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Abstract. We study the implications of capital accumulation and workplace automation for
long run growth and factor shares. Under a self-replication condition on the production of
robot services, our theory delivers long run growth in per capita income and progressive au-
tomation, with the share of labor in national income converging to zero. The model is based
on an asymmetry between physical and human capital. Individual claims on the former can
be reproduced linearly and indefinitely. Because no similar claim on humans is possible, hu-
man capital accumulation instead takes the form of acquiring occupational skills, the returns
to which are determined by endogenously determined wages. The displacement of human
labor is gradual, and real wages could rise indefinitely. The results extend to endogenous
technical change, as well as relaxations of the sharply posited human-physical asymmetry.

1. Introduction

We develop a disaggregated multi-sectoral theory of the dynamics of automation, with impli-
cations for the long run human labor share in national income. The theory features the possi-
bility of gradual replacement of human workers by robots, as capital good prices decline. It
also permits ongoing and indefinite human capital accumulation, in part as a response to the
automation threat. The net replacement of humans by robots occurs under three conditions
that we develop in detail: a self-replication condition on the robot production sector, an ex-
plicit consideration of the difference between human and physical capital accumulation, and
a neutrality condition on the pattern of consumer demand. When these conditions are met,
the economy is eventually automated under any competitive equilibrium with high discount
factor and it is no longer bound by the fixity of the human labor endowment. In effect the
economy behaves “as if" it has an Ak type of asymptotic aggregate production function, as
in Rebelo (1990) or Jones and Manuelli (1991).

Our main interest is in the implications of such a theory for the long run income share of
human labor. An asymptotic Ak model can, of course, co-exist with both a positive or an
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ever-declining labor share. Endogenous growth models such as those in Romer (1986) and
Alesina and Rodrik (1993) generate a positive labor share via private diminishing returns,
coupled with nondecreasing society-wide returns via externalities or infrastructure. A posi-
tive human share occurs in Ak models in which human and physical capital keep pace with
each other, as in Lucas (1988) or Mankiw, Romer and Weil (1992). A stable share can
also arise from parametric restrictions in aggregative models with automation, as in Aghion,
Jones and Jones (2019), if automation and inelastic capital-labor substitution happen to mu-
tually neutralize their opposing effects on the labor share.

In contrast, an aggregate production function which is exactly Ak, as in the Harrod-Domar
model or its asymptotic variants, implies a zero labor share. Indeed, Jones and Manuelli
(1991, fn. 2) argue that any long run labor share between 0 and 1 can be generated with suit-
able parametric assumptions on the class of Ak aggregate production functions they study.
Without an underlying theory of the underlying disaggregated economy, how it evolves with
progressive automation, and a consideration of more primitive forces, it is not possible to
make strong predictions regarding the asymptotic human labor share. Do all sectors even-
tually get automated, or just a subset? And even if the former is asymptotically true, are
there not sectors that are yet to be automated at any finite date — and might wages in such
sectors conceivably keep pace with capital income? Additionally, what if workers can invest
in human capital to “compete" with robots?

Therefore a more careful examination of the microfoundations of the Ak model is necessary.
To this end, we study a model with many final goods, and additional sectors for interme-
diates: machine capital, robots and education. In any firm, production takes place with
machine capital and one or more “labor aggregates," generated by human labor or robot ser-
vices, or both. Apart from constant returns to scale in production, no substantive restrictions
are placed on technology, not even convexity. Production functions vary across sectors. The
relative efficiency of humans to robots can become unboundedly large over sequences of
sectors. Human labor could be sector-specific, or migrate across sectors via education or
training — this is the main source of human capital accumulation. Households are infinitely
lived (or are connected via intergenerational altruism), and maximize infinite-horizon utility.
They can accumulate financial wealth, which are claims on physical capital, and they can
purchase education to move across occupations. In addition, households can be heteroge-
nous in their tastes, discount factors or initial endowments.

