The Long and Short (Run) of Trade Elasticities

Christoph E. Boehm UT Austin Andrei A. Levchenko Michigan Nitya Pandalai-Nayar UT Austin

December 2020

Motivation

- ► Trade elasticity central to international economics
 - Trade: size of the welfare gains
 - Macro: transmission of shocks
- Gravity-based estimation approaches

$$X_{i,j,t} \propto \phi_{i,j,t}^{\theta} \cdot S_{i,t} \cdot D_{j,t}$$

- Assume $\phi_{i,j,t} = \kappa_{i,j,t} \cdot \tau_{i,j,t}$, treat tariff variation as exogenous
- Often no distinction between short and long run
- Wide range of estimates
- ▶ This paper: propose new method to estimate elasticity at different horizons

This Paper

- ► Tackle endogeneity of tariff changes
 - 1. Instrument: MFN tariff changes
 - ightharpoonup Treatment group: MFN tariff rate is binding and changing between t-1 and t
 - ▶ Control group: Countries with preferential tariffs, countries outside the WTO
 - ▶ Refinement: Limit analysis to small trading partners
 - 2. Expanded fixed effects
- Dynamics/multiple horizons
 - Explicit distinction between short- and long-run
 - Internally consistent estimates at multiple horizons
 - Macro-econometric tools: Local projections (Jordà, 2005)
- Quantification
 - Long run: gains from trade
 - Short run: speed of adjustment and time-varying elasticities

Summary of Results

- ▶ Trade elasticities significantly different across horizons, increase over time
- ▶ Elasticities a year after impact ≈ -0.76
- ▶ Long run tariff-exclusive elasticity ≈ -1.75 to -2.25
 - o "Long" run appears to be about 7-10 years
- ▶ Higher "conventional wisdom" numbers due to not controlling for omitted variables
- ▶ IV estimates larger than OLS at all horizons
- ► Implications:
 - Welfare gains from trade over 5-6X higher than under conventional values
 - Substantial curvature in the adjustment costs to exporting

Related Literature

- Alternative estimates:
 - o Gravity-based: Head and Ries (2001), Romalis (2007), Caliendo and Parro (2015)
 - Price-based: Eaton and Kortum (2002), Simonovska and Waugh (2014), Giri, Yi, and Yilmazkuday (2020)
 - Armington: Feenstra (1994), Broda and Weinstein (2006), Soderbery (2015,2018), Feenstra, Luck, Obstfeld and Russ (2019), Alessandria and Choi (2019)
 - Firm-level: Bas, Mayer, and Thoenig (2017), Fitzgerald and Haller (2018), Fontagne, Martin, and Orefice (2018)
- Implications/ Interpreting estimates:
 - Welfare: Arkolakis, Costinot, Rodriguez Clare (2012)
 - Short vs long run: Ruhl (2008), Alessandria, Choi and Ruhl (2018)
- ► Trade Policy:
 - o Institutional background: Bown and Crowley (2016), Bagwell and Staiger (2016)
 - Other tariff shocks: Fajgelbaum et al (2020)

Estimation

Definition

The horizon-h trade elasticity ε^h is defined as

$$\varepsilon^h = \frac{\Delta_h \ln X_{i,j,p,t}}{\Delta_h \ln \phi_{i,j,p,t}} = \frac{\Delta_h \ln X_{i,j,p,t}}{\Delta_h \ln \tau_{i,j,p,t}}$$

- $ightharpoonup \Delta_h x_t$ is $x_{t+h} x_{t-1}$
- $ightharpoonup X_{i,j,p,t}$ trade volumes between countries i and j in product p at time t
- $\phi_{i,j,p,t} = \kappa_{i,j,p,t} \cdot \tau_{i,j,p,t}$, ad valorem trade costs
- ► Long-run elasticity is the limit:

$$\varepsilon = \lim_{h \to \infty} \frac{\Delta_h \ln X_{i,j,p,t}}{\Delta_h \ln \phi_{i,j,p,t}}$$

