Man vs. Machine Learning The Term Structure of Earnings Expectations and Conditional Biases

Jules van Binsbergen<sup>1</sup> Xiao Han<sup>2</sup> Alejandro Lopez-Lira<sup>3</sup>

<sup>1</sup> University of Pennsylvania, NBER and CEPR

<sup>2</sup>University of Edinburgh

<sup>3</sup>BI Norwegian Business School

December 2020

#### Motivation

• Are analysts' earnings forecasts statistically optimal?

• Can Machine Learning beat analyst forecasts?

• Are analyst forecasts biased? If so, can we measure the bias in real-time?

• Do analyst forecasts matter for market participants and firm managers?

# Earnings Expectations and Biases

• Statistically optimal earnings expectations are important and interesting in their own right.

• In addition, we find expectations and biases impact stock returns and corporate behavior.

• Without a benchmark, we cannot measure cross-sectional and time series variation in forecast biases.

#### What are the current benchmarks in the literature?

- Ex Post Realizations
  - ▶ Does not allow for real-time measurement of conditional biases, because of a lack of a real-time benchmark (Kozak et al. (2018) and Engelberg et al. (2018)).
- No Benchmark
  - Use analysts' long-term earnings growth forecasts as an explanatory variable in empirical studies, without comparing it to a benchmark (La Porta (1996) and Bordalo et al. (2019)).
- Linear Regressions (Fama and French (2006), Hou et al. (2012), So (2013))
  - Linear forecasts are not necessarily optimal.
  - Analysts' forecasts are better than the linear forecasts.
  - Only the variables that have good predictive power are used in the regressions, incurring data leakage problems.

# Our Contribution

• We use machine learning to construct a statistically optimal and unbiased benchmark for firms' earnings expectations available in real-time.

- We use random forest regression for our main analysis, which has two significant advantages:
  - **1** It naturally allows for nonlinear relationships between variables.
  - 2 It is designed for high-dimensional data which mitigates the risk of in-sample overfitting.

• We study the impact of the real-time expectation biases on stock market returns and corporate financing decisions.

# Main Findings Summary

- Analyst earnings expectations exhibit conditional bias: it varies substantially across time and firms. On average they are biased upwards.
- The bias increases in the forecast horizon (on average) and analysts revise their expectations downwards as earnings announcement dates approach.
- Analysts' biases are associated with negative cross-sectional return predictability (profitable trading strategies).
- Managers of firms with the largest upward biases in earnings expectations seem aware of this bias and respond by issuing stocks.

#### Analysts' Forecasts

• Analysts forecast earnings per share (EPS).

• The forecast horizons are 1Q, 2Q, 3Q, 1Y, and 2Y ahead.

• Analysts forecast up until the announcement date (2-3 months after earnings are realized).

# Supervised Machine Learning

- Prediction Machine: Receives public information available at the time and returns a forecast.
- The best forecast available at every period is the conditional expectation.
- Machine Learning is a novel, flexible and robust way to approximate conditional expectations.

#### Supervised Machine Learning

• Non-linear function of information available at time t.

• Fit the non-linear function using the information up until time t.

• Predicts the value at of earnings at time t+1 (out-of-sample).

• Similar structure as rolling regressions.

#### Supervised Machine Learning: Random Forest Regression

• Flexible, non-parametric, and robust to over-fitting.

• Choose parameters in a data-driven way (cross-validation) before the forecasting period.

• Train using rolling windows.

# Data used for forecasting

- I/B/E/S database: Analysts' Forecasts and past realized earnings.
- Stock prices and returns, CRSP.

- Firm fundamentals, Compustat.
- Real-time macroeconomic data provided by the Federal Reserve Bank of Philadelphia: Consumption, GDP, and Industrial Production Growth; and Unemployment.

