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Abstract 

 

We show that behind the aggregate effects of algorithmic and high-frequency traders (AT/HFT) is 

substantial heterogeneity in how individual algorithms impact institutional trading costs.  Using 

unique trader-identified regulatory data, we find that the cluster of “harmful” algorithmic traders 

doubles institutional trading costs.  “Beneficial” algorithmic traders offset much of this increase.  

We find no evidence that speed (e.g., being an HFT) is a characteristic of harmful traders.  Traders 

that hold inventory overnight are more likely to benefit institutional investors by providing more 

sustained liquidity.  The heterogeneity explains why AT/HFT appear detrimental to some investors 

despite being beneficial or benign in aggregate. 
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1. Introduction 

Technology has fundamentally transformed how trading occurs on financial markets, but 

not everyone agrees that it is for the better.  Algorithmic and high-frequency traders (AT and HFT) 

have become integral to modern financial markets, but their effects remain contentious.  On one 

hand, many academic and regulatory studies find that AT/HFT in aggregate are beneficial (e.g., 

lowering spreads and improving price discovery) or at worst benign.  Yet, at odds with this view, 

many institutional investors claim that finding liquidity for large orders has become more difficult, 

their orders face greater price impact, and their trading costs have suffered as a result.1  Investors 

often blame predatory trading, order anticipation strategies, and latency arbitrage by algorithmic 

traders, in particular HFTs.  In response, new trading mechanisms2 are emerging around the world 

that cater for institutional investors, who now account for around 80% of US stock holdings.3  

We seek to reconcile these conflicting views by examining the impact of AT/HFT on 

institutional trading costs.  Our study has two novel features that we propose can help explain the 

disagreement between existing evidence and continued institutional investor concerns.  The first is 

that we examine institutional trading costs rather than simple liquidity measures.  While measures 

such as bid-ask spreads and depth are relatively good at capturing retail trading costs, they can 

differ substantially from institutional trading costs because they do not adequately capture the price 

impact (“slippage”) of a large institutional order that is sliced and executed in a series of smaller 

“child” orders.  For example, Jones and Lipson (2001) show that when US tick sizes were reduced 

in 1997, bid-ask spreads decreased substantially, yet institutional trading costs increased.  

Similarly, Eaton, Irvine, and Liu (2020) and Frazzini, Israel, and Moskowitz (2018) show that while 

effective spreads fell markedly during 2000-2015, the same is not true of institutional transaction 

costs, which have a low correlation with simple liquidity measures.  Therefore, our study measures 

the costs that institutional investors are actually concerned about. 

 
1 For example, “as big institutional buyers and sellers, if we can’t find blocks we have to trade in smaller 

sizes, across multiple venues using algos ... which leaves us open to being taken advantage of by HFT and 

other participants” (Richard Nelson of T. Rowe Price, quoted in Global Trading, Nov 21, 2015). 
2 Large institutions increasingly rely on block crossing networks, dark pools, and closing auctions where 

liquidity is consolidated and consequently the market share of dark trading and closing auctions has increased 

substantially.  NYSE, LSE, and Chi-X Europe have announced the introduction of additional batch auction 

mechanisms for liquidity consolidation.  New trading venues such as Plato in Europe and Luminex in the US 

specifically claim to shield users from HFTs to lower trading costs.  Similarly, new market types such as 

frequent periodic batch auction venues (e.g., CBOE Europe, and its proposal to expand to the US) have 

emerged to mitigate latency arbitrage. 
3 Based on 13F institutional holding filings, institutions hold more than 80% of the free float of large-cap US 

equities in 2015, compared to just 50% in the year 2000 (NBIM “Asset Manager Perspectives Report”, 
02/2015). 
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Second, we disaggregate and analyze AT/HFT at the individual trading account level to 

account for the heterogeneity among AT/HFT.  Short-term traders are far from a monolithic group.  

Rather, they form a diverse ecosystem of different trading strategies ranging from pure market 

making, to predatory trading, toxic arbitrage, sniping, and even hybrids of the above strategies.  We 

propose that disaggregating their effects is important to reconcile the conflicting views.  For 

example, while in aggregate, AT/HFT may be beneficial or benign, subsets of these traders may 

increase institutional trading costs while others may decrease these costs.  An institutional investor 

that disproportionately interacts with the subset of AT/HFT that increase trading costs will naturally 

view contemporary markets and the growth in AT/HFT with skepticism, with their concerns 

reflected in financial media, lobbying effort, and the emergence of alternative trading mechanisms.   

Our ability to analyze institutional trading costs across all market participants and measure 

the effects of AT/HFT at the account level stems from unique regulatory audit trail data.  The data 

contain all orders and trades for all participants in the Australian equities markets, identified at the 

most granular possible level of individual traders.4  Using these data, we reconstruct the “parent 

orders” of institutional investors from their “child orders”.  With the parent orders in hand, we 

measure implementation shortfall, or total cost of trading the parent order, accounting for the 

order’s price impact through the course of trading.5  To the best of our knowledge no other study 

has examined such a comprehensive institutional trading cost measure across all institutional 

investors in a market.  We also observe the AT/HFT accounts in the data as the most active (highest 

volume) non-directional traders: traders that turn over positions within relatively short time frames, 

in contrast to institutional investors who tend to “buy and hold”.  These 187 traders account for 

approximately half of the trading volume and contain a mix of fast traders (HFT) and non-HFT 

algorithmic traders (AT). 

Our first finding is that there is considerable heterogeneity in the effects of individual short-

term traders.  Interestingly, the individual AT/HFT accounts tend to cluster into two distinct groups: 

(i) those that systematically increase institutional trading costs and thus appear “toxic” to 

institutional investors, although they may bring other benefits to the market such as improved price 

discovery, and (ii) those that systematically decrease institutional costs and thus appear “beneficial” 

to institutional investors.  There is little middle ground between these two categories, consistent 

 
4 The Australian equities market is similar to the US and other major equity markets with respect to the types 

of trading platforms, the level of HFT trading activity, the major trading firms that participate in the market 

and the trading technology that they use, and the level of institutional holdings.  We elaborate on this point 

in the data / institutional details section of the paper. 
5 Implementation shortfall compares the average price at which the entire parent order is executed to the price 
prevailing in the market at the start of the parent order. 



3 

with theory that predicts a dichotomy of liquidity supplying vs predatory traders in equilibrium 

(e.g., Baldauf and Mollner, 2020).  Our basic approach involves regressing institutional trading 

costs (implementation shortfall of large parent orders) on the contemporaneous activity of each of 

the AT/HFTs.  The coefficients provide “toxicity” scores for each of the traders, resulting in a 

cross-sectional distribution of toxicity.6  We use instrumental variables to identify causality and 

rule out alternative explanations such as AT/HFT activity responding to market conditions that 

cause higher trading costs.   

The high level of granularity in our data poses additional challenges.  Working at the 

trading account level, our regressions effectively have 187 right-hand side variables (one for each 

of the individual AT/HFT accounts).  Even if none of these traders have any relation with 

institutional trading costs, some will appear toxic (others beneficial) purely by statistical chance.  

This is analogous to the problem of disentangling skill from luck in the cross-section of fund 

managers.  Consequently, we borrow from the funds management literature and use bootstrap 

simulations to adjust our toxicity estimates to account for the variation that is expected from 

statistical chance.  The bootstrap simulations provide strong evidence that the toxicity and 

beneficial trading observed in the data are not just artefacts of statistical variation.   

The magnitudes of the effects of toxic and beneficial traders are economically meaningful.  

The toxic traders increase the costs of executing large parent orders by more than ten basis points, 

roughly doubling the costs.  The additional trading costs equate to around $437 million per annum 

for large institutional orders in the top 200 stocks.  The effects of the toxic traders are offset by 

beneficial traders that reduce institutional trading costs by a similar magnitude.  Consequently, 

AT/HFT in aggregate have little or no net effect on institutional trading costs, with the aggregate 

effects masking the considerable heterogeneity and large effects within segments of the AT/HFT 

population.  

We show that the heterogeneity in the cross-section of AT/HFT has important implications.  

One implication is that how institutions execute large orders is likely to have a considerable impact 

on trading costs.  Institutions that disproportionately trade with toxic traders will experience higher 

trading costs.  The magnitudes suggest that carelessly managed execution can have a material effect 

on a fund’s performance.  Minimizing trading costs can involve strategies that change the 

probability of interacting with toxic traders.7   

 
6 We use the term “toxic” to refer to traders that increase institutional trading costs.  The term “toxic” is also 

used in the market microstructure literature from the perspective of a market maker to refer to informed or 

unbalanced order flow, which can cause losses to the market maker.  
7 For example, designing execution algorithms to better conceal trading intentions (better mixing of order 
sizes, times, types, venues), dynamically adjusting the parameters of an execution algorithm (e.g., 
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Another implication of the heterogeneity is that market structure changes that increase the 

amount of AT/HFT could have positive or negative effects depending on whether the changes 

disproportionately encourage toxic or beneficial traders.  This may explain why studies of AT/HFT 

that use different exogenous events as instruments often arrive at different conclusions about the 

effects of AT/HFT.  For example, the finding of Brogaard et al. (2015) that the introduction of co-

location at Nasdaq OMX Stockholm improves market quality, implies that this event 

disproportionately encouraged the activity of the beneficial AT/HFT. 

Third, our results suggest that the benefits of AT/HFT may be overstated by simple 

liquidity measures.  While the narrow bid-ask spreads that result from AT/HFT almost certainly 

benefit small investors such as retail traders, the much smaller (approximately neutral) aggregate 

effects on the costs of trading large institutional orders suggests that any benefits to institutional 

investors are considerably smaller.  Given institutional investors account for the majority of stock 

holdings and trading in many developed markets, their role as the “marginal investors” suggests 

that AT/HFT are unlikely to benefit the cost of capital through reduced liquidity premiums or 

improve incentives to gather/analyze information due to lower trading trading costs.   

Who are the toxic traders?  Toxic traders are likely to trade with institutional order flow 

rather than against it.  While some toxic traders might intentionally exploit institutional order flow 

(e.g., predatory, order anticipation, or back-running strategies), others unintentionally amplify 

institutional trading costs by trading on common entry/exit signals, or through active participation 

in price discovery in the presence of order flow imbalances.  Therefore, not all toxic traders are 

necessarily harmful to the market overall—some might improve price discovery around 

institutional parent orders and thereby inadvertently increase institutional trading costs.  In contrast, 

the beneficial traders are likely to be liquidity-providing intermediaries that “lean against the wind” 

and attenuate the price pressure that arises from large institutional orders. 

We test the distinguishing characteristics of toxic traders.  Across several measures, we 

consistently find that speed and other characteristics of HFTs are not associated with a tendency 

for the trader to increase institutional trading costs—there is no evidence that HFTs are any more 

toxic than non-HFTs.  For example, a trader’s share of total traded volume is not related to their 

toxicity.  Neither is a trader’s speed of order amendments, their frequency of fast orders, their 

intraday Sharpe ratio, or their order-to-trade ratio.  An explanation for this finding is that because 

large institutional parent orders can take several hours or even days to complete, a predatory trading 

algorithm or “back running” / piggybacking trader does not require sub-second or sub-millisecond 

 
aggressiveness or participation rate) in response to the level of toxicity, searching for off-market block 
crossings when toxicity is high, or pausing a parent order in such conditions.  
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reaction times or low latencies to exploit the prolonged price impact from the institutional order.  

Based on our evidence, concerns voiced by institutional investors about HFTs in particular being 

the culprits responsible for increased trading costs are misdirected. 

We find that most toxic traders have a “preferred habitat”—they tend to concentrate their 

activity in a subset of stocks, mainly smaller stocks, in which they are consistently active.  Traders 

that reduce institutional trading costs are more likely to hold inventory overnight consistent with 

the notion that such traders provide more sustained liquidity to institutional orders that can take 

hours or days to complete. 

Our study also has regulatory applications.  Our approach to measuring the toxicity of 

individual traders can be used as a market surveillance/monitoring tool.8  Some manipulative 

trading strategies that exploit other market participants are likely to produce relatively high toxicity 

scores and can therefore be detected with our approach. 

