
Discharge Fees, Pollution Mitigation, and Productivity:
Evidence from Chinese Power Plants

Gautam Gowrisankaran∗ Michael Greenstone† Ali Hortaçsu‡
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Abstract

The economy of China has experienced a dramatic transformation in recent years
but a cost of development has been pollution. Starting in 2003, Chinese provinces
started to assess discharge fees for two main air pollution measures, SO2 and NO2.
This study obtains detailed data on ambient pollution and discharge pollutants, fuel
inputs, and firm productivity for power plants, which comprise the majority of these
emissions from fixed sources. We identify the impact of discharge fees on pollution
and productivity outcomes using a difference-in-difference for monitors and firms in
local border areas within 50 KM of a provincial border with fee changes. We find
some evidence that pollution fees caused ambient pollution to drop. Pollution fees led
to large reductions in emitted SO2 and NO2 with elasticities ranging from −22% to
−45%. Power plants reduced their coal inputs and may have increase their natural gas
inputs following fee changes. Fees appear to have led to a drop of productivity, with an
elasticity of −22%. Fee increases appear to make labor relatively less productive and
capital relatively more productive.
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1 Introduction

A potentially important cost of China’s massive economic growth and development has been

pollution. As China has gotten wealthier and the scope of the pollution problem has emerged,

there is more demand in China to reduce pollution. Over the past 15 years, pollution reduc-

tion has become a priority of the Chinese national government and of regional authorities

in China. For instance, the 11th Five-Year Plan, which is the official government planning

document for the years 2006-10, emphasized the need to reduce air and water pollution and

proposed specific targets for pollution reduction. The 12th Five-Year Plan, implemented in

2011, set further reductions in targeted pollution levels.1

Despite these measures, pollution remains a huge problem in China. A large literature

has found that air and water pollution in China remain at very high levels (Vennemo et al.,

2009; Jin et al., 2016; Zheng and Kahn, 2017). There is also evidence that the pollution

is seriously affecting the health and longevity of its residents (Chen et al., 2013; Ebenstein,

2012), the productivity of its workers (Fu et al., 2017; Chang et al., 2016), and that there is

substantial willingness to pay for lower pollution (Barwick et al., 2017; Ito and Zhang, 2016).

The fact that pollution remains a central problem for China suggests that it may be

very costly to mitigate pollution, in terms of lost productivity and revenues. This view is

supported by the finding of substantial productivity costs of pollution mitigation in the U.S.

context. For instance, Greenstone (2002) found that the U.S. Clean Air Act caused $75 billion

in lost output in its first 15 years and Greenstone et al. (2012) finds that the Act caused

a 4.8 percent decline in total factor productivity over its first 21 years. Despite the above

findings, there is comparatively little evidence on the costs of pollution mitigation, in China

and in other countries. Tanaka et al. (2014) and Ankai (2016) find that increases in Chinese

environmental stringency led to increased productivity. This view is supported by the “Porter

hypothesis” (Porter and Van der Linde, 1995), that postulates that environmental policies

lead to greater productivity. However, He et al. (2016) find that environmental regulations

lower productivity in China.Altogether, the evidence on the impacts of pollution mitigation

1See the Chinese Ministry of Environmental Protection: http://www.zhb.gov.cn/gzfw_13107/ghjh/

wngh/.
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on productivity is mixed.

Besides affecting productivity, environmental regulations may also have substantial distri-

butional consequences. For instance, environmental regulations may favor capital-intensive

technologies, since it may be easier to mitigate environmental harm with these technologies.

To the extent that environmental regulations lower labor productivity, they may lower wages

but increase rents on capital. The distributional impact of pollution mitigation in China has

also not been fully studied.

This paper has two goals. First, we seek to evaluate whether Chinese policies to lower

pollution have been successful. Second, we seek to quantify the productivity and distribu-

tional costs of these policies. We will investigate these research questions for both the power

generation sector, and the manufacturing in general. We single out the power generation sec-

tor, as it generates approximately 60% of the sulfur dioxide air pollution from fixed sources,

and we can study the changes in fuel use in response to the regulations.

Our study exploits variation from fee changes in the prices of pollution in China, together

with detailed ambient pollution data, environmental discharge data, and firm production

data. During the time period 2003-15, China implemented a number of pollution reduction

programs. Many policies were implemented at the national level, starting with the Chinese

government’s tenth five year plan, which started in 2001. As part of the national pollution

reduction policies, the Chinese government delegated provincial governments to set water and

air pollution fees in order to help meet national pollution reduction targets. This resulted in

province-level variation in pollution fees over time.

To study these questions, we utilize ambient pollution data from pollution monitors, firm-

level data on pollution discharges and matched production data, which we describe in Section

2. The ambient data derive from Ebenstein et al. (2017) and include annual information on

ambient pollution for SO2, NO2, and PM10 for a variety of sites in China.

The pollution discharge data comes from the Chinese Environmental Survey (CES), which

we observe from 2003 to 2015. This dataset reports environmental discharges for manufac-

turing plants. These data derive from information collected the Chinese Ministry of Envi-

ronmental Protection (MEP). Since the 1980s, the MEP has established an environmental
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monitoring system to collect administrative data regarding ambient environmental quality

and the pollution of industrial firms. The monitoring system covers major industrial pollut-

ing firms that contribute to approximately 85% of China’s total pollution in terms of major

pollutants. Our data measure two air pollutants: sulfur dioxide (SO2) and nitrous oxides

(NOX). Covered firms are required to report levels of discharge for these pollutants on an

annual basis. The information is verified by the local environmental protection bureau, com-

piled at the MEP, and finally used to construct the CES dataset and produce the Chinese

Environmental Yearbook. The CES dataset is thus regarded as the most comprehensive

and reliable environmental microeconomic data in China. However, the CES data were kept

secret and have only recently become accessible to researchers.

We use the production data for power plants from the Chinese Annual Survey of Industrial

Production (ASIP). These data derive from annual surveys conducted by the National Bureau

of Statistics (NBS). These data have been used in a number of papers on firm productivity

(Brandt et al., 2017a; Chen et al., 2017). These data report annual firm-level data for the

period 1998-2013 on all industrial firms with sales above 5 million RMB (roughly 800,000

U.S. dollars).

We develop a simple model where firms produce multiple outputs: an output good and a

variety of pollution outputs, which are valued negatively. Changes in environmental policies

shift the relative prices of the pollution outputs, which allow us to trace out the produc-

tion function of firms in different sectors, as firms reoptimize their level of the output good

and pollution levels given the implicit prices of pollution. We propose to characterize the

tradeoffs that firms face between output and pollution, and to understand the heterogeneity

in these tradeoffs across different industrial and energy sectors and across different types of

pollution. Ultimately, we believe that by better characterizing the production possibility

frontier for pollution and industrial output, our paper can help policymakers design more

effective pollution mitigation strategies.