Estimating Equations: Local Projections

► Trade Volumes:

$$\Delta_h \ln X_{i,j,\rho_6,t} = \beta_X^h \Delta_0 \tau_{i,j,\rho_6,t} + \delta_{i,\rho_4,t} + \delta_{j,\rho_4,t} + \delta_{i,j,\rho_4} + u_{i,j,\rho_6,t}^X$$

Tariffs:

$$\Delta_h \tau_{i,j,p_6,t} = \beta_{\tau}^h \Delta_0 \tau_{i,j,p_6,t} + \delta_{i,p_4,t} + \delta_{j,p_4,t} + \delta_{i,j,p_4} + u_{i,j,p_6,t}^{\tau}$$

- $_{\circ}$ δ s fixed effects (country-product-time, country-pair-product)
- ▶ Horizon *h* Trade Elasticity: $\varepsilon^h = \frac{\beta_X^h}{\beta_X^h}$

Estimating Equations: One-Step Estimation

2SLS estimation ("OLS"):

$$\Delta_h \ln X_{i,j,p_6,t} = \varepsilon^{h,OLS} \Delta_h \tau_{i,j,p_6,t} + \delta_{i,p_4,t} + \delta_{j,p_4,t} + \delta_{i,j,p_4} + u^X_{i,j,p_6,t}$$

- $_{\circ}$ Where $\Delta_{h} au_{i,j,p_{6},t}$ is instrumented by $\Delta_{0} au_{i,j,p_{6},t}$
- 2SLS estimation with instrument ("IV"):

$$\Delta_h \ln X_{i,j,p_6,t} = \varepsilon^h \Delta_h \tau_{i,j,p_6,t} + \delta_{i,p_4,t} + \delta_{j,p_4,t} + \delta_{i,j,p_4} + u^X_{i,j,p_6,t}$$

- Where $\Delta_h \tau_{i,j,p_6,t}$ is instrumented by $\Delta_0 \tau_{i,j,p_6,t}^{inst}$
- ▶ Horizon *h* Trade Elasticity: ε^h , correct standard errors

Tariff Changes are Likely Endogenous

- Omitted factors: e.g. business cycles, changes in governments (Bown and Crowley, 2013; Lake and Linask, 2016)
- ▶ Reverse causality: e.g. lobbying, domestic (Trefler, 1993) or foreign (Gawande, Krishna, and Robbins, 2006; Antràs and Padró i Miquel, 2011)
- ▶ Implication: need fixed effects to soak up destination-product-time variation, possibly partner-specific variation
- ▶ Even with fixed effects, tariff changes could be endogenous

Instrument

- ▶ Exogenous shocks to tariffs hard to find trade agreements typically between large trading partners
- ▶ Insight: WTO MFN principle can provide basis for instrument

Institutional background:

- ▶ MFN bounds (maximum product-level tariffs) set upon WTO accession
- Not all products covered by bounds (US 100%, India 70%), bounds country-product specific
- Countries legally free to vary applied tariffs below bounds
 - o India raises and lowers MFN tariffs every year across products
 - o China lowered MFN tariffs on a range of products in response to US trade war
- ▶ Key: any MFN tariff change applies to all MFN partners, and about 60% of trade is MFN-basis

Instrument

▶ Insight: WTO MFN principle – apply same tariff to all partners

Baseline:

$$\begin{array}{lll} \Delta_0 \tau_{i,j,p,t-1}^{\textit{instr}} & = & \mathbf{1} \left(\tau_{i,j,p,t} = \tau_{i,j,p,t}^{\mathsf{applied MFN}} \right) \times \mathbf{1} \left(\tau_{i,j,p,t-1} = \tau_{i,j,p,t-1}^{\mathsf{applied MFN}} \right) \\ & \times \mathbf{1} \left(\mathsf{not \ a \ major \ trading \ partner \ in \ } t-1 \ \mathsf{in \ aggregate} \right) \\ & \times \mathbf{1} \left(\mathsf{not \ a \ major \ trading \ partner \ in \ } t-1 \ \mathsf{at \ product \ level} \right) \\ & \times \mathbf{1} \left(\mathsf{not \ a \ major \ trading \ partner \ in \ } t \ \mathsf{in \ aggregate} \right) \\ & \times \mathbf{1} \left(\mathsf{not \ a \ major \ trading \ partner \ in \ } t \ \mathsf{at \ product \ level} \right) \\ & \times \left[\tau_{i,j,p,t}^{\mathsf{applied \ MFN}} - \tau_{i,j,p,t-1}^{\mathsf{applied \ MFN}} \right] \end{array}$$