 

Related literature 

This paper is related to the literature on the effects of AT and HFT on market quality.  For 

good surveys of this literature see Jones (2013) and Menkveld (2016).  Most of these studies find 

that AT/HFT in aggregate are beneficial on average, lowering bid-ask spreads and improving price 

discovery, or at worst benign.9  Our study contributes to this literature in three main ways.  First, 

we shed light on the disaggregated effects of individual AT/HFT accounts.  Two empirical studies 

that are similar in this regard are Hagströmer and Nordèn (2013) who separate HFTs into market 

making and opportunistic and Boehmer, Li, and Saar (2018) who use principal component analysis 

to identify three underlying strategies common to most HFT firms.  These papers show that the 

heterogeneity is important for understanding HFT behavior.  Our study extends this notion, 

showing that there is considerable heterogeneity in how AT/HFT impact institutional trading costs.   

Second, we shed light on the impact of AT/HFT on institutional transaction costs, which 

can be quite different from the simple liquidity measures that are examined in most existing studies 

(e.g., Jones and Lipson (2001), Eaton, Irvine, and Liu (2020), Frazzini, Israel, and Moskowitz 

(2018) show the measures can diverge substantially).  Our results suggest that AT/HFT in aggregate 

do not decrease institutional trading costs, in contrast to their effect on bid-ask spreads as 

documented in other studies.  This finding is consistent with recent theory that predicts HFTs will 

result in narrower spreads due to reduced adverse selection risks to market makers, but higher 

 
8 A similar approach is being used by the Australian Securities and Investments Commission. 
9 For example, see Hendershott, Jones, and Menkveld (2011), Hasbrouck and Saar (2013), Menkveld (2013), 

Brogaard, Hendershott, and Riordan (2014), Boehmer, Fong, and Wu (2020), Brogaard, Hagströmer, Nordèn, 
and Riordan (2015), and van Kervel (2015). 
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institutional trading costs and less information production due to order anticipation (e.g., Baldauf 

and Mollner, 2020).  Also consistent with our findings, Brogaard, Hendershott, Hunt, and Ysusi 

(2014) find that HFTs in aggregate have a negligible effect on self-reported trading costs of a 

sample of institutions.  This result is consistent with our findings that the effects of toxic traders 

are offset by a group of beneficial active traders and fast traders are no more toxic than slow 

traders.10   

Third, by casting a wider net and analyzing a broad cross-section of traders that includes 

HFT and non-HFT we provide evidence on whether speed plays a role in how short-term traders 

impact institutional trading costs.  We take this broader view because predatory traders are not 

necessarily HFTs and therefore a narrow focus on HFTs may miss some relevant effects.  While 

HFTs may be associated with specific forms of trading that raise concerns such as latency arbitrage 

(e.g., Budish, Cramton, and Shim, 2015; Foucault, Kozhan, Tham, 2017; Aquilina, Budish, and 

O’Neill, 2020), when it comes to impacts on institutional trading costs, our findings suggest that 

speed is not essential to exploit institutional investors that manage orders in the market over 

horizons of hours or days.  

Our paper is also related to studies of specific trading strategies employed by short-term 

trades such as HFTs, including market making, predatory trading, order anticipation, toxic 

arbitrage, sniping, and latency arbitrage.11  These studies are complimentary to ours as they 

illustrate the variety of trading strategies that form the clusters that we identify in the data—the 

short-term traders that tend to decrease institutional trading costs and those that have the opposite 

effect.  

  Finally, this paper is also related to the smaller literature on institutional trading costs more 

generally.  Anand, Irvine, Puckett, and Venkataraman (2012) characterize the heterogeneity across 

institutional investors and brokers in their trade execution abilities.  In contrast, we characterize 

heterogeneity across short-term traders that either harm or benefit institutional trading costs.  

Anand et al. (2012) find considerable dispersion in trading-desk and broker skill, and show that the 

trade implementation process is economically important and can contribute to relative portfolio 

 
10 A similar study by Tong (2015) reaches different conclusions to Brogaard et al. (2015) regarding the effects 

of HFT as a group on institutional trading costs.  
11 For example, Brunnermeier and Pedersen (2005) and Yang and Zhu (2020) model predatory trading and 

back running strategies, while Hirschey (2020), Korajczyk and Murphy (2019), and van Kervel and 

Menkveld (2019) provide empirical evidence that some HFTs employ such strategies.  Budish, Cramton, and 

Shim (2015), Foucault, Kozhan, Tham (2017), and Aquilina, Budish, and O’Neill (2020) show that some 

HFTs engage in “toxic arbitrage”, latency arbitrage, and sniping of stale orders. Hagströmer and Nordèn 

(2013) and Boehmer, Li, and Saar (2018) show that HFTs employ a range of trading strategies including 
market making. 
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performance.  Our findings support the conclusion that the trade implementation process can have 

first-order effects on performance because the increases in costs from disproportionately interacting 

with (or leaving orders exposed to) toxic traders are considerable (same order of magnitude as 

unconditional mean implementation shortfall).  

 

2. The ecosystem of trading strategies and their effects on institutional trading costs 

 There are several determinants of the costs of executing a large institutional order.  These 

include the characteristics of the stock or the market, such as the size and volatility of the stock, 

and characteristics of the order itself, like its volume and the rate at which the order is traded (e.g., 

Chan and Lakonishok, 1995; Anand et al., 2012).  A third group of determinants, which is the most 

relevant for understanding how AT/HFT affect institutional trading costs, is how other market 

participants respond to the institutional order.  In particular, whether other market participants tend 

to trade in the same direction as the order (thereby increasing the order’s price impact and trading 

costs) or whether other market participants tend to trade in an opposite direction, providing liquidity 

to the order, attenuating its price impact, and lowering it execution cost.  Therefore, to a large 

extent, the effects that an individual short-term trader has on institutional trading costs depends on 

whether the trader tends to trade with institutional orders (same direction) or against them, which 

in turn depends on their trading strategy. 

While the ecosystem of individual short-term trading strategies is vast, there is a high 

degree of commonality in many of the strategies.  For example, Boehmer, Li, and Saar (2018) 

empirically identify three main strategies and find that most HFTs appear to follow one of these 

common strategies.  While their approach using principle components analysis does not attach an 

economic interpretation to the strategies directly, their analysis of the trading patterns suggests the 

strategies are market making, short-horizon directional speculation, and cross-venue arbitrage.  A 

less granular partition is market making vs opportunistic (e.g., Hagströmer and Nordèn, 2013).  The 

opportunistic or short-horizon directional speculation categories contain trading strategies such as 

short-term momentum trading, predatory trading including order anticipation strategies, and 

latency arbitrage including news-based strategies and picking off stale orders.   

A similar dichotomy is found in several theoretical models in which short-term traders 

cluster into liquidity providing market makers and liquidity demanding “snipers” that pick off stale 

quotes (e.g., Menkveld and Zoican, 2017; Budish, Cramton, and Shim, 2015) or that predate on 

institutional order flow (e.g., Baldauf and Mollner, 2020).  

Theory provides some guidance as to how these clusters of short-term trading strategies 

are expected to impact institutional trading costs.  First, market making involves providing liquidity 
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to institutional orders by taking the other side of those orders, trading against, rather than with, the 

direction of the institutional order flow (e.g., Ho and Stoll, 1980; Glosten and Milgrom, 1985; Kyle, 

1985; Grossman and Miller, 1988).  Theory shows that greater competition among market makers, 

or a greater supply of immediacy, decreases the price impacts and therefore trading costs of 

investors.  Therefore, we expect at least one distinct cluster of AT/HFT accounts, corresponding to 

the market making strategies, that tends to decrease institutional trading costs. 

While market makers provide liquidity by trading against institutional order flow, they will 

eventually have to off-load their accumulated inventory.  Market makers that maintain tight 

inventory risk controls and are only willing to take on small inventory positions and quickly offload 

them are likely to be less beneficial to institutional investors than market makers that are willing to 

take larger positions and more patiently revert those positions over a longer time period.12  We 

therefore expect that market making AT/HFT accounts that hold a larger proportion of their 

positions overnight (a proxy for less tight inventory risk controls and greater willingness to provide 

liquidity for extended periods) will be more beneficial in reducing institutional trading costs. 

Second, several of the trading strategies that form the opportunistic or short-horizon 

directional speculation groups exploit the price impact generated by large institutional orders.  In 

some cases, this may be inadvertent (e.g., short-horizon momentum traders), yet in others it is 

deliberate (e.g., predatory trading and order anticipation strategies).  In a theoretical model, 

Brunnermeier and Pedersen (2005) show that when strategic traders predate on distressed 

institutions that are forced to liquidate a position, they trade in the same direction as the institutional 

investor, amplifying price impact (increasing implementation shortfall), before closing the position.  

Korajczyk and Murphy (2019) provide evidence of such trading by some HFTs in Canada.  A 

second strategy, known as “back-running” or piggybacking, modelled by Yang and Zhu (2020) in 

a two-period Kyle-type model, involves identifying (with noise) the presence of a large informed 

institution and then trading in the same direction.  Consistent with such a strategy, Van Kervel and 

Menkveld (2019) find that HFTs in Stockholm tend to provide liquidity to institutional orders 

initially, but then after a few hours, trade with the direction of the institutional order flow rather 

than against it.  Order anticipation is yet another related, although higher frequency, trading strategy 

that involves trading ahead of orders that are likely to have price impact such as institutional orders.  

 
12 For example, if an institutional investor trades into a position over the course of four hours, and a market 

maker initially provides liquidity by selling to the institutional investor but then decides to revert the 

inventory position fully by buying before the institutional investor has completed their parent order, then in 

fact the market maker has provided little net liquidity as their selling to the institution is completely offset by 
their subsequent buying. 
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Consistent with such trading, Hirschey (2020) finds that on Nasdaq, HFTs’ aggressive trades 

predict non-HFT order flow over the next 30 seconds.   

Whether advertently or inadvertently, the strategies discussed above involve the short-term 

traders trading with the institutional order flow, in contrast to market makers.  Therefore, we expect 

at least one distinct cluster of AT/HFT accounts that tends to increase institutional trading costs.  

Given that large institutional orders and their price impact typically occur over the course of hours 

or days, many the trading strategies that exploit these price impacts (e.g., short-horizon momentum 

trading, predatory trading, back running) do not need sub-second or sub-millisecond reaction times.  

On this basis we hypothesize that the AT/HFT accounts that tend to increase institutional trading 

costs will not necessarily be among the fastest (HFT) accounts.  Rather, speed is likely to be a 

feature of the most successful market making accounts (market makers race to get queue priority 

following changes in the limit order book, e.g., Yao and Ye, 2018) and arbitrageurs. 

In summary, we hypothesize that individual short-term traders will tend to cluster into 

distinct groups that share common trading strategies.  These groups are expected to have different 

effects on institutional trading costs, depending on whether the trading strategy tends to trade with 

or against the direction of institutional orders.  While several clusters of individual short-term 

traders are possible, we expect at least two main clusters: a cluster of the strategies that tends to 

provide liquidity to institutional orders and thereby attenuates their trading costs (including pure 

market making strategies) and a cluster that exploits the price impact of institutional orders 

(including order anticipation strategies, back running or piggybacking strategies, predatory traders, 

and short-term momentum traders).   

 

3. Data, trader types, and trading costs 

3.1. Sample and institutional details of the market 

Our sample covers trading in the largest 200 Australian equities (ASX 200 Index 

constituents) during the 13 month period September 1, 2014 to September 31, 2015 (273 trading 

days).13  At the stock-day level, this gives us a panel with 52,873 observations.  We use unique 

trader-identified regulatory audit trail data to construct comprehensive estimates of institutional 

trading costs and identify the most active non-directional traders (AT/HFT) and measure their 

trading activity.14  The identification of individual traders occurs through the “origin of order” 

 
13 Because stocks enter and leave the ASX 200 during the sample period, in total our sample includes 225 

stocks, although not all stocks are in the sample at all times. 
14 ASIC process the audit data and provide only aggregated data that is purged of confidential information.  