Our main results come from three sets of regression specifications. First, we analyze

how environmental fee changes affect ambient pollution as reported by pollution monitors.

Second, we analyze how they affect power plant emissions of the two pollutants noted above.
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Finally, we examine how they affect firm productivity.

Our regressions rely on sources of identification that we believe are credible. We focus

on environmental discharge fees that were implemented by Chinese provinces and became

effective following a 2003 state order, and that vary over province and time. These fees specify

amounts that firms must pay for discharging pollutants, specifically the air pollutants of sulfur

dioxide (SO2) and nitrous oxides NO2. At different points in our sample, a number of Chinese

provinces raised these fees while neighboring and similar provinces did not. However, a simple

”difference-in-difference” strategy that compares provinces that raise the fees vs. provinces

that do not will not take into account the differential output/growth trends across Chinese

provinces in the last two decades. In order to mitigate the effect of differential growth rates

across provinces, we focus on cities located near the borders between provinces. The idea is to

compare firms that are located on the side of the border that has changed pollution discharge

fees vs. firms on the other side of the border where fees have not changed, accounting for

region level trends. Since provinces share borders with multiple other provinces, our research

design allows us to construct multiple comparison groups for firms within a given province.

Our detailed data on power plants also allows us to evaluate how firms change their

behavior in response to pollution regulation. Specifically, we study how power generators

change their fuel mix in response to the regulations. We also study the heterogeneity in firms’

response to pollution regulation, especially with regards to the labor vs. capital intensity of

the technology they utilize.

In a first set of analyses, we study the effect of increases in fees for air pollutants on am-

bient air pollution. For this study, we utilize measurements obtained from ambient pollution

monitoring stations. Our main results indicate that air pollution fees lead to drops in ambi-

ent pollution levels.2 This analysis also highlights the important of accounting for regional

level trends. Specifications that do not control for these trends yield the highly robust and

unintuitive result that increased pollution fees are associated with higher levels of ambient

air pollution.

2Our reported results are statistically significant but alternative specifications show that this statistical
significance does not hold across other similar specifications.
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The effect of increased air pollution fees on firms’ reported discharges of these pollutants

is much stronger. We find, in our preferred specification with provincial borders and accounts

for region level trends that doubling fees is associated with a 33% to 45% decline in SO2 and

22% to 35% decline in NOX discharges for the power plants in our sample.

The decline in pollution discharge is accompanied by very marked changes in fuel use. We

find that the elasticity of coal usage with respect to the pollution fee is almost -1; suggesting

that a 50% increase in fees is associated with a 50% decline in coal use. We also find that

increases in pollution fees is associated with an increase in the use of alternative fuels such as

oil and gas; however, the elasticity of oil/gas usage is far below 1 and closer to 0.2, suggesting

that these fuels are only imperfect substitutes for coal, at least in the short- to medium-run.

We study the effect of pollution regulation on productivity, using regression specifications

motivated by the model in Section 3. Along with the decline in coal usage and switching

over to alternative fuels, we find sharp declines in the productivity of power plants. We find

that the elasticity of productivity with respect to air pollutant fees is about −0.2, suggesting

that a doubling of fees would lower productivity by 20%.

The effect of increased air pollutant fees on productivity is robust when we allow for

trans-log vs. Cobb-Douglas production functions. We also find that the air fees have a larger

negative effect on firm productivity for firms that are more labor intensive. This suggests

that the incidence of the pollution fees falls more heavily on more labor intensive power

plants, which may be using an older technology.

We believe that our paper contributes to the literature on the tradeoffs between produc-

tivity and environmental discharges in important ways. We are among the first to combine

firm-level panel datasets on industrial production for manufacturing firms, on production and

investment power plants, and on air pollution discharges. A number of recent studies have

used Chinese industrial production data to consider research questions such as state own-

ership and productivity (Chen et al., 2017), trade and productivity (Brandt et al., 2017a),

and the demand for exporting (Roberts et al., 2017). We use these data to understand the

impact of environmental policies. Our study also uses detailed data on Chinese power plants,

including their output, capital stock, labor inputs, along with fuel inputs.
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The remainder of the paper is structured as follows: Section 2 provides a description of

China’s environmental regulations and the data sets used in this study. Section 3 provides

the analytic foundation for our estimation and discusses our identification and estimation

assumptions. Section 4 presents our results: we first analyze ambient pollution measures,

then reported pollutant discharge data, and power plant fuel use patterns. We then analyze

the connection between pollution fees and productivity, allowing for the heterogeneity of the

impact across different production technologies. Section 5 concludes.

2 Data

Figure 1: Total sulfur dioxide (SO2) emissions by power plants and other industrial sources
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Source: authors’ calculations based on CES data.

Our study focuses on air pollution emitted by power plants. Power plants are the largest

fixed source of air pollution in China. Figures 1 and 3, respectively, show the total SO2 and

NOX air pollution emitted by power plants and other industrial facilities in China. Power
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Figure 2: Total nitrous oxide (NOX) emissions by power plants and other industrial sources
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Source: authors’ calculations based on CES data.
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plants account for well over half of the fixed source air pollution in China for these two

pollutants.

Focusing on power plants, we evaluate the effect of environmental discharge fees on am-

bient pollution, discharge pollutants, and production. Accordingly, we use four main sources

of data. First, we use province-year level data on environmental discharge fees assessed to

firms. Second, we use annual data from ambient pollution monitors. Third, we use firm-year

level data from the Chinese Environmental Survey (CES). Finally, we use firm-year level data

from the Chinese Annual Survey of Industrial Production (ASIP). We now discuss each of

these data sources.

2.1 Environmental Discharge Fees

Our first data source is information on environmental discharge fees for air pollution and

policies. China’s Environmental Protection Law, passed in 1979, and enacted in its final

form in 1989, officially established discharge fees for air pollution by power generation and

manufacturing firms. However, these fees were generally considered ineffective until a 2003

state order that implemented a system for their effective collection.

In 2003, most Chinese provinces started charging fees of CNY 0.21 (approximately USD

0.03) per kilogram of SO2 with similar fees per kilogram of SO2.
3 These fees were doubled

in 2004 and raised again by 50% in 2005. However, the fees were the same across provinces

until 2007, when Jiangsu province raised its fees. Over the following several years, a number

of other provinces raised their fees above the national standards.