Within this general skeleton, we study three features, each of which necessitates a disag-
gregated perspective. First, we discuss the nature of human capital and how it differs from
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physical capital. While individual claims to physical capital can be scaled indefinitely by
accumulating wealth, the same is not true for ownership of labor. Instead, human capital
accumulation takes the form of acquiring skills, within or across occupations, but always
contained in one physical self. Moreover, if that accumulation consists in switching occu-
pations (even within the same sector), e.g., a move from the shop floor to supervisory or
managerial positions, the return to human capital will depend on relative wages across occu-
pations. Those wages will be endogenously determined by the entire general equilibrium of
the economy,1 not just its technology. In particular — and this is the second feature we make
explicit — the degree to which human capital can be persistently accumulated depends on
the structure of demand for final goods or for intermediate inputs. An explicit consideration
of such demand patterns requires us to go beyond the aggregative model.

The third key feature is connected to the possibility of automation in the sector that produces
robot services; that is, the potential for using machines and robots to produce robots. This
“self-replication" condition is placed on the robot sector alone.2 And yet, when satisfied, it
has economy-wide ramifications. It implies an upper bound to robot prices relative to those
of physical capital, which provides firms in all other sectors with the option to automate at
finite cost. Any sector yet to be automated generates a growing demand for humans with
the relevant skills, driving up the wage for such workers. So absolute wages rise even as the
tendency for automation does, but this tension is ultimately resolved only in one direction.

Our central result states that with sufficiently high patience among a subset of households,
per capita income in the economy grows without bound, and the share of labor in national
income converges to zero, provided consumer preferences are asymptotically homothetic,
and provided that self-replication holds. At the same time, the displacement of human labor
must be gradual, and real wages could rise indefinitely. In a sense, then, the “aggregate
production function" — to the extent that anything of the sort exists — exhibits a capital-
labor elasticity that exceeds one, even though individual sectors exhibit inelastic substitution.
This part of our theoretical findings can be viewed as an aggregation result; it is not imposed
as an assumption in an ad hoc specification of an aggregate production function.

1This observation is entirely in line with empirical evidence on skill premia in wages as shown by a large
literature in labor economics stemming from Katz and Murphy (1994).

2The condition compares the elasticity of substitution between capital and (human or robot) labor with the
efficiency of robots in generating the intermediate labor aggregates used in robot production. It is automatically
met if the former elasticity equals or exceeds 1, but is also consistent with sub-unitary elasticities of substitution.
Self-replication is like a singularity, though quite different from the notion that emerges from the work of von
Neumann and others, which refers to some runaway threshold being crossed, thus generating infinite per-capita
output at a finite date; see, for instance, Aghion, Jones and Jones (2019), who develop this viewpoint.
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Faced with “robot creep," workers in threatened sectors can react in a farsighted way by
acquiring education and moving to other, safer sectors. Therefore automation is consistent
with unbounded growth in the wages of some or all workers, who manage to stay ahead
of the threat by entering human-friendly occupations. Yet our distributional result holds
if preferences are asymptotically homothetic — the aggregate share of such sectors must
eventually shrink, and human wage growth will fail to match the growth of capital incomes.

Our theory helps identify four possible escape routes from the prediction of an asymptot-
ically declining labor share. The first is a failure of self-replication, so that sustained au-
tomation is not guaranteed. The second is the sheer impossibility of full automation in some
sectors. The third has to do with a particular preference structures. If preferences are non-
homothetic in a serendipitous direction that aligns with ever greater “human-friendliness" in
production, then human labor might perpetually retain a positive share of income. Humans
would progressively move to these friendly sectors, and by the assumed non-homotheticity
of preferences, there would be adequate demand for such products, shoring up wages there.

The fourth escape hatch is based on asymmetries in endogenous technical progress; specif-
ically, biases in favor of human labor. We would need to assume those asymmetries, and
their existence would be an empirical question. Acemoglu and Restrepo (2018) is a leading
example of this approach. Section 5 extends our model to permit directed technical progress
in machine, human and robot productivities, in response to profit opportunities created by
changing prices. In our setting, technical progress operates on the intensive margin in each
sector, raising the productivity of different inputs and possibly generating spillovers for the
productivity of that input in other sectors. It may well be that technical progress inherently
favors some inputs or sectors over others, but we maintain the neutrality of technological
opportunities as an appropriate benchmark. We then show that our long run distributional
implications continue to be robust in such a setting even with endogenous technical progress.