We exclude block trades and after-hours trades, and include all trades executed through any of the lit or dark 
trading venues in Australia.   
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identifiers that the main market regulator, the Australian Securities and Exchange Commission 

(ASIC), collects within the regulatory data feed obtained under the Market Integrity Rules.15  

The Australian equities market is in the top-ten largest in the world by market 

capitalization, with total market capitalization of around $1.6 trillion.16  It has two lit trading venues, 

the Australian Securities Exchange (ASX) and Chi-X Australia, and a number of dark trading 

venues (an exchange-operated dark pool, Centre Point, and 17 broker-operated dark pools during 

our sample period).  Additionally there is an “upstairs” market for block trades, which are allowed 

to be negotiated off-market at any price if they exceed size thresholds ($1 million, $0.5 million or 

$0.2 million, depending on the liquidity category of the stock).  The two lit venues operate 

centralized electronic limit order books, which trade approximately 52% and 8% of total dollar 

volume during our sample period, respectively.  Their technical protocol is effectively the same as 

that used on Nasdaq (it is owned by Nasdaq OMX Group).  The ASX opening and closing auctions 

account for a further 15% of volume.  Block trades account for 15% of volume and below-block 

size dark trading accounts for the final 10% of volume.17  Therefore, there is considerable 

fragmentation of trading in the Australian equities market, comparable to Canada and several 

European countries (somewhat less extreme than in the US) and the types of trading venues and 

platforms are similar to those in the US, Canada, and Europe. 

Many of the participants in the Australian equities market are major international banks 

and electronic trading firms, using similar trading technology as they use elsewhere.  These include 

Goldman Sachs, Merrill Lynch, UBS, Bank of America, Citigroup, Deutsche Bank, J.P. Morgan, 

GETCO, Citadel, and others. 

Volume in Australian equities is around $5.5 billion per day during Q1 2015, or around 

$25 million per stock per day for the 200 stocks in our sample.  Effective bid-ask spreads during 

the same time period in our sample have a value-weighted average of 11 basis points (bps).18   

High-frequency trading accounts for around 28% of volume in our sample of stocks during 

the first quarter of 2015 (ASIC, 2015), which is comparable to estimates of HFT trading activity in 

UK equities (27%; Aquilina and Ysusi, 2016), US E-mini S&P 500 futures market before the May 

 
15 Under the Market Integrity Rules, all market participants must provide to ASIC (via market operators) 

information about each order submitted to and trade executed on a market.  Among the fields that must be 

submitted is an identifier for the “the person on whose instructions the Order is submitted or Transaction was 

executed”, which allows ASIC to identify all the order and trades originating from individual traders or 

entities within each broker. 

16 Given that trading occurs in Australian dollars (AUD), throughout this paper we use “$” to refer to AUD 

unless stated otherwise.  At the start of our sample, AUD 1.00 is equal to approximately USD 0.93. 
17 See ASIC “Equity market data for quarter ending March 2015” available at http://asic.gov.au. 
18 See ASIC “Equity market data for quarter ending March 2015” available at http://asic.gov.au. 



11 

2010 flash crash (34%; Kirilenko et al., 2017), Canadian equities (33%, averaging the 20% 

estimated by Brogaard, Hendershott, and Riordan (2019) and the 46% estimated by Boehmer, Li, 

and Saar (2018)), slightly lower than US large-caps (42%; Brogaard et al., 2014) and slightly higher 

than US small-caps (18%; Brogaard et al., 2014).  Slightly over 80% of Australian equity market 

capitalization is held by institutions (Bradrania et al., 2017), which is comparable to the estimated 

80% in US large-caps.  

In summary, the Australian equities market is similar in most respects (market structure, 

trading platforms, fragmentation, level of HFT trading activity, institutional holdings, and market 

participants) to other major, developed equities markets. 

 

3.2. Classification of trader types 

 Our study classifies market participants along two dimensions as illustrated in Figure 1.  

The first, directionality, is the tendency for a market participant to either buy or sell a given security 

in a given interval of time, but not both buy and sell.  Directional market participants (the left two 

quadrants) are fundamental buyers and fundamental sellers—investors moving into or out of a 

position that is not quickly reversed.  We refer to them as “investors”.  In contrast, non-directional 

participants (those that both buy and sell a given security within a relatively short period of time—

the right two quadrants) comprise intermediaries such as market makers and arbitrageurs. We refer 

to these as “traders”. 

The second dimension along which we partition market participants is dollar volume of 

their trading.  Large directional market participants (top left quadrant) are the “institutional 

investors” that are used in our trading cost measurement.  Small directional market participants 

(bottom left quadrant) include retail investors and small institutions.  For this group, simple 

liquidity measures, such as the bid-ask spread, are likely to closely approximate trading costs. 

Non-directional traders that account for substantial volumes (top right quadrant) almost 

certainly are algorithmic traders, with the highest volume traders likely to be HFTs.  We label this 

group of high-volume non-directional traders “active traders”; they are the focus of this study as 

the traders that could systematically increase or decrease institutional trading costs. 

Our focus on high-volume traders is primarily because for a trader to have a meaningful 

impact on the trading costs of large institutional investors they are likely to trade in considerable 

volume.  Our classification of “active traders” as the largest non-directional traders has similarities 

with data-driven definitions of HFT (e.g., Kirilenko et al., 2017; ASIC, 2015; Brogaard et al., 2019), 

but is not as narrow.  An advantage of casting a wider net and including a mix of HFT and non-

HFT in the set of active traders is that it allows us to ask whether HFTs are any more or less toxic 
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than non-HFTs.  In doing so, we do not formally partition our set of active traders into HFT and 

non-HFT subsets, but rather we examine whether trader-level characteristics typically associated 

with HFT (including speed, order-to-trade ratio, near-zero inventory, and sophistication) differ 

between toxic and non-toxic traders. 

Non-directional traders that account for small shares of volume (bottom right quadrant) are 

likely to use strategies similar to those of active traders but on a smaller scale or with less 

sophistication/automation.  This category is likely to involve some retail trading and some 

opportunistic strategies that only occasionally trade.  Traders in this category are therefore unlikely 

to have a material effect on institutional trading costs.  

 

< Figure 1 here > 

 

For each market participant (trading account), we measure non-directional dollar volume 

as the dollar volume of buying that is accompanied by corresponding selling of a given security 

within a period of one week.  This definition ensures that fundamental buying and fundamental 

selling, where positions are held for at least one week, does not contribute to non-directional 

volume.19  After summing non-directional dollar volume for each trading account, we classify the 

highest non-directional volume traders as “active traders” (those that trade on average at least $8 

million of non-directional volume per day).20  This procedure results in 187 “active traders”.  Once 

an account is classified as an active trader that classification stays with the account throughout the 

sample.   

For each stock 𝑖 on each day 𝑡, we measure the fraction of that day’s double-counted dollar 

volume (the dollar volume of the buy side of all trades plus that of the sell side) executed by active 

trader 𝑘 as 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡𝑘.  We also define the binary variable 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑖𝑡𝑘 = 1 if 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡𝑘 > 0 

(i.e., trader 𝑘 is present in stock-day 𝑖𝑡) and 0 otherwise.  

Figure 2 shows the 187 active traders’ percentage of dollar volume in stock quartiles 

through time (summing 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡𝑘 across all 187 active traders and expressing it as a percentage).  

The participation rates of active traders do not vary substantially across the stock quartiles, ranging 

 
19 We confirm that our definition of active traders sufficiently separates them from fundamental institutional 

investors by checking that the trading of active traders does not result in unidirectional parent orders that are 

used in estimation of institutional trading costs.  
20 This cutoff (and the subsequent filters) is based on regulatory judgement about the types of traders that 

could have a material effect (good or bad) on institutional trading costs. We impose two additional (not 

particularly restrictive) requirements that ensure the active traders have sufficient breadth and continuity: (i) 

they are active in at least ten of the weeks in our 13 month sample, and (ii) they trade an average of at least 
20 securities per day. 
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from an average of around 46% in the lowest dollar volume quartile to around 52% in the second 

highest quartile (these estimates are reported in Table 1).  The pattern across quartiles is not 

monotonic; the highest proportional activity of active traders is in the second highest dollar volume 

quartile.  There is a slight upward trend through time; active traders account for around 43% of 

dollar volume at the start of the sample and around 53% at the end, roughly one year later.   

Table 1 indicates that the 187 active traders (AT/HFT) collectively account for around 48% 

of trading (dollar volume), which is close to twice the share of “pure” HFTs during the sample.21  

On an average stock-day, 64 of the active traders are present and trading the given stock. 

 

< Figure 2 here > 

< Table 1 here > 

 

3.3. Institutional trading costs 

 Measuring institutional trading costs from the regulatory trader-level data involves three 

steps.  First, we reconstruct institutional unidirectional “parent orders” as follows: 

a) aggregate all trades for each account within a given stock-day to obtain a parent order; 

b) classify parent orders as unidirectional if all trades are in one direction (all buying or 

all selling); and  

c) classify unidirectional parent orders as institutional if their size (dollar volume) 

exceeds the median size of all unidirectional parent orders traded that stock-day and 

the parent order is “worked” in the market for at least two hours (there are at least two 

hours between the first and last child order in the parent order). 

Next we measure the execution costs of the institutional unidirectional parent orders using 

implementation shortfall (Perold, 1988; Anand et al., 2012).  Put simply, the implementation 

shortfall (or total cost) of executing a parent order is the average price at which the order is executed 

compared to the market price at the time the parent order execution starts (before the order impacts 

prices).  For parent order 𝑗 in stock 𝑖 on day 𝑡, implementation shortfall is calculated as: 

  𝐼𝑆ℎ𝑜𝑟𝑓𝑎𝑙𝑙𝑖𝑡𝑗 =  [
𝑉𝑊𝐴𝑃𝑖𝑡𝑗−𝑃0𝑖𝑡𝑗

𝑃0𝑖𝑡𝑗
] 𝐷𝑖𝑡𝑗    (1) 

 
21 ASIC (2015) estimate that HFTs (using a data-driven identification procedure involving total dollar 

volume, inventory, order-to-trade ratio, number of fast messages, holding time, and sophistication) account 
for around 28% of dollar volume in our sample of stocks during Q1 2015.  
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where 𝑉𝑊𝐴𝑃𝑖𝑡𝑗 is the volume-weighted average execution price for the parent order, 𝑃0𝑖𝑡𝑗 is the 

price at the time of the first trade in the parent order, and 𝐷𝑖𝑡𝑗 is the direction of the parent order 

(+1 for buys and –1 for sells).   

 Finally, we calculate the volume-weighted average implementation shortfall for all 

unidirectional institutional parent orders in each stock-day.  The resulting measure, 𝐼𝑆ℎ𝑜𝑟𝑓𝑎𝑙𝑙𝑖𝑡, is 

measured in bps. 

 Figure 3 Panel A shows the large institutional parent orders as a percentage of dollar 

volume through time and Table 1 provides descriptive statistics on the institutional orders.  Overall, 

the large institutional parent orders account for approximately 19.3% of traded dollar volume.  

Their share of volume is not monotonic across stock quartiles.  Figure 3 Panel B plots the simple 

average of 𝐼𝑆ℎ𝑜𝑟𝑓𝑎𝑙𝑙𝑖𝑡  in stock dollar volume quartiles through time.  𝐼𝑆ℎ𝑜𝑟𝑓𝑎𝑙𝑙𝑖𝑡 decreases 

monotonically with the dollar volume of the stocks (lower trading costs in larger or more traded 

stocks), averaging around ten bps in the highest volume quartile and around 24 bps in the lowest 

volume quartile.  Table 1 indicates that the pooled mean of 𝐼𝑆ℎ𝑜𝑟𝑓𝑎𝑙𝑙𝑖𝑡 is around 16 bps, which is 

very similar to the 17 bps average implementation shortfall for institutional orders in the US, as 

reported by Anand et al. (2012) for 2007 (the most recent non-crisis year of their sample). 

 

< Figure 3 here > 

 

4. Effects on institutional trading costs 

4.1. The basic approach  

 At the core of our approach to measuring the effects of each of the active traders on 

institutional trading costs is the following regression (which we refine in various ways later 

including using instrumental variables and bootstrap simulations): 

𝐼𝑆ℎ𝑜𝑟𝑓𝑎𝑙𝑙𝑖𝑡 = 𝛼 + ∑ 𝛾𝑘𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡𝑘
187
𝑘=1 + 𝜀𝑖𝑡    (2) 

Recall 𝐼𝑆ℎ𝑜𝑟𝑓𝑎𝑙𝑙𝑖𝑡  is the implementation shortfall (total execution cost) of large institutional parent 

orders and 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡𝑘 is the activity (fraction of that stock-day’s dollar volume) of active trader 

𝑘.  The estimated coefficients 𝛾�̂�  measure the impact of active trader 𝑘 on institutional trading costs, 

which for conciseness we refer to as the trader’s “toxicity”.  Positive (negative) values of 𝛾𝑘  

indicate that the trader’s activity is associated with an increase (decrease) in institutional trading 

costs.  Traders that increase (decrease) institutional trading costs significantly are termed “toxic” 

(“beneficial”).  We double cluster standard errors by stock and by date in all regressions to account 

for dependencies within the panel data.  
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 To translate the toxicity measures into basis point impacts on institutional trading costs, we 

define gross toxicity of an active trader as their toxicity per unit of activity (𝛾�̂�) multiplied by their 

average activity (𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ), i.e., 𝐺𝑟𝑜𝑠𝑠𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘 =  𝛾�̂�𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑘

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .  A trader’s gross toxicity is 

their average basis point impact on the cost of trading an institutional order. 

