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Abstract

In 56 developing and developed countries, blood component donations by volunteer non-

remunerated donors can only meet less than 50% of the demand. In these countries, blood banks

heavily rely on donor replacement programs that provide blood to patients in return for dona-

tions made by their close relatives or friends. Such programs appear to be highly disorganized,

non-transparent, and inefficient despite the scarcity of blood components. We introduce the de-

sign of donor replacement programs and blood allocation schemes as a new application of market

design. We formulate a general blood allocation and donation model including the blood bank,

patients, volunteer non-remunerated and replacement donors. Within this framework, a class

of blood allocation mechanisms is introduced, which sequentially accommodates various policy

objectives of a blood bank while ensuring efficiency. Another novelty we introduce is a rich class

of feasible allocation possibilities beyond the classical one-to-one exchange. This class accommo-

dates endogenous exchange rates between donated and received blood units together with various

fairness and efficiency objectives. Furthermore, they also ensure that our mechanisms provide

correct incentives for the patients to bring forward as many replacement donors as possible. This

framework and mechanisms also apply to exchange of general multi-unit indivisible goods.
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1 Introduction

Transfusions are commonly used to treat various medical conditions to replace lost or add inade-

quate components of blood. Replacement red blood cells and other blood components such as platelets,

plasma, and clotting factors are essential for medical procedures such as surgeries, chemotherapy, ob-

stetrics, for people with various blood diseases and trauma patients.1 In the US, according to Pfuntner,

Wier, and Stocks (2013), blood transfusion was the most common procedure performed during hospi-

talizations in 2011. While blood transfusion saves lives and improves health outcomes, many patients

requiring transfusion around the world do not have timely access to safe blood due to significant

shortages of supply.

Around the world, the collection and distribution of blood is organized through blood banks where

donated blood is processed and stored.2 Unlike most solid human organs and tissues, blood replenishes

and a healthy donor can donate whole blood regularly once in every two-three months and some

components, such as platelets and plasma, much more frequently at a blood bank or collection center.

Moreover, different compatibility requirements apply for each blood component, which makes the

medical feasibility requirements of transfusion substantially different from organ transplantation.3

The most adequate and reliable supply of blood is through volunteer non-remunerated donors,

who mostly donate blood through blood drives or other campaigns.4 These donors provide the safest

supply of blood, since the prevalence of blood-borne infections is lowest among this group of donors.5

According to the World Health Organization (WHO), 79 countries (38 high-income, 33 middle-income,

and 8 low-income) collect more than 90% of their blood supply from volunteer non-remunerated donors

as of August 2020 (WHO, 2020). The World Health Assembly resolution WHA63.12 (Sixty-third World

Health Assembly, 2010) urges all member states to develop national blood systems based on volunteer

non-remunerated donations and to work towards the goal of self-sufficiency. Despite these warnings,

volunteer non-remunerated donation remains insufficient to meet the demand for blood in many regions

of the world.

Although it seems relatively costless and is even considered healthy to donate blood, there are se-

vere blood shortages in many developing countries and seasonal shortages in many developed countries

for blood components (Gilcher and McCombs, 2005).6 Moreover, cultural and religious factors create

1Whole blood is not commonly used in modern transfusion medicine. In addition to the blood components men-
tioned, plasma derivatives manufactured from pooled plasma donations in plasma fractionation centers (such as albumin,
coagulation factors, and immunoglobulins) are used in the treatment of various conditions.

2The average (whole) blood donation takes about one hour per session. Donated blood is then separated into its
components and each component has different storage needs. The red blood cells can be stored for 42 days while platelets
can be kept only for about five days. On the other hand, plasma can be preserved for a full year.

3See Section 2 for institutional and medical details of blood component transfusion including various compatibility
requirements.

4Blood components are forbidden to be exchanged using valuable enumeration in most countries. Nevertheless, it is
reported that 19 countries collect blood through paid donations as of 2015 (WHO, 2020).

5Paid donors are considered to be inferior as they may be in poorer health condition than volunteer non-remunerated
donors. Such donors may also have incentives to hide their health status causing an adverse selection problem. The US
is one of the 19 countries in which paid donation is allowed, as blood is not covered by the National Organ Transplant
Act (NOTA) of 1984, which forbids sale of solid human organs and tissues. In spite of this fact, most of the US blood
component supply is volunteer non-remunerated donation based because of this reason. Plasma is an exception. It is
also collected by companies paying donors and turned into drugs after thorough fractionation.

6Especially in early winter and midsummer months, blood-type O red blood cell shortages occur in the US. Besides
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frictions deterring volunteer non-remunerated donations especially in some developing countries. Fur-

thermore, some blood components, such as platelets, have short shelf life, are highly demanded and

more difficult to collect than the others. Thus, platelet shortages occur even in the developed world.

In 56 countries wordwide (9 high-income, 37 middle-income, and 10 low-income), more than 50%

of the blood supply is met by replacement donors and, in some rare cases, through paid donors as

of August 2020 (WHO, 2020). As an effective method to boost blood component reserves, blood

banks in many places, including highly populated countries such as India and China, employ official

or unofficial replacement donor programs. A replacement donor program requires each patient to

nominate a number of willing donors, who are typically family members or close friends of the patient,

to donate at a blood bank before or after the patient receives transfusion.7

Notwithstanding the important role they play in addressing blood shortages, existing replacement

donor programs suffer from two major shortcomings. The first shortcoming is the loss of welfare due

to the lack of optimized inventory management based on donor screening and needs of the blood bank.

Although inventory management is often considered among the most important goals for a blood bank

(see, for example, Indian Department of Health (2016) for a detailed description of the blood type

and volume requirements to be kept in stock of each blood centre as mandated in India), as far as we

know, no explicit optimization is pursued by blood banks in current replacement donor programs to

achieve certain policy objectives. In the face of chronic supply shortages, one such natural objective

can be to maximize the transfused blood volume using the correct replacement donors.

Second, replacement donor programs generally operate on fixed exchange rates between units re-

ceived and supplied (regardless of blood type), which creates efficiency, fairness, and ethical issues. A

fixed exchange rate does not reward suppliers of the most needed blood types. Furthermore, certain

patients may not be able to recruit the required number of donors that they are obliged to bring,

making it difficult to receive blood. This gives rise to issues of coercion and black markets through

which patients without donors pay others to be their replacement donors (see Section 2 for other

institutional details of how real-life replacement donor programs function).

In this paper, we introduce blood allocation with volunteer non-remunerated and replacement

donors as a novel market design problem and propose a general blood allocation model together with

solutions to address these shortcomings. We focus on the market for a single blood component in the

baseline model (Section 3).8 Each patient has a maximal need of a certain units of blood,9 which is

seasonal shortages, during catastrophic events such as an earthquake or a pandemic, blood shortages frequently occur.
For example, during the recent COVID-19 pandemic blood components have had shortages in the US. For example, see,
Red Cross of America (2020a).

7Within the medical community, disagreements exist with the stance of WHO at the regional level regarding volunteer
non-remunerated donation being the most ethical and safest blood supply. Opponents of the view of WHO point out
considerable evidence suggesting that the blood collected through replacement donors is as safe as volunteer non-
remunerated donors. They argue that the motives of both types of donors and how they are directed toward donation
are similar in many aspects. See, for example, Allain and Sibinga (2016) for an excellent survey of these views, empirical
evidence, and the references therein.

8We discuss the integration of the markets for different components in Section 5.1.4.
9A healthy donor – depending on gender, height, weight, and total blood volume – can give up to two units of whole

blood (measured in pints or approximately half liters) through automated blood collection, whereas a patient can be
in need of multiple units of blood components. It is also possible to donate particular blood components in various
volumes, e.g., one donor may be able to donate two units of red blood cells, while another may donate two units of
platelets but not both. We normalize the amount of blood component that can be donated by a donor to 1 unit and
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usually determined by her medical condition. In addition, the blood bank also provides a minimum

guarantee which can be set at the minimum necessary units for an emergency procedure. It can be

zero for elective procedures or during severe shortages. Each patient brings forward a (possibly empty)

set of replacement donors. We assume that each donor, who is represented by her blood type, can

donate one unit of a blood component without loss of generality. The blood bank is represented by

the inventory units of each type of blood.10

The blood bank chooses a medically acceptable allocation based on the blood types and needs of

the patients, the blood types of the replacement donors, and its inventory. Each patient’s welfare is

determined by the schedule induced by the allocation, which specifies the amount that she receives and

the amount that her donors donate. Naturally, we assume each patient has lexicographic preferences:

she prefers receiving more blood to less (see Section 2.2); given a certain amount of blood received, she

prefers her donors to donate less. To accommodate various blood transfusion and donor replacement

protocols, we introduce the notion of a feasible schedule function. This idiosyncratic function of each

patient specifies, for each set of donors brought by the patient, all the possible combinations of received

and supplied units of blood the patient can be assigned under an allocation. We view the design of

feasible schedule functions as an important policy design tool and discuss various examples depending

on the objectives of a blood bank.

Then we propose and study the class of sequential targeting mechanisms that operate in conjunction

with a profile of feasible schedule functions as intuitive and natural blood allocation schemes (Sec-

tion 4). This class of mechanisms allow for the use of various allocation and inventory management

objectives of the blood bank, based on sequential maximization of blood transfusion or minimization

of blood supply for groups of patients. We consider a flexible objective function that works in a

lexicographic manner following a precedence order of objectives: we first achieve target goal A, e.g.,

maximizing the total transfused blood volume; subject to A being satisfied, we achieve the target goal

B, e.g., minimizing the use of blood bank’s inventory; then goal C, e.g., maximizing the blood received

by the urgent-care patients, and so on. It is possible to imagine several lexicographic objectives involv-

ing particular blood types (e.g., rare vs. common types), patient types (e.g., urgent-care vs. elective

surgery patients), and donor types (e.g., high-risk vs. safe donors) that may require specific attention.

These mechanisms, together with feasible schedule functions, overcome the two shortcomings of

current replacement donor programs. First, they address the lack of optimization based on donor

screening in current programs. In particular, the sequential targeting mechanisms are efficient (The-

orem 1). Moreover, under natural restrictions on the feasible schedule functions, they are donor

monotonic (Theorem 2), i.e., bringing forward a larger set of donors does not decrease the amount of

blood the patient receives. We also study a stronger incentive compatibility notion (Proposition 1) and

provide comparative static analysis for changes in targets and feasible schedule functions (Propositions

2 and 3).

The innovation of feasible schedule functions allows for various exchange rates between units re-

ceived and supplied, and the sequential targeting mechanisms determine endogenously these exchange

rates based on the objectives, patients, and the available replacement donors. This property helps

the blood component volume that a patient receives is represented as a multiple of it.
10Each of these units can be thought as coming from volunteer non-remunerated donors.
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rectify the shortcoming caused by a fixed exchange rate in current programs.

Around the world, replacement donor programs appear to be highly non-transparent in their blood

allocation operations. It is elusive to find existing guidelines that govern how these processes are

overseen. As such, our approach provides a framework to assess and improve the effectiveness of the

existing replacement donor programs, and makes it possible to offer rigor and transparency to their

organization. In the end, we provide concrete policy designs and implementation details in Section 5.

Differently from living-donor organ exchanges that have attracted much attention in the last two

decades in both the market design literature and the practice, blood allocation involves multi-unit de-

mand and supply.11 Moreover, many other factors make this market design problem both practically

and theoretically different from the analysis and functioning of solid organ exchanges. These include

differences in the compatibility requirements for different blood components, the possibility of endoge-

nous and non-unit exchange rates between blood received and blood supplied, the non-simultaneity

between receiving and donating blood, and the possibility to store blood components.

Our model and theoretical results are independent of the particular background of blood allocation

and can readily be applied to other contexts with a subset of similar features, including, notably, the

exchange of indivisible goods with compatibility-based monotonic preferences in units consumed. Some

examples studied in the literature are shift exchanges in a company (Manjunath and Westkamp, 2019),

and time bank and favor exchanges (Andersson, Cseh, Ehlers, and Erlanson, 2020). As far as we are

aware, all previous exchange mechanisms in the literature use exogenous one-to-one exchange rate. As

an important theoretical contribution, we overcome this limitation and introduce endogenous pricing

of units while maintaining the good incentive properties of our mechanisms under certain assumptions.

Moreover, our class of Pareto efficient and incentive compatible mechanisms generalize all known such

mechanisms in similar exchange models in the literature (see Section 6 for more on this and other

related literature).

2 Background

2.1 Main Blood Components and Compatibility Requirements

Blood-type compatibility plays an important role for the feasibility of transfusion. Different medical

compatibility protocols are used for red blood cell, platelet, and plasma transfusions. Other factors,

such as the transfusion frequency, may also affect the compatibility requirements. Moreover, the

medical practices in different parts of the world may vary. We focus on these three crucial and

most-transfused blood components and provide a brief account of these components and how their

compatibility requirements are determined.

Red Blood Cells

Red blood cell transfusion – the de-facto modern day replacement for the older whole blood trans-

fusion therapy – is mostly used for people with cancer and other blood diseases, followed by surgical

11See Sönmez and Ünver (2017) for a recent survey of this literature and the practical developments. Notable ex-
ceptions of unit-demand organ exchange are living dual-donor lobar lung transplantation, dual-graft living-donor liver
transplantation, and simultaneous liver-kidney transplantation. However, no organized exchange program exists for
these practices as of writing of this paper.
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patients (including open heart operations and burns), people with heart, stomach, or kidney diseases,

and orthopedic patients, among other uses. Whole blood transfusion is still used occasionally when a

patient loses a significant amount of blood due to trauma, surgeries, etc.

There are more than 300 human blood groups. Two of them are most important in clinical practices

and play a crucial role for compatibility in red blood cell transfusion.

The first one, the ABO blood group system, is the most commonly known. There are four human

ABO blood types: O, A, B, and AB, named for the existence or non-existence of the A or B antigen on

red blood cells. If an individual does not have an antigen, then she develops antibodies (in her plasma)

against the non-existent antigen. As a result, unless it is an emergency, ABO-identical transfusion is

generally practiced for whole blood transfusion. For red blood cell transfusion, in theory, type O

donors can donate to all patients, type A donors can donate to type A or AB patients, type B donors

can donate to type B or AB patients, and type AB donors can only donate to type AB patients. This

is known as the ABO-cellular compatibility. However, as red blood cell packs usually carry varying

amount of plasma, ABO-identical transfusion is often required. Similar practices are followed for the

transfusion of other non-plasma blood components that are bundled with significant amount of plasma

(Harm and Dunbar, 2019).

The second human blood group system that plays a crucial role in blood compatibility is Rh. The

most clinically important Rh antigen is D. Its existence and non-existence correspond to the Rh D+

type and the Rh D− type, respectively. Antibodies to Rh D antigen can only develope on an Rh D−
patient after being exposed to Rh D+ red blood cells, usually through transfusion of Rh D+ blood.

Although in theory Rh D− whole blood or red blood cells can be given to an Rh D+ patient, it is

often avoided in practice.12

Therefore, eight blood types are relevant for regular whole blood and red blood cell transfusion.

However, in some populations such as those in Asia, Rh D− is so rare that there are effectively only

four blood types.13

Platelets

Platelets are tiny cells in the blood that form clots and stop bleeding. Platelet transfusions are

required to treat bleeding, or prevent bleeding when patients have a low platelet count. These patients

include people who are receiving chemotherapy, who have had a bone marrow transplant, who take

medicines that interfere with platelet function, who are bleeding due to traumatic injuries, and people

with chronic diseases. However, due to their storage at room temperature, platelets have a much shorter

shelf life than most other blood components. In many countries platelets can be stored between four

and seven days (Cid, Harm, and Yazer, 2013).

The use of platelets has increased more than other blood components in the last 15 years (Mc-

Cullough, 2010). According to Red Cross of America, every 30 seconds someone needs platelets (Red

Cross of America, 2020b). Platelets are most effectively and commonly collected using a technique

called apheresis and an individual can donate once in every one-to-two weeks up to 24 times a year.

This technique only takes platelets out of the donor’s blood, leaving the rest of the components in

12On the other hand, type O Rh D− blood is frequently transfused in emergency situations to patients with other
blood types. For this reason it is also dubbed as the global-donor blood type.

13For example, in China the Rh D antigen exists in more than 99% of the population.
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the blood stream. By this method, a donor can donate significantly more platelets than she would

by donating her whole blood.14 Thus, typically a donor can donate either red blood cells (and whole

blood) or platelets, but not both at the same time.

For platelets, compatibility practices vary significantly among different countries. As the ABO

antigens are also present on platelets and platelets are suspended in plasma, ABO-identical transfusion

is always preferred. However, due to the high demand and their short shelf life, platelets are often

in shortage and ABO-non-identical transfusions are commonly practiced, which include both ABO-

cellular compatible transfusion and ABO-plasma compatible transfusion (Dunbar et al., 2015; Lozano

et al., 2010; Norfolk, 2013). In the latter case, the donor’s plasma is compatible with the patient’s

platelets. That is, the compatibility is the reverse of ABO-cellular compatibility, with type AB donor

being the universal donor and type O patient being the universal recipient. Finally, for platelet

transfusion, Rh D compatibility is usually not required and as a result not practiced (for example, see

Cid, Harm, and Yazer, 2013).

Plasma

Plasma is the non-cellular, protein- and anti-body-rich liquid component of blood. Its transfusions

are often needed by patients with liver failure, heart surgery, severe infections, and serious burns. In

particular, it is used to replace clotting factors and also in patients who need to quickly reverse the

effects of blood thinning medications. Convalescent plasma, the antibody-rich plasma of a recovering

patient from an infectious disease with no other known cure, such as Ebola and most recently COVID-

19, is commonly used to directly treat or to produce drugs against the disease.

Plasma has the longest shelf life among the three main blood components. Its transfusion follows

ABO-plasma compatibility, without regard to Rh D compatibility.

Although plasma can be obtained from donated whole blood together with red blood cells, for

frequent and effective donation, the preferred collection method is plasmapheresis, which keeps other

blood components in the donor’s blood stream while only extracting plasma. A healthy donor can

donate twice in every seven days up to 24 times a year using this method (Norfolk, 2013). A notable

exception is convalescent plasma. Only a few donations can be made by a convalescent plasma donor,

as the donor’s plasma cannot sustain forever the required antibodies to fight off the disease.

2.2 Blood Demand of a Patient

The amount of a blood component needed to treat each medical condition is idiosyncratic. For

example, Collins et al. (2015) report that, at a tertiary referral center in the US, although the average

amount of red blood cells issued per surgery is close to 3.5 units, this amount displays a large variance

due to the patients’ conditions.

Besides the idiosyncratic demand, for a certain patient, there is usually a range of units such that

each amount in the range can be issued to her. However, receiving more units can be better under

various outcome or preference metrics. We give three common examples of patient demand that have

this common thread.

14One dose of platelets usually corresponds to one unit of apheresis platelets, or a pack of pooled platelets obtained
from the whole blood of at least four to five donors.
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First, it is medically acceptable and feasible to transfuse a range of units to a patient with a

particular condition such that more units lead to better outcomes. For example, platelets are often

transfused prophylactically to prevent bleeding when a patient’s platelet count is below a certain

threshold. In such cases, both the strategy of higher doses in lower frequency and the strategy of lower

doses in higher frequency are practiced (Stroncek and Rebulla, 2007). Norol et al. (1998) show that

the high and very high dose treatments lead to significantly better platelet increment in the patients,

compared to the medium dose treatment.

Second, the exact need of a patient may be ex-ante uncertain. For example, a surgery may require

a range of red blood cell units, given by some minimum and maximum possible units to be transfused

during the operation. For cautionary reasons, surgeons often order significantly more blood than the

patient ends up using. Collins et al. (2015) report that 72% of the red blood cells ordered for surgeries

go unused. The ratio of ordered to transfused red blood cells can be as high as 11 to 1 in elective liver

resection surgical procedures (Cockbain et al., 2010). These ratios indicate that surgeons are quite

risk averse and yet most surgeries ex-post end up using much less blood than ordered. Indeed, Collins

et al. (2015) note that surgical blood loss can be unpredictable, so some leeway for ordering red blood

cells that ultimately go unused is necessary for safe patient care.

Third, blood components such as platelets and red blood cells are often transfused routinely to

patients with chronic conditions and are administered in small doses over time. For example, Marwaha

and Sharma (2009) state that patients undergoing chemotherapy require platelet transfusion once in

at least every three days, and when the bone marrow is adversely affected, every day. In such cases,

more units are preferred to fewer in a time interval, although several transfusions can be conducted in

this interval.

2.3 Blood-Bank Policies for Replacement Donation

Populous countries such as Pakistan, Brazil, and Mexico almost entirely collect their blood com-

ponents through replacement donor programs. On the other hand, countries such as India and China,

rely heavily on these programs to meet the demand not met through volunteer non-remunerated do-

nations. In many cases, a patient’s replacement donors can donate either before or after the patient

receives blood. Since direct donation from a donor to the patient (even if they are compatible) is not

practiced in modern medicine due to health concerns (i.e., the donor blood may need to be tested for

certain diseases first), the blood bank is used as an intermediary.