Our theory can be viewed as providing a potential explanation for the recent decline in labor
shares documented by Karabarbounis and Neiman (2014) among others. As elaborated in
Section 2, such a theory can be distinguished from alternative explanations based on capital-
augmenting technical progress, human capital accumulation, rising markups and market con-
centration or declining bargaining power of labor unions. Its relevance is indicated by the
fact that a substantial fraction of the decline in labor share worldwide is explained by declin-
ing capital goods prices, even after controlling for capital-augmenting technical progress,
markup rates and the skill composition of the labor force (Karabarbounis and Neiman 2014).
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Section 2 discusses related literature. Section 3 presents the model without technical progress.
The main results are in Section 4, with related lines of discussion. Section 5 studies endoge-
nous technical progress, and Section 6 concludes. Proofs are collected in an Appendix.

2. Related Literature

Existing approaches provide different explanations for a falling labor share, largely in models
with a single good and a representative consumer. We classify them as follows:

(i) Theories of automation under technical progress. In a task-based setting, this is akin
to an increasing capital share in an aggregate production function (Zeira 1998). Acemoglu
and Restrepo (2018) and Aghion, Jones and Jones (2019) extend this model to study the
distributional implications of automation under technical progress (endogenous in the former
case, exogenous in the latter). Both emphasize the possibility of balanced growth, in which
labor retains a long-run positive share despite automation.

(ii) Theories based on sustained capital accumulation in an aggregative model with capital-
labor substitution elasticities exceeding one (e.g., Piketty 2014). But evidence from industry
panel studies suggests inelastic substitution (Chirinko and Mallick 2014).

(iii) In contrast to (ii), theories based on sustained human capital investments, which cause
effective labor to grow relative to effective capital (Grossman et al 2020). Human capital
investments rise owing to a fall in the interest rate, driven in turn by an exogenous decline in
rates of technical progress. Ancillary assumptions include capital-skill complementarity, a
low intertemporal substitution elasticity in consumption, a closed economy, and an aggregate
capital-labor elasticity of substitution below 1.

(iv) Theories based on globalization, rising markups, rising market concentration, or fall
in labor bargaining power. Arguments include globalization, whereby labor in developed
countries are devastated by cheap imports (Autor, Dorn and Hansen 2016), selection into
more profitable, higher-markup firms (Autor et al 2017), or factors such as the rise of the gig
economy or greater product differentiation, leading to a decline in firm competition and the
bargaining power of labor (Neary 2003, Gutiérrez and Philippon 2017, Azar and Vives 2018,
Eggertsson, Robbins, and Wold 2018, and Kaplan and Zoch 2020).

We provide an explanation for the secular decline in labor share that is driven by capital
accumulation alone, one that operates even in the absence of technical progress, changing
concentration or skewed bargaining power. As mentioned in the Introduction, the empirical
relevance of our explanation is indicated by the results of Karabarbounis and Neiman (2014).
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Our theory shares elements with (i)–(iii), but is distinct from each. The underlying driving
force for the falling labor share is automation, as in (i), but also without technical progress,
unlike (i). Automation is driven by the accumulation of physical capital, as in (ii), and yet the
theory is consistent with inelastic substitution, as in (iii).3 However, unlike (iii), our theory
exhibits progressive physical, not human capital deepening. Quite apart from these features,
our model is elementary, in the sense that it can serve as an alternative benchmark for a
theory of economic change without balanced growth. This elementary nature is reflected in
the substantial generality of our specification, devoid of functional form specifications on
technology or utility or even restrictions on the curvature of the production functions.