 Visual representation of the toxicity estimates is telling.  Figure 4 plots each of the 187 

traders in a two dimensional space.  The vertical axis measures the trader’s toxicity estimate, 𝛾�̂� , 

(on a log scale) with positive (negative) numbers indicating the trader is associated with increased 

(decreased) institutional trading costs.22  The horizontal axis measures the consistency of the 

trader’s toxicity (log of the standard error of 𝛾�̂�) with lower values indicating greater consistency 

in how the trader impacts institutional trading costs.  The size of the circles indicates the statistical 

significance of the toxicity estimate, with the smallest circles being toxicity estimates that are not 

statistically significant at the 10% level, through to the largest circles indicating statistical 

significance at the 1% level.   

The figure shows quite strikingly that the 187 active traders (the AT/HFT accounts) cluster 

fairly neatly into two distinct groups: (i) those traders whose trading activity is associated with 

systematically increased institutional trading costs (“toxic” traders) and (ii) those associated with 

systematically decreased institutional costs (“beneficial” traders).  Very few traders have toxicity 

estimates around zero.  Many traders’ toxicity coefficients are statistically different from zero.  

Some degree of statistical significance is expected by chance when testing so many coefficients.  

We address this issue later with bootstrap simulations and show the number of statistically 

significant coefficients is considerably greater than what would be expected by chance alone. 

The distinct clustering of active traders into two groups based on how they impact 

institutional trading costs is consistent with our hypotheses.  It also mirrors the evidence in 

Boehmer, Li, and Saar (2018) who find most HFT trading strategies fall into one of three main 

groups: (i) market making, which is likely to decrease institutional trading costs, (ii) short-horizon 

directional strategies which, to the extent they trade in the direction of the institutional price impact, 

are likely to increase institutional trading costs, and (ii) cross-venue arbitrage, which is less relevant 

in the Australian equities market given the lower level of fragmentation and infrequent cross-listing 

(unlike the case of Canada-US). 

Institutional investors are likely to be concerned not only about an active trader’s average 

toxicity level, but also the consistency with which the trader imposes toxicity, which we measure 

using the standard error of the toxicity estimate.  Therefore, the collection of active traders that 

 
22 Because the toxicity estimates can take positive and negative values, the conversion to a log scale is done 

in a way that preserves the sign, i.e., 𝑠𝑖𝑔𝑛(𝛾�̂�)𝑙𝑜𝑔(|𝛾�̂�| + 1). 
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have maximum toxicity for a given level of variation in their impact on institutional trading costs 

or a minimum level of variation in their impact for a given level of toxicity form, what we term, 

the “toxicity frontier”.  Figure 4 illustrates the approximate toxicity frontier for our sample.   

 

< Figure 4 here > 

 

 We test variations to the functional form of the regression above before proceeding to 

instrumental variables models and bootstrap simulations.  First, we add stock fixed effects, then 

date fixed effects, then both sets of fixed effects.  The latter of these models is: 

 𝐼𝑆ℎ𝑜𝑟𝑓𝑎𝑙𝑙𝑖𝑡 = 𝛼𝑖 + 𝜇𝑡 + ∑ 𝛾𝑘𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡𝑘
187
𝑘=1 + 𝜀𝑖𝑡    (3) 

The fixed effects eliminate many potential confounding effects and subsume most potential control 

variables.  The fixed effects subsume stock characteristics that have mainly cross-sectional 

variation such as market capitalization, institutional holdings, spread/depth, whether the stock’s 

spread is constrained by its tick size causing limit order queuing, percentage of volume traded in 

the dark, and so on.  They also subsume time-series variables including market conditions, VIX, 

market-wide realized volatility/volume/returns, and so on.  Fixed effects in our setting also come 

at a cost—they absorb much of the time-series and cross-sectional variation that is useful in 

identifying traders’ toxicity.  

 Figure 5 illustrates the results from the toxicity regressions with fixed effects.  The 

distributions of toxicity are qualitatively similar with and without fixed effects, pointing away from 

the presence of significant confounding factors or omitted variables bias.  The levels of statistical 

significance in the toxicity estimates are also similar with fixed effects.   

Although the distributions and significance of toxicity estimates are similar with and 

without fixed effects, it is possible that the ordering of traders with respect to their toxicity is 

different, e.g., a trader estimated to be toxic could swap places with a trader estimated to be 

beneficial in two different models without changing the distributions of toxicity.  To investigate 

this possibility we compute Pearson parametric correlations and Spearman non-parametric rank 

correlations for the trader toxicity estimates across the different models (with/without fixed effects).  

The correlations are all very high (above 0.80) indicating that even the relative ranking of traders 

on the toxicity scale is not overly affected by the inclusion of fixed effects.  Given these results, we 

proceed with the simpler model with no fixed effects as it places less burden on parameter 

estimation (important in the bootstrap simulations) and allows us to exploit more dimensions of 

variance in further tests including in the instrumental variables models.  
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< Figure 5 here > 

 

 We report two further variations on the basic toxicity regression (2) in the Appendix.  The 

first is a model that considers whether an active trader’s presence in the market (trading non-zero 

volume, 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑖𝑡𝑘) affects institutional trading costs, or whether their level of activity (share of 

dollar volume, 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡𝑘) affects institutional trading costs, or both have independent effects.  

We simultaneously include 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡𝑘 and 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑖𝑡𝑘 in a regression similar to (2) and find that 

while the mere presence of some active traders has an effect on institutional trading costs 

independent of how active they are, presence does not subsume activity in explaining the effects of 

active traders on trading costs.  The statistical significance of the toxicity estimates using 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡𝑘 remain approximately the same when 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑖𝑡𝑘 is included in the toxicity 

regressions.  The relative ranking of traders on a toxicity scale is also not overly affected, with 

correlations around 0.80 between the rankings generated by the two approaches.   

 Second, we transform the activity measures that are bounded between zero and one, 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡𝑘, into unbounded continuous variables via a logit transformation and re-estimate the 

toxicity regression.  We find that the transformation compresses the difference between toxic and 

beneficial traders, but it does not overly affect inference about toxicity levels, statistical 

significance of toxicity, or the relative ranking of traders on a toxicity scale (correlations around 

0.90 between the rankings). 

 

4.2. Tests with instrumental variables 

 To deal with the potential endogeneity of active traders’ activity and pin down their causal 

effects on institutional trading costs, we use instrumental variables.  Given the heterogeneity in our 

sample of active traders, which is a deliberate result of casting a wider net across traders than most 

studies (e.g., HFT studies) it is unlikely that exogenous market-wide changes will be useful in 

identifying the effects of our cross-section of active traders.  This is because any market structure 

change, such as a platform upgrades for latency reduction or co-location, will affect some traders 

but not others (e.g., latency reductions might increase HFT activity) or affect different traders in 

different ways.  Instead, we use exogenous information on the individual traders as instruments 

using their lagged trading activity in a given stock.  This approach is similar in spirit to Sarkar and 

Schwartz (2009) who also use lags of endogenous variables as instruments in a microstructure 

setting.    

 We estimate the following two-stage least squares instrumental variables (2SLS IV) model: 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡𝑘 = 𝜇 + ∑ 𝛽𝜏𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖,𝑡−𝜏,𝑘
5
𝜏=1 + 𝜖𝑖𝑡𝑘    (4) 
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𝐼𝑆ℎ𝑜𝑟𝑓𝑎𝑙𝑙𝑖𝑡 = 𝛼 + ∑ 𝛾𝑘𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡𝑘
̂187

𝑘=1 + 𝜀𝑖𝑡       (5) 

In the first stage (4), the trading activity of each active trader 𝑘 in stock 𝑖 on day 𝑡 is regressed on 

that active trader’s activity in the same stock in each of the past five trading days.  In the second 

stage (5), we estimate a similar toxicity regression as previously, but using fitted values from the 

first stage, 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡𝑘
̂ . 

 The first requirement of instrumental variables—that they are correlated with the 

endogenous explanatory variables—is clearly satisfied.  The correlations between lagged and 

current activity of a given trader in a given stock are between 0.54 and 0.62 (depending on the lag) 

and F-tests of whether the instruments in the first stage are statistically significant produce p-values 

well below 1%.  The second requirement—that the instrumental variables are exogenous with 

respect to the dependent variable (not correlated with the error term)—is satisfied as a result of the 

temporal difference between the instrumental variable measurement and the dependent variable 

measurement.  Past activity cannot respond to current market conditions or current levels of 

institutional trading costs.  The only possible contamination is through persistence in the conditions 

that affect institutional trading costs.  We rule out this possibility with three additional tests: (i) 

adding lagged 𝐼𝑆ℎ𝑜𝑟𝑓𝑎𝑙𝑙𝑖𝑡 as a control variable in the first and second stages to absorb persistence 

in institutional trading costs, (ii) adding time fixed effects to absorb time-series trends or persistent 

changes in market conditions, and (iii) omitting the first and second lags in the first-stage regression 

and using only the third, fourth, and fifth lags as instruments.  Our results are largely unchanged in 

these three additional tests.  

 Figure 6 illustrates the results from the 2SLS IV toxicity regressions (5).  The distributions 

of toxicity, as previously, show strong clustering of traders into a group of traders that 

systematically tend to increase institutional trading costs and a second group that tend to decrease 

these costs.  In general, fewer traders have a statistically significant relation with institutional 

trading costs than in the OLS models, which could be the result of eliminating endogeneity in the 

estimates, but it could also be due to the decrease in statistical power.  The Pearson correlation of 

trader gross toxicity estimated via OLS and the 2SLS IV models is 0.70 indicating that using 

instrumental variables somewhat, but not overly, changes inference about individual traders’ 

relative impacts on institutional trading costs.  Given these results, we proceed with the 2SLS IV 

models in the further analysis.  

< Figure 6 here > 
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4.3. Quantifying impacts beyond statistical chance 

 One of the challenges in analyzing the impacts of individual traders is that if sufficiently 

many traders are analyzed some will, purely by statistical chance, appear to have a statistically 

significant effect on institutional trading costs even if they have no true relation with institutional 

trading costs.  Put differently, with a non-zero Type 1 error rate, the number of Type 1 errors 

increases with the number of tests performed (number of traders tested for toxicity). 

 The challenge of disentangling true and spurious toxicity at the individual trader level is 

similar to the problem of disentangling skill from luck in the cross-section of fund managers.  Given 

a sufficiently large number of fund managers, some will beat their benchmark over many 

consecutive periods purely by chance and thus appear skilled.  In neither context (measuring skill 

or measuring toxicity) is it sufficient to adjust critical values to account for the multiple statistical 

tests because the distributions of alpha in the funds management context and trader toxicity in our 

context are complex and not necessarily Normal.  We therefore borrow from the fund management 

literature and use bootstrap simulations to quantify the impacts on institutional trading costs that 

exceed what would be expected by statistical chance.  

For the bootstraps, we follow Kosowski, Timmermann, Wermers, and White (2006).  The 

details are in Appendix B.  The essence of the procedure is as follows.  Estimate the 2SLS IV model 

second stage and save the residuals (the procedure works the same with the OLS model, but the 

2SLS IV models have the advantage of addressing endogeneity).  Simulate data on implementation 

shortfall by sampling from the residuals (with replacement) for each stock.  In the simulated data, 

by construction, none of the active traders have an underlying relation with institutional trading 

costs (the “zero-toxicity null”) other than what might emerge spuriously.  Estimate the 2SLS IV 

model on the simulated data saving the toxicity estimates.  Repeat the simulate-then-estimate steps 

1,000 times to build distributions of the levels of toxicity and their statistical significance that would 

be expected purely by chance.  Finally, compare the actual estimated toxicity levels and 

significance to those that would be expected by chance.  Throughout the bootstrap, we use double 

clustered standard errors (clustered by stock and by date). 