Blood banks work with hospitals and blood centers. Hospitals relay the needs of patients to the

blood banks while the blood banks and blood centers collect donations form volunteer non-remunerated

donors and replacement donors. Hospitals are often required to maintain a small inventory of their

own (for example, see Indian Department of Health, 2016).

The most common practice in current replacement donor programs worldwide is that the blood

banks announce, either officially or unofficially, a preset exchange rate between the units of blood

received and supplied irrespective of the blood type sought or donated. Blood banks provide blood to

patients exclusively based on these rates. Among them the exchange rate of one unit replacement per

unit requested is most common around the world. We next give some examples of policies practiced

by replacement donor programs, with a particular focus on non-one-to-one exchange rates.
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In China, where replacement donor programs (known as mutual help programs) function semi-

officially throughout the country, different policies are in place in different localities. In most cities

including Beijing, the exchange rate has been one-to-one. As reported by She (2020), in Xi’an, during

periods of shortages, a patient has the priority of receiving three units of blood for every unit she

has donated before, and she has priority of receiving one unit for every unit her replacement donors

donate now.15 In Guangzhou, there is not necessarily a fixed relation between the amount received

and donated (Chen, 2012). Moreover, according to Chen (2012), in some regions there are restrictions

on the blood types of replacement donations. In an extreme case, the blood type of a replacement

donor must be identical to the patient in Jiangsu. While such a restriction is relatively rare for whole

blood donation, it is not uncommon for replacement platelet donation throughout the country.

India has the largest official replacement donor programs in the world after Pakistan. In Delhi,

regardless of the blood volume she needs, the patient is required to bring forward one replacement

donor, unless the intervention needed is an emergency surgery (Indian Department of Health, 2016).

In Cameroon and Congo, the exchange rate has been two replacement units per one unit of blood

the patient requests, as almost 25% of the donations are not suitable for transfusion due to infections

(Tagny, 2012). The same exchange rate is also used in Puerto Vallarta, Mexico, for cost reasons

(Thompson, 2020).

In Tucuman, Argentina, a patient’s replacement donors donate after the transfusion. The exchange

rate is fixed at one unit replacement per unit requested, however, it is not as strictly enforced.16

2.4 Logistical Constraints and Comparisons with Solid Organ Exchanges

The feasibility of blood transfusion primarily depends on the compatibility of the blood compo-

nent types of the patient and the donor. Therefore, replacement donor programs operate on similar

principles as the practice of organ exchanges. However, there are a number of important differences.

To begin with, the logistical constraints of blood donation are negligible compared to those in organ

transplantations. The blood donation process takes only a few hours and its effects wear off in less

than 24 hours. On the other hand, organ transplantations carry risks and require careful planning

weeks before and after the operation. Once extracted, blood and blood components can be stored for

a certain period of time, which can facilitate the designer’s choice of optimal timing of assignments.

Moreover, many blood banks and hospitals often operate in coordination making it possible to obtain

the necessary blood units from neighboring facilities. These lead to the observation that in blood

allocation with replacement donors, the possibility of reneging by a donor is not as much of a concern

as in organ exchanges.

Unlike the case with organ transplantations, when a replacement donor problem is viewed as

an exchange problem, the absence of logistical constraints together with the ability to store blood

components make it possible to incorporate cycles and chains of arbitrary length into an allocation.

Moreover, it does not really matter which donor donates to which patient as long as compatibility

requirements are met. Thus, the matching feature of the problem is not as important as in organ

exchanges, and it is only necessary to keep track of the overall allocation and feasibility requirements.

15Such priorities often guarantee the supply of blood in practice.
16Based on personal communication with the director of Tucuman Blood Bank, Dr. Felicitas Agote, on July 7, 2020.
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The logistical ease and flexibility in blood allocation have led to different and innovative incen-

tivization schemes to promote blood donation. The assignment of voucher credits have been a popular

approach used in practice. For example, blood assurance programs in the US guarantee each volun-

teer non-remunerated donor or her tax-code dependents exactly the same amount of blood donated

in the event of a need in the future.17 Similar programs have also been traditionally implemented in

China. Recently, Kominers, Pathak, Sönmez, and Ünver (2020) proposed a similar incentive scheme

for COVID-19 convalascent plasma donation.18 Replacement donor programs differ from these pro-

posals, as we are considering the improvement of the existing programs that usually do not have any

voucher or memory features, nor the pay-it-backward or pay-it-forward features discussed in the liter-

ature. Thus, blood allocation is more in line with the analogy of organized organ exchanges without

simultaneity or other severe constraints.

3 The Model

We consider the market for a single blood component, which we simply refer to as blood.19 Let I

be a set of patients and B = {O+, O−, A+, A−, B+, B−, AB+, AB−} be the set of blood types.20

Each X ∈ B denotes blood’s specific type used in compatibility requirements.21 Each patient i ∈ I has

type βi ∈ B blood, and needs a maximum of ni ∈ Z++ units of blood. For each X ∈ B, C(X) ⊆ B,
C(X) ∕= ∅, is the set of blood types compatible with a type X patient. Each patient i has a set of

willing replacement donors Di, which can possibly be empty, such that each donor d ∈ Di can

provide one unit of type βd blood. The patients’ needs are normalized as multiples of the single unit

that a donor can donate. Let Di be the collection of all possible donor sets that a patient i ∈ I can

bring forward. Assume that if Di ∈ Di and D′
i ⊆ Di, then D′

i ∈ Di. Let n = (ni)i∈I , D = (Di)i∈I ,

D = Πi∈IDi, βI = (βi)i∈I , and βD = (βd)d∈∪i∈IDi
.

The blood bank, denoted as b, has vX units of type X blood in its inventory for each X ∈ B.
Let v = (vX)X∈B. The blood bank guarantees a minimum of ni ∈ {0, 1, . . . , ni} units of blood for

each patient i ∈ I if the patient participates in the program, i.e., if she provides a qualified set of

donors. Let n = (ni)i∈I . Assume that for any non-empty subset of blood types B′ ⊆ B,
!

i∈I:βi∈B′

ni ≤
!

X∈∪Y ∈B′C(Y )

vX .

Therefore, the blood bank carries enough blood to meet the minimum guarantees regardless of the

replacement donors that will be brought by the patients.22 Generally, the minimum guarantee is a

policy variable determined by the blood bank depending on its inventory. It may be related to the

patient’s medical condition and correspond to the minimum threshold needed to treat her condition.

17An example is North Carolina Cape Fear Valley Blood Bank’s program (Cape Fear Valley, 2020).
18Also a similar voucher-based scheme is used for kidney exchange in the US (Veale et al., 2017), and it has been

proposed for compatible pairs to participate in kidney exchange (Sönmez, Ünver, and Yenmez, 2020).
19Later in Section 5.1.4, we discuss how to integrate different blood component markets.
20The plus sign “+” and the minus sign “−” represent Rh D+ and Rh D−, respectively.
21Our results are independent of the number of blood types or the particular structure of blood type compatibility.
22Specifically, it follows from Hall’s Theorem (Hall, 1935) that this assumption is necessary and sufficient for the blood

bank to be able to provide ni units of compatible blood to each patient i using its inventory.

10



It can also apply due to the good deeds the patient has done in the past.23

Since each patient demands and (possibly) supplies blood through her replacement donors, we want

to impose restrictions on the relationship between the amount of blood received and the amount of

blood supplied. A schedule is a pair of non-negative integers (r, s), where r denotes the amount of

blood received and s denotes the amount of blood supplied. For every patient i ∈ I, her feasible

schedule function Si(·) assigns a non-empty set of schedules Si(Di) to each donor set Di ∈ Di such

that

• Si(Di) ⊆
"
0, ni, . . . , ni

#
×

"
0, . . . , |Di|

#
, and

• Si(Di) =
"
(0, 0)

#
, or min

"
r : (r, s) ∈ Si(Di)

#
= ni.

The definition of a feasible schedule function captures possible complementarities between units re-

ceived and supplied. If Si(Di) = {(0, 0)}, the patient’s donor set does not meet the minimum require-

ment by the blood bank for participating in the program, or receiving her minimum guarantee. On

the other hand, if min{r : (r, s) ∈ Si(Di)} = ni, then the donor set Di satisfies the requirement, and

thus, the bank is obliged to give her ni units of blood. Let S = (Si)i∈I .

We pause the presentation of the model and emphasize the flexibility and generality embedded in

our setup through the following examples.

Example 1. (Patient Examples).

• Urgent care patients: A patient i with a medical urgency and exactly determined need can

be represented by her minimum guarantee being equal to her maximum need, i.e., ni = ni.

Moreover, the blood bank does not charge her any donor. Thus, for every Di ∈ Di,

Si(Di) =
"
(ni, 0)

#
.

• Elective surgery patients: A patient with an elective surgery requires on average ni units of

blood and she may, with some chance, need excess blood. So ni > ni. Moreover, the exchange

rate for her is to supply one unit of blood for every unit received. Thus, her feasible schedule

function is given as, for every Di ∈ Di,

Si(Di) =

$ "
(0, 0)

#
if
%%Di

%% < ni"
(r, s) ∈ Z2

+ : s = r and ni ≤ r ≤ min{ni,
%%Di

%%}
#

otherwise
.

• Patients waiting for platelets: A chemotherapy patient requires platelet treatment and needs

a transfusion of one unit of platelet every day. She can have the platelets stored for at most 5

days. The exchange rate is again one-to-one: for every Di ∈ Di,

Si(Di) =
"
(r, s) ∈ Z2

+ : s = r and 0 ≤ r ≤ min{ni,
%%Di

%%}
#
,

23For instance, some countries use blood assurance (such as the U.S.) or voucher programs (such as China) so that a
patient who has donated blood in the past can receive credits for transfusions. Thus, she may be covered up to a certain
units of blood even if she does not bring forward any donor now (see Section 5.1.6).
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where ni = 5.

A feasible schedule function is an important policy lever of the blood bank. We model some policies

(for non-urgent care patients) used around the world as possible feasible schedule functions.

Example 2. (Real-Life Policy Examples).

• The Standard One-to-One Policy: Many blood allocation programs with replacement donors

use one unit supplied per unit received exchange rate.24 This leads to the following feasible

schedule function: for every Di ∈ Di,

Si(Di) =

$ "
(0, 0)

#
if
%%Di

%% < ni"
(r, s) ∈ Z2

+ : s = r and ni ≤ r ≤ min{ni,
%%Di

%%}
#

otherwise
.

• The Delhi Policy: According to Delhi, India, guidelines (Indian Department of Health, 2016),

each patient has to register one donor regardless of the amount of blood she consumes. This can

be modeled as the following feasible schedule function: for every Di ∈ Di,

Si(Di) =

$ "
(0, 0)

#
if Di = ∅"

(r, s) ∈ Z2
+ : 0 ≤ s ≤ 1, and ni ≤ r ≤ ni

#
\
"
(0, 1)

#
otherwise

.

• The Cameroon, Congo and Mexico Policy: In Cameroon, Congo and Mexico, for each

unit of blood received, two units of blood have to be supplied (Tagny, 2012; Thompson, 2020).

Therefore, for every Di ∈ Di,

Si(Di) =

$ "
(0, 0)

#
if
%%Di

%% < 2ni&
(r, s) ∈ Z2

+ : s = 2r and ni ≤ r ≤ min
"
ni,

'%%Di

%%/2
(#)

otherwise
.

• The Xi’an Policy: In Xi’an, China, a patient is guaranteed three units for each unit she has

donated before, and the exchange rate is one-to-one beyond this guarantee (She, 2020). Let

xi ∈ Z+ be the amount of previous donation from the patient.25 Then her feasible schedule

function is as follows.

If ni ≤ 3xi, then for every Di ∈ Di,

Si(Di) =
"
(ni, 0)

#
.

24This is consistent with the focus of living-donor organ exchange programs in practice, as well as the market design
literature on them, where the maximum need is one for kidney and liver exchange. Moreover, for multi-unit exchange
of indivisible goods, the recent literature on time banks and shift exchange (Andersson, Cseh, Ehlers, and Erlanson,
2020; Manjunath and Westkamp, 2019) also focuses on the exchange of one unit of endowment in return for one unit of
consumption.

25Assume that xi is exogenous to the problem, and the patient has not used the credits received from this previous
donation in a replacement program.

12



If ni > 3xi, then for every Di ∈ Di,

Si(Di) =
"
(r, s) ∈ Z2

+ : s = r − ni and ni ≤ r ≤ min{
%%Di

%%+ ni, ni}
#
,

where ni = 3xi.

• The Jiangsu Policy: In Jiangsu, China, the standard one-to-one policy was used with the

restriction that the type of the blood supplied must be identical to the type of the patient

(Chen, 2012): for every Di ∈ Di,

Si(Di) =

$ "
(0, 0)

#
if
%%{d ∈ Di : βd = βi}

%% < ni"
(r, s) ∈ Z2

+ : s = r, ni ≤ r ≤ min{ni,
%%{d ∈ Di : βd = βi}

%%}
#

otherwise
.

This is akin to no exchange (autarky) treatment.

A blood allocation problem with replacement donors is denoted as P = 〈I, βI , n,D, βD, v, n,S〉.
The minimum guarantees n, inventory vector v, and feasible schedule functions S are interrelated and

can be policy levers of the blood bank.26 We fix every component of a problem except D.27 Then a

problem is simply denoted as a donor profile D.

Given a problem D ∈ D, an allocation α consists of non-negative integers αX(i) for each i ∈ I

and X ∈ C(βi), and α(d) ∈ {0, 1} for each d ∈ ∪i∈IDi such that

1. for every X ∈ B,
*

i∈I:X∈C(βi)
αX(i) ≤ vX +

*
d∈∪i∈IDi:βd=X α(d),

2. for every i ∈ I,
+
α(i),

*
d∈Di

α(d)
,
∈ Si(Di), where α(i) =

*
X∈C(βi)

αX(i).

In an allocation, the patients only receive blood that are medically compatible with them. An

allocation specifies the amount of blood of each compatible type that a patient receives, as well as

which of her donors donate. The first condition in the definition makes sure that, for each blood

type, the allocated blood is not more than the sum of the existing blood in the blood bank and

the collected blood from the patients’ donors. Thus, it is a market clearing condition. The second

condition requires that each patient’s schedule induced by the allocation is in her feasible schedule set,

which is determined by the set of donors that she brings forward. There always exists an allocation

by definition. Denote the set of all the allocation for D as A(D).

We next introduce the patients’ preferences over the allocations. Each patient first and foremost

cares about the amount of blood received, and she has monotonic preferences over the units of blood

received.28 Fixing the amount of blood she receives, she would like fewer of her donors to donate.

Formally, given a problem D ∈ D, each patient i ∈ I has a preference relation, denoted by !i,

26The vector v can be interpreted as the minimum required inventory level to be kept in stock (see Indian Department
of Health, 2016). This is mostly ensured through a blood exchange program among blood banks, which is commonly
practiced (see AABB, 2020).

27Without loss of generality, we use this notation for brevity, assuming βD is determined once D is given. Moreover,
in Section 4.4, we discuss the effect of changing a patient’s feasible schedule function.

28Such monotonicity was motivated in Section 2.2.
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over the allocations A(D). Its asymmetric part, the strict preference relation ≻i, is defined for every

α,α′ ∈ A(D) as:

α ≻i α
′ ⇐⇒ α(i) > α′(i) or

-
α(i) = α′(i) and

!

d∈Di

α(d) <
!

d∈Di

α′(d)
.
,

and its symmetric part, the indifference relation ∼i, is defined as:

α ∼i α
′ ⇐⇒ α(i) = α′(i) and

!

d∈Di

α(d) =
!

d∈Di

α′(d).

Two allocations α and α′ are welfare equivalent if α ∼i α
′ for every i ∈ I, i.e., for every patient

the amounts of blood received and supplied are the same at the two allocations. An allocation α is

efficient if it is not Pareto dominated by another allocation, i.e., there is no allocation α′ ∈ A(D)

such that α′ !i α for every i ∈ I and α′ ≻j α for some j ∈ I. A mechanism is a function f that

maps each problem D ∈ D to an allocation f(D) ∈ A(D). A mechanism f is efficient if for every

D ∈ D, f(D) is efficient.

We consider the patients’ incentives for bringing forward their donors. As alluded in Section 2.4,

blood donation is not as costly as solid organ donation, leading to a much less invasive procedure and

fast replenishment of blood. Therefore, as long as the patient does not receive less blood, providing

more donors to the system may not be as undesirable for the patient. Based on this motivation, we

first introduce a weaker incentive compatibility concept. Specifically, we require that having a larger

set of donors never causes the patient to receive less blood.

A mechanism f is donor monotonic if for any D ∈ D, i ∈ I and D′
i ⊆ Di we have

f(D)(i) ≥ f(D′
i, D−i)(i).

Next, we introduce a stronger incentive compatibility concept. A mechanism f is strongly donor

monotonic if for any D ∈ D, i ∈ I and D′
i ⊆ Di we have

f(D) !i f(D
′
i, D−i).

That is, bringing forward any subset of her donors does not make the patient strictly better off.

4 Sequential Targeting

We seek mechanisms that guarantee efficiency together with donor monotonicity or strong donor

monotonicity. The following class of mechanisms will be key in achieving our objectives.

Let {Nk}k̄k=1, k̄ ≥ 2, be a sequence of nonempty subsets of patients, which we refer to as target

sets, and τ : {2, . . . , k̄} → {max,min} be a target function that designates for each subset Nk with

k ≥ 2 whether a maximization or minimization target will be achieved, given that all the previous

targets designated for the patients in N1, . . . , Nk−1 are already achieved.

Maximization, denoted by τ(k) = max, means that the total amount of blood received by the

patients in Nk is maximized given that the previous objectives are already satisfied.
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Minimization, denoted by τ(k) = min, means that the total amount of blood supplied by the

patients in Nk is minimized given that the previous objectives are already satisfied.

The first target is always to maximize the total amount of blood received by the patients in N1.
29

To define the main class of mechanisms, we introduce an iterative procedure with respect to the target

sets {Nk}k̄k=1 and the target function τ .

Sequential Targeting Procedure:

Given a problem D ∈ D, we construct a sequence of subsets of allocations A0 ⊇ A1 ⊇
. . . ⊇ Ak̄ in k̄ steps after initializing A0 = A(D).

Step 1. Let A1 ⊆ A0 be the subset of allocations that maximize the amount of blood

received by the patients in N1, that is:

A1 = argmax
α∈A0

!

i∈N1

α(i).

...

Given that Ak−1 is constructed in Step k − 1, k ≥ 2, Step k is defined as follows.

Step k. There are two possible cases.

• If τ(k) = max, let Ak ⊆ Ak−1 be the subset of allocations in Ak−1 that maximize the

amount of blood received by the patients in Nk, that is:

Ak = argmax
α∈Ak−1

!

i∈Nk

α(i).

• If τ(k) = min, let Ak ⊆ Ak−1 be the subset of allocations in Ak−1 that minimize the

amount of blood supplied by the patients in Nk, that is:

Ak = argmin
α∈Ak−1

!

d∈∪i∈Nk
Di

α(d).

The set of allocations Ak̄ is the outcome of the procedure.

Observe that Ak̄ may involve allocations that are not welfare equivalent. To have a well-defined

mechanism that achieves our desiderata, we make two assumptions jointly on the target sets {Nk}k̄k=1

and the target function τ :

1. k̄ ≥ 2
%%I
%% and the last 2

%%I
%% sets, {Nk}k̄k=k̄−2|I|+1

, are each a singleton such that every patient i ∈ I

appears exactly twice as Nk = Nℓ = {i} for some distinct k, ℓ ≥ k̄ − 2
%%I
%%+ 1, with one target as

τ(k) = max and the other target as τ(ℓ) = min.

29See Condition (1) below the procedure definition.
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2. For every k ∈ {2, . . . , k̄}, if τ(k) = min, then for any i ∈ Nk there exists k′ < k such that i ∈ Nk′

and τ(k′) = max. That is, if we are going to minimize the blood supplied by a group of patients,

then for each of those patients, we should have maximized the blood received by some group

that includes her, at an earlier step.

The first condition is assumed to guarantee that the outcome allocations of the procedure are

welfare equivalent: we use the last 2
%%I
%% targets as tie breakers among the patients, in case the previous

targets lead to multiplicity of allocations in terms of welfare levels. As the preferences of the patients

are lexicographic in receiving more blood and then supplying less blood, the second condition will

ensure the efficiency of sequential targeting.

A sequential targeting mechanism is induced by the above procedure with respect to a sequence

of target sets {Nk}k̄k=1 and a target function τ that satisfy the above two conditions: it chooses an

allocation from the outcome set of the procedure, Ak̄, executed for each problem D ∈ D.

Different target sets and target functions induce different sequential targeting mechanisms. This

rich class of mechanisms include two interesting and important special cases, priority mechanisms and

maximal mechanisms with priority tie-breakers, which were examined by Manjunath and Westkamp

(2019) and Andersson, Cseh, Ehlers, and Erlanson (2020), respectively, in similar setups. In our

context, these two classes of mechanisms are more broadly defined due to the more general specification

of feasible schedules.