The variation in fees across provinces stemmed in part from mandated reductions in SO2

at the provincial level as specified in the 11th and 12th Five-Year Plans.4 These plans were

formally submitted by the State Council in 2006 and 2011, respectively. They specified

an aggregate pollution level change in the total discharges of these two pollutants for each

3The exception is Beijing, which charged a higher SO2 fee in 2003.
4The environmental measures in the 11th and 12 Five-Year Plans can be found at http://zfs.

mep.gov.cn/fg/gwyw/200711/t20071126_113414.shtml and http://www.zhb.gov.cn/gkml/hbb/bgth/

201212/t20121205_243258.htm, respectively. Guo and Fang (2017) used these mandated reductions.
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province over the five year period.5

We collected fees for SO2 and NOX pollution by examining source documents from Chinese

provinces. We created a panel of these fees for each year and Chinese province over the

period 2003-2015.The four centrally administered cities—Beijing, Chongqing, Shanghai, and

Tianjin—also implemented fees. We treat these cities as equivalent to provinces in our

analysis. The SO2 and NOX fees are very similar for a given province/year. For instance,

the correlation coefficient between them is 0.953. Given this level of collinearity between the

two fees, our regressions only include one measure of fees.

At the same time as provinces implemented air pollution fees, they also implemented

water pollution fees. This study does not directly consider water pollution fees for three

reasons. First, the water pollution fees may have been less effective because firms often

did not pay the fees directly to the government but may instead have paid them to sewage

plants, who may not have fully collected them. Second, there were a number of other local

water pollution policies for particular regions within provinces, often centered on particular

lakes or watersheds (He et al., 2019). Finally, power plants are a relatively small source

of water pollution. Figure ?? shows the amount of the major measure of water pollution,

chemical oxygen demand, emitted by power plants and other industrial sources. Unlike for

our air pollution measures, power plants emit a very small proportion of the chemical oxygen

demand pollution.

The difference between water fees and air fees is that not all firms pay the water fees

directly. Some firms may pay management fees to sewage plants and then sewage plant

pay the water fees. The collection of these fees is indirect and may not reflect their actual

pollution during our sample period. Also, China started to control water pollution before air

pollution and hence other water pollution standards may affect the level of water pollution.

Also, local fees near lakes that we don’t observe. Finally, power plants have relatively little

water pollution.

Figure 4 provides a map of the SO2 fees at two points in our sample: 2006 and 2013.

5The 10th and earlier Five-Year Plans did not specifically mandate pollution targets but did establish
pollution reduction measures such as the Two Control Zone policy (Schreifels et al., 2012).
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Figure 3: Chemical oxygen demand emissions by power plants and other industrial sources
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Figure 4: Sulfur dioxide emissions fees in 2006 and 2013
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In 2006, the fees were very similar across provinces while in 2013, there was substantial

variation in fees across provinces. Despite the variation in fees in 2013, the map shows that

the variation is not random across regions. In particular, the coastal regions of China had the

highest increase in fees. These regions are the ones that experienced the highest economic

growth over this period and thus the likely highest increase in pollution. A difference-in-

difference comparison between provinces that raised fees and other provinces would miss the

fact that the provinces with increases in fees are likely the ones where pollution would have

increased the most in the absence of fees. Thus, our main analyses identify the impact of

fees from a difference-in-difference in local border areas on the sides of borders.

2.2 Ambient Pollution Monitor Data

For the ambient pollution analysis, we use a monitor-year panel dataset comprised of readings

from air pollution monitors spread throughout China. We obtain the data from Ebenstein

et al. (2017). In that study, the authors compile pollutant measures using information from

various sources including Chinas EPA, China Environmental Yearbooks, and China Environ-

mental Quality Annual Reports. See Ebenstein et al. (2017) Supplemental Appendix for more

details on this dataset construction.

Our analysis on ambient pollution considers three pollutants for which we have available

data: Sulfur Dioxide (SO2), Nitrogen Dioxide (NO2), and Particulate Matter of 10 microm-

eters or less in diameter (PM10). We restrict our analysis to the years 2003-2012. As noted

above, meaningful pollution fees started in 2003 and hence our analysis for these data starts

in this period as well. This dataset ends in 2012.

Figure 5 presents a map with the plotted locations of each monitor in our dataset. Note

that there are monitors located throughout China. However, not all monitors reported data

in all years.

Table 1 presents the summary statistics for each pollutant of interest. The unit of mea-

surement is Micrograms per Cubic meter of Air (µg/m3). The mean, standard deviation,

and total number of observations are reported for both the full sample and the border only
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Figure 5: Ambient pollution monitor data used in our estimation

Table 1: Summary Statistics on Ambient Air Pollution

All Sample Borders Only
Pollutant Mean Std.Dev. N Mean Std.Dev. N
Sulfur Dioxide (SO2) 42.167 25.068 1971 45.799 28.417 625
Nitrogen Dioxide (NO2) 30.525 12.060 1970 30.585 11.087 624
Particulate Matter (PM10) 86.305 31.576 1961 88.871 28.340 622
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sample, which includes only monitors within 50km of each provincial border.

2.3 Chinese Environmental Survey Data

Our next data source is the Chinese Environmental Survey (CES). We observe these data

from 2004-15. Our CES data report environmental discharges for power generation firms at

the firm/year level. Each firm is assigned a unique ID that we use to link to the databases

noted below. The dataset is derived from information collected by the Chinese Ministry of

Environmental Protection (MEP). It is the most comprehensive environmental dataset in

China and only recently became accessible to researchers. It is supposed to record 85% of

air pollution from the power generation sector (Liu et al., 2017).6 We observe three main

main measures from this data base. First, we observe SO2, which is a major source of smog.

Second, we observe NOX, which is another major source of smog. Finally, we observe fuel

consumptions including coal consumption, oil consumption, and natural gas consumption.

Most of our data are at the firm (legal entity) level and are recorded annually. A firm in

China is much more similar to a plant in the U.S. Even though our data are at the firm level,

researchers typically treat these data as being analogous to U.S. plant-level data.7

These data are the most comprehensive national pollution data collected by the Chinese

government. Moreover, they are more comprehensive than data in the U.S. For instance, in

the U.S., SO2 and NOX discharges are collected for power generation firms but typically not

for industrial firms. While the data are comprehensive, they do not include some pollutants

of interest, such as small particulates (PM2.5s), CO, and CO2.