Finally, at an empirical level, our theory makes distinct predictions. The relative growth of
human capital and physical capital in efficiency units is inverted relative to Grossman et al
(2020). Even if such evidence is not available, our theory becomes relevant if labor shares
decline despite a violation of the Grossman et al assumptions, e.g., if technical progress does
not decline, intertemporal consumption elasticities are high, or the economy is small in the
sense that the interest rate is determined by the world capital market.

Our theory is clearly separate from the literature in (iv). The results would continue to apply
in the absence of changes in monopoly power of firms or a decline in worker bargaining
power. Indeed, the Karabarbounis and Neiman (2014) evidence suggests that half the de-
cline in labor share worldwide associated with falling capital prices cannot be explained by
rising monopoly power or changes in skill composition of the labor force. So while these
explanations are certainly relevant, they are complementary to ours.

3. Baseline Model with No Technical Progress

3.1. Production. There is a countable collection I of consumption goods, indexed by i. The
set I is infinite and so allows for unbounded occupational ladders. In addition, there are
three intermediate good sectors producing education, robot services, and machine capital.
The index j serves as generic notation for any of these sectors. Everything is produced,
with the exception of raw human labor. That endowment is fixed (or is normalized as in
the standard theory), but human capital evolves as individuals make educational investment
decisions, thereby moving across the universe of occupations. The stock of physical capital
changes over time as a result of production or depreciation.

3In fact, our multisectoral model cannot even be reduced to a CES specification through aggregation. In
each sector, the elasticity of substitution across machines and labor could be inelastic. But human labor can be
slowly replaced by robot services, sector by sector.
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Physical capital has two incarnations. It is, first, a complementary input to labor; call this
“machine capital" kj . It combines with a finite vector of labor services `j = {`oj}, where
o ∈ Oj (an index set for tasks or occupations in sector j), to produce:

(1) yj = fj(kj, `j)

where fj is increasing, smooth, and linearly homogeneous, with unbounded steepness in
capital input near zero, and in at least one of the effective labor inputs when all are near 0.
Moreover, fj(k, 0) = fj(0, `) = 0.4 No curvature restrictions on fj are imposed.

A second form of capital has the potential to displace human labor, and is represented by “ro-
bot services." We view each component `oj of the labor variable as an aggregator, combining
human input and robots services. Specifically, for each occupation o ∈ Oj ,

(2) `oj = `oj(h
o
j , r

o
j ),

where hoj is human input, roj is robot services, and `oj is increasing, smooth and linearly
homogeneous with `j(0, 0) = 0 (again, no assumption on curvature). In the baseline model
we assume that no sector can fully protect humans; that is, `oj(0, r) > 0 for some r > 0,
so that it is technologically feasible to produce tasks with robot services alone. Observe
that this assumed feasibility of full automation does not imply its economic viability. In
particular, the marginal effectiveness of human labor could be unboundedly large relative to
that of robots. For instance, suppose that `oj(h, r) = νr+ µh+ rαh1−α for α ∈ (0, 1), which
satisfies all our conditions. Then in any equilibrium humans would be perennially employed
in every occupation, no matter what factor prices are. In Section 4.7, we take an additional
step back and discuss how our results are modified if full automation is not even technically
feasible in all occupations.

While human labor is generally occupation-specific and additional education could be re-
quired to move across occupations, we assume for expositional ease that physical capital and
robot services are perfectly homogeneous and can move freely across sectors.

3.2. Prices. Within any date, machine capital services serve as numeraire: the rental price
of k is set to 1. The collection w = {woj} for j and o ∈ Oj is the wage system. Output
prices are (p, pr, pe, pk) for final goods, robot services, education, and capital. By constant
returns to scale and the assumption of a competitive economy, all prices will equal unit costs

4The end-point restrictions are not needed, but we keep these to cut down on the number of cases. The
assumed necessity of both inputs bounds substitution elasticities near the “axes," but not elsewhere.
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of production for any sector with strictly positive output:

(3) pj ≤ cj(1,ωj), with equality if yj > 0,

where 1 is the return to machine capital, ωj is the price vector of “labor" in sector j, and cj
is the unit cost function, dual to the function fj .5 The price of labor, in turn, comes from a
second collection of unit cost functions {coj} for each occupation in that sector:

(4) ωoj = coj(w
o
j , pr).