Available Variation

Impulse response function of tariffs to shock

▶ Tariff increase persistent; Use pre-trend controls for robustness

Impulse response function of trade to shock

▶ Impact on trade flows builds slowly

Trade elasticity

- ► OLS biased towards zero
- ▶ IV and OLS estimates increase over time

Trade elasticity: Sectoral Estimates

- ▶ Heterogeneous effects across HS-Sections, elasticities diverge over longer horizons
- Footwear, Textiles higher elasticities, Articles of Stone/Cement and Plastics/Rubber small elasticities

Comparison to Existing Estimates

	(1)	(2)	(3)	(4)	(5)
$\frac{Panel\ A \colon Log\text{-levels},\ OLS}{\tau_{i,j,p,t}}$	-3.696	-4.468	-6.696	-2.734	-1.040
Panel B: 5-year log-different $\Delta_5 au_{i,j,p,t}$	-1.882	-1.583	-0.664	-1.659	-0.518
Panel C: 5-year log-differences, 2SLS, instrumented w/ 1-year tariff change					
$\Delta_5 au_{i,j,p,t}$	-1.337	-0.968	-0.470	-1.019	-0.448
Panel D: 5-year log-differences, 2SLS, baseline instrument					
$\overline{\Delta}_5 au_{i,j,p,t}$	-3.259	-2.206	-1.170	-2.000	-1.112
Fixed effects					
importer \times hs4	no	yes	no	no	no
exporter \times hs4	no	yes	no	no	no
importer \times hs4 \times year	no	no	yes	no	yes
exporter \times hs4 \times year	no	no	yes	no	yes
importer \times exporter \times hs4	no	no	no	yes	yes

[▶] All estimates significantly different from 0 at the 1% level

Trade elasticity: Other Estimates and Robustness

- Alternative fixed effects, SEs
 - Twoway clustering of SEs country-pair-HS4 and year
 - HS6 fixed effects (country-product-time, country-pair-product)
- Alternative samples
 - Balanced panel
 - Fixed effect groups with >50 observations
 - Alternative thresholds for major partners
 - Extensive margin with all zeros
 - Alternative pretrend controls
 - No tariff variation within HS6 product line
 - No tariff changes in the control group
- ► Alternative outcomes: Unit values
- Alternative estimation strategy: Distributed lag model

Quantification

Welfare Relevant Long-Run Elasticity

- 1. Our estimation allows for autocorrelated, non-permanent tariff shocks
 - $_{\circ}\,$ Transitional dynamics depends on tariff process, ε response of trade flows after tariffs converge
- 2. Theoretical gravity relates spending by agents inclusive of tariffs to trade cost
 - We are estimating a tariff-exclusive elasticity

Approach:

- ► ACR formula
- ▶ Estimated tariff process stabilizes in 2-3 years, trade in 7-10 years
- lacktriangle Long-run welfare relevant trade elasticity: $arepsilon^{10}-1pprox-1$