An important issue regarding the plausibility of the results of our proposed study is the

reliability of this dataset. We would expect that there would be an incentive to underreport

pollution, to the extent that this may be used in the long run to tax or shut down a firm. We

propose to understand the reliability of the data by comparing the aggregate levels reported

in these data to national levels of pollution. We will also investigate whether there is a

6It also records information on water pollution and for manufacturing sectors.
7For instance, Hsieh and Klenow (2009) also use Chinese firm data and then explicitly treat firms as

plants.
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presence of immediate changes following fee increases that might prove suspicious. Finally,

the combination of observed pollution discharge and productivity impacts would be helpful

as we do not believe that firms would have an incentive to understate revenues following

increases in environmental fees.

As a check of our data, we compared the SO2 discharges reported in our data to those

reported in the Chinese Statistical Yearbook on Environment 2016, which are generally con-

sidered accurate. For 2015, our data report 8,002,169 tons of SO2 discharged for power plants

and manufacturing firms, while the Statistical Yearbook (which reports data for 2015) re-

ports 8,711,762 tons discharged for all such firms in China.8 Thus, in this year, our data

appear to capture 91% of the total SO2 emissions, which is higher than the 85% goal.

Table 2 provides summary statistics information on our environmental discharge data. We

have 55,160 firm/year observations for power plants throughout China. We observe 12,504

unique power plants. Firms are in this data for about 4-5 years on average. The mean

SO2 emissions are 2,223 tons per year; the mean NOX emissions are 1,693 tons per year;

coal consumption is 239,366 tons per year; oil consumption is 914 tons per year; natural gas

consumption is 914,000 cubic meters per year.

Table 2: Summary statistics on environmental data for power plants

Variable Value
Number of firm/year observations: 55,160
Number of unique firms: 12,504
Mean SO2 emissions (tons): 2,223 (11,227)
Mean NOX emissions (tons): 1,693 (26,793)
Mean coal consumption (tons): 239,366 (830,469)
Mean oil consumption (tons): 914 (830,469)
Mean gas consumption (1000 cubic meters): 914 (90,811)
Note: standard deviations are included in parentheses.

8See http://www.stats.gov.cn/tjsj./tjcbw/201706/t20170621_1505831.html.
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2.4 Annual Survey of Industrial Production Data

Our final main data source is firm production data from the Chinese Annual Survey of

Industrial Production (ASIP), 2004-13. These data derive from annual surveys conducted by

National Bureau of Statistics and includes all non-state-owned firms with sales above CNY 5

million, or about USD 700,000, per year, and all state-owned firms. For our purposes, these

data contain information from firms in the manufacturing sector—with 2-digit industrial

sector codes from 13 to 43—and power generation firms—with a 2-digit code of 44. We

standardize industrial codes to the 2013 definition. Besides the industrial sector, the main

variables that we use are the number of workers, capital, output, whether the firm is state-

owned, and whether it is an exporter. We follow Brandt et al. (2012) in our variable choice

and deflation measures.

There are some known issues with these data. The data after 2007 lack variables of

interest such as intermediate inputs. In addition, Brandt et al. (2017b) exclude 2010 data for

data quality concerns. Our own investigation confirms that the data in 2010 look suspiciously

close to the data from 2009. In addition, the 2012 data appear to not correctly report the

number of workers, because the reported numbers are almost always exactly the same as in

2011, unlike between other pairs of subsequent years.9 For these reasons, we exclude the data

from 2010 and 2012. Our ASIP analysis data currently include information from 2004-2009,

2011, and 2013.

Table 3: Summary Statistics on production data for power plants

Variable Value
Number of firm/year observations: 60,601
Number of unique firms: 10,914
Mean output (1000 CNY): 473,563 (3,901,136)
Mean labor (number of workers): 497 (2,186)
Mean capital (1000 CNY): 593,962 (3,830,152)
Note: standard deviations are included in parentheses.

Table 3 provides summary statistics for the production data for manufacturing firms. We

have 60,601 power plant observations. The mean output is about CNY 473 million. The

9We thank Yifan Zhang for pointing out this data problem to us.
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mean of the number of workers is 497 and the mean of capital of a firm is about CNY 594.

There are 10,914 power plants in our sample. Each firm lasts about 6 years in the data,

similarly to the environmental data. This is less than what one would expect in U.S. data.

However, Brandt et al. (2012) also find relatively short, but slightly higher, tenure of firms.

We have linked the CES and ASIP datasets using the unique firm ID, firm name, firm

address, and phone number. Table 4 provides summary statistics for the merged CES/ASIP

data for power plants and manufacturing firms. We merge approximately 35% of the obser-

vations in the CES data for the common years. Our merged data include 15,087 power plant

firm/year observations. We observe 3,567 unique power plants, so firms are in the matched

data for about 4-5 years on average.

The mean output of the matched sample is about CNY 539 million which is similar to that

of the ASIP. The larger mean size can be explained by the fact that the CES concentrates

only on relatively highly polluting firms. In this sample, the mean number of workers is 586

and the mean capital is CNY 730 million. The mean SO2 emissions is 3478 tons per year; the

mean NOX emissions are 836 tons per year; the mean coal consumptions are 332,301 tons per

year; the mean oil consumptions are 351 tons per year; the mean natural gas consumption

are 440,000 cubic meters per year.

Table 4: Summary statistics on merged power plant data

Variable Value
Number of firm/year observations: 15,087
Number of unique firms: 3,567
Mean output (CNY 1000): 538,579 (3,488,970)
Mean labor (number of workers): 586 (2,005)
Mean capital (CNY 1000): 729739 (2,939,184)
Mean SO2 emissions (tons): 3478 (9,571)
Mean NOX emissions (tons): 836 (4,624)
Mean coal consumption (tons): 332,301 (838,354)
Mean oil consumption (tons): 351 (6,418)
Mean gas consumption (1000 cubic meters): 440 (7,842)
Note: standard deviations are included in parentheses.
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3 Analytic Framework

3.1 Model

We develop a simple conceptual model and use it to motivate our estimating equations.

The basic idea of our model is that power plants and other manufacturing firms produce

an output good but also discharge air pollution as a byproduct of the output good. The

pollutants then enter into the atmosphere where they may increase ambient pollution. This

ambient pollution can be detected by pollution monitors.

Index firms i = 1, . . . , I and the time periods in our sample by t = 1, . . . T . We assume

that firms use a number J of inputs that are observable to the econometrician, k1, . . . kJ ,

and a total factor productivity (TFP) term to produce two outputs, a production good and

pollution discharges. The observable inputs include capital, labor, and materials. Denote

the log of these terms k1it, . . . , kJit, ωit, y
∗
it, and dit, respectively.