In a priority mechanism, the patients are processed one at a time using a priority order. Let

|I| = n and list the patients in this order as i1, i2, . . . , in: the mechanism first maximizes the welfare

of i1; then, among all allocations that achieve this goal, it maximizes the welfare of i2, and so on.

Formally, the target sets are singletons such that N2k−1 = N2k = {ik} for every k ∈ {1, 2, . . . , n}. The
target function τ is defined as τ(2) = min, τ(2k−1) = max and τ(2k) = min for every k ∈ {2, . . . , n}.30

In a maximal mechanism with priority tie-breakers, the total amount of blood received

by all the patients is maximized and the total amount of blood donation by all replacement donors

is minimized. List the patients as i1, i2, . . . , in using a priority tie-breaker. Then among all total

welfare maximizing allocations, the welfare of i1 is maximized. Subject to this goal being satisfied, the

welfare of i2 is maximized, and so on. Formally, the first two target sets are the whole set of patients:

N1 = N2 = I, the remaining target sets are singletons such that N2k−1 = N2k = {ik−1} for every

k ∈ {2, . . . , n+ 1}. The target function τ is defined as τ(2) = min, τ(2k− 1) = max and τ(2k) = min

for every k ∈ {2, . . . , n+ 1}.31

4.1 Efficiency

Our first main result shows that any sequential targeting mechanism achieves an efficient allocation:

Theorem 1. Every sequential targeting mechanism is efficient.

30The priority mechanisms are counterparts of the serial dictatorships that are widely studied in the context of object
allocation with strict preferences.

31Maximal mechanisms have found wide-spread application in the context of kidney exchange, which involves single-
unit demand for each patient. For example, in the US the UNOS National Kidney Exchange Program and Alliance for
Paired Donation have adopted maximal mechanisms, although they use different tie-breakers from our patient-based
priority approach (Sönmez and Ünver, 2017).
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The key observation for efficiency is that, in light of the lexicographic nature of the patients’

preferences, in a sequential targeting mechanism each patient appears in at least one step’s target set

with a maximization target, before she ever appears in a step with a minimization target. This implies

that in a target set with a minimization target, reducing the donation made by a patient’s replacement

donors would make her better off and some other patient processed before or in the same step worse

off. Similarly, in a target set with a maximization target, making a patient better off by assigning her

more blood would make some other patient who is processed before or in the same step worse off.

As in a maximal mechanism with priority tie-breakers, total welfare maximization could be one of

the possible objectives in Steps 1 and 2 of a sequential targeting mechanism. Under different targets in

the first two steps, the resulting sequential targeting mechanism may not maximize the total welfare,

or even the total amount of blood received by the patients. However, the first theorem shows that the

resulting mechanism is necessarily efficient.

4.2 Donor Monotonicity

In this subsection we explore the incentives faced by the patients in bringing forward their full set

of donors to the blood bank.

For a general profile of feasible schedule functions S, although the sequential targeting mechanisms

are efficient, they may not be incentive compatible even in the donor monotonicity sense. We will

state regularity conditions on the feasible schedule functions to which many real-life policies such as

one-to-one exchange obey.

We make three assumptions which make sure that the sequential targeting mechanisms are donor

monotonic. They all have natural explanations. The first one is about the convexity of a feasible

schedule set for a given set of donors. Generally, a set S ⊆ Z2
+ is L-convex (where L stands for

lattice) if for every x, y ∈ S, we have

/
x+ y

2

0
,

1
x+ y

2

2
∈ S.

L-convexity is one of the two most used generalizations of convexity to discrete domains.32

Assumption 1 (L-convexity). The feasible schedule set Si(Di) is L-convex for every i ∈ I and Di ∈ Di.

A geometric illustration with three examples of L-convex feasible schedule sets is given in Figure

1. Assumption 1 also guarantees that an outcome allocation of a sequential targeting mechanism can

be found in polynomial time, as shown in Appendix B.

A very special case is the feasible schedule set induced by the classical one-to-one exchange rate

between the blood received and supplied, as depicted in Figure 2.

32The other one is M-convexity. See Murota (2013) for the general use of discrete convexity notions and discrete
convex analysis.
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Figure 1: Illustration of Assumption 1, L-convexity: The feasible schedule set Si(Di) is the integral points of
a convex polygon with integral corners and at most six edges of slopes 1, 0, or ∞. It is a lattice with the min-
imum schedule being marked as (ri(Di), si(Di)) and the maximum schedule being marked as (ri(Di), si(Di)).
Observe that by the definition of feasible schedule functions

!!Di

!! ≥ si(Di) and ni ≥ ri(Di). The best schedule
S and worst schedule S are also marked in each graph to show the lexicographic orientation of the patient’s
preferences in more blood received first and less blood supplied second.

s

rni
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ni
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|Di | =
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Figure 2: A special case that satisfies Assumption 1 is the classical one-to-one exchange rate policy. In this
example we assume ni >

!!Di

!!; if
!!Di

!! ≥ ni, then ri(Di) = ni is the maximum amount of blood that can be
received.

The second assumption generalizes the idea that each unit of blood has a positive “price”. It says

that when a patient receives more (or less) blood, there is a feasible schedule in which her donors also

donate more (or less) blood. Note that the patient does not have to supply more blood when she

receives an additional unit, but this assumption says that such a schedule is feasible. It is stated as

follows:

Assumption 2 (Feasibility of positive price). For every patient i ∈ I and donor set Di ∈ Di, the

feasible schedule set Si(Di) satisfies the following:

• if (r, s), (r′, s′) ∈ Si(Di), r
′ > r and s < |Di|, then there exists s′′ > s such that (r′, s′′) ∈ Si(Di);

and

• if (r, s), (r′, s′) ∈ Si(Di), r
′ < r and s > 0, then there exists s′′ < s such that (r′, s′′) ∈ Si(Di).

That is, given a feasible schedule, if the patient can potentially receive a larger (or smaller) amount

of blood, then the patient can potentially receive this amount by supplying more (or less) as long as

the supply does not exceed her number of donors (or is non-negative). The one-to-one exchange rate
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policy satisfies the feasibility of positive price assumption: each additional unit received costs exactly

one unit supplied.

L-convexity and feasibility of positive price are independent. For example, the two-to-one exchange

rate policy satisfies feasibility of positive price but not L-convexity; the second graph in Figure 1

violates feasibility of positive price as it has a “flat top” at s = si(Di) < |Di| and a “flat bottom”

at s = si(Di) > 0, while it is L-convex. The other graphs in this figure satisfy feasibility of positive

price, although the third one has a “flat top.” This is because the “flat top” occurs at the maximum

possible supply s = |Di|.
Before stating our final assumption, we introduce a concept regarding the ranking of feasible

schedule sets for the patients, which will also be useful in the comparative static analysis in Section

4.4. Given a patient i ∈ I, a donor set Di ∈ Di and two sets S, S ′ ⊆ Z2
+, we say S is weakly more

favorable than S ′ at Di if the following holds:

• if (r, s) ∈ S ′ and r ≥ ni, then there exists s′ ≤ s such that (r, s′) ∈ S; and

• if (r, s) ∈ S, s ≤ |Di| and (r, s′) ∈ S ′, then there exists s′′ ≥ s such that (r, s′′) ∈ S ′.

When S and S ′ are schedule sets for patient i, S is weakly more favorable than S ′ at Di if (i) for

any schedule in S ′, supplying weakly less blood is feasible for the patient at S while she receives the

same positive amount of blood, and (ii) for any schedule in S, whenever receiving the same amount of

blood is feasible for the patient at S ′, it is feasible at S ′ to receive this amount by supplying weakly

more blood as long as the supply does not exceed the number of donors. Using this concept, we make

the following assumption regarding the relation between feasible schedule sets when a patient reports

different sets of donors.

Assumption 3 (Non-diminishing favorability in donors). For every patient i ∈ I and donor sets

Di, D
′
i ∈ Di such that D′

i ⊆ Di, Si(Di) is weakly more favorable than Si(D
′
i) at D

′
i.

Favorability manifests itself geometrically as Si(Di) being an expansion and/or a downward shift

of Si(D
′
i) in the direction of receiving more blood. We illustrate the implications of Assumption 3 in

conjunction with Assumptions 1 and 2 with two examples in Figures 3 and 4.

The main result of this section is as follows:

Theorem 2. Under Assumptions 1, 2, and 3 every sequential targeting mechanism is donor monotonic.

We give a sketch of the proof idea. The proof involves defining an auxiliary matching market

(which we refer to as an extended problem) that is a pure exchange economy and isomorphic to our

blood allocation problem with replacement donors. In this market, each allocation is represented by

a matching that describes which donors are matched with each patient. Besides real patients and

donors, the blood bank is represented as a pseudo-patient and its inventory is represented by pseudo-

donors who are paired with it. For tractability purposes, if a patient is compatible with one of her

donors, instead of directly receiving blood from this donor, we assume that she receives blood from

a dummy donor paired with a dummy patient defined for each blood type. We define sequential

targeting matching rules for the auxiliary market, which we show by Lemma 2 to be isomorphic to
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Figure 3: An illustration of a feasible schedule function Si(·) satisfying Assumptions 1, 2, and 3. This
particular policy relies only on the number of donors brought forward |Di| but not other specifics of the donor
set. The minimum guarantee of patient i is ni = 2 while her maximum need is ni = 7. The top graphs
illustrate Si(Di) when |Di| changes from 0 to 5, while the bottom graph illustrates how the feasible schedule
sets change as the number of donors increases.

the sequential targeting mechanisms. Using this result, we prove the theorem for sequential targeting

matching rules in the auxiliary matching market through two lemmata.

The first one, Lemma 3, is the most crucial result in the proof. This lemma gives a necessary

condition for profitable manipulation under any mechanism. We consider two problems, the original

problem and the one induced by patient i concealing exactly one of her donors. Let M be a matching

for the original problem and M ′ be a matching for the induced problem such that i receives more blood

under M ′. Then Lemma 3 shows the existence of a particular graph theoretical structure, a cycle or

a chain, relating these two matchings, M and M ′. Cycles and chains do not necessarily represent

Pareto improvements or losses. They are induced by the feasibility conditions in the definition of an

allocation and show the swaps of donors that need to be done if we want to reach the matching M ′

from the matching M in one or multiple steps, such that each step results in a well-defined matching.

Due to Assumptions 1, 2, and 3, the definition of a cycle and a chain has to be carefully tailored to

respect feasibility.

Finally, Lemma 4 states that the sequential targeting matching rules are donor monotonic. We

proceed by contradiction. Assume that there exists a patient i who can receive more blood by conceal-

ing a donor. Lemma 3 implies that there is a cycle or a chain between the outcomes of the particular

sequential targeting matching rules used. We show that due to the optimization problems solved in

each step of the sequential targeting procedure, whenever such a cycle or a chain is executed to make

one matching closer to the other one, the welfare of the patients does not change. Thus, after a finite
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Figure 4: An illustration of a feasible schedule function Si(·) satisfying Assumptions 1, 2, and 3. This
particular policy relies only on the number of donors brought forward |Di| but not other specifics of the donor
set. The minimum guarantee of patient i is ni = 0 while her maximum need is ni = 7. The top graphs
illustrate Si(Di) when |Di| changes from 1 to 4. The bottom graph illustrates how the feasible schedule sets
change as the number of donors increases.

number of iterations, the two outcomes have to be welfare equivalent, and hence a contradiction is

reached.

Moreover, each of the three assumptions is needed for the donor monotonicity of the sequential

targeting mechanisms. In Section 5, Example 4 shows that Assumption 1 is necessary, even when

Assumptions 2 and 3 are satisfied. It is straightforward to show that Assumption 3 is necessary.

For example, when a patient i brings no donors, she receives her minimum guarantee of ni = 1 unit

of blood: her feasible schdule set is {(1, 0)}, and if she brings forward any donor, then her feasible

schedule set shrinks to {(0, 0)}. Such a feasible schedule function violates Assumption 3, but satisfies

Assumptions 1 and 2. In this case, any mechanism is manipulable by patient i including a sequential

targeting mechanism. Below, we provide an example to show that Assumption 2 is similarly necessary.

Example 3. Suppose that the set of patients is I = {1, 2, 3, 4}. For every i ∈ I, ni = 0. For every

i ∈ I \ {1}, ni = 1 and the exchange rate is one-to-one. That is, for every donor set Di ∈ Di, where

i ∈ I \ {1},

Si(Di) =

$
{(0, 0)} if Di = ∅"
(0, 0), (1, 1)

#
otherwise

.

Moreover, n1 = 2 and Patient 1 can receive blood up to her maximal need by supplying at most one

unit: for every D1 ∈ D1,

S1(D1) =

$
{(0, 0)} if D1 = ∅"
(0, 0), (1, 0), (1, 1), (2, 0), (2, 1)

#
otherwise

.
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This is a special case of the Delhi policy in Example 2. Note that Assumptions 1 and 3 are satisfied

for all the feasible schedule functions. However, when Patient 1 has two donors, Assumption 2 is not

satisfied since (2, 2) is not a feasible schedule.

Each patient’s blood type and donor set are given as follows.

• β1 = A, and Patient 1 has one type B donor and one type O donor.

• β2 = B, and Patient 2 has one type AB donor.

• β3 = AB, and Patient 3 has one type A donor and one type O donor.

• β4 = O, and Patient 4 has one type A donor.

In addition, the blood bank only has one unit of type AB blood in its inventory. Assume ABO-

identical transfusion. Let f be a sequential targeting mechanism with respect to target sets {Nk}k̄k=1

and target function τ such that N1 = I, N2 = {2} and τ(2) = max. Then f selects the following

allocation.

• Each i ∈ I receives one unit of type βi blood.
33

• Patient 1’s type B donor donates, Patient 3’s type O donor donates, and the donor of i ∈ {2, 4}
donates.

If Patient 1 conceals her type B donor, then f selects the following allocation.

• Patient 1 receives two units of type A blood and her type O donor donates.

• Patient 2 receives nothing and her donor does not donate.

• Patient 3 receives one unit of type AB blood and her type A donor donates.

• Patient 4 receives one unit of type O blood and her type A donor donates.

Therefore, Patient 1 successfully manipulates.34

4.3 Strong Donor Monotonicity

In order for the sequential targeting mechanisms to be strongly donor monotonic, we need a stronger

restriction on the relation between feasible schedule sets when a patient reports different donor sets.

Assumption 4. For every patient i ∈ I and donor sets Di, D
′
i ∈ Di such that D′

i ⊆ Di, we have

• if (r, s) ∈ Si(D
′
i) and r ≥ ni, then there exists s′ such that (r, s′) ∈ Si(Di),

• if (r, s) ∈ Si(Di) and (r, s′) ∈ Si(D
′
i), then s ≤ s′.

33Note that every patient’s demand would be fully satisfied if (2, 2) were a feasible schedule for Patient 1.
34By similar arguments, it can be shown that Patient 1 is able to manipulate in the same way under any sequential

targeting mechanism in which the first target set includes only Patient 2. Thus a serial dictatorship mechanism may
not be donor monotonic under such feasible schedule functions.
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It is straightforward to see that Assumption 4 implies Assumption 3. Moreover, if a patient

reports a subset of her donors and still receives the same amount of blood, then the second condition

in Assumption 4 implies that her donors do not donate less blood. Therefore, by Theorem 2 we have

the following result.

Proposition 1. Under Assumptions 1, 2 and 4, every sequential targeting mechanism is strongly

donor monotonic.

We give an example of a feasible schedule function inducing endogenous exchange rates and making

sequential targeting mechanisms strongly donor monotonic in Figure 5.
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Figure 5: A policy that involves endogenous exchange rates can also guarantee strong donor monotonicity.
Exchange rates are endogenous when the patient has three or five donors. In either case, the upper bound
includes the feasible schedule set for any donor set with one less donor, and the lower bound is included
in the feasible schedule set for any donor set with one more donor. The feasible schedule function satisfies
Assumptions 1, 2 and 4.

One important circumstance under which strong donor monotonicity can be achieved is when

the feasible schedule functions feature exogenous exchange rates, in the sense that for every possible

amount of blood received in a feasible schedule set, there is a unique amount of supply associated

with it. That is, for every i ∈ I, Di ∈ Di and (r, s) ∈ Si(Di), there does not exist s′ ∕= s such that

(r, s′) ∈ Si(Di). In this case, Assumption 3 and Assumption 4 are equivalent.

Remark 1. Consider any i ∈ I such that Di ∕= ∅ for some Di ∈ Di. The feasible schedule function Si

involves only exogenous exchange rates and satisfies Assumptions 1, 2 and 3 if and only if

• for every Di ∈ Di such that Si(Di) ∕= {(0, 0)}, there exist si(Di), ri(Di) ∈ Z+, where si(Di) ≤
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Figure 6: An illustration of the two-part tariff policy. The patient needs to bring forward at least two
donors to receive her minimum guarantee of ni = 3 units of blood. The top graphs illustrate Si(Di) when
|Di| changes from 0 to 4. The bottom graph illustrates how the feasible schedule sets change as the number
of donors increases.

|Di|, si(Di) = 0 if ni = 0, and ri(Di) ≤ ni, such that

Si(Di) = {(r, s) ∈ Z2
+ : s− si(Di) = r − ni and s ≤ |Di|, r ≤ ri(Di)},

• for every Di ∈ Di and D′
i ⊆ Di such that Si(Di) ∕= {(0, 0)} and Si(D

′
i) ∕= {(0, 0)}, si(Di) ≤ si(D

′
i)

and ri(Di) ≥ ri(D
′
i), and

• for every Di ∈ Di and D′
i ⊆ Di, Si(Di) = {(0, 0)} implies Si(D

′
i) = {(0, 0)}.

We refer to the feasible schedule functions defined in the Remark as two-part tariffs. We illustrate

an example of a two-part tariff in Figure 6.

4.4 Comparative Statics of Policy Changes

As the sequential targeting mechanisms have different policy variables, it is important to understand

how each of these levers affects the welfare of different patients. To this end, we conduct comparative

static exercises to understand how changing the feasible schedule function or the target sets affects

the welfare of a patient in the sequential targeting mechanisms.

We start with changes in the target sets affecting a group of patients that are moved down in the

sequence of the target sets. We show that sequential targeting mechanisms behave in an intuitive

manner, in the sense that the earlier a group of patients are processed, the weakly better off they are.
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Proposition 2. Let f be a sequential targeting mechanism with respect to target sets {Nk}k̄k=1 and

target function τ , and f ′ be a sequential targeting mechanism with respect to target sets {N ′
k}k̄

′
k=1 and

target function τ ′ such that for some ℓ ∈ {1, . . . , k̄ − 1} and set of patients N ⊆ Nℓ,

• if k < ℓ, then N ′
k = Nk and τ ′(k) = τ(k),

• if N ∕= Nℓ, then N ′
ℓ = Nℓ \N and τ ′(ℓ) = τ(ℓ).

Then for any problem D ∈ D,

• if τ(ℓ) = max, then !

i∈N

f(D)(i) ≥
!

i∈N

f ′(D)(i), and

• if τ(ℓ) = min, then !

d∈∪i∈NDi

f(D)(d) ≤
!

d∈∪i∈NDi

f ′(D)(d).

The proposition says that, after moving down a group of patients N ⊆ Nℓ without changing the

target sets and target objective before Step ℓ, if the target objective of Step ℓ is maximization, then

the patients in N receive weakly less blood after the change, and if the target objective of Step ℓ is

minimization, then the donors of the patients in N donate weakly more blood after the change.

Although the above result is straightforward to show, the proof of the next result is much more

involved. We consider changes in the feasible schedule function of a patient. Changing the target

sets is about adopting a different sequential targeting mechanism. On the other hand, a change in a

feasible schedule function is about the underlying fundamentals of the problem independent of which

mechanism is adopted. Nevertheless, we inspect how the outcome of a given sequential targeting

mechanism changes when we make the feasible schedule set of a patient weakly more favorable.

We introduce a notation to denote the possibility of changing the underlying feasible schedule

functions. For a given profile S = (Si)i∈I of feasible schedule functions and a sequential targeting

mechanism f , let f
+
D | S

,
be the outcome of f for any problem D ∈ D.

Proposition 3. Suppose that Assumptions 1 and 2 are satisfied for all feasible schedule functions

considered. Consider any patient i ∈ I, any problem D ∈ D and any sequential targeting mechanism

f . If S and S ′ are two profiles of feasible schedule functions such that Sj = S ′
j for all j ∈ I \ {i}, and

Si(Di) is weakly more favorable than S ′
i(Di) at Di, then

f
+
D | S

,
(i) ≥ f

+
D | S ′,(i).

The proposition states that if a patient is given a weakly more favorable feasible schedule set,

then she always receives weakly more blood under the same sequential targeting mechanism, when

Assumptions 1 and 2 are satisfied. The proof of of this proposition is similar to that of Theorem 2

with certain modifications.
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5 Policy Discussion

In this section, we first discuss how certain practical challenges in designing blood allocation policies

can be addressed using our framework. Then we explain practical implementation details regarding

possible day-to-day functioning of a blood bank that adopts our mechanisms.