Gains from Trade - Single Sector

Dynamics of Trade Elasticities: Simple Model

Setup

Exports

$$X_t = p_t^{\mathsf{x}} q_t n_t$$

- ▶ Exporter price $p_t^x = p^x(\tau_t)$, define $\eta_{p,\tau} := \frac{\partial \ln p}{\partial \ln \tau}$
- ▶ Demand $q_t = q(p_t^x, \tau_t)$, with $\eta_{q,p} := \frac{\partial \ln q}{\partial \ln p^x} < 0, \eta_{q,\tau} := \frac{\partial \ln q}{\partial \ln \tau} < 0$
- ▶ Flow profits $\pi_t = \pi(\tau_t)$, with $\eta_{\pi,\tau} := \frac{\partial \ln \pi}{\partial \ln \tau} < 0$
- ightharpoonup Mass n_t and value v_t
 - \circ Krugman (1980): n_t mass of exporters; v_t value of exporting, Melitz (2003) similar
 - \circ Arkolakis (2010): n_t mass of customers; v_t marginal value of customer

Dynamics of Trade Elasticities: Simple Model

Setup

Exports

$$X_t = p_t^{\mathsf{x}} q_t n_t$$

- ▶ Exporter price $p_t^{\mathsf{x}} = p^{\mathsf{x}} (\tau_t)$, define $\eta_{p,\tau} := \frac{\partial \ln p}{\partial \ln \tau}$
- ▶ Demand $q_t = q(p_t^x, \tau_t)$, with $\eta_{q,p} := \frac{\partial \ln q}{\partial \ln p^x} < 0, \eta_{q,\tau} := \frac{\partial \ln q}{\partial \ln \tau} < 0$
- ▶ Flow profits $\pi_t = \pi(\tau_t)$, with $\eta_{\pi,\tau} := \frac{\partial \ln \pi}{\partial \ln \tau} < 0$
- ightharpoonup Mass n_t and value v_t
 - $_{\circ}$ Krugman (1980): n_t mass of exporters; v_t value of exporting, Melitz (2003) similar
 - o Arkolakis (2010): n_t mass of customers; v_t marginal value of customer
- Dynamics

$$v_t = \frac{1}{1+r} \mathbb{E}_t \left[\pi_{t+1} + (1-\delta) v_{t+1} \right]$$
 $n_t = n_{t-1} (1-\delta) + G(v_{t-1})$

- o interest rate r, "depreciation" rate δ , "investment" $G(v_{t-1})$
- one period "time-to-build"

Short and Long-run Elasticities

► Short-run trade elasticity

$$arepsilon^0 := rac{d \ln X_{t_0}}{d \ln au_{t_0}} = \left(1 + \eta_{q,
ho}
ight) \eta_{
ho, au} + \eta_{q, au}$$

- reflects static quantity and price response
- o nt predetermined, drops out
- $_{\circ}$ $-\sigma$ in standard CES-monopolistic competition framework

Short and Long-run Elasticities

Short-run trade elasticity

$$arepsilon^0 := rac{d \ln X_{t_0}}{d \ln au_{t_0}} = \left(1 + \eta_{q, p}
ight) \eta_{p, au} + \eta_{q, au}$$

- reflects static quantity and price response
- o n_t predetermined, drops out
- σ in standard CES-monopolistic competition framework
- ► Long-run trade elasticity

$$\varepsilon := \frac{d \ln X}{d \ln \tau} = \varepsilon^0 + \frac{d \ln n}{d \ln \tau} = \varepsilon^0 + \chi \eta_{\pi,\tau}$$

- compares steady states
- \circ $\eta_{\pi,\tau} <$ 0: elasticity of flow profits w.r.t tariffs \circ $\chi >$ 0: elasticity of n wrt v
- - Krugman (1980), Melitz (2003): probability mass at the margin of entry
 - Arkolakis (2010): inverse curvature of cost of adding new customers

Dynamics of Trade Elasticities

► Horizon-*h* trade elasticity

$$\varepsilon^{h} = \underbrace{\varepsilon^{0}}_{\substack{\text{"static"}\\ \text{quantity and}\\ \text{price response}}} + \underbrace{\frac{d \ln n_{t_0+h}}{d \ln \tau_{t_0}}} / \underbrace{\frac{d \ln \tau_{t_0+h}}{d \ln \tau_{t_0}}}_{\substack{\text{"dynamic" response}}}$$