Analysts' Bias

#### Conditional Bias (ML)

#### **Realized Bias**



| Horizon              | (AF - AE) |  |
|----------------------|-----------|--|
| One-quarter-ahead    | 0.018     |  |
| <i>t</i> -statistic  | 3.385     |  |
| Two-quarters-ahead   | 0.044     |  |
| <i>t</i> -statistic  | 5.107     |  |
| Three-quarters-ahead | 0.061     |  |
| <i>t</i> -statistic  | 4.748     |  |
| One-year-ahead       | 0.135     |  |
| <i>t</i> -statistic  | 4.189     |  |
| Two-years-ahead      | 0.348     |  |
| <i>t</i> -statistic  | 4.501     |  |

| Horizon              | (AF - AE) | (ML - AE) |
|----------------------|-----------|-----------|
| One-quarter-ahead    | 0.018     | -0.008    |
| <i>t</i> -statistic  | 3.385     | -0.997    |
| Two-quarters-ahead   | 0.044     | -0.002    |
| <i>t</i> -statistic  | 5.107     | -0.155    |
| Three-quarters-ahead | 0.061     | -0.001    |
| t-statistic          | 4.748     | -0.006    |
| One-year-ahead       | 0.135     | 0.016     |
| <i>t</i> -statistic  | 4.189     | 0.531     |
| Two-years-ahead      | 0.348     | -0.022    |
| <i>t</i> -statistic  | 4.501     | -0.195    |

| Horizon              | $(ML - AE)^2$ | $(AF - AE)^2$ |
|----------------------|---------------|---------------|
| One-quarter-ahead    | 0.061         | 0.065         |
| Two-quarters-ahead   | 0.080         | 0.089         |
| Three-quarters-ahead | 0.096         | 0.111         |
| One-year-ahead       | 0.687         | 0.695         |
| Two-years-ahead      | 1.329         | 1.699         |

| Horizon              | (ML - AE)/P | (AF - AE)/P | (AF - ML)/P |
|----------------------|-------------|-------------|-------------|
| One-quarter-ahead    | 0.000       | 0.006       | 0.006       |
| <i>t</i> -statistic  | 0.358       | 3.594       | 2.882       |
| Two-quarters-ahead   | -0.001      | 0.006       | 0.007       |
| <i>t</i> -statistic  | -0.226      | 4.530       | 3.516       |
| Three-quarters-ahead | -0.001      | 0.006       | 0.008       |
| <i>t</i> -statistic  | -0.824      | 6.562       | 0.774       |
| One-year-ahead       | 0.003       | 0.028       | 0.025       |
| t-statistic          | 0.632       | 3.916       | 3.894       |
| Two-years-ahead      | -0.007      | 0.032       | 0.040       |
| <i>t</i> -statistic  | -0.703      | 8.106       | 6.224       |

#### Analysts are biased relative to the ML forecast

• Does the market price in this bias?

• Return predictability suggests at least not fully.

• Firm managers do seem to understand forecasts (and market prices) are biased: they are more likely to issue stock.

• Firm managers have all the same public information (including analysts' expectations), but also private information about their firm.

# Return Predictability

- Expectations about cash flows are an important input to compute stock fundamental value.
- Analysts revise their expectations downwards as earnings announcement dates approach.
- If expectations are biased, and these biases are not priced in, we should see return predictability.
- Two primary return predictors.
  - **()** Average Bias: the average of the conditional biases across the multiple horizons.
  - Bias Score: the arithmetic average of the percentile rankings on each of the five conditional bias measures.
- We find negative return predictability: Indirect evidence that the market pays attention to the analysts' forecasts but does not correct for the bias.

# Portfolios Sorted on Conditional Bias

| Quintile       | 1                   | 2            | 3            | 4            | 5              | 1-5          |
|----------------|---------------------|--------------|--------------|--------------|----------------|--------------|
|                |                     | Panel A:     | Average I    | Bias         |                |              |
| Mean           | 1.07                | 0.70         | 0.46         | -0.04        | -0.88          | 1.95         |
| <i>t</i> -stat | 5.03                | 3.17         | 1.82         | -0.12        | -2.05          | 5.88         |
| CAPM Beta      | 0.92                | 0.98         | 1.11         | 1.28         | 1.58           | -0.66        |
|                | Panel B: Bias Score |              |              |              |                |              |
| Mean<br>t-stat | 0.96<br>4.76        | 0.66<br>2.93 | 0.43<br>1.64 | 0.07<br>0.22 | -0.57<br>-1.38 | 1.53<br>4.90 |
| CAPM Beta      | 0.89                | 1.01         | 1.14         | 1.28         | 1.53           | -0.63        |