5.1 Policy Design with Feasible Schedules and Sequential Targeting Mech-

anisms

Our framework has two main tools that can be used to satisfy different objectives in blood allo-

cation. The sequential targeting mechanisms allow lexicographic optimization of the objectives to be

implemented. On the other hand, feasible schedule functions can be used to impose exchange rate

policies and achieve more nuanced objectives regarding fairness, efficiency, and incentives. We start

our discussion with the policy goals that can be reached by the flexibility that the latter tool brings

to design.

5.1.1 Equitable Blood Allocation with Feasible Schedule Design

An important flexibility of our proposal is that exchange rates can be determined endogenously.

This can be especially useful when some patients may potentially have few or no paired donor can-

didates. We can design policies that accommodate for the patients without donors and with donors

equitably as much as possible, keeping incentive and efficiency properties of the sequential targeting

mechanisms intact.

An example is provided in Figure 7. In this example, a patient i can receive the minimum guarantee

of ni = 1 unit of blood even if she does not have any donor. She can also receive up to her maximum

need of ni = 3 units in this case. As she brings forward more donors, her chances of receiving more

units of blood beyond ni = 1 weakly increase by donor monotonicity. Moreover, under such a policy

her donors never donate more blood than what she receives.
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Figure 7: An equitable feasible schedule function policy for patients who may have few or no donors.

As mentioned before, we can also differentiate patients based on the urgency of the procedures

they need, and design feasible schedule functions differently for urgent care patients and patients in

need of elective procedures.

Our proposals are also compatible with other equitable replacement donor policies that are used

around the world. For example, in leading Chinese hospitals, patients whose hometowns are away from
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the city where the hospital is located are often not required to supply as many donors as those patients

from the city. The rationale behind this policy is that, relatives of patients from other cities are usually

not readily available to donate on behalf of the patients. Similarly, in Cambodia, replacement donor

requirements are waived for a patient if she has no next-of-kin (Davies, 2004). Thus, patient specific

nature of our feasible schedule functions can accommodate such fairness considerations as well.

5.1.2 Blood Type Targeting with Feasible Schedule Design

Blood banks occasionally fall short in blood components of certain blood types while others are

aplenty. Although ABO-identical compatibility is required for certain blood components, this can be

relaxed for others. Components of rare blood types such as AB Rh D−, will always be in short supply

in blood bank inventories. On the other extreme, blood type O Rh D− is considered to be a universal

type for red blood cells. Therefore, it may be important for blood banks to target its wide-spread

collection. This goal can be achieved in multiple ways in our framework. One is using the multi-step

targeting functions in a smart way. A more direct way is incentivizing the patients to provide donors

of desired blood types through feasible schedule policies. In Figure 8, we provide an example of a

schedule design that favors bringing forward more type O Rh D− donors: the patient can receive the

same amount of blood by supplying less if she has donors of blood type O Rh D−.
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Figure 8: A policy that provides stronger incentives to reveal type O Rh D− donors (denoted as O−). In
each case, the patient’s feasible schedule set consists of those schedules on the graph in which the amount
supplied does not exceed her number of donors, and only (0, 0) if there is no such schedule. This feasible
schedule function satisfies Assumptions 1, 2 and 4. Assume that Assumption 1 is satisfied for the other
patients. Then if Patient i has one or two type O− donors, concealing a type O− donor leads to a strictly
worse outcome for her.
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5.1.3 Beyond One-to-one Exchange

As mentioned before, some countries in Africa (e.g., Congo and Cameroon) and Mexico use ex-

change rates higher than one. All of these countries, for various reasons, use two-to-one exchange

rate: two units of blood need to be supplied for each unit received. The following example shows that

under such an exogenous exchange rate policy, a sequential targeting mechanism may not be donor

monotonic.

Example 4. Suppose that the set of patients is I = {1, 2, 3, 4}. For each i ∈ I, ni = 0, and for every

possible donor set Di ∈ Di,

Si(Di) =
&
(r, s) ∈ Z2

+ : s = 2r and r ≤ min
"
ni,

'%%Di

%%/2
(#)

.

Each patient’s blood type, maximal need and donor set are given as follows.

• β1 = A, n1 = 2, and Patient 1 has two type B donors and four type O donors.

• β2 = B, n2 = 2, and Patient 2 has four type O donors.

• β3 = O, n3 = 4, and Patient 3 has one type A donor and seven type AB donors.

• β4 = A, n4 = 1, and Patient 4 has two type AB donors.

In addition, the blood bank only has one unit of type A blood in its inventory. Assume ABO-

identical transfusion. Let f be a sequential targeting mechanism with respect to target sets {Nk}k̄k=1

and target function τ such that N1 = I, N2 = {4} and τ(2) = max. Then f selects the following

allocation.

• Patient 1 receives one unit of type A blood and her two type B donors donate.

• Each i ∈ {2, 3, 4} receives ni units of type βi blood and all the donors of i donate.

If Patient 1 conceals her two type B donors, then f selects the following allocation.

• Patient 1 receives two units of type A blood and her four type O donors donate.

• Patient 3 receives four units of type O blood and all of her donors donate.

• Patient 2 and Patient 4 do not receive any blood and their donors do not donate.

Therefore, Patient 1 successfully manipulates. When she conceals her type B donors, Patient 2 can

no longer receive any blood and hence cannot provide type O blood to Patient 3. To maximize total

transfusions, the mechanism selects Patient 1’s four type O donors to provide blood for Patient 3.

Then the two-to-one exchange rate requires Patient 1 to receive the two units of type A blood, despite

that the other type A Patient, Patient 4, has higher priority, i.e., 4 ∈ N2.
35

However, we can generate endogenous exchange rate policies that closely approximate the two-to-

one exchange rate. Under these policies the sequential targeting mechanisms are donor monotonic.

See Figure 9 for an example.

35By similar arguments, it can be shown that f is not donor monotonic if we change the first target set such that
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Figure 9: A feasible schedule function is designed to approximate the two-to-one exchange rate. Given
that ni = 1 and ni = 3, if the patient has at least s ∈ {2, . . . , 6} donors, then (12s, s) should be a feasible
schedule when s is an even number, and we consider (

"
s
2

#
, s) and (

$
s
2

%
, s) as feasible schedules when s is an

odd number. Then the above graphs illustrate the feasible schedule function that assigns the smallest set of
schedules that include these feasible schedules in each case so that Assumptions 1, 2, and 3 are satisfied for
Patient i.

5.1.4 Integrated Blood Component Markets

Although in real-life markets replacement donor programs function for each blood component

separately, it is plausible that higher efficiency gains can be achieved by integrating these markets.

Especially platelets, red blood cells, and whole blood have frequent shortages, while due to its

longer shelf life, plasma shortages do not occur as frequently. Thus, replacement donor programs

carry extra importance for these three prior components. When a donor donates whole blood she

donates all three major components, red blood cells, platelets, and plasma, which can all be separated.

However enough units of platelets cannot be donated through whole blood donation. Instead platelets

are usually donated by apheresis, in which only platelets are collected from the donor’s blood in

concentrated amounts, while all other components of the blood are returned to the donor. Therefore,

for all practical reasons a donor can donate either platelets in adequate amounts or whole blood, from

which red blood cells can be extracted or which can be used in whole blood transfusion packs.36

N1 = {3}. Therefore, a serial dictatorship mechanism may not be donor monotonic under the two-to-one exchange rate
policy.

36Adequate amount of plasma can also be collected through whole blood donation. However, the most effective plasma
donation method is plasmapheresis, which allows more and frequent donation of plasma. Also an exception to plasma
shortage is when convalescent plasma is needed against infectious diseases during a pandemic. However, most blood
donors would not be suitable to donate convalescent plasma unless they recently recovered from the disease. Moreover,
if they are suitable to donate convalescent plasma, they can donate plasma in adequate amounts using plasmapheresis,
in which case they cannot simultaneously donate other blood components. See Kominers et al. (2020) for details of
incentive schemes to relieve convalescent plasma shortages.
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Given this background, we can slightly modify our baseline model to cover the three components

at the same time. In an integrated, red blood cell (denoted as rbc), whole blood (denoted as wb), and

platelet (denoted as plt) allocation problem, each patient’s blood type is extended to specify which of

these blood components the patient needs:37

BI =
&
(c,X) : c ∈ {rbc, wb, plt} and X ∈ {O+, O−, A+, A−, B+, B−, AB+, AB−}

)
,

and a donor’s type is defined by only his blood type as before:

BD = B = {O+, O−, A+, A−, B+, B−, AB+, AB−}.

Normalizing what a donor can donate to either 1 unit of rbc, 1 unit of wb, or 1 unit of plt, then the

compatibility relationship of each patient type (c,X) ∈ BI , C(c,X) ⊆ BD, is defined using the blood

type compatibility requirements of the blood component c ∈ {rbc, wb, plt}. Every other component

of the model and mechanisms are defined as before. With this slight modification, our model and

mechanisms can be used for integrated blood component allocation.

5.1.5 Sequential Targeting Policy Design and Explicit Objectives of the Blood Bank

The sequential targeting mechanisms can be tailored to accommodate many policy objectives be-

sides maximizing the allocated volume of blood. A plausible multistep approach can first maximize

the blood given to urgent care patients in Step 1, and then remaining patients in Step 2 among the

allocations that maximize the blood allocated to the urgent care patients. Depending on the shortages

faced by the blood bank, the blood bank can easily maximize its remaining inventory in Step 3 (equiv-

alently, maximize the donations made by the patients’ donors) or minimize its remaining inventory

(equivalently, minimize the donations made by the patients’ donors), which can potentially depend on

the remaining shelf life of the blood components in stock. To this end, we extend our model and the

sequential targeting mechanisms to cover explicit objectives of the blood bank.

We include the blood bank b as an agent in the model and specify in an allocation α the amount

of type X blood the bank receives, αX(b), for each X ∈ B. Assume that the bank has a complete and

transitive (but not necessarily antisymmetric) preference relation !b over blood bundles (zX)X∈B ∈ Z|B|
+

that it keeps in its inventory. For each X ∈ B, let IX ∈ Z|B|
+ be the bundle that includes only 1 unit

of type X blood, i.e., IXX = 1 and IXY = 0 for every Y ∕= X. We assume that the bank’s preference is

responsive: for every z = (zX)X∈B ∈ Z|B|
+ and X, Y ∈ B,

• (zX + 1, z−X) !b (zY + 1, z−Y ) ⇐⇒ IX !b I
Y ,

• (zX + 1, z−X) !b z ⇐⇒ IX !b 0, and

• z !b (zX + 1, z−X) ⇐⇒ 0 !b I
X .

We modify the definition of a sequential targeting mechanism with respect to {Nk}k̄k=1 and τ such that

(i) there exists a unique target set Nk with b ∈ Nk, and (ii) Nk = {b} and τ(k) = max, where “max”

37In some cases, patients need both platelets and red blood cells. Even then, often whole blood transfusion will give
the patient both components. Only in rare occasions separate platelet and red blood cell transfusion is needed for the
same patient. Our model covers most cases except this rare need category.
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means the target is to choose the best allocations for the bank in Ak−1, i.e.,

Ak = max
!b

Ak−1.

We also modify the definition of Pareto efficiency to include the blood bank’s welfare. Then it is

straightforward to extend the proofs of Theorems 1 and 2 to include the blood bank as an agent with

responsive preference. In particular, responsiveness is only needed in the proof of Lemma 4.

Given this setup, an objective of maximizing the remaining inventory of some certain blood types

in a step can be achieved by the responsive preference relation that only finds these blood types

acceptable, and minimizing the remaining inventory of some certain blood types can be achieved by

the responsive preference relation that only finds these types unacceptable.

5.1.6 Voucher and Blood Assurance Programs and Minimum Guarantees

In China and United States, blood assurance programs are still being used. In such programs, if

a healthy person altruistically donates blood, she gets vouchers for herself or her immediate family

members to redeem in case they need blood transfusion in the near future. We can tailor our feasible

schedule policies to function along with such programs in tandem. The vouchers brought by a patient

i can be counted toward her minimum donor requirements to receive her minimum guarantee ni.

Moreover, blood banks can further give priority to such patients in the target sets of the mechanisms,

or more favorable feasible schedules to encourage future good Samaritan behavior.

5.2 Practical Implementation

Replacement donor programs do not possess certain simultaneity of donation and transplantation

requirements that solid organ exchanges possess. As mentioned earlier, this gives us flexibility to

schedule donations and transfusions separately. Moreover, the donated blood should be tested and

processed for safety reasons, which makes it unsuitable for immediate transfusion. Thus, blood banks

have to function through slack inventory.

Our proposal also carries this important practical implementation feature. Blood banks already

use certain internal prioritization of patients, for example due to urgency of the medical procedures at

the hospitals, and their needs. This can be extended to incorporate our optimization approach since

the basis is already in play.

In order to apply our proposal, one needs to leverage the non-simultaneity flexibility between

donation and transfusion. Indeed, in places such as Argentina, patients are not required to bring their

intended donors up front at the time they need transfusions. Moreover, issues of reneging on donation

promises are reported to be insignificantly small.38 Our proposal is more conveniently applicable

through a donor registry system that allows patients to register information about their potential

donors at the time they are seeking blood. A potential donor registered into the system may later be

utilized depending on the type and units he is willing to provide or the amount of blood the patient

ends up receiving. Whenever the bank receives a request for blood, an urgent-care patient is allocated

her full need whereas a non-urgent patient is provisionally allocated her minimum need using the

38Based on personal communication with the director of Tucuman Blood Bank, Dr. Felicitas Agote, on July 7, 2020.
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existing stock.39 When a certain threshold of potential donor count is reached,40 the mechanism is

implemented to determine the actual blood assignment of non-urgent patients together with which

potential donors would be requested to donate blood.

6 Related Literature

The literature on market design for living-donor kidney exchange spanned by Roth, Sönmez, and

Ünver (2004, 2005, 2007) in economics is related to the current paper, although most of this literature

is about exchanging one transplant organ for one donor’s organ with the following notable exception.

The complementarities in the initial blood units supplied are similar to the complementarities in dual

organ exchange in Ergin, Sönmez, and Ünver (2017). However, one-to-one exchange rate is not crucial

in our model while it is important in the latter study. The differences in institutional details between

solid organ exchange applications and our main application are explained in Section 2. Our two donor

monotonicity notions would reduce to the donor monotonicity notion introduced in Roth, Sönmez,

and Ünver (2005) if the demand were unit-valued and exchange rate were one-to-one.

Incentives in blood and blood-component donation are first studied by Lacetera, Macis, and Slonim

(2012, 2013). Lacetera, Macis, and Slonim (2013) question the position and guidelines of the World

Health Organization and several national blood collection agencies that have been based on the view

that offering economic incentives to blood donors is detrimental to the quantity and safety of the

blood supply. Lacetera, Macis, and Slonim (2012) provide evidence from a natural field experiment

showing that economic incentives have a positive effect that increases with the incentive’s economic

value. Slonim, Wang, and Garbarino (2014) argue that blood donation is heavily influenced by sta

ndard economic forces such as supply and demand, economies of scale, and moral hazard. They discuss

promising directions to increase supply and improve the supply and demand balance even in the absence

of market prices. Pay-it-forward and pay-it-backward incentive schemes for encouraging COVID-19

convalescent blood plasma donation have recently been proposed by Kominers, Pathak, Sönmez, and

Ünver (2020) in a market design context. They propose issuing vouchers for the convalescent plasma

donation of patients who recover from COVID-19 that can be used by the family of this donor who

may become sick in the future to gain prioritized access to plasma therapy. They also propose issuing

vouchers for patients who pledge to donate after recovery in return for their own prioritized access

to plasma therapy. Since one donor can donate plasma that can treat more than one patient, with

appropriate number of vouchers and willingness to donate, the system can collect enough plasma to

treat all patients. Their paper inspects the steady-state analysis of a stylized large-market model,

while ours is on mechanism design in a finite environment.

There are not many papers on mechanism or market design (see Haeringer, 2018 for an introductory

survey) for multi-unit exchange of indivisible goods even under the restriction of one-to-one exchange

rate. Besides Ergin, Sönmez, and Ünver (2017), two notable exceptions are Andersson, Cseh, Ehlers,

and Erlanson (2020), who consider the design of time banks or barter markets to be cleared by cen-

39In many places, blood centers are generally mandated to keep a certain stock of every blood type in their inventories
to serve urgent needs, see e.g., Indian Department of Health (2016).

40The optimal threshold would naturally depend on other characteristics such as the arrival rate of patients and
donors, and the distribution of blood types in the population. This is beyond the scope of the current model.
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tralized clearinghouses, and Manjunath and Westkamp (2019), who study shift exchanges for medical

doctors and other professionals as a novel market design problem. These papers consider multi-unit

consumption of indivisible goods under one-to-one exogenously set exchange rate. Our paper as well

as their paper considerably generalize the priority mechanism introduced for only bilateral kidney

exchanges, i.e., one-to-one donor exchanges among two patients with unit demand, proposed by Roth,

Sönmez, and Ünver (2005).41 Another recent paper on the multi-unit exchange model with one-to-one

exchange rate, Aziz (2019) derives a sufficient condition for strategy-proofness of a mechanism.

Although the setup of Manjunath and Westkamp (2019) slightly differs from ours as goods are

classified as strongly acceptable, weakly acceptable, and unacceptable, the lack of trade of weakly

acceptable goods make the exchange domain similar to ours. They consider priority mechanisms that

are greedy in the sense of serial dictatorships. On the other hand, the setup of Andersson, Cseh,

Ehlers, and Erlanson (2020) is also very similar to ours. They consider mechanisms that maximize

the volume of exchanges and choose among them using a priority ordering over agents. Both papers

show that their respective mechanisms are strategy-proof and efficient in their domains. Our donor

monotonicity axiom is similar to strategy-proofness in these domains: the only difference is we do

not consider expansion of donor sets as feasible manipulations, thus, strategy-proofness implies donor

monotonicity. On the other hand, their feasibility requirement is a special case of ours, as they both

require only one-to-one exchange rate. Moreover, their mechanisms are members of our more general

class of sequential targeting mechanisms. Our paper’s main theoretical innovation is going beyond

one-to-one exchange, which was standard in the literature of all indivisible goods exchange papers and

unifying a new mechanism class that includes all previously studied mechanisms and beyond.

They only consider one-to-one exchange while we have endogenous exchange rates defined through

feasible schedule sets. As far as we know, this is the first consideration of variable exchange rates with

incentive axioms in the literature. Moreover, our sequential targeting mechanisms substantially gen-

eralize both greedy priority mechanisms and maximal priority mechanisms using multi-step targeting

approach. This multi-step optimization approach is also new in mechanism design.

Similar to our main insight in the blood allocation context, Agarwal et al. (2019) underline and

calculate the welfare loss in the US kidney exchange due to inefficient mechanisms and agency problems.

They argue that while that the number of transplants that can be performed crucially depends on

the marginal product of each patient-donor pair, current platform rules largely ignore this variation

in the social value of submissions, much like the inefficiency caused by fixed exchange rates in blood

allocation.

Price discovery and Pareto efficient allocation through endogenously determined exchange rates are

the main features of competitive equilibrium. In allocation of indivisible goods, this approach was first

utilized by Hylland and Zeckhauser (1979) using “fake” monetary incomes, by using pseudo-market

equilibrium. This approach generally fails to guarantee the existence of a competitive equilibrium with

endowments and no money income – as in our model – even with single-unit demand under dichotomous

41Unit-demand compatibility-based dichotomous preference matching model has been studied in the context of graph
theory – for example see Lovasz and Plummer (1986) for an excellent survey of this discrete math literature. Incentive
and fairness properties of mechanisms on such graphs were first analyzed by Bogomolnaia and Moulin (2004) in an
economic model of a two-sided matching market.
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preferences and probabilistic assignment possibility (see Garg, Tröbst, and Vazirani, 2020). Moreover,

competitive equilibrium as a mechanism is not incentive compatible in small markets.42

The comparison of feasible schedule sets based on favorability is similar in spirit as the weak order

of sets in Che, Kim, and Kojima (2019) used in establishing weak monotone comparative statics in

games of strategic complementarities and other social choice and mechanism design models, although

our comparative static exercises are not related to theirs.

Appendix A Proofs

A.1 Proof of Theorem 1

Let f be a sequential targeting mechanism with respect to some sequence of target sets {Nk}k̄k=1 and

target function τ . Assume to the contrary, for some problem D ∈ D, f(D) = α is Pareto dominated

by an allocation α′. Let

S1 =
"
k ∈ {1, ..., k̄} : τ(k) = max and α(i) ∕= α′(i) for some i ∈ Nk

#
,

and

S2 =
"
k ∈ {1, ..., k̄} : τ(k) = min and

!

d∈Di

α(d) ∕=
!

d∈Di

α′(d) for some i ∈ Nk

#
.

Then S1 ∪ S2 ∕= ∅, since otherwise α′ is never eliminated, i.e., α′ ∈ Ak̄ and α′ is welfare equivalent to

α. Let k = min(S1 ∪ S2). Then α′ ∈ Ak−1. We have two cases regarding k:

Case 1. k ∈ S1: So τ(k) = max and there exists i ∈ Nk such that α(i) ∕= α′(i). Since α′ Pareto dominates

α, α′(i) > α(i), and α′(j) ≥ α(j) for every j ∈ Nk \ {i}. Therefore,
*

j∈Nk
α′(j) >

*
j∈Nk

α(j),

contradicting the fact that αmaximizes the amount of blood received byNk among the allocations

in Ak−1.