3.3. Factor Demands and Automation. In each sector, machine capital and labor are chosen
to maximize profits, satisfying familiar first-order necessary conditions when an input is
positive. The mapping from prices to human and robot demand then flows through the
aggregators `j . Define an automation index aoj ≡ roj/h

o
j for any “active" sector (with yj > 0)

and occupation o, where aoj is to be interpreted as∞when hoj = 0. By the linear homogeneity
of `j , the set of optimal choices of aoj is represented by a correspondence Aoj(ζj) defined only
on the ratio ζoj ≡ woj/pr. By a standard monotonicity argument, this correspondence is
nondecreasing (in the sense that whenever ζoj ≤ ζoj

′, aoj ∈ Aoj(ζoj ), and aoj
′ ∈ Aoj(ζoj ), we have

aoj ≤ aoj
′). Moreover, aoj → ∞ as ζoj → ∞.6 The levels of the factors hoj and roj are then

obtained by scaling quantities up or down, consistent with the selected automation ratio, so
that the desired value of `oj is produced.

3.4. Accumulation. The aggregate stock of capital K(t) evolves according to

(5) K(t+ 1) = (1− δ)K(t) + yk(t),

where δ ∈ [0, 1] is a constant, sector-independent depreciation rate for physical capital.7

Our formalization puts all durability within the physical capital sector. Durable robots are
included in this formulation, embedded in physical capital in the robot sector, where they
produce services under the auspices of the robot production function fr (with labor needed,
perhaps, for maintenance).

The stock of raw human labor is given (or is normalized if it grows exogenously). But human
capital, captured by movement across occupations, can change endogenously with individ-
ual education decisions. We take as given some initial allocation across occupations. There

5Our results easily extend to monopolistic competition with CES preferences, which generates a constant
profit markup in all sectors. Profits would appear in that setting, so national income would be the sum of returns
to capital, to workers and profits. Our distributional results would continue to apply.

6See Lemma 3(i)–(iii) in the Appendix for details.
7The model can be extended to incorporate sector specificity of capital services and depreciation rates.
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could be a “null occupation" where individuals without initial skill can be placed, or can
“drop out" to at zero cost. An individual can move from one occupation o to another o′; at
an educational cost of e(o, o′) units times the price pe, the latter endogenously determined.
Human capital might depreciate; that is, it could be that eoo > 0 for some or all o. We place
no restriction on the education needed to switch occupations, so the model captures both in-
flexible occupation-specificity (no individuals can move at all) at one extreme, or complete
flexibility (where no education is needed to switch occupations) at the other extreme, and ev-
erything in between. Observe also that our formulation allows humans to move both within
and across sectors. Occupational returns will be determined by market-clearing conditions.
The supply of services by different occupations may and in general will not be perfect substi-
tutes, in which case skill premia will be endogenously determined rather than pinned down
by technology.

3.5. Preferences. There is a continuum of infinitely lived individuals divided into a finite set
of types, indexed by m. Each type m has a one-period increasing, continuous,8 strictly con-
cave utility indicator um, defined on vectors of final goods, and a discount factor βm ∈ (0, 1).
For any pre-determined current expenditure z on final goods and price vector p, her demand
vector for goods maximizes um(x), subject to px ≤ z. That generates a demand function
xm(p, z). Denote by vm(z,p) the corresponding indirect utility function. We assume um is
such that for every p, the indirect function vm is increasing, concave and differentiable, with
unbounded steepness in z at zero.

At the start of any date, an individual has some financial wealth (representing her existing
claims on capital or debt), and one unit of human labor along with a starting occupation. At
date 0, her financial assets are nonnegative, and she can also work in a subsistence activity at
any date to earn some small, exogenous, strictly positive income. We ignore the subsistence
activity as it will get swamped in a growing economy: it is an expedient device to ensure a
positive lower bound to human wages in all occupations.