 

< Table 2 here > 

 

Table 2 reports the bootstrap results.  Panel A reports estimates from the 2SLS IV model 

using the actual data, i.e., the model estimated previously.  The columns min through to max (with 

P5, P25, P75, P95 being the 5th, 25th, 75th, 95th percentiles) describe the distribution of the 187 

toxicity estimate t-statistics (one estimate for each of the 187 active traders).  The median t-statistic 
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is close to zero (–0.08).  The 5% most toxic (beneficial) traders have toxicity t-statistics above 2.12 

(below –2.37).  The minimum and maximum toxicity t-statistics across the 187 active traders are –

3.61 and +4.00, respectively.  The last four columns of the table indicate how many of the 187 

active traders have toxicity t-statistics beyond the threshold given in the column heading.  In the 

actual data (Panel A), four traders are toxic with t-statistics above +3 and 12 traders with t-statistics 

above +2.  Similarly, four traders are “beneficial” with t-statistics less than –3 and 15 traders with 

t-statistics less than –2. 

Panel B of Table 2 reports a sample of the results using simulated data: simulation iterations 

1–6 and 1,000, purely as illustrations of the simulation process.  Recall that each iteration of the 

bootstrap procedure creates a panel dataset similar to the actual dataset (but with zero toxicity by 

design) and on that dataset estimates the 2SLS IV toxicity model, saving the 187 toxicity estimates.  

The results from an individual iteration (an individual row of Panel B) by themselves are not 

particularly useful (we report them simply to illustrate the bootstrap procedure); what is useful is 

the distribution created by the 1,000 iterations.  Each iteration forms a point in the “bootstrap 

distribution” of each statistic (column).  The last row of Panel B reports means (across the 1,000 

iterations) of the number of active traders with toxicity t-statistics beyond a certain threshold.   

Having built a bootstrap distribution for the toxicity t-statistics under the “zero-toxicity 

null” (Panel B), we can test whether the toxicity t-statistics estimated on the actual data (Panel A) 

deviate from what is expected by chance.  Panel C expresses the toxicity t-statistic estimates using 

actual data (Panel A) in terms of percentiles in the bootstrap distribution.  For example, that value 

of 52 in the column min in Panel C indicates that the minimum toxicity t-statistic of in the actual 

data (–3.61) falls in the 52nd percentile of the minimum t-statistics in the 1,000 simulated datasets.  

Thus, the most negative t-statistic (most statistically beneficial trader) in the actual data is no more 

extreme than would be expected by chance.  Put differently, in 52% of the simulated datasets (in 

which there is zero true toxicity by design), the most negative t-statistic across the 187 traders is 

more negative (larger absolute value) than the most negative t-statistic in the actual data.  Similarly, 

the largest positive t-statistic in the actual data is no more extreme than would be expected by 

chance (it is in the 50th percentile of the bootstrap distribution).  This suggests the actual data do 

not contain extreme individual outliers.  Also, the median active trader in the actual data is no more 

or less toxic than what would be expected under the zero-toxicity null. 

The 5th and 25th percentiles of the toxicity t-statistics in the actual data (the 5% and 25% 

most beneficial traders), however, are more beneficial than would be expected under the zero-

toxicity null.  The toxicity t-statistics for those groups of traders are in the 0th percentile (the 0–1% 

segment of the bootstrap distribution).  Similarly, the 5% most toxic traders in the actual data are 
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also more toxic than would be expected by chance; their toxicity t-statistics are in the 99th percentile 

(the 99–100% segment of the bootstrap distribution).  These results indicate that it is very unlikely 

(less than 1% probability) that one would find the levels of toxicity estimated for the 5% most 

beneficial and 5% most toxic traders by chance.  Thus the bootstrap results reject the zero-toxicity 

null hypothesis at a 99% confidence level.   

The last four columns of Table 2 provide an additional way of quantifying toxicity beyond 

statistical chance.  The Mean row in Panel B indicates that under the zero-toxicity null, we would 

expect by chance 5.55 of the 187 active traders to appear to be statistically toxic at 95% confidence 

(toxicity t-statistic > +2) and 1.20 to be statistically toxic at 99.5% confidence (toxicity t-statistic > 

+3).  In the actual data (Panel A) we observe that in fact 12 (rather than 5.55) of the active traders 

are statistically toxic at 95% confidence, and four (rather than 1.20) are statistically toxic at 99.5% 

confidence, i.e., considerably more than would be expected under the zero-toxicity null.  In fact, 

Panel C indicates that the probability of observing that many statistically toxic traders at the 95% 

and 99.5% confidence levels is less than 1% and less than 2%, respectively.  Similarly for the 

beneficial traders, Panel B indicates that we would expect by chance 6.87 of the 187 active traders 

to appear to be statistically beneficial at 95% confidence (t-statistic < –2) and 1.24 to be statistically 

beneficial at 99.5% confidence (t-statistic < –3).  In the actual data (Panel A) we observe that in 

fact 15 of the active traders are statistically beneficial at 95% confidence, and four are statistically 

beneficial at 99.5% confidence, with the probabilities of observing that many beneficial traders by 

chance being less than 1% and less than 2%, respectively (Panel C). 

Repeating the bootstrap analysis for 𝐺𝑟𝑜𝑠𝑠𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘 rather than the t-statistics of the 

toxicity estimates leads to similar conclusions, namely, that the level of toxicity in the 5% most 

toxic and most beneficial traders is beyond what would be expected by chance. 

 

4.4. Net effects on institutional trading costs 

 The bootstrap analysis, building on the 2SLS IV model, indicates that there are groups of 

traders in the data that have a causal effect on institutional trading costs (both positive and negative) 

beyond what would be expect by chance.  We now turn to quantifying their impacts on institutional 

trading costs. 

To quantify economic significance, the ultimate impact on institutional trading costs is best 

measured by 𝐺𝑟𝑜𝑠𝑠𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘, which is trader 𝑘’s average basis point impact on the 

implementation shortfall of a large institutional order.  Accounting for what would be expected by 

chance is done by subtracting, for each trader, the expected 𝐺𝑟𝑜𝑠𝑠𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘 for that trader, 

estimated from the bootstrap distribution under the zero-toxicity null (E[𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘]).  This process 
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effectively takes the integral of the difference between actual and expected 𝐺𝑟𝑜𝑠𝑠𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘 across 

segments of the 𝐺𝑟𝑜𝑠𝑠𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘 distribution (or across the whole distribution).  Continuing the 

analogy of skill in the cross-section of fund managers, calculating the excess gross toxicity for a 

group of traders is like quantifying the net alpha generated by a group of fund managers in excess 

of the alpha that is the result of chance (luck). 

 Aggregating excess 𝐺𝑟𝑜𝑠𝑠𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘 across groups of traders involves summing their 

𝐺𝑟𝑜𝑠𝑠𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘 estimates.  For the active traders that have statistically significant toxicity 

estimates (𝛾�̂�), positive or negative, their impact on institutional trading costs (accounting for what 

is expected by change) is: 

𝐸𝑥𝑐𝑒𝑠𝑠𝐺𝑟𝑜𝑠𝑠𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑇𝑜𝑥𝑖𝑐𝑇𝑟𝑎𝑑𝑒𝑟𝑠 = ∑ (𝐺𝑟𝑜𝑠𝑠𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘 − E[𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘])𝟏{𝑡𝑘>2}𝑘        (6) 

𝐸𝑥𝑐𝑒𝑠𝑠𝐺𝑟𝑜𝑠𝑠𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝐵𝑒𝑛𝑓𝑖𝑐𝑖𝑎𝑙𝑇𝑟𝑎𝑑𝑒𝑟𝑠 = ∑ (𝐺𝑟𝑜𝑠𝑠𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘 − E[𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘])𝟏{𝑡𝑘<−2}𝑘    (7) 

where 𝟏{𝑡𝑘>2} and 𝟏{𝑡𝑘<−2} are indicator functions for whether trader 𝑘 is significantly toxic (𝛾�̂�  t-

statistic > +2) or significantly beneficial (𝛾�̂�  t-statistic < –2), respectively. 

 We find that the 12 significantly toxic traders increase the average implementation shortfall 

for large institutional orders by 10.3 bps beyond what is expected by chance 

(𝐸𝑥𝑐𝑒𝑠𝑠𝐺𝑟𝑜𝑠𝑠𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑇𝑜𝑥𝑖𝑐𝑇𝑟𝑎𝑑𝑒𝑟𝑠  = 10.3).  That is an economically meaningful magnitude given 

the pooled sample unconditional mean implementation shortfall of 16.4 bps (Table 1), and the 

value-weighted average effective bid-ask spread is around 11 bps.  Another way of thinking about 

this impact is that without the toxic traders, institutional trading costs would be approximately 10.3 

bps lower, or around 6.1 bps.  Therefore toxic traders more than double the costs of executing large 

parent orders.  Note that these cost impacts are per parent order.  To obtain the impact on a fund’s 

returns (which could be larger) one has to scale up by the fund’s annual turnover.  

In dollar terms, large institutional orders account for around 19% of dollar volume, and 

traded dollar volume is approximately $25 million per stock per day during our sample.23  All up, 

that implies that a 10.3 bps increase in 𝐼𝑆ℎ𝑜𝑟𝑓𝑎𝑙𝑙𝑖𝑡 as a result of the toxic traders equates to 

increased trading costs of around $437 million across all large institutional orders in the top 200 

stocks during a one-year period (assuming 220 trading days).   

At the same time, the 15 significantly beneficial active traders decrease the average 

implementation shortfall for large institutional orders by 8.9 bps beyond what is expected by chance 

(𝐸𝑥𝑐𝑒𝑠𝑠𝐺𝑟𝑜𝑠𝑠𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝐵𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙𝑇𝑟𝑎𝑑𝑒𝑟𝑠  = –8.9).  This effect is also economically meaningful 

compared to average implementation shortfall and is similar in magnitude to the increase in 

 
23 With large institutional orders accounting for 19% of dollar volume, their dollar volume is 

2 × 19% × $25mil to account for both the buying and selling sides of trades.  
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implementation shortfall caused by the toxic traders.  In the absence of the 15 significantly 

beneficial active traders, institutional trading costs would be around 25.3 bps (16.4 + 8.9).  

Therefore the beneficial traders reduce institutional trading costs by slightly more than one-third.  

In dollar terms, this translates to a reduction in institutional trading costs of around $375 million 

across all large institutional orders in the top 200 stocks during a one-year period.   

These dollar estimates for the impact of toxic and beneficial traders represent a lower bound 

for two reasons.  First, they only capture the largest institutional trades, not medium trades, which 

are also likely to be affected to some extent.  And second, they are computed for the top 200 stocks, 

ignoring other stocks. 

Netting the effects of the significantly toxic and significantly beneficial active traders, 

implies a small net effect: around +1.4 bps or an increase in annual costs of around $62 million 

across all large institutional orders.  Thus, while some of the active traders (the AT/HFT accounts) 

individually have large effects on institutional trading costs, both positive and negative, their net 

effect is close to zero.   

We also measure the net effects across all active traders, irrespective of whether they have 

statistically significant toxicity estimates or not, again accounting for what is expected by chance.  

The absence of statistical significance does not rule the possibility that a trader has a true impact 

on institutional trading costs, so it is worth assessing the impact of all active traders.  Incorrectly 

including traders in the aggregation that have no effect on institutional trading costs will not bias 

the net toxicity estimate, it merely adds noise.  Net excess toxicity across all active traders is 

estimated as:     

𝑁𝑒𝑡𝐸𝑥𝑐𝑒𝑠𝑠𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦 = ∑ (𝐺𝑟𝑜𝑠𝑠𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘 − E[𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘])𝑘   (8) 

We find that net excess toxicity across all active traders is near zero: –0.79 bps.  The sign of the 

point estimate implies a net benefit from the active traders as a whole, reducing costs of executing 

large institutional orders by around $33 million per annum.  However, this estimate is not 

statistically distinguishable from zero at the 5% level using parametric or non-parametric tests. 

 Our findings therefore suggest that while algorithmic and high-frequency trading may 

bring some benefits to the market such as narrower bid-ask spreads (e.g., Hendershott, Jones, and 

Menkveld, 2011), their net effects on institutional trading costs are much smaller.  This result 

mirrors the findings of Jones and Lipson (2001), Eaton, Irvine, and Liu (2020) and Frazzini, Israel, 

and Moskowitz (2018) who show that changes to market structure that reduce bid-ask spreads do 

not necessarily benefit institutional investors and can even increase institutional trading costs. 