Case 2. k ∈ S2: So τ(k) = min and there exists i ∈ Nk such that
*

d∈Di
α(d) ∕=

*
d∈Di

α′(d). By the

definition of a sequential targeting mechanism, for each j ∈ Nk there exists k′ < k such that

τ(k′) = max and j ∈ Nk′ . Since k = min(S1 ∪ S2), we have α(j) = α′(j) for every j ∈ Nk.

As α′ Pareto dominates α,
*

d∈Dj
α′(d) ≤

*
d∈Dj

α(d) for every j ∈ Nk. Then it follows from*
d∈Di

α(d) ∕=
*

d∈Di
α′(d) that

*
d∈∪j∈Nk

Dj
α′(d) <

*
d∈∪j∈Nk

Dj
α(d), contradicting the fact that

α minimizes the amount of blood donated by Nk among Ak−1.

A.2 Proof of Theorem 2

We first show that Assumptions 1, 2 and 3 imply the following two assumptions on the feasible

schedule function.

Assumption 1′. For every i ∈ I, Di ∈ Di, and (r, s), (r′, s′) ∈ Si(Di),

1. If r′ > r and s′ > s, then

(r + 1, s+ 1) ∈ Si(Di) and (r′ − 1, s′ − 1) ∈ Si(Di).
42A related market was inspected by Budish (2011) with mult-unit demand and deterministic allocation without any

endowments leading to the existence of an approximate equilibrium.
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2. If r′ > r and s′ ≤ s, then

(r + 1, s) ∈ Si(Di) and (r′ − 1, s′) ∈ Si(Di).

3. If s′ > s and r′ ≤ r, then

(r, s+ 1) ∈ Si(Di) and (r′, s′ − 1) ∈ Si(Di).

Assumption 2′. For every i ∈ I, Di, D
′
i ∈ Di with D′

i ⊆ Di, (r, s) ∈ Si(Di) and (r′, s′) ∈ Si(D
′
i), we

have

1. If r′ > r, s′ > 0 and s <
%%Di

%%, then

(r + 1, s+ 1) ∈ Si(Di) and (r′ − 1, s′ − 1) ∈ Si(D
′
i).

2. If r′ > r and s′ ≤ s, then

(r + 1, s) ∈ Si(Di) and (r′ − 1, s′) ∈ Si(D
′
i).

Lemma 1. Assumption 1′ and Assumption 2′ are satisfied.

Proof of Lemma 1. Consider any i ∈ I and Di ∈ Di. Denote Si(Di) = F .

For any x, y ∈ Z2
+, where x = (r, s) and y = (r′, s′), denote dis(x, y) = r′ − r + s′ − s, and y > x

if r′ > r and s′ > s. Suppose that x = (r, s) ∈ F , y = (r′, s′) ∈ F , and y > x. We want to show that

(r+1, s+1) ∈ F . If dis(x, y) = 2, then we are done. If dis(x, y) > 2, then consider z =
3
x+y
2

4
> x. By

L-convexity (Assumption 1), z ∈ F . It follows from dis(x, y) > 2 that either
3
r+r′

2

4
< r′ or

3
s+s′

2

4
< s′.

Hence dis(x, z) < dis(x, y). If dis(x, z) > 2, we can repeat the argument and find z′ ∈ F such that

z′ > x and dis(x, z′) < dis(x, z). Therefore, it must be the case that (r + 1, s+ 1) ∈ F . By symmetric

arguments, it can be shown that (r − 1, s− 1) ∈ F . So Condition 1 in Assumption 1′ is satisfied.

Next we show Condition 2. Suppose that x = (r, s) ∈ F , y = (r′, s′) ∈ F , r′ > r and s′ ≤ s. First,

we argue that there exists s′′ ≤ s such that (r + 1, s′′) ∈ F . If r′ = r + 1, we are done. If r′ > r + 1,

then consider
3
x+y
2

4
= (r1, s1). We have r′ > r1 > r and s1 ≤ s. By L-convexity, (r1, s1) ∈ F . If

r1 > r + 1, we can repeat the argument and find (r2, s2) ∈ F such that r1 > r2 > r and s2 ≤ s.

Therefore, eventually we have (r + 1, s′′) ∈ F for some s′′ ≤ s. Denote z = (r + 1, s′′). If s′′ < s,

consider
3
x+z
2

4
= (r + 1, s3). Then s′′ < s3 ≤ s. By L-convexity, (r + 1, s3) ∈ F . If s3 < s, we can

repeat the argument and find some s4 such that (r + 1, s4) ∈ F and s3 < s4 ≤ s. Therefore, we must

have (r+1, s) ∈ F . By symmetric arguments, it can be shown that (r′−1, s′) ∈ F . Finally, Condition

3 in Assumption 1′ can be shown in a similar way as the proof of Condition 2.

To show Assumption 2′, let D′
i ⊆ Di, (r, s) ∈ Si(Di) and (r′, s′) ∈ Si(D

′
i).

Suppose that r′ > r, s′ > 0 and s <
%%Di

%%. Since r′ > 0, by Assumption 3, there exists s1 such

that (r′, s1) ∈ Si(Di). Since r′ > r and s < |Di|, by Assumption 2, there exists s2 > s such that

(r′, s2) ∈ Si(Di). Then it follows from Condition 1 in Assumption 1′ that (r+1, s+1) ∈ Si(Di). This
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also implies that Si(Di) ∕= {(0, 0)}, and hence r ≥ ni. Then given that r′ > r ≥ ni, Si(D
′
i) ∕= {(0, 0)}

and there exists s3 such that (ni, s3) ∈ Si(D
′
i). Since r′ > ni and s′ > 0, by Assumption 2, there

exists s4 < s′ such that (ni, s4) ∈ Si(D
′
i). Then it follows from Condition 1 in Assumption 1′ that

(r′ − 1, s′ − 1) ∈ Si(D
′
i).

It remains to show Condition 2 in Assumption 2′. Suppose that r′ > r and s′ ≤ s. By Assumption

3, there exists s1 ≤ s′ such that (r′, s1) ∈ Si(Di). It follows from Condition 2 in Assumption 1′ that

(r + 1, s) ∈ Si(Di). Then, we want to show that (r, s′) ∈ Si(Di). This is true if s′ = s. Suppose

that s′ < s. Then consider (r′, s1) ∈ Si(Di) and (r, s) ∈ Si(Di), where r′ > r and s1 < s. By

repeated applications of Condition 3 in Assumption 1′, we have (r, s′) ∈ Si(Di). Finally, it can be

easily shown as before that r′ > r ≥ ni and hence there exists s2 such that (r, s2) ∈ Si(D
′
i). Given

that (r, s′) ∈ Si(Di) and s′ ≤ |D′
i|, by Assumption 3, there exists s3 ≥ s′ such that (r, s3) ∈ Si(D

′
i).

Since r′ > r and s′ ≤ s3, it follows from Condition 2 in Assumption 1′ that (r′ − 1, s′) ∈ Si(D
′
i).

We introduce new machinery to prove this theorem. In particular, we will construct an extended

problem in which each blood type has a replica and there are some new dummy agents. This extended

market with dummy agents and blood types will be helpful for accounting purposes as it will eliminate

the need to use the market clearing conditions as an exogenous constraint, which are used in the

definition of an allocation.

First, we treat the blood bank b as if it were a pseudo patient in the extended problem by introducing

a donor set for it. It has a set of (volunteer non-remunerated) donors Db, where for each blood type

X ∈ B the blood bank has vX donors.

Then, for each blood type X ∈ B, we construct a dummy blood type X̂. Define Ĉ(·) as follows: For
each X ∈ B,

Ĉ(X) = C(X) ∪ {Ŷ : Y ∈ C(X)} and Ĉ(X̂) = {X}.

For each X ∈ B, we construct a dummy patient iX̂ and her set of dummy donors DiX̂
, such that

βiX̂
= βd = X̂ for every d ∈ DiX̂

,

niX̂
=

%%DiX̂

%% =
!

i∈I

ni, and

niX̂
= 0.

Moreover, let her feasible schedule set be

SiX̂
(DiX̂

) =
"
(r, s) : 0 ≤ r ≤ niX̂

and s = r
#
.

For any problem P = 〈I, βI , n, n,D, βD, v〉, which has been simply denoted as D = (Di)i∈I , we use

D̂ =
+
D,Db, (DiX̂

)X∈B
,
to denote the extended problem after the blood bank is added as a pseudo

patient, its inventory is added as a donor set, and dummy blood types, patients, and donors are added

to the problem D.

Let Î = I ∪ {b} ∪ {iX̂}X∈B. From now on in this proof, we refer to each i ∈ Î as a patient (in

reality it can be a real patient, a dummy patient, or the blood bank) and each d ∈ ∪i∈ÎDi as a donor,
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who can be a real donor, dummy donor, or just a unit of blood component supplied by the blood bank.

Let D̂ = ∪i∈ÎDi be the set of donors in the extended problem.

Given an extended problem D̂, a(n) (auxiliary) matching is a function M : Î → 2D̂, where the

match of patient i, M(i), is denoted as Mi for every i ∈ Î by a slight abuse of notation, such that

1. Mi ∩Mj = ∅ for every i, j ∈ Î with i ∕= j and ∪i∈ÎMi = D̂,

2. for every i ∈ Î \ {b} and d ∈ Mi \Di, βd ∈ Ĉ(βi),

3. for every i ∈ Î \ {b}, (
%%Mi \Di

%%,
%%Di \Mi

%%) ∈ Si(Di).

In a matching M , each patient i ∈ Î is matched with a donor set Mi that we refer to as the match

of i. Every allocation α ∈ A in a problem D is associated with a matching M in its extended problem

D̂ and vice versa as we prove in a claim in the proof of Lemma 4 below. In particular, the match of

patient i ∈ Î \ {b} consists of two parts.

• The first part Mi \Di is the set of donors that she receives blood from. These donors necessarily

belong to other patients or the blood bank in our definition of a matching. Thus, they have

to possess one of the compatible blood types with patient i (Condition 2 in the definition of a

matching).

• The second part Mi ∩Di is the set of her own donors who end up not donating to anybody. We

assume that they are matched back with the patient in a matching.

This definition implies that a patient never receives blood from her own donors in a matching of

an extended problem. Although in an allocation this may not be the case, we introduced the dummy

patients and their donors to account for this possibility: if in an allocation a patient i ∈ Î \ {b} is

receiving blood from one of her own donors, this is represented in a matching in the following manner:

• this donor d ∈ Di is matched with the dummy patient induced by her blood type, iβ̂d
,

• her patient i is matched with one of the dummy donors of this dummy patient, i.e., with some

d̂ ∈ Dj where j = iβ̂d
, in return.

As a result, the donors of patient i ∈ Î \ {b} who actually donate in a matching M are Di \Mi.

Therefore, (
%%Mi \Di

%%,
%%Di \Mi

%%) has to be a feasible schedule in Si(Di) (Condition 3 in the definition

of a matching).

Two matchingsM andM ′ are welfare equivalent if
%%Mi\Di

%% =
%%M ′

i \Di

%% and
%%Di\Mi

%% =
%%Di\M ′

i

%%
for every i ∈ Î \ {b}.

The concept of a matching will be useful for simplicity and tractability in our proofs, as we will

be able to convert the match of a patient alone to the feasible schedule the patient is allocated

without needing to check how many of her donors are matched. Moreover, we eliminate the need to

check whether a matching satisfies market clearing condition: by representing an allocation through a

matching, we can know keep track of which patient is matched which donor, and by construction of a

matching, the matches have to be represented through feasible schedules.
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The analogue of a mechanism in extended problems is a rule: A rule is a function F that maps

each extended problem D̂ to a matching F (D̂). A rule F is donor monotonic if for any D,D′ ∈ D
and i ∈ I such that D′

i ⊆ Di and D′
j = Dj for every j ∈ I \ {i}, we have43

%%Fi(D̂) \Di

%% ≥
%%Fi(D̂′) \D′

i

%%.

We define the sequential targeting rules for extended problems by extending sequential targeting

mechanisms. Let {Nk}k̄k=1, a sequence of nonempty subsets of Î \ {b}, k̄ ≥ 2, be the target sets,

and τ : {2, ..., k̄} → {max,min} be the target function. We define a similar sequential targeting

procedure as before, for any extended problem D̂: Let M0 be the set of all the matchings for D̂;

At Step 1, let M1 ⊆ M0 be the subset of matchings that maximize the amount of blood received by

the patients in N1; generally, at Step k, let Mk ⊆ Mk−1 be the subset of matchings in Mk−1 that

maximize the amount of blood received by the patients in Nk if τ(k) = max, and Mk ⊆ Mk−1 be

the subset of matchings in Mk−1 that minimize the amount of blood supplied by the patients in Nk

if τ(k) = min. As before, we make the same two assumptions jointly on the target sets and target

function. First, for every k ∈ {2, ..., k̄}, if τ(k) = min, then for any i ∈ Nk there exists k′ < k such

that i ∈ Nk′ and τ(k′) = max. Second, k̄ ≥ 2
%%Î \ {b}

%% and the last 2
%%Î \ {b}

%% sets, {Nk}k̄
k=k̄−2

%%Î\{b}
%%+1

,

are each a singleton such that each patient i ∈ Î \{b} appears exactly twice as Nk = Nℓ = {i} for some

distinct k, ℓ ≥ k̄ − 2
%%Î \ {b}

%%+ 1 with one target as τ(k) = max and the other target as τ(ℓ) = min.

We say that F is a sequential targeting rule, with respect to {Nk}k̄k=1 and τ , if for each D̂, F

selects a matching F (D̂) from the outcome set Mk̄ of the sequential targeting procedure for D̂.

Given any problem D, we say an allocation α for D and a matching M for D̂ are welfare equiva-

lent if for every i ∈ I, α(i) =
%%Mi \Di

%% and
*

d∈Di
α(d) =

%%Di \Mi

%%. The following result implies that

to prove Theorem 2, it is sufficient to show that the sequential targeting rules are donor monotonic.

Lemma 2. For every sequential targeting mechanism f , there is a sequential targeting rule F such

that for every D ∈ D, f(D) and F (D̂) are welfare equivalent.

Proof of Lemma 2. We first prove the following claim:

Claim. For every allocation α for D, there is a matching M for D̂ such that α and M are welfare

equivalent. For every matching M for D̂, there is an allocation α for D such that M and α are welfare

equivalent.

Proof. We prove the claim in two parts.

Part 1. Let α be an allocation for D. Consider the extended problem D̂, and any X ∈ B. Since%%DiX̂

%% =
*

j∈I nj, there exists a collection of disjoint donor sets
"
M X̂

j

#
j∈I:X∈C(βj)

such that for every

j ∈ I with X ∈ C(βj),

1. M X̂
j ⊆ DiX̂

, and

2.
%%M X̂

j

%% = αX(j).

43Note that we do not consider manipulations by the dummy patients as their donor sets are fixed.
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Since
*

j∈I:X∈C(βj)
αX(j) ≤ vX +

*
d∈∪j∈IDj :βd=X α(d), there exists a set of donors MX

iX̂
⊆ ∪j∈I∪{b}Dj

such that

1. βd = X for every d ∈ MX
iX̂
,

2. α(d) = 1 for every d ∈ MX
iX̂

\Db, and

3.
%%MX

iX̂

%% =
*

j∈I:X∈C(βj)

%%M X̂
j

%%.

Then we construct a matching M for D̂ as follows:

• For each j ∈ I, Mj =
+
∪X∈C(βj) M

X̂
j

,
∪ {d ∈ Dj : α(d) = 0},

• for each X ∈ B, MiX̂
= MX

iX̂
∪
5
DiX̂

\
+
∪j∈I:X∈C(βj) M

X̂
j

,6
, and

• Mb = D̂ \
+
(∪j∈IMj) ∪ (∪X∈BMiX̂

)
,

Therefore, each patient j ∈ I is matched with αX(j) dummy donors of type X̂ for every X ∈ C(βj),

and j’s own donor d is matched with j if and only if α(d) = 0. Moreover, for each dummy patient iX̂ ,

the number of X donors from I ∪ {b} matched with her is equal to the number of her X̂ donors that

are not matched with her. Hence, M is a well-defined matching for D̂ and it is welfare equivalent to

α.

Part 2. On the other hand, let M be a matching for D̂. Construct α as follows:

• For each j ∈ I and X ∈ C(βj), let αX(j) =
%%"d ∈ Mj \Dj : βd ∈ {X, X̂}

#%%, and

• for each j ∈ I and d ∈ Dj, let α(d) = 0 if d ∈ Mj, and α(d) = 1 if d /∈ Mj.

If α is an allocation for D, then it is straightforward to show that it is welfare equivalent to M . To

show that α is a well-defined allocation, we only need to verify Condition 1 in the definition of an

allocation: for any blood type X ∈ B,
!

j∈I:X∈C(βj)

αX(j) =
!

j∈I:X∈C(βj)

%%{d ∈ Mj \Dj : βd = X}
%%+

!

j∈I:X∈C(βj)

%%Mj ∩DiX̂

%%

≤
!

j∈I:X∈C(βj)

%%{d ∈ Mj \Dj : βd = X}
%%+

%%{d ∈ MiX̂
: βd = X}

%%

≤
!

j∈I

%%{d ∈ Dj \Mj : βd = X}
%%+ vX

=
!

d∈∪j∈IDj :βd=X

α(d) + vX

where the first inequality follows from the construction of SiX̂
(DiX̂

), as well as the fact that Ĉ(X̂) =

{X}.

Let f be a sequential targeting mechanism with respect to {Nk}k̄k=1 and τ . Then there exists a

sequential targeting rule F with respect to {N1, ..., Nk̄, Nk̄+1, ..., Nk̄+t} where t = 2(
%%Î\{b}

%%−
%%I
%%) = 2

%%B
%%
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accounts for the dummy patients introduced in the extended problem who appear themselves twice at

the end of the rule as target sets, and a target function τ ′, where τ ′(k) = τ(k) for every k ∈ {2, ..., k̄}.
We want to show that for any D ∈ D, f(D) and F (D̂) are welfare equivalent.

Assume to the contrary, for some D ∈ D, f(D) and F (D̂) are not welfare equivalent. By the

Claim, there is an allocation α for D that is welfare equivalent to F (D̂), and there is a matching M

for D̂ that is welfare equivalent to f(D). Then α and f(D) are not welfare equivalent. It follows that

at some step k ∈ {1, ..., k̄} of the sequential targeting procedure for D, α ∈ Ak−1 and α /∈ Ak. But

this implies that at step k of the sequential targeting procedure for D̂, M ∈ Mk−1 and F (D̂) /∈ Mk,

contradiction.

The proof of donor monotonicity of sequential targeting rules relies on comparing two matchings

for two extended problems and constructing two new ones based on the differences of the matches

of patients feasible for the two problems, respectively. We introduce the following graph theoretical

concepts based on finding these differences:

Let D̂ and D̂′ be two extended problems such that D′
i ⊆ Di for every real patients i ∈ I, D′

iX̂
= DiX̂

for every X ∈ B and D′
b = Db. Given a matching M for D̂ and a matching M ′ for D̂′, a cycle from

M to M ′ is a directed graph of patients and donors in which each patient/donor points to the next

donor/patient and is denoted as a list C = (i1, d1, ..., it̄, dt̄), t̄ ≥ 2, such that for each t ∈ {1, ..., t̄} (let

it̄+1 = i1 and d0 = dt̄):

1. it ∈ Î, dt ∈ M ′
it \Mit and dt ∈ Mit+1 .

2. If it ∕= b, dt−1 ∈ Dit , and dt /∈ Dit , then

(
%%Mit \Dit

%%+ 1,
%%Dit \Mit

%%+ 1) ∈ Sit(Dit) and (
%%M ′

it \D
′
it

%%− 1,
%%D′

it \M
′
it

%%− 1) ∈ Sit(D
′
it).

3. If it ∕= b, dt−1 /∈ Dit , and dt ∈ Dit , then

(
%%Mit \Dit

%%− 1,
%%Dit \Mit

%%− 1) ∈ Sit(Dit) and (
%%M ′

it \D
′
it

%%+ 1,
%%D′

it \M
′
it

%%+ 1) ∈ Sit(D
′
it).

4. If it = it′ = i for some t′ ∕= t, then either

• dt, dt−1 ∈ Di and dt′ , dt′−1 /∈ Di, or

• dt, dt−1 /∈ Di and dt′ , dt′−1 ∈ Di.