At each date, an individual chooses an occupation by acquiring the necessary education. She
supplies one unit of labor with no disutility, and is paid the occupational wage, provided it
is no less than subsistence income. Then she decides how much to spend on different goods
and how much to save financially (the rate of return on which is endogenously determined).
All these decisions are made within an infinite-horizon utility maximization setting. Every

8The continuity of preferences or demand, here and everywhere else, will be taken relative to the pointwise
or product topology on sequences of goods or price vectors.
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individual makes farsighted investment decisions in human capital and financial wealth with
perfect foresight about future wages and prices.

More formally, given some dated price-wage system for all goods, capital, and occupations,
an individual of type m with initial (date-0) endowments of financial wealth Fm(0) ≥ 0 and
human capital (skill for occupation om(−1)) maximizes9

(6)
∞∑
t=0

βtmvm(z(t),p(t)),

by choosing a path of financial wealths Fm(t) and occupations om(t) at educational cost

(7) Em(t) ≡ e(om(t− 1), om(t)),

along with current expenditure zm(t), subject to the date t budget constraint:

(8) Fm(t) + wjm(t)(t) = zm(t) + pe(t)Em(t) +
Fm(t+ 1)

γ(t)
,

and the no-Ponzi condition lim inft Fm(t) ≥ 0. To accommodate imperfect capital markets,
we impose Fm(t) ≥ Bm for all t, a borrowing limit that can be set arbitrarily high. Note that
γ(t) is the “return factor" on financial wealth at date t, and that:

(9) γ(t) =
1 + (1− δ)pk(t+ 1)

pk(t)
.

To understand (9), note that one unit of wealth can purchase claims to 1
pk(t)

units of physical
capital at t. Each such unit generates a rental income of 1, then depreciates to yield (1 − δ)
units of physical capital worth (1− δ)pk(t+ 1) at the next date.

A sufficient condition for the above maximization problem to be well-defined is that all util-
ity functions are bounded. But well-known weaker conditions can be imposed, for instance,
when utility functions have a well-defined tail elasticity. For our main results, we also pre-
sume that um is asymptotically homothetic:

(10) lim
z→∞

xm(p, z)

z
= dm(p) for some function dm

for every p � 0. We assume: (i) dm is continuous on any bounded sequence of price
vectors with strictly positive pointwise limit, and (ii) if there is a sequence {pn} with some
pni converging to zero, then lim infn dmi(p

n) > 0 for at least one such i.

3.6. Equilibrium. Given initial K(0), an allocation of financial claims to these {Fm(0)}
and initial human capital {om(−1)} (varying across or within types), an equilibrium is a

9We avoid the additional notation, but allow for heterogenous behavior and endowments within m.



11

sequence of wages {w(t)}, prices {p(t), pr(t), pe(t), pk(t)} and quantities {Fm(t), zm(t),
Em(t), jm(t), kj(t), rj(t), hj(t), yj(t)} for every person, sector and occupation such that:10

A. All individuals maximize utility as described in (6)–(9), with Fm(0) = pk(0)km(0) for all
m, and firms maximize per-period profits at every date, with (3) holding.

B. The final goods markets clear: at every date, and for every final good i:

(11)
∑
m

∫
xi(zm(t),p(t)) = yi(t),

where the integral (here and in (15) and (16) below) stands for aggregation within m.

C. The robot market clears; for each t:

(12) yr(t) =
∑
i

ri(t) + rr(t) + re(t) + rk(t).

D. The human labor market clears; for each t and each occupation o in sector j:

(13) hoj(t) = Measure of all individuals of each type m: om(t) = o.

E. The capital market clears; for each t, K(t) evolves as in (5), with:

(14) K(t) =
∑
i

ki(t) + kr(t) + ke(t) + kk(t),

and the undepreciated capital stock plus rental income on it is willingly absorbed:

(15) [1 + (1− δ)pk(t)]K(t) =
∑
m

∫
Fm(t),

F. Finally, the education market clears; that is, for every t:

(16) ye(t) =
∑
m

∫
Em(t), where {Em(t)} satisfies (7).