We assume that observed output is yit = y∗it +εit where εit is a shock to logged output net

of logged weighted pollution. The shock might be due to random variation in the amount of

pollution discharged or to other factors. With a Cobb-Douglas specification, we can write:

yit − βddit = βk1k1it + . . .+ βkJkJit + ωit + εit

⇒ yit = βk1k1it + . . .+ βkJkJit + βddit + ωit + εit. (1)

We expect that it is costly for firms to mitigate pollution. Hence, βd is likely negative,

implying that more observable inputs and TFP are required to produce less pollution.

The goal of the paper is to analyze the impact of pollution fees in reducing pollutant

discharges and ambient pollution and the side effects that these fees may have on reducing

production of the output good. Our identifying variation is from changes in fees across

provinces. In particular, different provinces raised pollution fees at different times during

our sample period, which provides variation in the level of pollution fees. Denote Chinese

provinces by p = 1, . . . P . Fees vary at the province and time period (year) level. Denote

logged fees for province p and time period t as fpt.

19



The production function in (1) has a general TFP term, that is indexed by both firm i

and time t. Variation in TFP across firm and time can potentially confound an estimation of

the impact of fees or pollution on outcomes. In particular, during our sample period, China

had been growing rapidly and unevenly across different regions. This implies that there are

potential changes over time in the production function across different parts of China.

As an example, areas with high TFP growth were likely to have seen the construction

of many new power plants and manufacturing facilities, which would increase ambient air

pollution. The increase in TFP in these areas also likely increased incomes, which would

likely increase the demand for air quality. Both of these factors would increase the demand

for air pollution mitigation, and thereby lead to increases in fees. A difference-in-difference

research design that examined the impact of pollution fees on outcomes such as ambient

pollution or emitted pollution using province and year dummies may provide inconsistent

results due to this source of endogeneity. For instance, regressions with this design might

implausibly conclude that pollution fees led to higher ambient pollution, but the causality

might be the reverse, that higher ambient pollution levels led to a demand for higher pollution

fees. As we discuss below, our model of firm production and pollution takes this variation in

TFP into account through a research design that identifies the impact of fees and pollution

on outcomes using differences-in-differences in local areas.

We now discuss the impact of firm production on ambient pollution. We observe annual

data from a set of ambient pollution monitors. These monitors record ambient levels of NO2,

SOX, and PM10. Denote monitors by j = 1, . . . , J and logged ambient pollution at time

t as ajt. We assume that expected ambient pollution at each monitor is a function of the

discharges from firms that are located near the monitor.

3.2 Estimation and Identification

We estimate a series of specifications based on our model developed in Section 3.1. The

dependent variables include ambient pollution ajt, pollutants discharged dit, and production

yit. The majority of our specifications are reduced forms of the model in (1). In these spec-
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ifications, the main regressor of interest is fees, fpt. These specifications seek to understand

the impact of fees on the different dependent variables.

Our regressions need to control for the fact that there is variation across time in TFP

growth across different parts of China. To do this, we employ a research design of differences-

in-differences in local areas. Specifically, we define a border region as the geographic area that

is within 50 KM of the border of any given set of Chinese provinces and no other province.

We further define an interior region as the part of any province that is not in a border region.

Most of our specifications assume that the production processes are the same at any time

period in each region.

Figure 6 illustrates our border region concept graphically. This figure shows the provinces

of Guangdong (to the south), Fujian (to the northeast), and Jiangxi (to the northwest).

Focusing on these three provinces, there are four border regions: the Fujian-Guangdong

border (B12 and B21), the Fujian-Jiangxi border (B23 and B32), the Guangdong-Jiangxi

border (B13 and B31), and the Fujian-Guangdong-Jiangxi border (B123, B213, and B312),

and three interior regions: the interiors of Guangdong (I1), Fujian (I2), and Jiangxi (I3).

Together, our sample would include 7 regions (4 border regions and 3 interior regions) if

China included only the three provinces in the figure.10

Let r = 1 . . . , R denote the set of regions in China, r(i) denote the region for firm i,

and R(j) denote the region for ambient pollution monitor j. We estimate models with fixed

effects at a number of different levels. One focal estimation specifies that

ωit = βi + βR
r(i)t, (2)

where βi are firm fixed effects and βR
r(i)t are region × year interactions. Thus, these specifica-

tions allow for the baseline TFP and the growth in TFP to vary in each of the many regions

of China.

10For simplicity, Figure 6 does not show other provinces besides these three. Because of these other
provinces, the Guangdong-Jiangxi and Fujian-Jiangxi border regions and the Fujian, Guangdong, and Jiangxi
interior regions in our estimation do not include all the area that the figure indicates, since parts of them are
in other border regions.
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Figure 6: Example of regions from Fujian, Guangdong, and Jiangxi provinces

Guangdong

Jiangxi

Fujian
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Using the definition of TFP in (2), we estimate a number of reduced-form specifications.

First, we estimate specifications of ambient pollution on discharge fees and fixed effects, at

the monitor / year level:

ajt = γffR(j)t + γR(j)t + γj + εajt. (3)

In (3), we let logged ambient pollution be a function the logged pollution fees, fixed effects

for monitors, and interactions of region and time.

We estimate similar specifications that are at the firm / year level with pollutant dis-

charges as the dependent variable:

dit = αffr(i)t + αr(i)t + αi + εdit, (4)

and with production as the dependent variable:

yit = δffr(i)t + δllit + δkkit + δr(i)t + δi + εyit. (5)

For specifications based on (5), we include lit and kit as regressors, as these specifications are

reduced forms of the production function (1) and capital and labor are important predictors

of the output good yit.

We could also potentially estimate the structural production function in (1):

yit = βkkit + βllit + βddit + βkkit + βr(i)t + εit. (6)

Under our model, dit will be endogenous as it is an output of the firm and hence not mean

independent from εit. Thus, the instrumental variables specifications allow us to evaluate

the causal impact of pollution on output, using the changes in fees within border regions as

the source of exogenous variation. We found that the first stage results here were not strong

enough to estimate meaningful structural production function results and hence we do not

estimate specification based on 6.

Because the specifications based on (3), (4), and (5), include both monitor/firm fixed
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effects and region × year interactions, identification in these models is based on changes in

the dependent variable within a border region-year across monitors/firms faced with changes

in fees. As an example, consider a border region with two provinces. Suppose that the fees

are different across the two provinces but are the same across time within a province. Then,

the impact of fees cannot be identified from these provinces because of the monitor/firm fixed

effects.

Now consider two provinces in their entirety for which the fees change in one province

but not in the other. The change in the dependent variable in one province versus the other

at the time of the change in fees will identify the impact of fees. Note that data from the

interior regions will not identify the parameters on fees since there is no variation in fees

for an interior region and year. Thus, the identification of the impact of fees will essentially

come from data from the border regions only. However, the interior regions will help identify

the impact of l and k in (5) and (6).