In a cycle C, each patient points to a donor she is matched with under M ′ but not under M , while

each donor points to the patient that she is matched with under M . Note that each donor in a cycle

must be both in the extended problems D̂ and D̂′. Starting from the base matching M , we assign

each patient in the cycle the donor she points to (who is one of her M ′ matches) instead of the donor

she is pointed by (who is one of her M matches): That is for each t, add dt to Mit and remove dt−1

from Mit . Condition 1 above guarantees that this leads to a well-defined function, which we denote as

M + C and satisfies Conditions 1 and 2 in the definition of a matching. The patients involved in the

cycle may not be distinct. But Condition 4 above says that if one patient appears twice in the cycle,
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Figure 10: Suppose I = {1, 2, 3} with β1 = A, β2 = B and β3 = O. Suppose that D̂ = D̂′, and the donor
sets are given by D1 = {B1}, D2 = {A2, O2}, D3 = {B3} and Db = ∅. Every patient’s maximal need is one
unit and the exchange rate is one-for-one. Consider the following two matchings M and M ′: M1 = {B1},
M2 = {A2, B3}, M3 = {O2} and Mb = ∅; M ′

1 = {A2}, M ′
2 = {O2, B1}, M ′

3 = {B3} and M ′
b = ∅. The above

graph gives a cycle C from M to M ′, and we have M + C = M ′ and M ′ − C = M . Note that Patient 2
cannot form a cycle with only Patient 1 or Patient 3.

then her schedule is not affected by the exchanges, i.e., the amount of blood received and the amount

of blood supplied remain the same. Note that this condition also implies that a patient cannot appear

more than twice in a cycle. Finally, given that every patient who is matched with a different schedule

under M +C than under M either receives one more unit and supplies one more unit, or receives one

less unit and supplies one less unit. In particular, Conditions 2 and 3 above imply Condition 3 in the

definition of a matching. Therefore M +C is a matching for D̂. Similarly, we could instead start from

M ′ and assign each patient in the cycle the donor she is pointed by (one of her M matches) instead

of the donor she points to (one of her M ′ matches): That is for each t, add dt−1 to M ′
it and remove

dt from M ′
it . These exchanges also lead to a well-defined matching for D̂′, denoted as M ′ − C. See

Figure 10 for an example of a cycle and how new matchings are constructed using this cycle.

It is wise to note that the cycle addition or removal operations do not necessarily make all patients

involved better off or worse off together. They will be used in the proof to construct new matchings

that are closer to each other in terms of matches of patients.

Another concept similar to a cycle is a chain. A chain from M to M ′ is a directed graph of

patients and donors such that each patient/donor points to the next donor/patient in the chain and

is represented as a list C = (i1, d1, ..., it̄−1, dt̄−1, it̄), t̄ ≥ 2, such that

1. For every t ∈ {1, 2, . . . , t̄}, it ∈ Î such that if it = b then t ∈ {1, t̄}, and i1 ∕= it̄.

2. For every t ∈ {1, 2, . . . , t̄− 1}, dt ∈ M ′
it \Mit and dt ∈ Mit+1 .

3. For every t ∈ {2, . . . , t̄− 1}, if dt−1 ∈ Dit and dt /∈ Dit , then

(
%%Mit \Dit

%%+ 1,
%%Dit \Mit

%%+ 1) ∈ Sit(Dit) and (
%%M ′

it \D
′
it

%%− 1,
%%D′

it \M
′
it

%%− 1) ∈ Sit(D
′
it).

4. For every t ∈ {2, . . . , t̄− 1}, if dt−1 /∈ Dit , and dt ∈ Dit , then

(
%%Mit \Dit

%%− 1,
%%Dit \Mit

%%− 1) ∈ Sit(Dit) and (
%%M ′

it \D
′
it

%%+ 1,
%%D′

it \M
′
it

%%+ 1) ∈ Sit(D
′
it).
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5. If it̄ ∕= b, then

(
%%Mit̄ \Dit̄

%%,
%%Dit̄ \Mit̄

%%+ 1) ∈ Sit̄(Dit̄) and (
%%M ′

it̄
\D′

it̄

%%,
%%D′

it̄
\M ′

it̄

%%− 1) ∈ Sit̄(D
′
it̄
)

when dt̄−1 ∈ Dit̄ , and

(
%%Mit̄ \Dit̄

%%− 1,
%%Dit̄ \Mit̄

%%) ∈ Sit̄(Dit̄) and (
%%M ′

it̄
\D′

it̄

%%+ 1,
%%D′

it̄
\M ′

it̄

%%) ∈ Sit̄(D
′
it̄
)

when dt̄−1 /∈ Dit̄ .

6. If i1 ∕= b, then

(
%%Mi1 \Di1

%%,
%%Di1 \Mi1

%%− 1) ∈ Si1(Di1) and (
%%M ′

i1
\D′

i1

%%,
%%D′

i1
\M ′

i1

%%+ 1) ∈ Si1(D
′
i1
)

when d1 ∈ Di1 , and

(
%%Mi1 \Di1

%%+ 1,
%%Di1 \Mi1

%%) ∈ Si1(Di1) and (
%%M ′

i1
\D′

i1

%%− 1,
%%D′

i1
\M ′

i1

%%) ∈ Si1(D
′
i1
)

when d1 /∈ Di1 .

7. If it = it′ = i for some t, t′ such that 1 < t < t′ < t̄, then either

• dt, dt−1 ∈ Di and dt′ , dt′−1 /∈ Di, or,

• dt, dt−1 /∈ Di and dt′ , dt′−1 ∈ Di.

If it̄ = it = i for some t such that 1 < t < t̄, then either

• dt, dt−1 ∈ Di and dt̄−1 /∈ Di, or

• dt, dt−1 /∈ Di and dt̄−1 ∈ Di.

If i1 = it = i for some t such that 1 < t < t̄, then either

• dt, dt−1 ∈ Di and d1 /∈ Di, or

• dt, dt−1 /∈ Di and d1 ∈ Di.

A chain differs from a cycle as the last element of a chain is a patient and she does not point to any

donor. We refer to this patient, it̄, as the head of the chain. As a result there is no donor pointing

back to i1 whom we refer to as the tail of the chain. The blood bank b can appear only as the tail or

the head of a chain and cannot be anywhere else (Condition 1).

The definition of a chain takes care of special considerations for the tail and head agents, while the

other conditions are similar to that of a cycle (Conditions 2, 3, 4, and 7). The other conditions make

sure that if we remove a donor without adding one from the match of the head patient under M , then

the resulting match will be feasible (or add a donor without removing one under M ′) (Condition 5).

The corresponding condition for the tail makes sure that if we add a donor without removing one from

the match of the tail patient under M , then the resulting match will be feasible (or remove a donor
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Figure 11: Suppose I = {1, 2, 3} with β1 = β2 = A and β3 = B. The donor sets in two extended problems
D̂ and D̂′ are given by D1 = {B1}, D′

1 = ∅, D2 = D′
2 = ∅, D3 = D′

3 = {A3} and Db = {Ab, A
′
b, Bb}. Every

patient’s maximal need is two units and the feasible schedules are such that the amount supplied does not
exceed the amount received. LetM be a matching for D̂ such thatM1 = {A′

b}, M2 = {Ab}, M3 = {A3, B1, Bb}
and Mb = ∅. Let M ′ be a matching for D̂′ such that M ′

1 = {Ab, A
′
b}, M ′

2 = {A3}, M ′
3 = {Bb} and M ′

b = ∅.
In this case, there does not exist a cycle from M to M ′, but the above graph gives a chain C from M to M ′.
Then M + C is a matching for D̂, where (M + C)1 = {Ab, A

′
b}, (M + C)2 = {A3}, (M + C)3 = {B1, Bb}

and (M + C)b = ∅. Moreover, M ′ − C is a matching for D̂′, where (M ′ − C)1 = {A′
b}, (M ′ − C)2 = {Ab},

(M ′ − C)3 = {A3, Bb} and (M ′ − C)b = ∅.

without adding one under M ′) (Condition 6). Condition 7 also ensures that the tail/head patient can

also appear at most twice in the chain (but not both as tail and head simultaneously).

Similar to the case of a cycle, given a chain C, we can construct a new matching, denoted by

M +C, for D̂ as follows: starting from M , for each t such that 1 ≤ t ≤ t̄−1, remove dt from Mit+1 and

add it to Mit . We can also construct a new matching, denoted by M ′ − C, for D̂′ as follows: starting

from M ′, for each 1 ≤ t ≤ t̄− 1, remove dt from M ′
it and add it to M ′

it+1
. See Figure 11 for an example

of a chain and how new matchings are constructed using this chain.

Unlike in a cycle addition or removal, the number of donors that a patient is matched with does

only stay the same for patients who are neither the tail nor head of a chain. The head gains an

additional donor after a chain addition and loses one donor after a chain removal. On the other hand,

the tail patient loses one matched donor after a chain addition while she gains an additional matched

donor after a chain removal.

Cycle operations would be all we needed if we were dealing with exogenous exchange rate of one unit

donated per one unit received. However, as our model is more general with endogenously determined

exchange rates, chain operations will play an important role in our proof.

The following observation is straightforward to show from the construction.

Observation 1. Let C be a cycle or a chain from matching M to matching M ′. For every i ∈ Î, we

have %%(M + C)i \Di

%%−
%%Mi \Di

%% =
%%M ′

i \D′
i

%%−
%%(M ′ − C)i \D′

i

%%,

and %%Di \ (M + C)i
%%−

%%Di \Mi

%% =
%%D′

i \M ′
i

%%−
%%D′

i \ (M ′ − C)i
%%.

We prove three lemmata which prove Theorem 2. The first lemma is the most crucial one that

derives the technical result behind the proof of the theorem.

Lemma 3. Consider any D,D′ ∈ D and i ∈ I such that D′
i ⊆ Di,

%%Di \ D′
i

%% = 1, and D′
j = Dj for

every j ∈ I \ {i}. If M is a matching for D̂, M ′ is a matching for D̂′, and
%%M ′

i \D′
i

%% >
%%Mi \Di

%%, then
there is a cycle or a chain from M to M ′.
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Patients/Bank: 1 (A) 2 (A) 3 (B) 4 (O) 5 (AB) 6 (A) 7 (O) Bank

Donors: B1 B′
1 AB1 O1 B2 A3 A4 A5 O5 AB6 A7 Ab A′

b Ob

(ni, ni) : (0, 3) (1, 3) (0, 3) (0, 3) (0, 3) (0, 3) (0, 3)

M B1 AB1 A7 A′
b Ab A3 A4 Ob A5 O5 AB6 O1 B′

1 B2

M ′ B′
1 A7 A′

b Ab B2 A3 A4 B1 Ob AB1 AB6 A5 O5 ∅
M ′′ B1 O1 A7 A′

b Ab A3 A4 Ob A5 AB1 AB6 O5 B′
1 B2

Table 1: The patients, blood bank, their donors, and the patients’ minimum and maximum demand for
Example 5 . Each patient is denoted by his index number, we also list his blood type next to his index
number. Each donor is denoted by her blood type and her paired patient is denoted by a subscript next to
her blood type. Each blood type is Rh D+. We only consider ABO-identical transfusion. When Patient 1
is truthful about his donor set matching M is obtained. When he conceals his donor O1, matching M ′ is
obtained and he receives more blood. M ′′ is another matching that we explain in the example.

The proof of this lemma is rather involved. We illustrate the ideas behind the proof using an

example first. The example only demonstrates substantially different cases in the proof of the lemma

used in the construction of a cycle or a chain, as some of the considered cases use similar constructions.

Example 5. Suppose that the set of patients is I = {1, ..., 7}. The first row in Table 1 gives the blood

type of each patient. The second row gives the donor set of each patient as well as the blood bank,

where Xi ∈ Di (or X
′
i ∈ Di) is a type-X donor of patient i, and Xb (or X

′
b) is a type-X donor from

the bank. All blood types are Rh D+. We consider ABO-identical transfusion. Suppose that ni = 3

for every patient i, n2 = 1 and ni = 0 for every patient i ∕= 2.

Suppose that Patient 1 conceals his donor O1.
44 Let

D′
1 = D1 \ {O1},

and D′
i = Di for every patient i ∕= 1. Finally, for each patient i and each donor set D′′

i , let

Si(D
′′
i ) = {(r, s) : ni ≤ r ≤ ni, 0 ≤ s ≤ |D′′

i |, s ≤ r}.

The last three rows in the table specify three matchings M , M ′, and M ′′, where M and M ′′ are

matchings for D̂ and M ′ is a matching for D̂′.45 Given that Patient 1 receives more units of blood

under M ′ than under M , we discuss how to find a cycle or a chain from M to M ′ using an iterative

“pointing procedure from M to M ′” that we formally define in the proof of Lemma 3. At each step of

the procedure, a patient points to a donor that he is matched with under M ′ but not under M , then

this donor points to the patient that she is matched with under M .

We start with the patient who shrank his donor set, Patient 1. Since he receives more blood at M ′,

there is a donor in M ′ \M that is not his own. He points to one arbitrary donor, who is not his own,

in this set. We assume Patient 1 first points to Ab. Then Ab points to Patient 2, who she is matched

with under M .

44Assume that the patients are male, and the donors are female in this example.
45For simplicity dummy patients and dummy donors are omitted.
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Figure 12: A cycle and a chain from matching M to M ′ found using the pointing procedure from M to M ′

(illustrating Case 2 and Case 3 in the proof of Lemma 3, respectively).

Although B2 is a donor matched with Patient 2 at M ′ but not at M , we don’t let Patient 2 point

to B2, because

(
%%M2 \D2

%%− 1,
%%D2 \M2

%%− 1) = (0, 0) /∈ S2(D2),

that is if we eventually execute this supposed swap of donors to obtain a new matching from M , the

outcome will not be a feasible matching (i.e., the schedule of Patient 2 is not in his feasible schedule

set). Generally, when a patient is pointed by a donor that is not his own (respectively, his own donor),

we always first check whether this patient can point to a donor that is not his own (respectively, his

own donor), such that the exchanges in the cycle or chain would not change the patient’s schedule.

Therefore, we let Patient 2 point to A3 or A4. Suppose that Patient 2 points to A3, then A3 points

to Patient 3. As discussed before, generally, when a patient is pointed by his own donor, we check

whether he can point to his own donor. If this is not possible, then he must donate more blood at M ′

and there are two possible cases:

• If he also receives more blood under M ′, then we let him point to a donor that is not his own so

that, by Assumption 1′, Condition 2 in the definition of a cycle, or Condition 3 in the definition

of a chain is satisfied.

• If he does not receive more blood under M ′, then we stop here and by Assumption 1′, he will be

the head of a chain (i.e., Condition 5 in the definition of a chain is satisfied).

In the example, Patient 3 cannot point to his own donor and he receives more blood under M ′, so we

let him point to B1. Then B1 points to Patient 1, and a cycle is found: see the cycle in Figure 12 -

this construction corresponds to Case 2 in the proof of Lemma 3.

Recall that Patient 2 could also point to A4. If Patient 2 points to A4, then A4 points to Patient

4. Given that Patient 4 cannot point to his own donor and he does not receive more blood at M ′,

we have to stop at Patient 4. In this case, a chain is identified as in the graph in Figure 12 - this

construction corresponds to Case 3 in the proof of Lemma 3. Note that Condition 6 in the definition

of a chain is satisfied for Patient 1. This follows from Assumption 2′ and the fact that his schedules

under M and M ′ are (2, 2) and (3, 2) respectively.

Generally, according to Assumption 2′, the fact that the manipulating patient receives more blood

but does not donate more blood under M ′ implies that he can sometimes be the tail of a chain.
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However, if he both receives and donates more blood under M ′, then Condition 6 in the definition of

a chain may not be satisfied. To further discuss this case, we modify the example slightly: Suppose

that B′
1 is matched with the bank instead of Patient 1 under M ′, and we change the feasible schedules

of Patient 1 such that

S1(D
′′
1) = {(r, s) : 0 ≤ r ≤ n1, 0 ≤ s ≤ |D′′

1 |, s = r}

for any D′′
1 . Then the list (1, Ab, 2, A4, 4) in Figure 12 is no longer a chain from M to M ′ since

(
%%M1 \D1

%%+ 1,
%%D1 \M1

%%) = (3, 2) /∈ S1(D1).

In this case we have to invoke a “backward” pointing procedure. That is, pointing occurs from

M ′ to M , and at each step a patient points to a donor that he is matched with under M but not

under M ′, while the donor points to the patient that she is matched with under M ′. Then the edge

orientation will be reversed to construct a chain or a cycle from M to M ′. This corresponds to Case

4 in the proof of Lemma 3.

We still start the procedure with Patient 1. As he donates less blood under M , there is a donor in

M1 \M ′
1 that is his own donor. At the beginning of the pointing procedure from M ′ to M , Patient 1

points to such a donor. Assume that Patient 1 points to AB1. Then AB1 points to Patient 5. Similar

to the previous construction, when a patient is pointed by a donor that is not his own, we first check

whether he can point to a donor that is not his own. If this is not possible, then he must receive less

blood under M and there are two cases:

• If he also donates less blood under M , let him point to a donor of his own.

• If he does not donate less blood under M , we stop here.

In the example, Patient 5 cannot point to a donor that is not his own and he donates less blood under

M . So Patient 5 points to A5 or O5. Suppose that Patient 5 points to A5, then A5 points to Patient

6, Patient 6 points to AB6, and AB6 points to Patient 5. After reversing the edge orientation, a cycle

from M to M ′ is found: see the first cycle in Figure 13 - this construction corresponds to Case 4.1 in

the proof of Lemma 3.
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Figure 13: A cycle from M to M ′ and another directed graph that is a pseudo-cycle from M to M ′ in
the modified example found using the pointing procedure from M ′ to M . The orientation of the edges are
reversed at the end so that the cycle and pseudo-cycle are from M to M ′ (illustrating Case 4.1 and Case 4.5
in the proof of Lemma 3, respectively).

On the other hand, if Patient 5 points to O5, then O5 points to Patient 7, who points to the

concealed donor O1. Let O1 point to Patient 1. After reversing the edge orientation, we obtain a list

(1, O1, 7, O5, 5, AB1), which is the second graph in Figure 13. However, this is not a cycle from M to

M ′, we refer to it as a pseudo-cycle. Case 4.5 in the proof of Lemma 3 deals with this type of situation.

We can still carry out the exchanges in the list based on M , and this leads to the matching M ′′ for

D̂. Since Patient 1’s schedules under M ′′ and M are the same, we can repeat the previous pointing

procedures and identify a cycle or a chain C from M ′′ and M ′. Note that as the donor O1 is matched

with Patient 1 under M ′′, she will not appear in the pointing procedures. Finally, we conclude the

proof by showing that C is also a cycle or a chain from M to M ′.

We are ready to state the proof of Lemma 3.

Proof of Lemma 3. Consider two problems D,D′ ∈ D such that for some patient i1 ∈ I, D′
i1
⊆ Di1 ,%%Di1\D′

i1

%% = 1, andD′
i = Di for every i ∈ I\{i1}. Suppose thatM is a matching for D̂,M ′ is a matching

for D̂′ and
%%M ′

i1
\D′

i1

%% >
%%Mi1 \Di1

%%. Then there exists a donor d1 /∈ Di1 such that d1 ∈ M ′
i1
\Mi1 .

We iteratively construct a finite directed graph using matchings M and M ′ of patients and donors

starting with patient i1, which is denoted as (i1, d1, i2, d2, . . .), ending either with a patient or a donor

and each node in the list points to the next node.

We refer to this as the pointing procedure from M to M ′:

Step 1: Let i1 point to d1, and d1 point to i2 ∈ Î such that d1 ∈ Mi2 . If i2 = b then we

stop at i2 in Step 1, otherwise we continue.

Step t ≥ 2: At the end of Step t − 1, patient it ∈ Î \ {i1, b} is pointed by dt−1 where

dt−1 ∈ Mit \M ′
it .
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1. If dt−1 ∈ Dit : We have two cases:

(a) If there exists d ∈ Dit such that d ∈ M ′
it \ Mit : Then at Step t, let it point to

dt = d, and dt point to it+1 such that dt ∈ Mit+1 .
46

(b) If there does not exist d ∈ Dit such that d ∈ M ′
it \ Mit : Then

%%D′
it \ M ′

it

%% >%%Dit \Mit

%%. We have two subcases:

i. If
%%M ′

it \D′
it

%% >
%%Mit \Dit

%%: Then there exists dt /∈ Dit such that dt ∈ M ′
it \Mit .

At Step t, let it point to dt, and dt point to it+1 such that dt ∈ Mit+1 .

ii. If
%%M ′

it \D′
it

%% ≤
%%Mit \Dit

%%: Then it does not point and stop at it at Step t−1.

2. If dt−1 /∈ Dit : We have two cases:

(a) If there exists d /∈ Dit such that d ∈ M ′
it \ Mit : Then at Step t, let it point to

dt = d, and dt point to it+1 such that dt ∈ Mit+1 .

(b) If there does not exist d /∈ Dit such that d ∈ M ′
it \ Mit : Then

%%M ′
it \ D′

it

%% <%%Mit \Dit

%%. We have two subcases:

i. If
%%D′

it \M ′
it

%% <
%%Dit \Mit

%%: Then there exists dt ∈ Dit such that dt ∈ M ′
it \Mit .

At Step t, let it point to dt, and dt point to it+1 such that dt ∈ Mit+1 .

ii. If
%%D′

it \M ′
it

%% ≥
%%Dit \Mit

%%: Then it does not point and stop at it at Step t−1.