The results above help understand the conflicting views between buy-side institutions and 

existing studies about the effects of AT/HFT, in particular, why there are significant concerns about 
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AT/HFT increasing institutional trading costs, despite evidence that AT/HFT as a whole are 

beneficial or benign.  Toxic traders have an economically meaningful detrimental effect on 

institutional trading costs.  An institutional investor that disproportionately interacts with toxic 

traders will face higher trading costs.  An institutional investor might disproportionately interact 

with toxic traders as a result of their investment style (their entry/exit signals correlating with toxic 

trader activity), as a result of their size, or as a result of carelessly managed execution that allows 

predatory algorithms to detect the institutional investor’s trading intentions and anticipate the 

remaining child orders.  The toxicity magnitudes that we report above imply that carelessly 

managed execution can have a material effect on a fund’s performance.  Importantly, the effects of 

toxic traders are balanced by a segment of highly beneficial AT/HFT that considerably decrease 

market impact costs.  These findings explain why from the perspective of some buy-side institutions 

(those that disproportionately interact with toxic traders), AT/HFT appear to do more harm than 

good, despite the evidence that in aggregate AT/HFT are benign or beneficial. 

Our findings about the heterogeneity among AT/HFT also have implications for how 

institutional investors can decrease trading costs.  The results suggest that considerable trading cost 

savings could be achieved by avoiding toxic traders or at least minimizing interactions with them.  

Doing so might involve monitoring toxicity levels and then adjusting the execution strategy for 

large parent orders in response to toxicity levels.  For example, when toxicity is high an institutional 

investor might spend more time/effort searching for an off-market block counterparty, might trade 

the parent order at a slower rate to leave less of a signal to predatory algorithms, increase the 

proportion of child orders routed to dark pools, and possibly even pause the parent order execution 

and restart it at a later time.  All these actions involve a cost and are therefore only desirable if the 

toxicity level is sufficiently high.  Furthermore, the trading cost savings need to be balanced against 

the costs of more sophisticated execution strategies and technology, as well as opportunity costs if 

execution is delayed. 

The heterogeneity in the cross-section of AT/HFT also provides a potential reason why 

studies of AT/HFT that use different exogenous events as instruments arrive at different 

conclusions about the net effects of this group of traders.  An event that disproportionately 

encourages the trading activity of the beneficial traders or gives them an advantage will tend to 

improve trading cost dimensions of market quality.  The opposite is true for events that benefit or 

encourage the group of toxic traders.  Brogaard et al. (2015) for example, find that the introduction 

of co-location at Nasdaq OMX Stockholm improves market quality, implying that this event 

disproportionately encouraged the activity of beneficial AT/HFT. 
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5. Characteristics of traders that increase vs decrease institutional trading costs 

5.1. Trader characteristics that determine their effects 

Having estimated the impact of each active trader on institutional trading costs, we now 

ask what characteristics distinguish those that increase costs (“toxic traders”) from that the decrease 

costs (“beneficial traders”)?   

Toxic traders are likely to use different trading strategies compared to beneficial traders.  

Given that one of the main determinants of implementation shortfall for large orders is whether 

others are trading in the same direction (e.g., ASIC, 2015) toxic traders are likely to trade with 

institutional order flow (in the same direction) rather than against it.  Trading with institutional 

order flow could result from a trader intentionally exploiting institutional order flow, for example, 

predatory trading strategies (e.g., Brunnermeier and Pedersen, 2005), order anticipation algorithms 

(e.g., Hirschey, 2020), and strategies that seek to identify and “back-run” large informed orders 

(e.g., Yang and Zhu, 2020).  However, trading with institutional order flow could also result 

inadvertently from a trader sharing common entry/exit signals, trading short-horizon momentum, 

or through active participation in the price discovery process during periods of imbalance.  

Therefore not all toxic traders necessarily intentionally exploit institutional investors.  Furthermore, 

not all toxic traders are necessarily harmful to the market overall—some might contribute to price 

discovery around institutional parent orders.  In contrast, the beneficial traders are likely to be 

liquidity-providing intermediaries (informal market makers) that “lean against the wind” and 

thereby attenuate price pressure from large institutional orders. 

The differences in trading strategies employed by toxic and beneficial traders imply that 

they should differ in some measureable trading characteristics and patterns in activity.  We analyze 

the distinguishing features of toxic traders by estimating regressions of trader-level toxicity on 

trader characteristics: 

𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘
̂ = 𝛼 + ∑ 𝛽𝑐𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑐,𝑘𝑐 + 𝜖𝑘     (9) 

where 𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘
̂  is either toxicity per unit activity (𝛾�̂�), gross toxicity (𝐺𝑟𝑜𝑠𝑠𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘

̂ ), excess 

gross toxicity (𝐺𝑟𝑜𝑠𝑠𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘 − E[𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘]), or the statistical significance of the trader’s 

toxicity estimate (t-statistic of 𝛾�̂�), all obtained from the 2SLS IV toxicity models.   

 

< Table 3 here > 

 

We first explore trader characteristics such as level of activity, speed, sophistication, and 

order placement, followed by patterns in trading activity (when and where toxic traders trade).  

Table 3 reports the results of the regression in (9) using excess gross toxicity as the dependent 
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variable (the results are similar using the other toxicity estimates).  The first characteristic we test 

is the trader’s activity, measured as the trader’s average share of dollar volume.  Higher volume 

traders are likely to be more sophisticated, but importantly also faster—several papers show, both 

theoretically and empirically, that relative speed has a large impact on a trader’s share of volume 

(e.g., Roşu, 2016).  Model 1 in Table 3 shows that a trader’s share of volume is not significantly 

related to their toxicity.  To the extent that high volumes are related to speed, this finding suggests 

that speed is not a distinguishing characteristic of toxic traders. 

We further explore the relation between speed and toxicity using other measures of speed, 

sophistication, and order placement characteristics, many of which have been used as defining 

features of HFT.  The first of these is the average holding time of long or short positions that are 

closed within a day.24  Model 2 in Table 3 shows that Holding Time is also not significantly related 

to toxicity and if anything, the point estimate suggests toxic traders have longer holding times.  To 

the extent that HFTs have short holding times, this evidence also suggests that HFTs are no more 

toxic than non-HFTs.   

We define fast orders as order amendments sent within 500 milliseconds of the order 

placement and use fast orders to construct two related measures: the number of fast orders (Number 

Fast), and the average speed of fast orders (Order Amend Time).  Number Fast indicates how active 

a trader is in “managing” submitted orders.  Order Amend Time is a proxy for the speed of the 

trader’s technology.  Model 3 shows that neither of these characteristics is significantly related to 

toxicity, consistent with the conclusion that fast traders are not more toxic on average than slower 

traders.  The point estimate on the number of fast orders is positive in Model 3 but becomes negative 

when we control for the total number of orders (Model 8). 

We measure each trader’s efficiency in generating intraday trading profits as the Sharpe 

ratio of daily trading profit (counting only those positions that are closed within the day).  The 

Sharpe ratio of trading profit is a measure of sophistication (sophisticated traders consistently make 

money from their trading) and is another of the characteristics that distinguishes HFT.  We find 

that toxic traders are not more efficient in generating intraday trading profits than others 

(statistically insignificant coefficient in Model 4), in fact, the insignificant point estimate goes the 

other way. 

Models 5 and 6 show that a trader’s order-to-trade ratio, which measures the degree of 

strategic order submission and active order management (and is also a characteristic of HFT), is 

 
24 For a given trader in a given stock-day we construct first-in-first-out (FIFO) “pipes” for long and short 

positions and measure the average time a position spends in the pipe.  Positions held overnight do not 
contribute to this measure.  
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not significantly related to toxicity.  Model 5 tests the relation between a trader’s toxicity and their 

average number of submitted orders, holding their dollar volume fixed, and Model 6 tests the order-

to-trade ratio directly.  Although not statistically significant, the point estimates are consistent with 

the notion that toxicity is positively related to excessive quoting.  The average order-to-trade ratio 

across all active traders is around 22.  Consistent with our previous results, Model 5 shows that a 

trader’s dollar volume is not significantly related to their toxicity.   

The broad collection of characteristics examined thus far consistently point to the 

conclusion that the HFTs in our sample are no more likely to be toxic than non-HFTs.  On one 

hand, this conclusion seems reasonable in light of the evidence on the timing of predatory and back-

running strategies.  For example, van Kervel and Menkveld (2019) show that HFTs initially trade 

against institutional parent orders and only seem to be able to detect (and then exploit) them several 

hours after the start of the parent order.  Speed is not necessary for predatory trading or back-

running orders, but speed is important in market making and arbitrage (e.g., Yao and Ye, 2018).  

Consistent with this finding, Hagströmer and Nordèn (2013) find that market making HFTs have 

lower latency and higher order-to-trade ratios than other HFTs, who in turn have latency and order-

to-trade ratios on par with non-HFTs. 

At the same time, the evidence suggesting that HFTs are no more toxic than non-HFTs 

suggests that concerns voiced by institutional investors about HFTs being the culprits responsible 

for increased trading costs might be misdirected.  While some HFTs may be predatory traders, it 

seems HFTs are no more predatory than other slower traders. 

Another characteristic that we hypothesized would be related to the impact of an active 

trader on institutional trading costs, in particular a trader using a market making strategy, is their 

willingness to carry inventory positions for an extended period of time as opposed to quickly 

reverting their inventory to zero.  Model 7 in Table 3 shows support for this hypothesis.  Traders 

that on average close a smaller percentage of their positions by the end of the day, i.e., they hold 

more inventory overnight tend to be more beneficial in reducing institutional trading costs.  Across 

all 187 active traders, around 22% of their dollar volume on average is in the form of intraday 

round-trip trades, with a standard deviation of around 27%.  The effect size (coefficient of 

Percentage Traded) is economically meaningful and larger in magnitude once we control for other 

characteristics (Model 8).  

If electronic market makers tend to “go home flat” (some of the earlier literature on 

electronic market making suggests they do) then it might seem surprising that Percentage Traded 

is positively related to toxicity.  However, several recent studies that track inventory of electronic 

market makers (e.g., Malinova and Park, 2016) show that they do not go home flat in individual 
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securities and in fact hold large inventory positions overnight (instead they net out risk across a 

portfolio of long and short positions).  Those market makers that do adhere to risk management 

policies of going home flat in individual securities are less likely to be beneficial to institutional 

traders that trade parent orders over the course of hours or even days.  In contrast, order anticipation 

strategies might hold little or no inventory overnight and therefore have a high percentage of their 

positions closed by the end of each day.  

Model 8 includes all the speed, sophistication, and order placement characteristics together.  

Our main conclusions hold when the characteristics are tested together.    

 

< Table 4 here > 

 

5.2. Trading styles and preferred habitats 

In Table 4 we examine differences in the trading patterns of toxic and beneficial traders.  

We start with the consistency of a trader’s activity.  For each trader, we separately compute the 

cross-sectional standard deviation of their activity (their activity is measured by their share of total 

traded dollar volume) and the time-series standard deviation of their activity.  Model 1 in Table 4 

shows that toxic traders tend to have higher cross-sectional standard deviation and lower time-

series standard deviation than other traders (although the latter is only marginally statistically 

significant).  The high cross-sectional standard deviation of active traders’ activity suggests that, 

on any given day, toxic traders tend to concentrate their activity in a subset of stocks rather than 

trading equally across the market portfolio.  The low time-series standard deviation suggests toxic 

traders tend to be more consistently trading their preferred stocks day-to-day.  Thus, toxic traders 

appear to have a preferred habitat of stocks. 

What is the preferred habitat of toxic traders?  We measure each trader’s share of dollar 

volume in large (top quartile) medium (second quartile) and small (bottom two quartiles) stocks, 

as well as expressing their activity in small stocks relative to their overall activity.  Models 2 and 3 

in Table 4 show that toxic traders are more active in small stocks and less active in large stocks. 