Thus, we can think of our estimation as being identified by a series of differences-in-

differences in border regions. As an example, if China consisted only of the three provinces in

Figure 6, this would imply four differences-in-differences. The advantage of this identification

strategy is that the assumption that we need is that the trends in ω in these regions do not

vary from one side of the border to the other. This is a much milder assumption than

assuming that the trends in ω do not vary for China as a whole, since the border regions are

geographically small and hence it might be reasonable to think that TFP growth rates are

similar within a border region. An estimation that included province and year fixed effects

would effectively make this latter assumption.

We also estimate other specifications with different levels of fixed effects. First, we es-

timate specifications where the sample is just on the border region. For the specifications

with ambient pollution or pollution discharges as the dependent variables, (3) and (4) re-

spectively, these specifications will give the same coefficient estimates on fees, but different

standard errors, since the interior of the provinces do not identify fees. For the regressions

with the output good as the dependent variable, (5) and (6), the regression coefficients on

fees and pollution may be different since the interior regions help identify l and k.
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Second, we estimate specifications without firm fixed effects. In these specifications, we

include province × region interactions. Thus, as an example, for the Fujian-Guangdong-

Jiangxi border region, we would include an interaction for this border region with being in

Fujian province and an interaction for this border region with being in Guangdong province

(with the Jiangxi interaction being collinear). These terms ensure that the identification

comes from changes in fees across provinces in a border region, rather than level differences

in fees. These specifications will estimate the impact of fees by comparing outcomes on one

province in a border region to the other province. Unlike with firm fixed effects, this will

occur even if the outcomes occur through the exit of some firms and the entry of other firms.

Thus, for instance, if an increase in fees caused high-polluting firms to exit and low-polluting

firms to enter, this specification would capture this, while the specification with firm fixed

effects would not.

Finally, we estimate specifications with just firm and year fixed effects and specifications

with just region and time fixed effects and province × region interactions, but no region

× time fixed effects. These specifications identify the effect of fees by comparing provinces

that raised fees to provinces that do not raise fees. We view the identification from these

specifications as less plausible than from the other specifications, because of the different

TFP growth rates across provinces.

4 Results

4.1 Ambient Pollution Results

Table 5 presents ambient air pollution results. Columns (1), (3), and (5) present results

without monitor fixed effects while columns (2), (4), and (6) present results with monitor

fixed effects. Columns (1) and (2) present results that include year and monitor or area

(region × province) fixed effects, but do not control for the differential growth rates in TFP

across regions in China. Columns (3) and (4) are our main results and present specifications

that include region × year interactions. Columns (5) and (6) are analogous to columns (3)
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Table 5: Effect of pollution fees on ambient air pollution

(1) (2) (3) (4) (5) (6)
All

Sample
All

Sample
All

Sample
All

Sample
Borders

Only
Borders

Only

Panel A: SO2

log(SO2 fee) 0.129 0.163∗ -0.134 -0.146 -0.134 -0.146
(0.0837) (0.0797) (0.208) (0.206) (0.217) (0.206)

R2 0.540 0.859 0.565 0.910 0.759 0.905
Observations 1971 1962 1677 1669 375 374

Panel B: NO2

log(NOX fee) 0.384∗∗∗ 0.190∗∗ -0.0827∗∗ -0.101 -0.0827∗∗ -0.101
(0.0875) (0.0815) (0.0263) (0.120) (0.0338) (0.121)

R2 0.378 0.834 0.389 0.871 0.649 0.889
Observations 1862 1853 1589 1581 356 355

Panel C: PM10
log(SO2 fee) 0.164∗∗∗ 0.136∗∗ -0.0310∗∗ -0.0257 -0.0310∗ -0.0257

(0.0442) (0.0428) (0.0126) (0.0199) (0.0149) (0.0203)
R2 0.571 0.873 0.605 0.930 0.811 0.938
Observations 1961 1952 1669 1661 375 374

Year FE Yes Yes
Region×province FE Yes Yes Yes
Region×year FE Yes Yes Yes Yes
Monitor FE Yes Yes Yes

Notes: All specifications in this table define border regions as 50km on either side of a provincial border.
Standard errors clustered two-way by monitor and year. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Data Source: Air pollution panel derived from China’s EPA, Environmental Yearbooks, and Environmental
Annual Quality Reports (see Ebesteina, et al. 2017 for details).
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and (4) but they include only the border regions and not the interior of the provinces.

Focusing first on columns (1) and (2), we find that SO2 fees appear to increase ambient

pollution. In other words, air pollution went up more in provinces that raised these fees

more during our sample period, than in provinces that raised these fees less during our

sample period. In particular, the results are positive for all three pollutants, and statistically

significant at the 10% level for four of the six specifications. The impact of PM10s is the

most significant and shows that a 100% increase in fees is associated with a 14–16% increase

in ambient pollution.

Our interpretation of these results is that they are likely due to a reverse causality.

Provinces with relatively high increases in fees are likely ones where pollution would have

been increasing faster in the absence of these fees, due to increases in TFP.

Thus, our main results include region × year interactions. The effect of fees on ambient

pollution is now negative in all of the six specifications and statistically significant for two

of these specifications. Columns (5) and (6) limit our sample to the border regions only.

In this case, we find identical point estimates for the impact of fees on ambient pollution.

However, the clustered standard errors are a little different, and generally larger. We find

that a 100% increase in fees is associated with a 9% reduction in ambient NO2 pollution and

a 3% reduction in ambient PM10 pollution.

In unreported specifications, we found that the results were not very robust to alternate

specifications. In particular, in cases where we used smaller distance boundaries, the results

were generally insignificant. This is possibly due to these results being driven by a relatively

small number of monitors. Also, because ambient pollution will travel across provincial

borders within a border region, it is possible that the lack of significance with a smaller

distance boundary is due to higher source pollution on one side of the border region causing

higher ambient pollution on the other side. Overall though, we interpret these negative

results with caution.

Our main takeaway from the ambient pollution results is that there is a need to control

for differential growth rates across areas of China. A study that ignored these differences

would find that pollution fees increase ambient pollution.
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4.2 Pollutant Discharge Results

Table 6 analyzes the impact of fees on discharged pollution by power plants, at the firm-year

level. We use the analogous set of six specification as in Table 5. The data here are from the

Chinese Environmental Survey (CES) data.