If dt is constructed, it = it /∈ {i1, b} for some t < t and neither

• dt, dt−1 ∈ Dit and dt, dt−1 /∈ Dit , nor

• dt, dt−1 /∈ Dit and dt, dt−1 ∈ Dit

holds, then stop at donor dt at Step t and remove it+1 from the graph construction.

If patient it+1 ∈ {i1, b}, then stop at it+1 at Step t.

Otherwise, continue with Step t+ 1.

Note that, according to the above construction, it ∕= it+1 for any t. Moreover, the procedure stops

under four circumstances:

• when some i /∈ {i1, b} has appeared before, and she is pointed by and points to her own donors in

one instance, and is pointed by and points to donors who are not her own in the other instance,

• when i1 is pointed to,

• when b is pointed to,

• when some i /∈ {i1, b} does not point.

46Generally for each t ≥ 1, such it+1 always exists, since dt is a donor in the extended problem D̂.
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The last circumstance implies that any patient can be pointed at most three times in the procedure.

Hence, the procedure always stops in a finite number of steps.

We consider the following four cases based on these circumstances. Case 1 and Case 2 cover the

first two circumstances in order and show the existence of a cycle in each case. Case 3 covers the third

and the fourth circumstances together when i1 does not supply more blood under M ′ than M and

shows the existence of a chain. Finally, Case 4 covers the third and the fourth circumstances together

when i1 supplies more blood under M ′ than M and shows the existence of a cycle or a chain. This is

the most involved case and we will handle it the last.

Case 1. The procedure stops at dt̄ at Step t̄.

Then for some t < t̄, it = it̄ /∈ {i1, b} and neither of the following is true:

1. dt, dt−1 ∈ Dit and dt̄, dt̄−1 /∈ Dit .

2. dt, dt−1 /∈ Dit and dt̄, dt̄−1 ∈ Dit .

We show that (it, dt, . . . , it̄−1, dt̄−1) is a cycle from M to M ′.

First, for any t such that t < t ≤ t̄ − 1, it /∈ {i1, b}, since otherwise the procedure stops at it

at Step t − 1. It follows that Dit = D′
it for every t such that t ≤ t ≤ t̄ − 1. By the construction,

Condition 1 in the definition of a cycle is satisfied. Next, we show Condition 2 and Condition 3. First,

consider any t such that t < t ≤ t̄ − 1. If dt−1 ∈ Dit and dt /∈ Dit , then by the construction, we have%%M ′
it \D′

it

%% >
%%Mit \Dit

%% and
%%D′

it \M ′
it

%% >
%%Dit \Mit

%%. Since

(
%%Mit \Dit

%%,
%%Dit \Mit

%%) ∈ Sit(Dit) and (
%%M ′

it \D
′
it

%%,
%%D′

it \M
′
it

%%) ∈ Sit(D
′
it) = Sit(Dit),

it follows from Assumption 1′ that

(
%%Mit \Dit

%%+ 1,
%%Dit \Mit

%%+ 1) ∈ Sit(Dit) and (
%%M ′

it \D
′
it

%%− 1,
%%D′

it \M
′
it

%%− 1) ∈ Sit(D
′
it).

Similarly, if dt−1 /∈ Dit and dt ∈ Dit , then by the construction we have
%%M ′

it \D′
it

%% <
%%Mit \Dit

%% and%%D′
it \M ′

it

%% <
%%Dit \Mit

%%. It follows from Assumption 1′ that

(
%%Mit \Dit

%%− 1,
%%Dit \Mit

%%− 1) ∈ Sit(Dit) and (
%%M ′

it \D
′
it

%%+ 1,
%%D′

it \M
′
it

%%+ 1) ∈ Sit(D
′
it).

Second, consider it. Suppose that dt̄−1 ∈ Dit and dt /∈ Dit . Then either dt−1 ∈ Dit or dt̄ /∈ Dit , as the

procedure stops at the donor dt̄. Since we have either

• dt̄−1 ∈ Dit and dt̄ /∈ Dit , or,

• dt−1 ∈ Dit and dt /∈ Dit ,

by the construction,

%%M ′
it \D

′
it

%% >
%%Mit \Dit

%% and
%%D′

it \M
′
it

%% >
%%Dit \Mit

%%.
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Then by Assumption 1′,

(
%%Mit \Dit

%%+ 1,
%%Dit \Mit

%%+ 1) ∈ Sit(Dit) and (
%%M ′

it \D
′
it

%%− 1,
%%D′

it \M
′
it

%%− 1) ∈ Sit(D
′
it).

That is, Condition 2 in the definition of a cycle is satisfied for it. By similar arguments, it can be

shown that Condition 3 is also satisfied for it.

It remains to show Condition 4. If it = it′ and t < t < t′ ≤ t̄− 1, then either

• dt, dt−1 ∈ Dit and dt′ , dt′−1 /∈ Dit , or

• dt, dt−1 /∈ Dit and dt′ , dt′−1 ∈ Dit ,

since otherwise the procedure stops at dt′ at Step t′. Finally, suppose that it = it and t+1 < t < t̄−1.

Since the procedure does not stop at dt at Step t, we have either

(i) dt, dt−1 ∈ Dit and dt, dt−1 /∈ Dit , or,

(ii) dt, dt−1 /∈ Dit and dt, dt−1 ∈ Dit .

Consider (i) first. Recall that it = it = it̄. If dt̄−1 /∈ Dit , then by the construction of the pointing

procedure fromM toM ′, dt /∈ Dit implies that there exists a donor inM ′
it\Mit that is not her own, and

thus, she should again point to such a donor when she repeats for the third time as it̄: dt̄ /∈ Dit . So we

have dt̄, dt̄−1 /∈ Dit and dt, dt−1 ∈ Dit , which contradicts Case 1’s assumption. Therefore, dt, dt̄−1 ∈ Dit

and dt, dt−1 /∈ Dit . Similarly, if (ii) is true, then dt̄−1 /∈ Dit , since otherwise dt ∈ Dit implies dt̄ ∈ Dit ,

contradiction. Hence, dt, dt̄−1 /∈ Dit and dt, dt−1 ∈ Dit . This shows that Condition 4 holds, as well.

Case 2. The procedure stops at it̄ at Step t̄− 1 and it̄ = i1.

To show that (i1, d1, . . . , it̄−1, dt̄−1) is a cycle from M to M ′, where d1 /∈ Di1 , we verify Condition

2 in the definition of a cycle when dt̄−1 ∈ Di1 . Since dt̄−1 ∈ Mi1 and dt̄−1 ∈ M ′
it̄−1

,
%%Di1 \Mi1

%% <
%%Di1

%%
and

%%D′
i1
\ M ′

i1

%% > 0. Then given that in the hypothesis of the lemma
%%M ′

i1
\ D′

i1

%% >
%%Mi1 \ Di1

%%, by
Assumption 2′, we have

(
%%Mi1 \Di1

%%+ 1,
%%Di1 \Mi1

%%+ 1) ∈ Si1(Di1) and (
%%M ′

i1
\D′

i1

%%− 1,
%%D′

i1
\M ′

i1

%%− 1) ∈ Si1(D
′
i1
).

The other conditions are similar to Case 1 and can be shown as in Case 1.

Case 3. The procedure stops at it̄ at Step t̄− 1, it̄ ∕= i1, and
%%D′

i1
\M ′

i1

%% ≤
%%Di1 \Mi1

%%.
Then either it̄ = b or in the procedure the patient it̄ ∈ Î \ {i1, b} does not point. We show that

(i1, d1, . . . , dt̄−1, it̄) is a chain from M to M ′. First, it ∕= b for any t ∈ {2, . . . , t̄− 1} since otherwise the

procedure stops at an earlier step. Second, we verify Condition 5 in the definition of a chain. Suppose

that it̄ ∕= b. If dt̄−1 ∈ Dit̄ , then by the construction,
%%D′

it̄
\M ′

it̄

%% >
%%Dit̄\Mit̄

%% and
%%M ′

it̄
\D′

it̄

%% ≤
%%Mit̄\Dit̄

%%.
Since Dit̄ = D′

it̄
, by Assumption 1′,

(
%%Mit̄ \Dit̄

%%,
%%Dit̄ \Mit̄

%%+ 1) ∈ Sit̄(Dit̄) and (
%%M ′

it̄
\D′

it̄

%%,
%%D′

it̄
\M ′

it̄

%%− 1) ∈ Sit̄(D
′
it̄
).

The case that dt̄−1 /∈ Dit̄ can be shown similarly. Next, Condition 6 follows from the fact that%%M ′
i1
\D′

i1

%% >
%%Mi1 \Di1

%% and
%%D′

i1
\M ′

i1

%% ≤
%%Di1 \Mi1

%%, as well as Assumption 2′. Finally, we verify
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Condition 7 for i1 and it̄. For any t ∈ {2, . . . , t̄ − 1}, i1 ∕= it, since otherwise the procedure stops at

an earlier step. Suppose it̄ = it for some t such that 1 < t < t̄. Then it ∕= b. First consider the case

that dt̄−1 ∈ Dit . If dt ∈ Dit , then dt ∈ M ′
it \Mit and it̄ = it should point to this donor at Step t̄, which

contradicts with the fact that the pointing procedure from M to M ′ ends with it̄. So dt /∈ Dit . Then

dt−1 /∈ Dit , since otherwise it̄ = it should point to dt at Step t̄. In the case that dt̄−1 /∈ Dit , it can be

similarly shown that dt, dt−1 ∈ Dit . These are the crucial conditions to check; the other conditions are

similar to Case 1 and can be shown as in Case 1.

Case 4. The procedure stops at it̄ at Step t̄− 1, it̄ ∕= i1, and
%%D′

i1
\M ′

i1

%% >
%%Di1 \Mi1

%%.
In this case, we may not have (

%%Mi1 \Di1

%%+1,
%%Di1 \Mi1

%%) ∈ Si1(Di1), and hence (i1, d1, . . . , dt̄−1, it̄)

may not be a chain from M to M ′. To find a cycle or a chain, we do the reverse of what we did

before and we use the pointing procedure from M ′ to M . Since we are seeking a cycle or a chain from

M to M ′, in end we reverse the orientations of the constructed edges. There will also be two slight

complications in Step t 1.(b)i.A and Step t 2.(a)i that we will explain later.

Pointing procedure fromM ′ toM constructs a second directed graph of patients and donors starting

with j1 = i1 and denoted as (j1, c1, j2, c2, . . .). It ends either with a patient or a donor and each node

in the list points at the next node in the list. Since
%%D′

j1
\M ′

j1

%% >
%%Dj1 \Mj1

%% starting donor c1 ∈ D′
j1

such that c1 ∈ Mj1 \M ′
j1

exists.

Similar to the pointing procedure from M to M ′, the pointing procedure from M ′ to M also stops

in a finite number of steps. Recall that
%%Di1 \ D′

i1

%% = 1 and Di1 ⊃ D′
i1
. We refer to the donor that

is omitted from the donor set of i1 in D′
i1

as the concealed donor. The procedure stops under five

circumstances instead of four:

• when some j ∕∈ {j1, b} has appeared before in the constructed graph and she is pointed by and

points to her own donors in one instance, and is pointed by and points to donors who are not

her own in the other instance,

• when b is pointed,

• when some j ∕∈ {i1, b} does not point,

• when j1 is pointed by a donor who is not concealed,

• when j1 is pointed by the concealed donor (this can happen in Step t̄ 1.b.(i)A or 2.a.(i)).

We consider the following five subcases based on these circumstances. Subcase 4.1 and Subcase

4.2 cover the first circumstance and show the existence of a cycle. Subcase 4.3 covers the second

and the third circumstances together and shows the existence of a cycle or a chain. Subcase 4.4

covers the fourth circumstance and shows the existence of a cycle. Finally, Subcase 4.5 covers the last

circumstance and shows the existence of a cycle or a chain.

Subcase 4.1. The procedure stops at ct at Step t, for some t < t, jt = jt /∈ {j1, b} and neither of the

following is true:

• ct, ct−1 ∈ Djt and ct, ct−1 /∈ Djt .
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• ct, ct−1 /∈ Djt and ct, ct−1 ∈ Djt .

Then reversing the edges we found in the second directed graph, (jt, ct−1, . . . , jt+1, ct) is a cycle from

M to M ′.

Subcase 4.2. The procedure stops at ct at Step t, for some t ∈ {2, . . . , t̄ − 1}, it = jt /∈ {j1, b} and

neither of the following is true:

• ct, ct−1 ∈ Djt and dt, dt−1 /∈ Djt .

• ct, ct−1 /∈ Djt and dt, dt−1 ∈ Djt .

Now we construct a cycle using the first directed graph constructed by the pointing procedure from

M to M ′, (i1, d1, i2, d2, . . .), and the second graph constructed by the pointing procedure from M ′ to

M , (j1, c1, j2, c2, . . .), recalling that j1 = i1 and the orientation of the edges in the second graph should

be reversed: Then (jt, ct−1, . . . , c1, i1, d1, . . . , it−1, dt−1) is a cycle from M to M ′. Note that Condition

4 in the definition of a cycle must be satisfied, since otherwise either the pointing procedure from M

to M ′ or the pointing procedure from M ′ to M stops at an earlier step.

Subcase 4.3. The procedure stops at jt at Step t− 1, and jt ∕= j1.

Then either jt = b or the patient jt does not point.

If jt = it̄ = b, then (jt, ct−1, . . . , c1, i1, d1, . . . , it̄−1, dt̄−1) is a cycle from M to M ′.

If it is not true that jt = it̄ = b, then (jt, ct−1, . . . , c1, i1, d1, . . . , dt̄−1, it̄) is a chain from M to M ′.

To see this, we verify jt ∕= it̄ and Condition 6 in the definition of a chain. First, assume to the contrary,

jt = it̄. Then jt = it̄ ∈ Î \ {j1, b}. If dt̄−1 ∈ Dit̄ , then ct−1 /∈ Dit̄ , since otherwise in the pointing

procedure from M ′ to M , jt should point at dt̄−1 or a different donor at Step t. However, by the

construction, dt̄−1 ∈ Dit̄ implies
%%D′

it̄
\M ′

it̄

%% >
%%Dit̄ \Mit̄

%% and
%%M ′

it̄
\D′

it̄

%% ≤
%%Mit̄ \Dit̄

%%, while ct−1 /∈ Dit̄

implies
%%M ′

it̄
\D′

it̄

%% >
%%Mit̄ \Dit̄

%% and
%%D′

it̄
\M ′

it̄

%% ≤
%%Dit̄ \Mit̄

%%, contradiction. A similar contradiction

can be reached when dt̄−1 /∈ Dit̄ . Therefore, jt ∕= it̄. Second, consider Condition 6. If jt ∕= b, and

ct−1 ∈ Djt , then by the construction
%%D′

jt \M ′
jt

%% <
%%Djt \Mjt

%% and
%%M ′

jt \D′
jt

%% ≥
%%Mjt \Djt

%%. It follows
from Assumption 1′ that

(
%%Mjt \Djt

%%,
%%Djt \Mjt

%%− 1) ∈ Sjt(Djt) and (
%%M ′

jt \D
′
jt

%%,
%%D′

jt \M
′
jt

%%+ 1) ∈ Sjt(D
′
jt).

The case that ct−1 /∈ Djt can be shown similarly.

Subcase 4.4. The procedure stops at jt at Step t− 1, jt = j1 and ct−1 /∈ Dj1 \D′
j1
.

Then (jt, ct−1, . . . , j2, c1) is a cycle from M to M ′.

Subcase 4.5. The procedure stops at jt at Step t − 1, jt = j1 (recall that j1 = i1 is the patient who

concealed her donor from Di1 to D′
i1
) and ct−1 ∈ Dj1 \D′

j1
(thus, ct−1 is the concealed donor).

We have jt′ ∈ Î \ {j1, b} for every t′ ∈ {2, . . . , t − 1}, since otherwise the procedure stops at an

earlier step. As jt points to the concealed donor ct−1 /∈ M ′
jt , (jt, ct−1, . . . , j2, c1) is not a cycle from M

to M ′.
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However, we can still carry out the exchanges in the list (jt, ct−1, . . . , j2, c1), starting from M : add

ct−1 to Mjt and remove c1 from Mjt , . . . , add c1 to Mj2 and remove c2 from Mj2 . This leads to a well-

defined matching M ′′ for D̂. Since c1, ct−1 ∈ Djt ,
%%M ′′

jt \Djt

%% =
%%Mjt \Djt

%% and
%%Djt \M ′′

jt

%% =
%%Djt \Mjt

%%.
That is, Patient jt receives and supplies the same amounts of blood under M ′′ and M .

Given that
%%M ′′

jt \ Djt

%% <
%%M ′

jt \ Djt

%%, we can repeat the previous analysis and identify a cycle or

a chain from M ′′ to M ′, using the pointing procedure from M ′′ to M ′ and if Case 4 is reached again

then pointing procedure from M ′ to M ′′.

Note that, ct−1 /∈ M ′
i for any i ∈ Î implies ct−1 is not pointed in the pointing procedure from M ′′

to M ′, and if Case 4 is reached again, ct−1 ∈ M ′′
jt implies ct−1 is not pointed in the pointing procedure

from M ′ to M ′′, as we start either procedure with patient jt = j1 = i1.

Hence ct−1 does not appear in either pointing procedure and a cycle or a chain C from M ′′ to M ′

can be found, as this recursive Case 4.5 is never reached again.

To finish the proof of Lemma 3, it only remains to show that C is also a cycle or a chain from M to

M ′. We only consider the case that C is a chain (the proof for the case that C is a cycle is similar and

simpler). Let C = (l1, a1, . . . , lw̄−1, aw̄−1, lw̄), where w̄ ≥ 2 and a1, . . . , aw̄−1 are donors and l1, . . . , lw̄

are patients. We verify the conditions in the definition of a chain from M and M ′.

Since C is a chain from M ′′ to M ′, Condition 1 and Condition 7 are trivially satisfied for C to be a

chain from M to M ′. Since C is a chain from M ′′ to M ′, for any w ∈ {1, . . . , w̄ − 1}, aw ∈ M ′
lw
\M ′′

lw

and aw ∈ M ′′
lw+1

\M ′
lw+1

. Given that M ′′ is obtained from M by carrying out the exchanges in the list

(jt, ct−1, . . . , j2, c1), we have aw /∈ Mlw , since otherwise aw ∈ Mlw and aw ∈ M ′
lw

imply aw is not in the

list and aw ∈ M ′′
lw
. Similarly, we have aw ∈ Mlw+1 , since otherwise aw /∈ Mlw+1 and aw /∈ M ′

lw+1
imply

aw /∈ M ′′
lw+1

. Therefore, Condition 2 is satisfied.

To show Conditions 3-6, we need the following result, which follows from the construction of the

(reverse of) list (jt, ct−1, . . . , j2, c1) in the pointing procedure from M ′ to M . It essentially says that

any patient’s schedule under M ′′ must be “between” her schedules under M and M ′.

Observation 2. For any i ∈ Î \ {b}, if (
%%M ′′

i \Di

%%,
%%Di \M ′′

i

%%) ∕= (
%%Mi \Di

%%,
%%Di \Mi

%%), then i ∕= jt,

and either

•
%%M ′

i \D′
i

%% >
%%Mi \Di

%%,
%%D′

i \M ′
i

%% >
%%Di \Mi

%%, and (
%%M ′′

i \Di

%%,
%%Di \M ′′

i

%%) = (
%%Mi \Di

%%+1,
%%Di \

Mi

%%+ 1),

or

•
%%M ′

i \D′
i

%% <
%%Mi \Di

%%,
%%D′

i \M ′
i

%% <
%%Di \Mi

%%, and (
%%M ′′

i \Di

%%,
%%Di \M ′′

i

%%) = (
%%Mi \Di

%%−1,
%%Di \

Mi

%%− 1).

Consider any w ∈ {2, . . . , w̄ − 1} such that aw−1 ∈ Dlw and aw /∈ Dlw . Condition 3 is clearly

satisfied if (
%%M ′′

lw
\Dlw

%%,
%%Dlw \M ′′

lw

%%) = (
%%Mlw \Dlw

%%,
%%Dlw \Mlw

%%). Suppose that this is not true. Then
lw ∕= jt. By the construction of the chain C from M ′′ to M ′, we have

%%M ′
lw
\D′

lw

%% >
%%M ′′

lw
\D′′

lw

%% and%%D′
lw

\ M ′
lw

%% >
%%D′′

lw
\ M ′′

lw

%%. Then by Observation 2,
%%M ′

lw
\ D′

lw

%% >
%%Mlw \ Dlw

%% and
%%D′

lw
\ M ′

lw

%% >%%Dlw \ Mlw

%%. Hence it follows from Assumption 1′ that Condition 3 is satisfied. Condition 4 can be

shown in a similar manner.

Next, consider Condition 5. Suppose that lw̄ ∕= b and aw̄−1 ∈ Dlw̄ . For simplicity, we denote
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• (
%%Mlw̄ \Dlw̄

%%,
%%Dlw̄ \Mlw̄

%%) = (r, s),

• (
%%M ′′

lw̄
\Dlw̄

%%,
%%Dlw̄ \M ′′

lw̄

%%) = (r′′, s′′), and

• (
%%M ′

lw̄
\D′

lw̄

%%,
%%D′

lw̄
\M ′

lw̄

%%) = (r′, s′).