We also examine whether toxic traders are more active in times of market stress by 

measuring each trader’s relative activity during a period in which the market fell sharply and 

exhibited high volatility (August 5–24, 2015).  Models 4 and 5 in Table 4 indicate that there is no 

statistical difference in the activity of toxic traders (relative to other traders) during the period of 

market stress compared to other times.  This is consistent with their relatively low time-series 

standard deviation.  It is worth noting that institutional orders as a share of volume also slightly 

decline during this period (Figure 2). 
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Model 6 of Table 4 combines all of the activity characteristics in one regression.  The 

characteristics that are individually significant remain significant after controlling for other 

characteristics.  The R-squared reaches a maximum of 7% in Model 6, suggesting that there are 

many factors (which could be predominantly unobservable) beyond those included in our 

regression models that explain variation in toxicity.  Additionally, measurement error in the toxicity 

estimates is also likely to contribute to the low R-squared.   

In summary, the characteristics associated with HFT are unrelated to toxicity, including 

volume, speed of order amendments, frequency of fast orders, consistency with which they extract 

intraday trading profit, and order-to-trade ratios.  The evidence suggests that HFTs are not more 

toxic than non-HFTs.  Toxic traders do differ from non-toxic traders in a few regards—they tend 

to concentrate their activity in a subset of stocks, which they trade fairly consistently, they are more 

active in smaller stocks, and are more likely to close positions before the end of the day and hold 

less inventory overnight. 

  

5.3. Robustness tests 

We find qualitatively similar results across a number of robustness tests, including: (i) 

subperiod tests, omitting a period of one month in which the market fell sharply (August 2015); (ii) 

stock and/or time fixed effects in the toxicity regressions; (iii) logit transformations of the toxic 

trader activity measures to give unbounded variables; (iii) controlling for the presence of active 

traders in the toxicity regressions (in addition to their activity); (iv) using different toxicity 

estimates (toxicity per unit activity, gross toxicity of each trader, and the t-statistic of the trader’s 

toxicity estimate) in the bootstrap analysis and analysis of trader characteristics.  The results of 

some of these robustness tests are mentioned above in the corresponding section of the paper, others 

are omitted for conciseness. 

  

6. Conclusion 

Behind the veil of their aggregate effects lies rich cross-sectional heterogeneity in the 

effects of individual of algorithmic and high-frequency traders (AT/HFT).  We find strong evidence 

that some of these traders systematically increase institutional trading costs while others decrease 

these costs, i.e., some of these traders appear “toxic” to an institutional investor while others appear 

“beneficial”.  Their effects on institutional trading costs are economically meaningful.  Toxic 

traders increase costs by more than ten bps for the average institutional parent order, roughly 

doubling the costs.  In dollar terms this is an additional $437 million per annum in costs for trading 
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large institutional orders in the top 200 stocks.  The effects of the toxic traders are offset by a group 

of beneficial traders that significantly decrease those costs.   

Consequently, in aggregate, active short-term traders (AT/HFT) have little net impact on 

institutional trading costs.  This finding contrasts with other studies that find AT and HFT 

substantially decrease bid-ask spreads and suggests that simple measures of liquidity are likely to 

overstate the benefits for institutional investors. 

An implication of our findings, in particular relating to the subset of traders that 

systematically increase the costs of executing large parent orders, is that the trading technology 

used by institutional investors is likely to have a material impact on their trading costs.  Institutions 

that disproportionately trade against toxic traders, for example by making it relatively easy to infer 

their future orders from their pattern of trading, will experience higher trading costs.  These findings 

help understand the concerns raised by institutional investors about AT/HFT increasing their 

trading costs.  At the same time, our results reconcile these concerns with the evidence that AT/HFT 

as a group seem to be benign or beneficial—the negative effects of toxic traders are offset by 

significantly beneficial traders.   

The findings also suggest that by monitoring toxicity levels and adjusting trading strategies 

in response to the toxicity level, institutions that are able to limit their exposure to toxic traders 

could obtain substantial reductions in trading costs. 

Who are the “toxic” traders that increase institutional trading costs vs those that decrease 

these costs?  Toxic traders are likely to trade with institutional order flow rather than against it.  

While some toxic traders might intentionally exploit institutional order flow (e.g., predatory, order 

anticipation, or back-running strategies), others inadvertently increase institutional trading costs by 

trading on common entry/exit signals, trading short-horizon momentum, or through active 

participation in price discovery in the presence of flow imbalances.  In contrast, the beneficial 

traders are likely to be liquidity-providing intermediaries that “lean against the wind” and thereby 

attenuate the price pressure that arises from large institutional orders. 

We consistently find that a traders’ speed, their share of dollar volume, their intraday 

Sharpe ratio, and their order-to-trade ratios, all of which are features of HFTs, are not associated 

with increased toxicity.  Our results suggest that HFTs are not more toxic to institutional investors 

than non-HFTs.  On the basis of our evidence, concerns voiced by institutional investors about 

HFTs in particular being the culprits responsible for increased trading costs are misdirected.  We 

find that the typical toxic trader tends to concentrate their activity in a “preferred habitat” that tends 

to be smaller than average stocks.   
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Individual AT/HFTs are more likely to decrease institutional trading costs if they hold 

inventory positions overnight.  This result is consistent with the notion that institutional traders 

benefit from market makers that have looser inventory risk limits or more patience in off-loading 

accumulated inventory positions because they are more likely to provide sustained liquidity 

throughout the course of the institutional parent order.  In contrast market makers that quickly revert 

their inventory positions to zero are more likely to cease providing liquidity to a large institutional 

parent order before it is completed and even switch to trading in the same direction as the 

institutional order. 

The focus of this paper has been on the diversity among AT/HFT.  Future work might explore 

the diversity in institutional investor trading in contemporary markets.  Our finding that the effects 

of toxic and beneficial traders are substantial in magnitude suggests that the sophistication with 

which they execute large orders can have a considerable impact on their trading costs.  This raises 

questions such as do some institutions systematically get exploited?  If so which ones and why?  

To what extent are naïve or unsophisticated execution algorithms to blame?  Does the investment 

in smarter execution systems warrant the savings in trading costs?   
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Appendix A: Further tests of the toxicity functional form 

 We test the independent effects of presence and activity by estimating the following 

regression: 

𝐼𝑆ℎ𝑜𝑟𝑓𝑎𝑙𝑙𝑖𝑡 = 𝛼 + ∑ 𝛽𝑘𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑖𝑡𝑘
187
𝑘=1 + ∑ 𝛾𝑘𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡𝑘

187
𝑘=1 + 𝜀𝑖𝑡   (A.1) 

giving two measures of toxicity for each active trader, 𝛽�̂� and 𝛾�̂� .  The results are shown in Figure 

A.1 below: 

 

Panel A: Toxicity of active trader activity, measured by  𝜸�̂� 

 
Panel B: Toxicity of active trader presence, measured by  𝜷�̂� 

 

Fig. A.1. Independent effects of active trader activity and presence. 
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 We test the sensitivity of the toxicity estimation procedure to transformation of the activity 

measures from bounded variables to continuous ones via logit transformations: 

𝐿𝑜𝑔𝑖𝑡𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡𝑘 = ln (
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡𝑘+0.01

1−𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡𝑘+0.01
)   (A.2) 

and estimating the following regression: 

𝐼𝑆ℎ𝑜𝑟𝑓𝑎𝑙𝑙𝑖𝑡 = 𝛼 + ∑ 𝛾𝑘𝐿𝑜𝑔𝑖𝑡𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡𝑘
187
𝑘=1 + 𝜀𝑖𝑡   (A.3) 

The results are shown below in Figure A.2. 

 

Fig. A.2. Toxicity, estimated using a continuous measure of active trader activity. 
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Appendix B: Bootstrap procedure 

 

The bootstrap procedure is as follows: 

1. Estimate the 2SLS IV models saving the residuals and 187 t-statistics.   

2. For each stock 𝑖, draw with replacement from its residuals to create a pseudo-time-series 

of resampled residuals in such a way that re-orders the original time-series.  Retain the 

original values of 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡𝑘 in their original chronological order (relaxed in robustness 

tests). 

3. Construct the pseudo-values of 𝐼𝑆ℎ𝑜𝑟𝑓𝑎𝑙𝑙𝑖𝑡 using the resampled residuals, imposing the 

null hypothesis of zero toxicity, i.e., 𝛾𝑘 = 0  ∀𝑘. 

4. Estimate the second stage of the IV models saving the 187 t-statistics. 

5. Repeat steps 2–4 many (1,000) times to build a bootstrap distribution of the t-statistics for 

the toxicity estimates 𝛾𝑘 .   

6. Compare the mean, median, quartiles, min, and max of the cross-sectional 187 t-statistics 

from step 1 against the bootstrap distributions for each of these measures.  For example, 

the bootstrap distribution for the max t-statistic across traders is constructed as the 

distribution of the maximum t-statistic generated in each of the 1,000 iterations of the 

bootstrap.  
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Table 1 

Descriptive statistics 

This table reports descriptive statistics for several variables calculated at the stock-day level (stock 𝑖 on day 𝑡).  $𝑉𝑜𝑙𝑢𝑚𝑒𝑖𝑡 is 

the dollar volume of trades per stock-day, 𝐴𝑇𝑠ℎ𝑎𝑟𝑒𝑖𝑡 is the “active trader” share of dollar volume (“active traders” are the 187 

traders (AT/HFT) with the highest non-direction dollar volume), 𝐴𝑇𝑐𝑜𝑢𝑛𝑡𝑖𝑡 is the number of active traders trading a given 

stock on a given day, 𝐼𝑛𝑠𝑡𝑜𝑆ℎ𝑎𝑟𝑒𝑖𝑡  is the large institutional order share of dollar volume (large institutional orders are 

unidirectional parent orders that are worked in the market for at least two hours and exceed the stock-day’s median 

unidirectional parent order value), and 𝐼𝑆ℎ𝑜𝑟𝑓𝑎𝑙𝑙𝑖𝑡 is implementation shortfall for large institutional orders.  Quartiles are by 

dollar volume, with 1 (4) being the highest (lowest) volume stocks. 

 

 Quartile Statistic 

$𝑉𝑜𝑙𝑢𝑚𝑒𝑖𝑡 

($mil) 

𝐴𝑇𝑠ℎ𝑎𝑟𝑒𝑖𝑡 

 (%) 

𝐴𝑇𝑐𝑜𝑢𝑛𝑡𝑖𝑡  

(#) 

𝐼𝑛𝑠𝑡𝑜𝑆ℎ𝑎𝑟𝑒𝑖𝑡  

(%) 

𝐼𝑆ℎ𝑜𝑟𝑓𝑎𝑙𝑙𝑖𝑡 

(bps) 

Panel A: Pooled sample 

  Mean 22.3 48.4% 63.9 19.3% 16.4 

  Std.dev. 43.2 13.1% 16.6 10.2% 57.8 

  25th percentile 3.1 40.3% 52.0 11.8% –7.0 

  median 7.9 49.3% 63.0 18.3% 8.7 

  75th percentile 22.1 57.5% 76.0 25.5% 32.4 

  Observations 52,873 52,873 52,873 52,873 52,873 

Panel B: By quartile 

 1 Mean 67.7 48.1% 82.0 17.9% 10.4 

 2 Mean 15.4 51.5% 70.4 20.0% 14.2 

 3 Mean 6.3 48.7% 58.9 20.9% 16.4 

 4 Mean 2.6 45.6% 46.7 18.4% 23.6 
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Table 2 

Bootstrap results 

This table reports results from bootstrap simulations that quantify toxicity beyond that which is expected by statistical chance (the bootstrap procedure is described in Appendix 

B).  Panel A reports results from the 2SLS IV model estimated using the actual data.  The columns min through to max (where P = “percentile”) describe the distribution of the 

187 toxicity estimate t-statistics (one t-statistic for each of the 187 active traders (AT/HFTs) in the sample).  The last four columns indicate how many of the 187 active traders 

have toxicity t-statistics beyond the threshold given in the column heading (e.g., the column with heading 𝑡 < −3 displays the number of active traders with toxicity t-statistics 

less than –3).  Panel B reports examples of the results using simulated data (simulation iterations 1–6 and 1,000 for illustration).  Each iteration of the simulation creates a panel 

dataset similar to the actual dataset (with active traders and institutional trading costs each stock-day, using residuals from the actual dataset) but with no relation between the 

active traders and institutional trading costs (other than spurious relations).  For each simulated dataset, we estimate the same 2SLS IV model and report the results in the same 

format as for the actual data.  Additionally, the last row of Panel B reports means (across the 1,000 iterations) of the number of active traders with toxicity t-statistics beyond a 
certain threshold.  Panel C reports where each of the results using actual data sit in the distribution generated by the 1,000 simulated datasets (in terms of a percentile).  Percentiles 

are recorded as the starting point of the range, i.e., 0 is the 0–1% bucket, 99 is the 99–100% bucket.  For example, the value 52 in the column min indicates that the minimum t-

statistic of –3.61 in the actual data corresponds to the 52nd percentile of the minimum t-statistics in the 1,000 simulated datasets.  All t-statistics are based on double clustered 

standard errors (by stocks and by date). 