▶ Proposition 1:

$$\frac{d \ln n_{t_0+h}}{d \ln \tau_{t_0}} = \chi \eta_{\pi,\tau} \frac{\delta + r}{1+r} \delta \sum_{k=0}^{h-1} (1-\delta)^{h-1-k} \mathbb{E}_{t_0+k} \left[\sum_{\ell=0}^{\infty} \left(\frac{1-\delta}{1+r} \right)^{\ell} \frac{d \ln \tau_{t_0+k+\ell+1}}{d \ln \tau_{t_0}} \right]$$

Dynamics of Trade Elasticities

ightharpoonup Horizon-h trade elasticity

$$\varepsilon^h = \underbrace{\varepsilon^0_{\substack{\text{"static"}\\ \text{quantity and}\\ \text{price response}}} + \underbrace{\frac{d \ln n_{t_0+h}}{d \ln \tau_{t_0}}} / \underbrace{\frac{d \ln \tau_{t_0+h}}{d \ln \tau_{t_0}}}$$

Proposition 1:

$$\frac{d \ln n_{t_0+h}}{d \ln \tau_{t_0}} = \chi \eta_{\pi,\tau} \frac{\delta + r}{1+r} \delta \sum_{k=0}^{h-1} (1-\delta)^{h-1-k} \mathbb{E}_{t_0+k} \left[\sum_{\ell=0}^{\infty} \left(\frac{1-\delta}{1+r} \right)^{\ell} \frac{d \ln \tau_{t_0+k+\ell+1}}{d \ln \tau_{t_0}} \right]$$

- Geometric convergence for one time permanent tariff change: $\varepsilon^h = \chi \eta_{\pi, au} \left(1 (1 \delta)^h \right) + \varepsilon^0$
- ▶ Proposition 2: If $\lim_{h\to\infty} \frac{d \ln \tau_{t_0+h}}{d \ln \tau_{t_0}} \neq 0$ and is finite, then $\lim_{h\to\infty} \varepsilon^h = \varepsilon$

Dynamics of Trade Elasticities

► Horizon-*h* trade elasticity

$$\varepsilon^h = \underbrace{\varepsilon^0_{\substack{\text{"static"}\\ \text{quantity and}\\ \text{price response}}} + \underbrace{\frac{d \ln n_{t_0+h}}{d \ln \tau_{t_0}}} / \underbrace{\frac{d \ln \tau_{t_0+h}}{d \ln \tau_{t_0}}}_{\substack{\text{"dynamic" response}}}$$

Proposition 1:

$$\frac{d \ln n_{t_0+h}}{d \ln \tau_{t_0}} = \chi \eta_{\pi,\tau} \frac{\delta + r}{1+r} \delta \sum_{k=0}^{h-1} (1-\delta)^{h-1-k} \mathbb{E}_{t_0+k} \left[\sum_{\ell=0}^{\infty} \left(\frac{1-\delta}{1+r} \right)^{\ell} \frac{d \ln \tau_{t_0+k+\ell+1}}{d \ln \tau_{t_0}} \right]$$

- lacktriangle Geometric convergence for one time permanent tariff change: $arepsilon^h=\chi\eta_{\pi, au}\left(1-(1-\delta)^h
 ight)+arepsilon^0$
- ▶ Proposition 2: If $\lim_{h\to\infty}\frac{d\ln \tau_{t_0+h}}{d\ln \tau_{t_0}}\neq 0$ and is finite, then $\lim_{h\to\infty}\varepsilon^h=\varepsilon$
- ▶ Proposition 3: The model delivers the estimating equations used above

Quantification

Conclusion

- ▶ New estimates of trade elasticities
 - Causality: new instrument to tackle endogeneity of tariff changes
 - Multiple horizons: internally consistent; time series methods
- ► Short-run: about −0.76
- ▶ Long-run [7-10 years]: about −1.75 to −2.25
- Implications: large welfare gains from trade, market access costs, dynamics of adjustment to trade shocks...

Gains from Trade - Multiple Sectors

► Single Sector

Identifying Variation

Explaining Country Variation

Control Treatment