We start by describing the results with year and firm fixed effects, or year and local area

fixed effects, in columns (1) and (2). These results show a relatively small impact of pollution

fees on decreasing pollution discharges. The effect is not statistically significant in three of

the four cases and is statistically significant at the 10% level in one case, for SO2 discharges

with firm fixed effects. Thus, this table provides relatively weak evidence that the increase

in pollution fees was associated with a decrease in pollution discharged by power plants,

particularly when controlling for a stable set of plants.

Focusing next on our main results in columns (3) and (4), we find that with identification

coming from changes in fees in the border regions, fees negatively and significantly predict

discharged pollution for both SO2 and NOX. In particular, a 100% increase in SO2 fees

predicts a 45% drop in SO2 pollution with fixed effects and a 33% drop in SO2 pollution

without fixed effects, while a 100% increase in NOX fees predicts a 35% drop in NOX pollution

with fixed effects and a 22% drop in NOX pollution without fixed effects. Thus, these results

show that there is strong evidence that the pollution fees led to drops in pollution when we

allow for changes in TFP growth rates across different parts of China. The point estimate of

the results on just the border regions, in columns (5) and (6) are the same, but the clustered

standard errors are again somewhat larger, leading to only results with firm fixed effects

being statistically significant.

The larger impact of fees on SO2 reductions in the fixed effects estimates suggests that

existing power plants are more able to mitigate pollution but that this positive effect on

pollution is being compromised by new plants that emit more SO2. For NOX, the relative

magnitude of the two coefficients is the opposite, suggesting that some of the reduction of

ambient NOX is for new firms.

To further examine how power plants may be reducing pollution discharges, we look at
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Table 6: Effect of pollution fees on power plant pollutant emissions

(1) (2) (3) (4) (5) (6)
All

Sample
All

Sample
All

Sample
All

Sample
Borders

Only
Borders

Only

Panel A: Dependent variable: log(SO2 + 1) emissions
log(SO2 fee) -0.0948 -0.345∗ -0.328∗ -0.445∗∗∗ -0.328 -0.445∗

(0.178) (0.160) (0.154) (0.132) (0.211) (0.219)
R2 0.225 0.784 0.260 0.804 0.320 0.804
Observations 55,157 51,764 54,984 51,584 17,733 16,512
Panel B: Dependent variable: log(NOX + 1) emissions
log(NOX fee) -0.0785 -0.0980 -0.348∗∗ -0.221∗∗ -0.348 -0.221∗

(0.220) (0.0546) (0.118) (0.0764) (0.191) (0.0993)
R2 0.207 0.725 0.256 0.745 0.282 0.753
Observations 48,522 45,134 48,389 44,996 15,530 14,329

Year FE Yes Yes
Region×province FE Yes Yes Yes
Region×year FE Yes Yes Yes Yes
Firm FE Yes Yes Yes

Notes: All specifications in this table define border regions as 50km on either side of a provincial border.
Standard errors clustered two-way by province and year in Columns 1-4 and by region and year in Columns
5-6. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Data Source: CES Sample. Information on NOX emissions is missing before 2006.
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Table 7: Effect of pollution fees on power plant fuel consumption

(1) (2) (3) (4) (5) (6)
All

Sample
All

Sample
All

Sample
All

Sample
Borders

Only
Borders

Only

Panel A: Dependent variable: log(Coal+1)
log(SO2 fee) -0.819∗∗∗ -1.015∗∗∗ -0.961∗∗∗ -0.958∗∗∗ -0.961∗∗ -0.958∗∗∗

(0.220) (0.102) (0.301) (0.203) (0.337) (0.291)
R2 0.271 0.638 0.404 0.748 0.435 0.753
Observations 55,157 51,764 54,984 51,584 17,733 16,512
Panel A: Dependent variable: log(Oil+1)
log(SO2 fee) 0.0122 0.0378 0.196∗∗∗ 0.195∗∗∗ 0.196 0.195

(0.0714) (0.0486) (0.0553) (0.0639) (0.115) (0.115)
R2 0.227 0.729 0.267 0.750 0.277 0.746
Observations 55,157 51,764 54,984 51,584 17,733 16,512
Panel A: Dependent variable: log(Natural gas+1)
log(SO2 fee) 0.157 0.272∗ 0.0826 0.203 0.0826 0.203

(0.144) (0.127) (0.184) (0.208) (0.242) (0.231)
R2 0.0680 0.631 0.115 0.664 0.154 0.659
Observations 50,434 46,993 50,275 46,827 16,192 14,966

Year FE Yes Yes
Region×province FE Yes Yes Yes
Region×year FE Yes Yes Yes Yes
Firm FE Yes Yes Yes

Notes: All specifications in this table define border regions as 50km on either side of a provincial border.
Standard errors clustered two-way by province and year in Columns 1-4 and by region and year in Columns
5-6. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Data Source: CES Sample.
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the impact of fees on fuel usage. We again use the analogous set of six specification as in

Table 6 and the data are again from the Chinese Environmental Survey (CES) data. We find

very large drops in coal fuel usage for plants, that is similar across the six specifications. Our

specifications that control for different TFP growth rates across different parts of China—in

columns (3) through (6), also find increase in oil consumption. In other words, power plants

in border regions where fees went up relative to the other province in the border region had

increases in their oil consumption. Natural gas consumption also increased, though the effect

is only significant in column (2).

In the U.S., many power plants have switched from coal to natural gas (?). However,

plants are unlikely to switch from coal to oil, because it is much more expensive to use oil

as a fuel for power plants. These results show that in China, pollution fees appear to have

caused power plants to switch from coal to oil. Natural gas may be much cheaper in the U.S.

than in other countries due to the shale gas boom caused by hydraulic fracturing (?).

4.3 Output and Production Function Results

Table 8 presents our results on the effect of fees on power plant output. It uses the matched

Chinese Environmental Survey (CES) and Annual Survey of Industrial Production (ASIP)

data. We again use the analogous set of six specification as in the previous subsections.

However, our results here include a number of controls: for labor, capital, coal, oil, and gas.

We use output, labor, and capital from the ASIP data and coal, oil, and gas from the CES

data.

Our base results are in Panel A. We find that the coefficients on logged fees are insignificant

for Specifications 1, 2, 3, and 5. For Specifications 4 and 6, the impact of logged fees is

significantly negative and in both cases, a doubling of fees leads to a 22% decrease in output,

after controlling for inputs. Thus, the impact of fees appears to be negative on existing power

plants, though this seems to be mitigated when looking at power plants as a whole.