 

  Distribution of t-values for the 187 active trader toxicity estimates 

 Number of active traders with toxicity t-values beyond 

various significance thresholds 

 Iteration min P5 P25 median P75 P95 max  𝑡 < −3 𝑡 < −2 𝑡 > +2 𝑡 > +3 

Panel A: Actual data 

  –3.61 –2.37 –1.10 –0.08 0.63 2.12 4.00  4 15 12 4 

Panel B: Simulated data 

 1 –2.58 –1.75 –0.78 –0.04 0.59 1.67 2.39  0 4 6 0 

 2 –3.09 –1.87 –0.62 0.13 0.67 1.43 3.13  1 7 2 1 

 3 –2.69 –1.73 –0.83 –0.01 0.69 1.71 4.32  0 7 4 1 

 4 –3.79 –1.75 –0.76 0.06 0.85 1.58 2.81  1 6 4 0 

 5 –3.04 –1.91 –0.77 –0.12 0.68 1.83 2.71  2 9 5 0 

 6 –3.00 –1.88 –0.84 0.00 0.67 1.59 3.28  0 4 5 1 

 …        
 

    

 1000 –3.28 –1.85 –0.69 0.06 0.80 1.90 3.23  2 6 7 2 

 Mean        
 1.24 6.87 5.55 1.20 

Panel C: Actual data in terms of percentiles of the bootstrap distributions 

  52 0 0 27 31 99 50  98 99 99 98 
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Table 3 

Characteristics of toxic traders 

This table reports results from regressions of trader-level toxicity on trader-level characteristics: 

𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘
̂ = 𝛼 + ∑ 𝛽𝑐𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑐,𝑘𝑐 + 𝜖𝑘  

where the dependent variable is estimated gross toxicity in excess of expected toxicity.  The 𝑐 trader-level characteristics are as follows.  

Average Activity is the trader’s average share of dollar volume.  Holding Time is the average holding time (in ‘000 seconds) of long or 

short positions that are closed within a day.  Number Fast is the number of order amendments (in millions) sent within 500ms of the order 

submission.  Order Amend Time is the average time (in seconds) between an order submission and its amendment for amendments sent 

within 500ms of the order submission.  Sophistication is a measure of each trader’s efficiency in generating intraday margin from traded 

stock (Sharpe ratio of daily trading profit).  $Volume is the natural log of the trader’s average daily traded dollar volume.  Number of 

Orders is the natural log of the trader’s average daily number of submitted orders.  Order-to-trade Ratio is the average of the number 

submitted orders divided by the number of trades executed by the trader each stock-day.  Percentage Traded is the average percentage of 
the trader’s dollar volume that is in the form of intraday round-trip trades (i.e., both buying and selling a stock within a day).  For a given 

trader, this percentage is calculated each stock-day, then averaged across stocks (with dollar volume weighting) and across days (equal 

weighting).  T-statistics are reported in parentheses.   ***, **, and * indicate statistical significance at 1%, 5%, and 10% levels, 

respectively. 

 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

Intercept –0.01 

(–0.17) 

–0.03 

(–0.55) 

–0.01 

(0.12) 

0.01 

(0.24) 

0.35 

(0.78) 

0.20 

(0.46) 

–0.06 

(–1.31) 

0.99* 

(1.95) 

Average Activity 1.24 

(0.11) 

       

Holding Time  0.01 

(0.71) 

     0.008 

(0.48) 

Number Fast   2.66 

(0.99) 

    –0.827 

(–0.27) 

Order Amend Time   –0.10 

(–0.30) 

    –0.13 

(–0.37) 

Sophistication    –0.05 

(–0.80) 

   –0.09 

(–1.22) 

$Volume    

 

 –0.04 

(–1.20) 

–0.01 

(–0.49) 

 –0.08** 

(–2.24) 

Number of Orders     0.03 

(1.58) 

  0.03 

(1.36) 

Order-to-trade 

Ratio 

     0.0007 

(1.21) 

  

Percentage Traded       0.25** 

(2.07) 

0.40** 

(2.53)  
        

R-Squared 0.02% 0.28% 0.67% 0.36% 0.39% 0.93% 2.34% 6.24% 
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Table 4 

Characteristics of toxic trader activity 

This table reports results from regressions of trader-level toxicity on characteristics of trader-level activity: 

𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦𝑘
̂ = 𝛼 + ∑ 𝛽𝑐𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑐,𝑘𝑐 + 𝜖𝑘  

where the dependent variable is estimated gross toxicity in excess of expected toxicity.  The 𝑐 trader-level activity 

characteristics are as follows.  Cross-sectional StdDev for a trader is calculated by taking their daily cross-

sectional standard deviations of their activity (share of dollar volume) and then averaging those daily cross-

sectional standard deviations.  Time-series StdDev for a trader is calculated by taking, for each stock, the time-

series standard deviation of their activity and then averaging those time-series standard deviations.  Average 

Activity is the trader’s average share of dollar volume.  Activity in Medium and Activity in Small are the trader’s 

average share of dollar volume in medium stocks (second quartile) and in small stocks (bottom two quartiles), 

with % Activity In Small being a measure of activity in small stocks relative to the trader’s overall activity.  
Activity In Falling is similarly defined as the trader’s average share of dollar volume during a period when the 

market fell sharply (August 5–24, 2015), with % Activity In Falling being the trader’s activity during that period 

relative to their average activity overall.  T-statistics are reported in parentheses.   ***, **, and * indicate 

statistical significance at 1%, 5%, and 10% levels, respectively. 

 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Intercept 0.00 

(0.04) 

–0.02 

(–0.45) 

–0.27 

(–4.32)*** 

–0.01 

(–0.18) 

–0.03 

(–0.65) 

–0.27 

(–3.86)*** 

Cross–sectional StdDev 32.27 

(2.00)** 

  
 

 44.03 

(2.27)** 

Time-series StdDev –32.23 

(–1.68)* 

  
 

 –39.33 

(–1.97)* 

Average Activity 
 

–304.28 

(–2.04)** 

 –22.08 

(–0.77) 

 –8.24 

(–0.62) 

Activity In Medium 
 

87.76 

(1.15) 

 
 

 
 

Activity In Small 
 

222.6 

(2.89)*** 

 
 

 
 

% Activity In Small 
 

 0.83 

(3.81)*** 

 
 0.90 

(3.93)*** 

Activity In Falling 
 

  21.43 

(0.95) 

 
 

% Activity In Falling 
 

  
 

0.06 
(0.65) 

–0.02 
(–0.19)  

      

R-Squared 1.87% 5.56% 4.19% 0.51% 0.08% 7.00% 
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Fig. 1.  Classification of traders in two dimensions.  This figure shows qualitatively how the two main groups 

of traders that we analyze are classified (“Institutional investors”, top left quadrant, and “Active traders” 

(AT/HFT), top right quadrant).  

  

 Directional trading Non-directional trading 

High volume 

“Institutional investors” 

 

Large fundamental buyers or 

sellers  

 

 

“Active traders” (AT/HFT) 

 

Algorithmic market making and 

short holding horizon strategies 

including various arbitrage 

algorithms and predatory trading 

Low volume 

“Retail and small institutional 

investors” 

 

 

Small fundamental buyers or 

sellers  

“Other” 

 

 

Non-algorithmic intermediation, 

small short holding horizon 

traders, opportunistic traders 



43 

 
 

Fig. 2.  Active trader share of dollar volume in stock quartiles through time.  The “active traders” are the 187 

traders (AT/HFT) with the highest non-directional dollar volume (buys that are accompanied by sells in the same 

security within a week and vice versa) throughout the sample period.  Their share of volume is measured each 

stock-day as the dollar volume of their buys and their sells normalized by the total dollar volume of all buys and 

all sells.  We then compute equal-weighted averages of their share of dollar volume in quartiles of stocks each 

month.  The quartiles are by dollar volume with Quartile 1 being the highest volume stocks. 
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Panel A: Large institutional orders as a percentage of dollar volume 

 
 

Panel B: Implementation shortfall for the large institutional orders 

 
 

Fig. 3.  Large institutional orders and their trading costs for stock quartiles through time.  This figure shows 

large institutional orders as a percentage of dollar volume (Panel A) and their average implementation shortfall in 
bps (Panel B).  Large institutional orders are unidirectional parent orders that are worked in the market for at least 

two hours and exceed the median size of unidirectional parent orders that stock-day.  We calculate value-weighted 

average implementation shortfall for each stock-day and then take the equal-weighted average across stocks in a 

given quartile each month.  The quartiles are by dollar volume with Quartile 1 being the highest volume stocks.  
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Fig. 4.  Toxicity of active traders using the baseline OLS approach.  Each circle on this figure represents one 

of the 187 active traders (AT/HFT accounts).  The vertical axis measures the trader’s toxicity (expressed in log 

terms) with positive (negative) numbers indicating the trader is associated with increased (decreased) institutional 

trading costs.  Toxicity estimates are obtained from a regression of institutional trading costs each stock-day on 

each of the trader’s shares of dollar volume that stock-day.  The horizontal axis measures the variation in the 

trader’s impact on institutional trading costs (log of the standard error of the toxicity estimate) with lower values 

indicating greater consistency in impact.  The superimposed curve is the approximate “toxicity frontier”, i.e., the 

collection of active traders that have maximum toxicity for a given level of variation in their impact on institutional 

trading costs or a minimum level of variation in their impact for a given level of toxicity.  The size of the circles 

indicates the statistical significance of the toxicity estimate, with the smallest circles being toxicity estimates that 

are not significant at the 10% level, followed by significant at the 10%, 5%, and 1% levels (largest circles).  

Statistical significance is based on double clustered standard errors (by stocks and by date).  Numbers next to the 
largest circles are masked (anonymized) trader identifiers.    
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Panel A: Model with stock fixed effects    Panel B: Model with date fixed effects 

 
 

Panel C: Model with both stock and date fixed effects 

 
 

Fig. 5.  Toxicity of active traders using OLS approach and fixed effects.  Each circle on this figure represents 

one of the 187 active traders (AT/HFT accounts).  The vertical axis measures the trader’s toxicity (expressed in 

log terms) with positive (negative) numbers indicating the trader is associated with increased (decreased) 

institutional trading costs.  The horizontal axis measures the variation in the trader’s impact on institutional trading 

costs (log of the standard error of the toxicity estimate) with lower values indicating greater consistency in impact.  

Toxicity estimates are derived from an OLS regression of institution trading costs each stock-day on each of the 

trader’s share of dollar volume that same stock-day, similar to Figure 4, but with stock fixed effects (Panel A), 

date fixed effects (Panel B), and both stock and date fixed effects (Panel C).  The size of the circles indicates the 

statistical significance of the toxicity estimate, with the smallest circles being toxicity estimates that are not 
significant at the 10% level, followed by significant at the 10%, 5%, and 1% levels (largest circles).  Statistical 

significance is based on double clustered standard errors (by stocks and by date). 
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Fig. 6.  Toxicity of active traders using 2SLS IV regressions.  Each circle on this figure represents one of the 

187 active traders (AT/HFT accounts).  The vertical axis measures the trader’s toxicity (expressed in log terms) 

with positive (negative) numbers indicating the trader is associated with increased (decreased) institutional trading 

costs.  Toxicity estimates are derived from two-stage least squares instrumental variables regressions in which 

active trader activity is instrumented with lags of their activity in the same stock.  The horizontal axis measures 

the variation in the trader’s impact on institutional trading costs (log of the standard error of the toxicity estimate) 
with lower values indicating greater consistency in impact.  The size of the circles indicates the statistical 

significance of the toxicity estimate, with the smallest circles being toxicity estimates that are not significant at the 

10% level, followed by significant at the 10%, 5%, and 1% levels (largest circles).  Statistical significance is based 

on double clustered standard errors (by stocks and by date).  Numbers next to the largest circles are masked 

(anonymized) trader identifiers.    

 

 