#### Time Series Tests with common Asset-Pricing Models

$$LS\_Port_t = \alpha + \sum_{i=1}^{5} \beta_i F_{i,t} + \epsilon_t$$

|           | CAPM   |                | FF         | FF3            |        | FF5            |  |
|-----------|--------|----------------|------------|----------------|--------|----------------|--|
|           | Coeffi | <i>t</i> -stat | Coeffi     | <i>t</i> -stat | Coeffi | <i>t</i> -stat |  |
|           |        | Panel A        | A: Average | Bias           |        |                |  |
| Intercept | 2.39   | 8.15           | 2.52       | 9.70           | 2.02   | 7.21           |  |
| $Mkt_RF$  | -0.66  | -7.81          | -0.61      | -7.52          | -0.42  | -5.34          |  |
| SMB       |        |                | -0.86      | -6.33          | -0.62  | -4.33          |  |
| HML       |        |                | -0.60      | -4.10          | -1.01  | -6.10          |  |
| RMW       |        |                |            |                | 0.84   | 4.07           |  |
| CMA       |        |                |            |                | 0.53   | 1.79           |  |

#### Stock-Issuance

• Managers have at least as much information as the investors: public + private signals.

• Managers issue more stock when upward biases are larger.

• Not causal evidence. Other explanations?

# Net Stock Issuances and Conditional Biases

| Panel A: Net Stock Issuances of Portfolios formed on Biased Expectations |       |       |       |       |       |       |
|--------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|
| Quintile                                                                 | 1     | 2     | 3     | 4     | 5     | 5-1   |
| Average Bias                                                             | 0.013 | 0.011 | 0.017 | 0.040 | 0.073 | 0.060 |
| <i>t</i> -stat                                                           | 1.82  | 1.82  | 3.33  | 4.31  | 5.32  | 3.44  |
| Bias Score                                                               | 0.009 | 0.016 | 0.020 | 0.033 | 0.066 | 0.058 |
| <i>t</i> -stat                                                           | 1.33  | 2.14  | 3.69  | 5.17  | 4.18  | 3.39  |

#### Net Stock Issuances and Conditional Biases

$$NSI_{i,t+1} = \alpha + \beta_1 Bias_{i,t} + \gamma_i \sum_{i=1}^{3} Control_{i,t} + \epsilon_{i,t+1}$$

| Panel B: Fama-MacBeth regressions |                                                       |        |        |        |  |  |  |
|-----------------------------------|-------------------------------------------------------|--------|--------|--------|--|--|--|
|                                   | A <sup>·</sup> Average Bias B <sup>·</sup> Bias Score |        |        |        |  |  |  |
|                                   | (1) (2) (1) (2)                                       |        |        |        |  |  |  |
| Bias                              | 1.7048 1.2870 0.1191 0.0510                           |        |        |        |  |  |  |
| <i>t</i> -stat                    | 3.86                                                  | 4.53   | 6.74   | 4.82   |  |  |  |
| Controls                          | No                                                    | Yes    | No     | Yes    |  |  |  |
| $R^2$                             | 0.0178                                                | 0.0921 | 0.0084 | 0.0750 |  |  |  |

The control variables include the log of firm size, the log of book-to-market ratio, and earnings before interest, taxes, and depreciation divided by total assets.

van Binsbergen, Han, and Lopez-Lira

#### Conclusion

• We provide a novel real-time benchmark for earnings expectations.

• Analyst forecasts are biased, and this bias exhibits large time series and cross-sectional variation.

• There is significant return predictability associated with biased expectations.

• Managers issue more stock when analysts are too optimistic.