Panel B next tests the interaction of fees with labor and capital, to understand the

heterogeneity of effects across plants. Though not displayed in the table due to the space
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Table 8: Effect of fees on power plant output

(1) (2) (3) (4) (5) (6)
All

Sample
All

Sample
All

Sample
All

Sample
Borders

Only
Borders

Only

Panel A: Base specifications
log(SO2 fee) -0.111 -0.0799 -0.0123 -0.217∗∗ -0.0310 -0.223∗

(0.0840) (0.0758) (0.0908) (0.0774) (0.122) (0.100)
log(L) 0.411∗∗∗ 0.160∗∗ 0.422∗∗∗ 0.164∗∗ 0.435∗∗∗ 0.149∗∗

(0.0596) (0.0592) (0.0572) (0.0568) (0.0640) (0.0631)
log(K) 0.478∗∗∗ 0.317∗∗∗ 0.473∗∗∗ 0.292∗∗∗ 0.455∗∗∗ 0.314∗∗∗

(0.0328) (0.0421) (0.0316) (0.0389) (0.0476) (0.0697)
log(Coal+1) 0.0323∗∗∗ 0.0119∗ 0.0385∗∗∗ 0.0167∗∗∗ 0.0238∗∗ 0.0100

(0.00691) (0.00572) (0.00744) (0.00450) (0.00980) (0.00683)
log(Oil+1) 0.0803∗∗∗ 0.0232∗∗∗ 0.0790∗∗∗ 0.0198∗∗∗ 0.0879∗∗∗ 0.0177∗

(0.00719) (0.00486) (0.00778) (0.00442) (0.0149) (0.00886)
log(Gas+1) 0.0360∗∗∗ -0.00363 0.0444∗∗∗ 0.00754 0.0395∗∗ 0.0132∗

(0.0107) (0.0104) (0.0122) (0.00832) (0.0132) (0.00581)
R2 0.797 0.944 0.805 0.950 0.807 0.953
Panel B: With fee interactions
log(SO2 fee) -0.314 0.0956 -0.181 -0.0859 -0.164 0.163

(0.203) (0.194) (0.158) (0.188) (0.582) (0.259)
log(L)×log(SO2 fee) -0.0998∗∗ -0.0849∗∗ -0.118∗∗ -0.107∗∗∗ -0.0861∗ -0.0994∗∗

(0.0381) (0.0355) (0.0392) (0.0314) (0.0435) (0.0390)
log(K)×log(SO2 fee) 0.0630∗ 0.0254 0.0701∗∗ 0.0403∗ 0.0518 0.0154

(0.0280) (0.0191) (0.0269) (0.0189) (0.0540) (0.0218)
R2 0.798 0.944 0.805 0.950 0.808 0.953
Panel C: With fee interactions and translog production function
log(SO2 fee) 0.0503 -0.0255 0.154 -0.188 0.431 0.188

(0.195) (0.174) (0.169) (0.180) (0.236) (0.236)
log(L)×log(SO2 fee) -0.0677 -0.0823∗ -0.0872∗ -0.104∗∗ -0.0418 -0.0921∗

(0.0418) (0.0385) (0.0386) (0.0315) (0.0494) (0.0402)
log(K)×log(SO2 fee) 0.0174 0.0347 0.0262 0.0487∗∗ -0.0191 0.0107

(0.0284) (0.0215) (0.0261) (0.0197) (0.0308) (0.0225)
R2 0.840 0.948 0.848 0.954 0.856 0.958
Observations 14,714 14,082 14,556 13,914 4,758 4,523

Year FE Yes Yes
Region×Province FE Yes Yes Yes
Region×Year FE Yes Yes Yes Yes
Firm FE Yes Yes Yes

Notes: All specifications in this table define border regions as 50km on either side of a provincial border.
Standard errors clustered two-way by province and year in Columns 1-4 and by region and year in Columns
5-6. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Data Source: Matched CES and ASIP sample.
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constraints, it includes all the same regressors as in Panel A plus these two additional regres-

sors. We consistently find a pattern where logged fees interacted with labor imply a negative

and significant impact on output, while logged fees interacted with capital implies a positive

impact on output, that is significant in Specifications 3 and 4. In other words, plants that

add labor when SO2 fees rise see a relative decrease in output while plants that add capital

see a relative increase in output.

Panel C repeats Panel B but with a translog production function. Specifically, these

specifications add the square of labor, the square of capital, and the interaction of labor

and capital and also include all the regressors in Panel B. The purpose of Panel C is to

understand whether our results in Panel B could simply be due to size effects, where firms

with more capital are more productive. We find that the additional of these non-linear terms

does not change the basic message from Panel B, which is that logged fees interacted with

labor imply a negative and significant impact on output, while logged fees interacted with

capital sometimes imply a positive and significant impact on output.

5 Conclusion

The economy of China has experienced a dramatic transformation in recent years but a cost

of development has been pollution. Recognizing that pollution is an important concern, the

Chinese central government and regional authorities have implemented a number of policies

to mitigate pollution. This study considers an important to mitigate pollution. Starting in

2003, firms were assessed fees based on the amount of SO2 and NO2 air pollutants that they

emitted. Provinces updated these fees over time and accordingly, these fees varied across

provinces and year.

We obtain detailed data on ambient pollution from air pollution monitors, and discharged

pollutants, fuel inputs, and firm productivity for power plants, which emit the majority of

these air pollutants. We use the data to evaluate the extent to which pollutants reduced

pollution. Because the Chinese economy has been growing rapidly and because greater

industrial production would lead to more air pollution, it would not be plausible to perform
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a difference-in-difference on pollution measures based on variation in pollution fees across

provinces. Indeed, when consider ambient pollution, we find that this type of specification

would imply that pollution fees increase pollution for three pollutants.

Accordingly, our identification is based in differences-in-differences in local areas. Specif-

ically, we consider 50 KM border areas that are on both sides of a provincial border where

one province raised fees and another province did not. We then examine how pollution and

productivity measures changes in the province that raised fees compared to the province that

did not raise fees.

Using this identification strategy, we find some evidence that pollution fees caused ambient

pollution to drop. We also find that pollution fees led to large reductions in SO2 and NOX

discharges, with elasticities ranging from −22% to −45%. Power plants reacted to the fees

by reducing their coal inputs. There is some evidence that they increased their oil inputs

(from a low base) and their natural gas inputs. Even after accounting for these inputs and

labor and capital, the fees appear to have led to a drop in productivity, with an elasticity of

−22% with firm fixed effects. Fee increases appear to make labor relatively less productive

and capital relatively more productive.

Overall, our results point to environmental discharge fees in China having a major impact

on power plants. They appear to have helped lower emitted pollution and ambient pollution.

However, they may also have lowered productivity for these firms.
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