Per-capita national income (gross) is given by the expenditure on all final goods, plus in-
vestment in new capital goods and education:

(17) Y (t) =
∑
i

pi(t)yi(t) + pe(t)ye(t) + pk(t)yk(t).

We could just as easily work with net national income, subtracting capital depreciation.

10By our minimum wage assumption, all prices are bounded away from zero (see Lemma 2 in the Appen-
dix), so without loss we ignore equilibrium with excess supply and zero price in any sector.
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4. Long Run Growth, Automation and the Declining Labor Share

4.1. An Illustrative Example. There is a single occupation in each sector. There is one final

good with production function y1 = k
1/2
1 `

1/2
1 , a capital goods sector with yk = k

1/2
k `

1/2
k , and

a robot sector that has a CES production function with elasticity 1/2:

yr =

[
1

2
k−1
r +

1

2
`−1
r

]−1

.

Humans and robots are substitutable at a constant rate ν everywhere: `j = hj + νrj for
all j. Humans move freely across sectors, so there is no education and just a single wage
w. Then the price of effective labor ω is w if there is no automation, and ν−1pr if there is
(partial or full) automation. In the final good and machine sectors, the unit cost function is
c1(1, ω) = ck(1, ω) =

√
ω, while in the robot sector it is cr(1, ω) = 1

2
[1 +
√
ω]

2. Everyone
has the same one-period utility u(x) = ln(x), with discount factor β ∈ (0, 1).

To track equilibrium paths, notice that at any date, robot prices must satisfy

(18) pr(t) ≤ cr(1, ωr(t)) =
1

2

[
1 +

√
ω(t)

]2

.

with equality if the robot sector is active.

Case 1: ν ≤ 1/2. Then automation cannot ever occur. For if it did at any date t, then
ω(t) = ν−1pr(t). Substituting this into (18) which now holds with equality, we see that

pr(t) =
1

2

[
1 +

√
ν−1pr(t)

]2

>
1

2
ν−1pr(t),

which contradicts ν ≤ 1/2. So at every date the robot sector shuts down. The economy
effectively consists of a single consumption and capital good with aggregate Cobb-Douglas
production and a 50% share of labor in national income at every date.

Case 2: ν > 1/2. Then, if the economy exhibits sustained growth of per-capita income
— as it indeed will if some household types are patient enough11 — all sectors j that grow
must be “asymptotically fully automated": aj(t) = rj(τ)/hj(τ) → ∞ as t → ∞. For
suppose this assertion is false. Then aj(τ) must be bounded in at least one growing sector
j along a subsequence {τ} of dates. Since the total amount of human labor in the economy
is bounded, so must be the overall labor input in that sector. Then sustained growth implies
that machine capital used in j — and hence the capital-labor ratio — grows without bound,
implying w(τ)→∞. In the absence of full automation, unit labor cost ωj(τ) will equal the

11We provide precise conditions below in Theorem 1.



13

human wage w(τ), and also converge to∞. By (18),

pr(τ) ≤ 1

2

[
1 +

√
ω(τ)

]2

=
1

2

[
1 +

√
w(τ)

]2

,

so that along the same subsequence,

ν−1pr(τ)

w(τ)
≤ 1

2ν

[
1√
w(τ)

+ 1

]2

→ 1

2ν
< 1 as t→∞,

but that would imply ωj(τ) ≤ ν−1pr(τ) < w(τ) for large τ , a contradiction.

Intuitively, the absence of automation implies an ever-growing scarcity of labor which causes
the human wage to grow (without bound, this latter qualification implicitly presumed from
now on). But that triggers automation when the human wage becomes large. If ν > 1/2,
it is possible to dispense with humans altogether, and still produce robots at a finite unit
cost (using machine capital and robots). Specifically, there exists p∗r < ∞ satisfying p∗r =

1
2

[
1 +

√
ν−1p∗r

]2

, if and only if ν > 1/2. Then p∗r is an upper bound to the price of robots,
making automation inevitable in all growing sectors. That bounds the human wage above,
and hence the aggregate income earned by human workers. It follows that the share of labor
in national income must converge to 0 in the long run.