Condition 5 is clearly satisfied if (r, s) = (r′′, s′′). Suppose that (r, s) ∕= (r′′, s′′). Then lw̄ ∕= jt. By

the construction of the chain C from M ′′ to M ′, we have s′ > s′′ and r′ ≤ r′′. Then by Observation

2, r′ > r, s′ > s and (r′′, s′′) = (r + 1, s + 1). Since r′ > r and r′ ≤ r′′ = r + 1, we have r′ = r + 1.

By Assumption 1′ and the fact that r′ > r and s′ > s, (r′ − 1, s′ − 1) = (r, s′ − 1) ∈ Slw̄(Dlw̄). Since

s′ − 1 ≥ s′′ > s and (r, s) ∈ Slw̄(Dlw̄), by Assumption 1′ again, we have (r, s+ 1) ∈ Slw̄(Dlw̄). Finally,

(r′, s′−1) ∈ Slw̄(D
′
lw̄
) since C is a chain from M ′′ to M ′. The case that aw̄−1 /∈ Dlw̄ as well as Condition

6 can be shown similarly.

Lemma 4. Every sequential targeting rule is donor monotonic.

Proof of Lemma 4. We use Lemma 3 to prove Lemma 4. Let F be a sequential targeting rule

with respect to some {Nk}k̄k=1 and τ . Assume to the contrary, F is not donor monotonic. Then there

exist D,D′ ∈ D and i ∈ I such that D′
i ⊆ Di,

%%Di \ D′
i

%% = 1, D′
j = Dj for every j ∈ I \ {i} and%%Fi(D̂′) \ D′

i

%% >
%%Fi(D̂) \ Di

%%. By Lemma 2, there is a cycle or a chain C from F (D̂) to F (D̂′). We

want to first show that F (D̂) and F (D̂)+C are welfare equivalent. Suppose that this is not true. Let

{Mk}k̄k=1 and {M′
k}k̄k=1 be the sequences of sets of matchings constructed in the sequential targeting

procedure for D̂ and D̂′ respectively. Then at some step k of the sequential targeting procedure for D̂,

F (D̂) +C is not selected, i.e., F (D̂) +C ∈ Mk−1 but F (D̂) +C /∈ Mk. It follows that for any k′ < k,

!

j∈Nk′

%%Fj(D̂) \Dj

%% =
!

j∈Nk′

%%(F (D̂) + C)j \Dj

%% when τ(k′) = max, and

!

j∈Nk′

%%Dj \ Fj(D̂)
%% =

!

j∈Nk′

%%Dj \ (F (D̂) + C)j
%% when τ(k′) = min.

Then by Observation 1, we have

!

j∈Nk′

%%Fj(D̂′) \D′
j

%% =
!

j∈Nk′

%%(F (D̂′)− C)j \D′
j

%% when τ(k′) = max, and

!

j∈Nk′

%%D′
j \ Fj(D̂′)

%% =
!

j∈Nk′

%%D′
j \ (F (D̂′)− C)j

%% when τ(k′) = min.

Therefore, F (D̂′)− C ∈ M′
k−1. Since F (D̂) + C /∈ Mk,

!

j∈Nk

%%Fj(D̂) \Dj

%% >
!

j∈Nk

%%(F (D̂) + C)j \Dj

%% when τ(k) = max, and

!

j∈Nk

%%Dj \ Fj(D̂)
%% <

!

j∈Nk

%%Dj \ (F (D̂) + C)j
%% when τ(k) = min.
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Then by Observation 1, we have

!

j∈Nk

%%Fj(D̂′) \D′
j

%% <
!

j∈Nk

%%(F (D̂′)− C)j \D′
j

%% when τ(k) = max, and

!

j∈Nk

%%D′
j \ Fj(D̂′)

%% >
!

j∈Nk

%%D′
j \ (F (D̂′)− C)j

%% when τ(k) = min.

This implies that F (D̂′) /∈ M′
k, contradiction. Hence, F (D̂) and F (D̂) + C are welfare equivalent.

Then by Lemma 2 again, there is a cycle or a chain C ′ from F (D̂) + C to F (D̂′). By the same

arguments before, it can be shown that (F (D̂) +C) +C ′ and F (D̂) +C are welfare equivalent. Then

(F (D̂) + C) + C ′ and F (D̂) are welfare equivalent. We can continue this process and eventually we

have F (D̂) and F (D̂′) are welfare equivalent, leading to a contradiction to that patient i can conceal

a donor and benefit under D̂′.

A.3 Proof of Proposition 2

Let f and f ′ be the two sequential targeting mechanisms specified in the statement of the propo-

sition. Consider any problem D ∈ D. Let {Ak}k̄k=0 and {A′
k}k̄

′
k=0 be the sequences of allocations

constructed in the sequential targeting procedures under f and f ′ respectively.

If N = Nℓ, the conclusion of the proposition holds, since otherwise f ′(D) ∈ A′
ℓ−1 = Aℓ−1 (equality

follows as the first ℓ− 1 steps are the same under both mechanisms) implies f(D) /∈ Aℓ.

Suppose that N ∕= Nℓ, and τ(ℓ) = max. Assume to the contrary,

!

i∈N

f(D)(i) <
!

i∈N

f ′(D)(i).

Since N ′
ℓ = Nℓ \N , τ ′(ℓ) = max and f(D) ∈ Aℓ−1 = A′

ℓ−1,

!

i∈Nℓ\N

f(D)(i) ≤
!

i∈Nℓ\N

f ′(D)(i).

The above two inequalities imply

!

i∈Nℓ

f(D)(i) <
!

i∈Nℓ

f ′(D)(i).

Given that f ′(D) ∈ A′
ℓ−1 = Aℓ−1, this implies f(D) /∈ Aℓ, contradiction. The case where τ(ℓ) = min

can be shown similarly.

A.4 Proof of Proposition 3

The proof of this comparative statics result uses the same techniques as those in the proof of The-

orem 2. We explain how to modify the previous arguments to prove it. First, we present the following

restriction regarding different feasible schedule functions, which is a counterpart of Assumption 2′.
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Assumption 2′′. For every i ∈ I and Di ∈ Di, if Si(Di) is weakly more favorable than S ′
i(Di) at Di,

then for any (r, s) ∈ Si(Di) and any (r′, s′) ∈ S ′
i(Di), we have

1. If r′ > r, s′ > 0 and s <
%%Di

%%, then

(r + 1, s+ 1) ∈ Si(Di) and (r′ − 1, s′ − 1) ∈ S ′
i(Di).

2. If r′ > r and s′ ≤ s, then

(r + 1, s) ∈ Si(Di) and (r′ − 1, s′) ∈ S ′
i(Di).

The same arguments in the proof of Lemma 1 can be used to show that when Assumptions 1 and 2

are satisfied for all feasible schedule functions, Assumptions 1′ and 2′′ are satisfied.

Second, we use the same construction of extended problems as before. Moreover, since Lemma 2

holds for arbitrary feasible schedule functions, we know that for every sequential targeting mechanism

f , there exists a sequential targeting rule F such that for any profile of feasible schedule functions

S and D ∈ D, f(D | S) and F (D̂ | S) are welfare equivalent. Therefore, it is sufficient to prove the

comparative statics result for the sequential targeting rules. That is, we want to show the following

result:

Lemma 5. Consider a patient i ∈ I. Let S and S ′ be two profiles of feasible schedule functions such

that Si(Di) is weakly more favorable than S ′
i(Di) at Di for every Di ∈ Di. Then for any sequential

targeting rule F and any problem D ∈ D,

%%%Fi

+
D̂ | S

,
\Di

%%% ≥
%%%Fi

+
D̂ | (S ′

i,S−i)
,
\Di

%%%.

To prove this lemma, we need the cycle and chain operations as before. Recall that cycles and chains

are defined respect to two different matchings corresponding to two different problems. We modify their

definitions slightly such that they are defined with respect to two different matchings corresponding

to the same problem but different feasible schedule functions. Below we give the modified definition

of a cycle.47

Given a matching M for D̂ and S, and a matching M ′ for D̂ and S ′, a cycle from M to M ′ is a

directed graph of patients and donors in which each patient/donor points to the next donor/patient

and is denoted as a list C = (i1, d1, ..., it̄, dt̄), t̄ ≥ 2, such that for each t ∈ {1, ..., t̄} (let it̄+1 = i1 and

d0 = dt̄):

1. it ∈ Î, dt ∈ M ′
it \Mit and dt ∈ Mit+1 .

2. If it ∕= b, dt−1 ∈ Dit , and dt /∈ Dit , then

(
%%Mit \Dit

%%+ 1,
%%Dit \Mit

%%+ 1) ∈ Sit(Dit) and (
%%M ′

it \Dit

%%− 1,
%%Dit \M ′

it

%%− 1) ∈ S ′
it(Dit).

47The only changes we make are replacing D̂′ with D̂ and replacing Si(D
′
i) with S ′

i(Di) everywhere these two appear
in the definition.
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3. If it ∕= b, dt−1 /∈ Dit , and dt ∈ Dit , then

(
%%Mit \Dit

%%− 1,
%%Dit \Mit

%%− 1) ∈ Sit(Dit) and (
%%M ′

it \Dit

%%+ 1,
%%Dit \M ′

it

%%+ 1) ∈ S ′
it(Dit).

4. If it = it′ = i for some t′ ∕= t, then either

• dt, dt−1 ∈ Di and dt′ , dt′−1 /∈ Di, or

• dt, dt−1 /∈ Di and dt′ , dt′−1 ∈ Di.

The definition of a chain is modified in the same way. Then the following result is a counterpart

of Lemma 3.48

Lemma 6. Let S and S ′ be two profiles of feasible schedule functions. Consider any D ∈ D and i ∈ I.

Suppose that Si(Di) is weakly more favorable than S ′
i(Di) at Di. If M is a matching for D̂ and S, M ′

is a matching for D̂ and (S ′
i,S−i), and

%%M ′
i \Di

%% >
%%Mi \Di

%%, then there is a cycle or a chain from M

to M ′.

Using Assumptions 1′ and 2′′, Lemma 6 can be proved in the same way as Lemma 3. Since there

is no eliminated donor, Case 4.5 in the proof of Lemma 3 cannot happen.

Finally, by arguments similar to those in the proof of Lemma 4, Lemma 5 can be proved using

Lemma 6. Specifically, we prove by contradiction. Suppose that for some sequential targeting rule F ,

i ∈ I, D ∈ D, and two profiles of feasible schedule functions S and S ′, Si(Di) is weakly more favorable

than S ′
i(Di) and %%Fi

+
D̂ | S

,
\Di

%% <
%%Fi

+
D̂ | (S ′

i,S−i)
,
\Di

%%.

Then by Lemma 6, there is a cycle or a chain C from F
+
D̂ | S

,
to F

+
D̂ | (S ′

i,S−i)
,
. It can be shown that

F
+
D̂ | S

,
+C is welfare equivalent to F

+
D̂ | S

,
. Then there is a cycle or a chain from F

+
D̂ | S

,
+C to

F
+
D̂ | (S ′

i,S−i)
,
. We can continue this process and eventually we have F

+
D̂ | S

,
and F

+
D̂ | (S ′

i,S−i)
,

are welfare equivalent, contradiction.
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Andersson, Tommy, Ágnes Cseh, Lars Ehlers, and Albin Erlanson (2020). “Organizing Time Exchange:

Lessons from Matching Markets.” American Economic Journal: Microeconomics, forthcoming.

Aziz, Haris (2019). “Strategyproof multi-item exchange under single-minded dichotomous preferences.”

Autonomous Agents and Multi-Agent Systems, 34 (1), 3.

48Similarly, the only changes we make are replacing D̂′ with D̂ and replacing Si(D
′
i) with S ′

i(Di) everywhere these
two appear in the definition.

57

http://www.aabb.org/programs/nbe


Bogomolnaia, Anna and Hervé Moulin (2004). “Random Matching Under Dichotomous Preferences.”

Econometrica, 72, 257–279.

Budish, Eric (2011). “The Combinatorial Assignment Problem: Approximate Competitive Equilibrium

from Equal Incomes.” Journal of Political Economy, 119(6), 1061–1103.

Cape Fear Valley (2020). “Blood Donor Center.” Available at: http://www.capefearvalley.com/

blood/index.html retrieved on 08/09/2020.

Che, Yeon-Koo, Jinwoo Kim, and Fuhito Kojima (2019). “Weak Monotone Comparative Statics.”

Working paper available at SSRN: https://ssrn.com/abstract=3486365orhttp://dx.doi.

org/10.2139/ssrn.3486365, retrieved on 08/23/2020.

Chen, Qianer (2012). “Has Mutual Help Blood Donation Turned Sour?” China Youth Daily, 11 April

2012, http://zqb.cyol.com/html/2012-04/11/nw.D110000zgqnb_20120411_2-09.htm.

Cid, Joan, Sarah K Harm, and Mark H Yazer (2013). “Platelet transfusion-the art and science of

compromise.” Transfusion Medicine and Hemotherapy, 40 (3), 160–171.

Cockbain, Andrew J, Tahir Masudi, J Peter A Lodge, Giles J Toogood, and K Raj Prasad (2010).

“Predictors of blood transfusion requirement in elective liver resection.” HPB, 12 (1), 50–55.

Collins, RA, MK Wisniewski, JH Waters, DJ Triulzi, LH Alarcon, and MH Yazer (2015). “Excessive

quantities of red blood cells are issued to the operating room.” Transfusion Medicine, 25 (6), 374–

379.

Davies, Sam (2004). “Blood Banks No Longer in the Red.” The Phnom Penh Post, February 13 2004.

Dunbar, Nancy M, Matthew C Katus, Christine M Freeman, and Zbigniew M Szczepiorkowski (2015).

“Easier said than done: ABO compatibility and D matching in apheresis platelet transfusions.”

Transfusion, 55 (8), 1882–1888.
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Online Appendices

Appendix B A Polynomial-time Method to Compute the Out-

come of a Sequential Targeting Mechanism

Let I = {1, 2, . . . , |I|} be the set of patients. Consider a sequential targeting mechanism f induced

by target sets {Nk}k̄k=1 and target function τ . Consider a problem D ∈ D. For each k, we define a

function Wk : A → Z+: For every α ∈ A,

Wk(α) =

7
89

8:

*
i∈Nk,X∈B

αX(i) if τ(k) = max

−
*

d∈∪i∈Nk
Di

α(d) if τ(k) = min
.

Let h ∈ Z++ . We consider the following function W : A → R: For every α ∈ A,

W (α) =
k̄!

k=1

hk̄−kWk(α) = αT ·
;

k̄!

k=1

hk̄−kwk

<
(1)

where we write Wk(α) = αT · wk with the appropriately defined vector wk ∈ Za for each k where the

“dimension” of a feasible allocation as

a = |I| · |B|+ | ∪i∈I Di|.

Observe that by choosing h sufficiently high, the outcome of the sequential targeting mechanism can

be written as the allocation that maximizes the linear function defined in Eq.(1).

f(D) = argmax
α∈A

W (α) (2)

Next we show that the constraint “α is an allocation,” i.e., α ∈ A, is equivalent to α ∈ Za
+ and α

satisfies a system of linear inequalities when Assumption 1 holds.

Suppose Assumption 1 holds for feasible schedule set Si(Di) for every patient i ∈ I.

Then (ri, si) ∈ Si(Di) if and only if there exist some integer coefficient vector bi ∈ Z6 such that

ri + si ≤ bi,1

−ri − si ≤ bi,2

ri ≤ bi,3

−ri ≤ bi,4

si ≤ bi,5

−si ≤ bi,6
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We rewrite these linear inequalities in matrix form using

ri =
!

X∈B

αX(i) and si =
!

d∈Di

α(d)

and defining

αi =
5+

αX(i)
,
X∈B,

+
α(d)

,
d∈Di

6
and Ai =

=

>>>>>>>>>?

1 −1 1 −1 0 0
...

...
...

...
...

...

1 −1 1 −1 0 0

1 −1 0 0 1 −1
...

...
...

...
...

...

1 −1 0 0 1 −1

@

AAAAAAAAAB

∀ i ∈ I,

and

α = (αi)i∈I , AI =

=

>>>>?

A1 0 . . . 0

0 A2 . . . 0
...

...
...

...

0 0 . . . A|I|

@

AAAAB
, bI = (bi)i∈I

as follows:

α · AI ≤ bI (3)

We rewrite the market clearing condition of an allocation,

α =
!

i∈I:X∈C(βi)

αX(i) ≤ vX +
!

d∈∪i∈IDi:βd=X

α(d) ∀ X ∈ B,

in matrix inequality form as

α · AB ≤ v (4)

where

AB = (AT
X)X∈B

defined by ∀ X ∈ B,

AX =

;5+
AX(i, Y )

,
Y ∈B,

+
AX(d)

,
d∈Di

6

i∈I

<

such that

AX(i, Y ) =

$
1 if Y = X and X ∈ C(βi)

0 otherwise
∀ i ∈ I, ∀ Y ∈ B
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and

AX(d) =

$
1 if X = βd

0 otherwise
∀ d ∈ ∪i∈IDi.

Finally, we have

α(d) ≤ 1 ∀ d ∈ ∪i∈IDi, and

We rewrite this as

α · AD ≤ bD = (1, . . . , 1) (5)

where AD =
+
AD(r, c)

,
r≤a, c≤∪i∈I |Di|

such that AD(r, c) = 1 if both row r and column c refer to the

same donor d, and AD(r, c) = 0 otherwise.

Then for every α ∈ Za
+, vector α is an allocation (i.e., α ∈ A) if and only if Eq. (3), (4), and (5)

hold.

This, Eq. (1) and (2) imply that the following integer linear program in cannonical form finds the

outcome of f :

f(D) = argmax
α∈Za

+

αT ·
;

k̄!

k=1

hk̄−kwk

<
(6)

subject to

α · A ≤ b (7)

where

A = (AI , AB, AD) and b = (bI , v, bD)

such that α is a 1 × a non-negative integer vector, A is a × (6|I| + |B| + | ∪i∈I Di|) integer matrix of

entries 0, 1 and −1, and b is a 1× (6|I|+ |B|+ | ∪i∈I Di|) integer vector.

We consider its linear program relaxation replacing the search space to α ∈ Ra
+ instead of Za

+.

A matrix is totally unimodular if all of its square submatrix determinants are either −1, 0, 1.

The following result is well known and straightforward to prove using Cramer’s rule in linear algebra

(for example see Schrijver (1998)):

Lemma 7. Vertices of the polyhendron defined by Eq. (7) are integer for any integer vector b if and

only if A is a totally unimodular matrix.

Thus, for any linearly independent basis for α the linear program relaxation of the problem in (6)

has only integer solutions for any integer vector b if and only if A is totally unimodular.

The following lemma establishes a condition for checking total unimodularity of A:

Lemma 8 (Ghouila-Houri, 1962). A is totally unimodular if and only if there exists a partition of the

columns of A as K and L such that for the column vector κ =
*

c∈K Ac −
*

c∈L A
c where Ac is the

c’th column vector of A, we have κr ∈ {−1, 0, 1} for every row r = 1, . . . , a.
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We prove that A is indeed totally unimodular using this result:

Lemma 9. Matrix A is totally unimodular.

Proof of Lemma 9. We show that columns of A has such a partition K,L as in Lemma 8 as

follows:

• For every column c of A with c ≤ 6|I|, i.e., c is a column of AI , assign c to K. Now since L has

no columns !

c≤6|I| : c∈K

Ac −
!

c≤6|I| : c∈L

Ac = 0.

• For every column c of A with 6|I| < c ≤ 6|I|+ |B|, i.e., c is a column of AB, assign c to K. Now

since L has no columns for

κ′ =
!

c≤6|I|+|B| : c∈K

Ac −
!

c≤6|I|+|B| : c∈L

Ac.

For each row r ≤ a, κ′
r = 1 if r refers to a patient i and blood type X such that X ∈ C(βi) and

κ′
r = 0 if r refers to a patient i and blood type X such that X ∕∈ C(βi). On the other hand, if r

refers to a donor d then κ1
r = −1.

• For every column c of A with c > 6|I|+ |B|, i.e., c is a column of AD, assign c to K. Since

κ =
!

c∈K

Ac −
!

c∈L

Ac,

For each row r ≤ a, κr = 1 if r refers to a patient i and blood type X such that X ∈ C(βi), and

κr = 0 otherwise,

Thus for K = {1, 2, . . . , 6|I|+ |B|+ |∪i∈I Di|}, i.e., the set of all columns of A, and L = ∅, by Lemma

8, A is totally unimodular.

These results are used to prove the following proposition

Proposition 4. Under Assumption 1, the outcome of a sequential targeting mechanism can be found

in polynomial time.

Proof of Proposition 4. By Lemmata 7 and 9, under Assumption 1, the linear program

relaxation of the integer linear program in Eq. (6) with constraint Eq. (7) has all its basic solutions

integer. Thus, any polynomial LP method, such as the simplex algorithm, finds the outcome of a

sequential targeting mechanism in polynomial time.
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