 1)

1 + γi1(σ1 − 1)
<

δi +
(1− γi1)RoptAopt

(1− αi)Mopt
(
Eoptm − (topt−1)

topt θ1

)
 (topt − γ̃i1)γi2 (σ2 − 1)

(1− γ̃i1)[1 + γi2 (σ2 − 1)]
.

Therefore, we satisfy condition (14), γi1(σ1−1)
1+γi1(σ1−1) < κi

γi2(σ2−1)
1+γi2(σ2−1) , by choosing κi as

κi =

δi +
(1− γi1)RoptAopt

(1− αi)Mopt
(
Eoptm − (topt−1)

topt θ1

)
 (topt − γ̃i1)

(1− γ̃i1)
.

Because many of the variables on the right-hand side of this equation depend on expenditure or

production shares, we now develop a lower-bound for κi that is independent of these shares.

Using the method in the proof of Lemma 4, we first obtain

Eoptm −
(
topt − 1

)
topt

θ1 =
ρ1

λ̃ii1

1− ρ1
θ1
λ̃ii1 + 1−γi1

γi1
ρ1
θ1

(
1− λ̃ii1

)
1 + ρ1

(1−γi1)(1−λii1)
γi1σ1θ1

 .

We substitute this along with the lower-bound for A(topt) from Lemma 5, which we rewrite as

A(topt) > Ai ≡ αi(1− ρ1) + γi1ρ1, together with the expressions forMopt, Dopt and Ropt, to obtain

κi >


δi +

(1− γi1)θ1 (θ1 − ρ1)2 ρ1Ai

 (θ1 − ρ1 (1− λii1)) 1
θ1−ρ1

+ −θ1ρ1+(θ1−ρ1(1−λii1))(1−γi1)ρ1

(θ1−ρ1+ρ1(1−λ̃ii1)−(θ1−ρ1)(1−γi1)ρ1)


(1− αi) (1− γ̃i1)

(
θ1 − ρ1 + ρ1

γi1

(
1− λ̃ii1

))


(topt − γ̃i1)

(1− γ̃i1)
.

Now we use θ1−ρ1+ρ1λii1
θ1−ρ1 > 1 and (θ1 − ρ1 (1− λii1)) 1

θ1−ρ1 < θ1
θ1−ρ1 to obtain the further lower-
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bound

κi >

δi +

(1− γi1)θ1 (θ1 − ρ1)2 ρ1Ai

(
θ1

θ1−ρ1 + −θ1ρ1+(θ1−ρ1(1−λii1))(1−γi1)ρ1

(θ1−ρ1+ρ1(1−λ̃ii1)−(θ1−ρ1)(1−γi1)ρ1)

)
(1− αi) (1− γ̃i1)

(
θ1 − ρ1 + ρ1

γi1

(
1− λ̃ii1

))
 (topt − γ̃i1)

(1− γ̃i1)
.

(141)

Notice that

θ1

θ1 − ρ1
+

−θ1ρ1 + (θ1 − ρ1 (1− λii1)) (1− γi1) ρ1(
θ1 − ρ1 + ρ1

(
1− λ̃ii1

)
− (θ1 − ρ1) (1− γi1) ρ1

) =
θ1 (1− ρ1)− ρ1γ̃i1 (1− λii1) + θ1

(θ1−ρ1)ρ1

(
1− λ̃ii1

)
(θ1 − ρ1) (1− γ̃i1) + ρ1

(
1− λ̃ii1

)
and then since λii1 < λ̃ii1 at topt we have

θ1 (1− ρ1)− ρ1γ̃i1 (1− λii1) + θ1
(θ1−ρ1)ρ1

(
1− λ̃ii1

)
(θ1 − ρ1) (1− γ̃i1) + ρ1

(
1− λ̃ii1

) >
θ1 (1− ρ1) +

(
θ1

θ1−ρ1 − γ̃i1
)
ρ1

(
1− λ̃ii1

)
(θ1 − ρ1) (1− γ̃i1) + ρ1

(
1− λ̃ii1

)
>

θ1 (1− ρ1) +
(

θ1
θ1−ρ1 − γ̃i1

)
ρ1

(θ1 − ρ1) (1− γ̃i1)
,

where the second line is obtained by using λ̃ii1 = 0 in numerator and λ̃ii1 = 1 in the denominator.

Substituting these results into (141) and again using λ̃ii1 = 1 in the denominator, we obtain

κi >

[
δi +

γ̃i1θ1Ai
(
θ1 (1− ρ1) +

(
topt − γ̃i1

)
ρ1

)
(1− αi) (1− γ̃i1)2

]
(topt − γ̃i1)

(1− γ̃i1)
.

In the statement of Theorem 1(c), we use the lower-bound on the right with Ai ≡ αi(1−ρ1)+γi1ρ1

to specify κi, which gives a smaller (and therefore sufficient) range of effective markups in (14) to

ensure that H(topti ) < 0. QED

To complete the proof of part (c) we need to establish the tariff t∗i ∈ (tR0
i , topti ) with H(t∗i ) = 0.

Using R(tR0
i ) = 0, it follows from (116) that H(tR0

i ) =
(
topt − tR0

i

)
−tR0

i (1−αi)M(tR0
i ) > 0, because

M(tR0
i ) < 0 from Lemma 9 since D

(
tR0
i

)
< 0. From Lemma 11 we have H(topti ) < 0. It follows

from the continuity of H(ti) that there exists a tariff t∗i < topt at which H(t∗i ) = 0. QED
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