We now provide a condition which explains the key distinction between the two cases above,
and drives automation and income distribution in the general model.

4.2. Self-Replication. Recall the “no-protection" assumption `oj(0, r) > 0 for some r > 0,
for every j and o. By linear homogeneity, `oj(0, r)/r is independent of r for r > 0; call this
ratio νoj . In what follows, we ask you to temporarily forget that the capital rental rate is the
numeraire. Consider the unit cost minimization problem in the robot sector, when each type
o of effective labor in that sector is priced at νoj

−1 per unit, and the capital rental rate is equal
to η. Look at the limit of this unit cost as η → 0:

lim
η→0

cr
(
η, {νor

−1}
)
.

It turns out that this limit bears on the possible automation of the robot sector itself.

PROPOSITION 1. Suppose the robot sector satisfies the following “self-replication" condi-
tion:

(19) lim
η→0

cr
(
η, {νoj

−1}
)
< 1.
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Then there is a nonempty compact set P ∗ of strictly positive solutions to the equation

(20) pr = cr
(
1, {νor

−1pr}
)
,

and in equilibrium, pr(t) ≤ supP ∗ <∞ for all t: the robot price is bounded relative to the
rental on capital. If at any t, the robot sector is automated, then pr(t) ∈ P ∗.

We prove Proposition 1 in the main text as it is simple and intuitive. Because νoj units
of effective labor in occupation o can be produced by a single robot unit, it must be that
ωoj ≤ νor

−1pr. This option imposes an upper bound to the price of robot services:

(21) pr = cr (1, {ωor}) ≤ cr
(
1, {νor

−1pr}
)
.

Figure 1 depicts cr(1, {νor−1pr}) as a function of pr. Because machines are indispensable
for producing robot services, this function initially lies above the 450 line. Self-replication
coupled with linear homogeneity guarantees that it ultimately dips below — and stays below
— the 450 line; see Panel A of Figure 1. Then P ∗ is the set of intersections with the 450 line,
as described by (20). It is nonempty and compact,12 and (21) is equivalent to the assertion of
the Proposition that pr(t) ≤ supP ∗ for all t in any equilibrium. So the price of robot services
(relative to machine capital) is bounded above if self-replication holds. Indeed, if the robot
sector is automated, then that price must be one of the solutions in P ∗. This pin on the robot
price (relative to capital rental), pr ∈ P ∗, can be viewed as a variant of the Nonsubstitution
Theorem (Arrow 1951, Samuelson 1951). Of course, automation may never be full but only
asymptotic. In that case — though not stated formally in the Proposition — the robot price
will lie very close to some element of P ∗; see, for instance, the proof of Proposition 2.

Conversely if self-replication fails, a finite positive solution to (20) could fail to exist, as
shown in Panel B, and it will necessarily fail to exist if fr is quasi-concave. In this case, the
robot producing sector can never be automated, and the price of robot prices is unbounded.
The resulting implications are spelt out in Proposition 3.

Let’s examine the self-replication condition (19) in the special CES class, again with just one
occupation in the robot sector. We have:

fr(k, `) =
[
αk

σ−1
σ + (1− α)`

σ−1
σ

] σ
σ−1

,

with α ∈ (0, 1) and the elasticity of substitution σ ≥ 0. The unit cost function is

cr(η, ν
−1
r ) =

[
αση1−σ + (1− α)σνσ−1

r

]1/(1−σ)
.

12If fr is quasi-concave, then P ∗ is a singleton — there is a unique positive solution to (20).
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pr

cr (1, {!r   pr})

Self-replication guarantees this final cut

450

P*o-1

(a) Self-Replication Holds

pr
450

cr (1, {!r   pr})o-1

(b) Self-Replication Fails

Figure 1. