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Quantitative spatial models in granular settings

e Spatial linkages (commuting, trade, local externalities, etc) govern the
incidence of local economic shocks

e Want “an empirically relevant quantitative model to perform general
equilibrium counterfactual policy exercises” (Redding and Rossi-Hansberg, 2017)

e Continuum of agents — observed shares = model probabilities

e High-resolution spatial settings are granular: an individual decision maker is
large relative to the economic outcome examined

e Challenges for producing predictions in granular settings:

e Estimation: is an outcome twice as probable because two people chose it?
e Theory: individual choices affect local labor supply and land demand
e Counterfactuals: equilibrium outcomes depend on individual idiosyncrasies
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Spatial economics for granular settings: Roadmap

Computing counterfactuals in continuum models

Counterfactual analysis in granular empirical settings
Apply continuum model to NYC 2010
Monte Carlo: Calibrated-shares procedure overfits data

Event studies: Neighborhood employment booms
Granular model

Application to Amazon's HQ2
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Computing counterfactual

outcomes in continuum models



Continuum model: Economic environment

e Each location has productivity A and land endowment T’

e Measure L individuals w/ one unit of labor and hired by competitive firms
producing freely traded goods differentiated by location of production

e Individuals have Cobb-Douglas preferences over goods (1 — «) and land («)

e Individuals have idiosyncratic tastes for pairs of residential and workplace
locations, such that i's utility from living in k£ and working in n is
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Continuum model: Equilibrium

Given economic primitives («, €, 0,L,{A,},{Tk},{0kn}), an equilibrium is a set
of wages {w, }, rents {r;}, and labor allocation {/,} such that

li [ (1)
labor allocation: e Wy (7 Okn) — (1)
L Zkz’,n’ wfz’ (TI(:’ 6k’/n/)
. Ek’n (wn/An)_U
goods markets: An; 5 v}/ Vn o (2)
land markets: Ti=—Y" b, vk (3)
' : Tk = Okn

(j_j:) (1i;€) < % — unique equilibrium (Allen, Arkolakis and Li, 2020)

5/28



Continuum model: Procedures for counterfactual predictions

1. Covariates-based approach (e.g., Ahlfeldt et al. 2015)
e Parameterize dy,, as function of observed covariates

e After estimating model, compute outcomes at counterfactual values
e Equation (1) generically not satisfied by observed ¢y, at chosen g,
2. Calibrated-shares procedure ( “exact hat algebra” from trade)

e Infer combinations of ({Ay,},{T%}.{0kn}) by assuming equation (1) satisfied
by observed ¢y, and w, (e.g., lgpn =0 = Ogp = )

e Compute counterfactual outcomes due to proportionate changes in {A,},
{T}}, or {dkn} (without knowing initial levels)

e Used far more frequently than the covariates-based approach
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Counterfactual analysis in

granular empirical settings



NYC is a granular setting

NYC has 2.5 million resident-employees and 4.6 million tract pairs.
Commuters between New York City tract pairs
e 84% of tract pairs have zero commuters h
between them

o 40.7% of commuters in cell with <5 _

e 44% of NYC tract pairs with positive E
flow in 2013 were zeros in 2014

e Gravity model predicts 2014 value -

better than 2013 value for bottom 95%
of tract pairs @D 70 10 ) 30 40

Number of individuals

Source: Longitudinal Employer-Household Dynamics, Origin Destination Employment Statistics. LODES
employment counts are noise-infused and LODES flows are synthetically generated.
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Parameterization of commuting costs

e Pick a =0.24, 0 = 4, L = number of employed individuals
o Seek values of {dx.}, €, {Tk}, {An}

5kn = X

~— ~—

observed unobserved

H

e Compute {0, } from Google Maps transit times: dy,, = B ——

1. Covariates-based approach: Assume Ay, = 1 Vk,n
2. Calibrated-shares procedure: Assume structural error A\, appropriately
orthogonal
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Estimating the commuting elasticity for NYC in 2010

Logit log likelihood function

mL=3"3 tiln wh (k)
k

: Sk Wi (1 0kem)

Commuting gravity equation

Eﬂ w; (T?&m)\kn)ie

L Yl (g Ghmem) ™

NYC (2010)
MLE

Commuting cost -7.986
(0.307)

Model fit (pseudo-R?) 0.662
Location pairs 4,628,878
Commuters 2,488,905

NOTES: Specification includes residence fixed

effects and workplace fixed effects.

Covariates-based approach: Solve for {T}.} and {A,} using fixed effects (oc 7, ““ and

ws) and equations (1), (2), and (3)
Calibrated-shares procedure: Use estimated €

9/28



Monte Carlo: Applying each procedure to granular data

e DGP is estimated covariates-based model for NYC in 2010

e Simulated “event”: 1 productivity of 200 Fifth Ave tract by 18%

e 100 simulations of 2.5 million draws from ex ante and ex post
data-generating process (interpreting ¢,/ L as probability)

e Apply calibrated-shares procedure and covariates-based approach

(Increase A,, to match total employment increase in simulated data)

e Does the procedure predict the change in the number of commuters from
each residential tract working in the “treated” tract?

e Regress “observed” changes on predicted changes (2160 obs per simulation)
e Ideally, want slope = 1 and intercept = 0
e Compute forecast errors (RMSE for “observed” vs predicted changes)
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nte Carlo: Calibrated-shares procedure performs poorly

Apply each procedure to simulated “2010” & “2012" data. 100 simulations w/ I = 2,488,905
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Covariates-based: slope ———-—- Covariates—based: intercept 1 . . . . . .
i s slope  —— ——- i i .85 9 .95 1 1.05
Calibrated shares: slope Calibrated shares: intercept Covariates-based RMSE / Calibrated—shares RMSE
1 249 5 125 25 50 125 250 2560
slope 022 055 082 090 095 098 099 1.00

intercept  2.01 115 047 025 0.12 0.05 0.03 0.00
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Using tract-level events to evaluate model performance

Kehoe (2005): "it is the responsibility of modelers to demonstrate that their models are

capable of predicting observed changes, at least ex post”

How well do models predict changes in commuting flows?

e Look at 83 tract-level employment booms (+12.5%) in NYC in 2010-2012
e.g., Tiffany & Co. moving to 200 Fifth Avenue and Google moving to 111
Eighth Avenue @

e We raise productivity in tract to match observed change in total employment

e Does the model predict changes in bilateral commuting flows to that
destination? (n.b. total employment change need not be exogenous)
e Regress observed changes on predicted changes

e |deally, want slope = 1 and intercept = 0
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Comparison of models’ predictive performance across 83 events

Covariates-based model much better at predicting change in number of
commuters from each residential tract to booming workplace tract

a4
Covariates—based: slope A -
***** Covariates—based: intercept
Calibrated shares: slope
v Calibrated shares: intercept o
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Covariates—based RMSE / Calibrated—shares RMSE

+ Pooled data
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A quantitative spatial model for
granular settings




A granular quantitative spatial model

e We introduce a granular model with an integer number of individuals

e In the limit (I — 00), our model is the standard quantitative spatial model

e For now, skip bells and whistles to focus on granular vs continuum cases
Modeling granularity:

e Individuals must have beliefs about equilibrium wages and land prices

[+ N?—-1 (I +N?—1)! ) / .
| — _— /[ =10,N=4 = 3.27 x 10°
( N? 1 ) (N2 — D) ' e

e There will be a distribution of equilibria for each set of parameters
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Model: Economic environment

Each location has productivity A and land endowment T’

I individuals are endowed with L/I units of labor and hired by competitive
firms producing freely traded goods differentiated by location of production

Individuals have Cobb-Douglas preferences over goods and land

Individuals have idiosyncratic tastes for residence-workplace pairs

Workers know primitives («, €, o,1,L,{A,},{Tx},{0kn}) and have
(common) point-mass beliefs 7, and w,, about land prices and wages

Worker i knows idiosyncratic preferences {v;, }
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Timing: Individuals choose labor allocation, then markets clear

1. Workers choose the kn pair that maximizes

- W .
0 =eln|—22 ) 4u
" Pl_af]?(skn "
given point-mass beliefs 7, and w,,

2. After choosing kn based on their beliefs, workers are immobile and cannot
relocate

3. Given the labor allocation {/;,}, a trade equilibrium is a set of wages
{w,} and land prices {r;} that clears all markets.
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Concept: Granular commuting equilibrium

Given belief vectors {w, } and {7}, logit probabilities for kn pairs:

, . 7E (726,.)"°
PH(U}, > Uy YK, 1) # (b)) = —mn0RO) ©
Zk/,n’ Wy, (rk’ék/n'>

Given primitives («, €, 0,1,L,{A,},{Tx}{0kn}) and point-mass beliefs
{w,}, {7}, a granular commuting equilibrium is defined as a labor allocation
{lrn}, wages {w,}, and land prices {r;} such that

o {/k,} is the labor allocation resulting from I independent draws from the
probability function in equation (4); and
e wages {w,} and land prices {7y} are a trade equilibrium given the labor

allocation {/ly,}.
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Limit of granular commuting equilibrium is continuum equilibrium

e Aggregate labor supply L is fixed. Taking the limit [ — oo yields

gk_n — ZD; (fl?:é(skn>_e (5)
Lo > W (PR Ohmr) ™

e Definition: w and 7 are “continuum-case rational expectations” if w
and 7 constitute a trade equilibrium for the labor allocation {/;,} given by
equation (5).

e Result: As I — oo, if individuals’ point-mass beliefs are continuum-case

rational expectations, then the granular model’s equilibrium quantities and
prices coincide with those of the continuum model.
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Estimating the granular model

Granular model’s likelihood (McFadden, 1974, 1978; Guimar3es, Figueirdo and Woodward, 2003)

Inl = Z kan In [ Wn (fggkn)_ ]
k n

> W (78 8m) ™

e Solve for {T};} and {A,} using fixed effects (o< 7, *“ and @) under CCRE

e This estimation procedure yields same ¢, {7} }, and {A,} as the
covariates-based continuum model
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Ex post regret is small

Individuals make residence-workplace choices based on wage and rent beliefs

The realized equilibrium wages and rents will differ

Calculate ex post regret for kn at realized prices:

Ui - Wn %
kﬂ’b € ln Plia"'?ékn + l/kTL

Quantitatively modest: 96% would not want to switch
Utility gain for median switcher would be 0.18% (1.36% for 99t")

i maxy v (€ln | s—nl ) 4 1/t
Hlan/’n/ Uk/m’ k' n Plfarzldk,n, k'n! 1

» Price dispersion in ex post regret simulations
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Computing counterfactual outcomes using granular model

Continuum model's %2 = E [Pr(U},, > Ui, V(K',n') # (k,n))], so (mean)
quantities coincide
Granular uncertainty: individual idiosyncrasies — distributions of equilibrium
quantities and prices
Compute confidence interval for change in residents in k: Y. 0, — > lp,
e Characterize by simulations of granular model
e Normal approximation of binomial distribution for quantities

std dev(z&m Z&m> pp X (1—p) =

90% Cl of change ~ Z lon — > i £ 1.6455,

n n
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Application to Amazon’s HQ2



Counterfactual: Amazon HQ2 in Long Island City

e Amazon's 2017 RFP for HQ2 with 50,000 employees elicited 238 proposals
e NYC proposed four possible sites (and controversial tax breaks)

e Split siting announced in 2018 would have put 25,000 employees in Long
Island City

e Quantitative questions: What would happen to NYC neighborhoods with
this local employment boom? Are these changes large relative to granular

uncertainty?

e Granularity is important in bare-bones quantitative assessment (see Berkes
and Gaetani 2020 for richer model)
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Contrasting predictions for changes in residents

Calibrated-shares predictions are tightly tied to initial residents
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Contrasting predictions for changes in rents

M Treatment tract, 1.3
590 - max (1.4)
575 - 590 (0.9)

50 - p75 (0.7)

25 - p30 (0.6)

p10 - p25 (0.5)

min (0.1) - p10 (0.4)

No residents in 2010

Covariates-based model
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Y min (0.2) - p10 (0.2)

No residents in 2010
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Predictions for changes in workers

B Trcatment tract, 2,336 v M Treatment tract, -25,000 ’ M Treatment tract, -25,000
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Granular uncertainty is large relative to predicted changes

Change in residents
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Granular uncertainty for predicted changes in prices

Predicted rent changes Predicted wage changes
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NOTES: The plots depict the 5t and 95t percentiles of predicted percentage-point change in price computed
using the granular model. The horizontal axis displays the percentage-point change in mean price across
10,000 simulations. There are 43 tracts whose 5™ percentile predicted wage change is greater than zero.
The treated tract is excluded in wages panel.
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Conclusions




Conclusions and next steps

e Finer spatial data are exciting but not a free lunch

e We need to evaluate the performance of applied GE models

e Monte Carlo and event studies: Calibrated-shares procedure performs poorly
in granular empirical settings

e Researchers should use simulations to assess the finite-sample behavior of
their counterfactual procedures

e Our granular model generates granular equilibrium outcomes and quantifies
granular uncertainty accompanying counterfactual predictions

e Plain-vanilla logit assumption is simplest first step

e Our model is just as tractable, relies upon the same data, and coincides with

the continuum case as I — oo
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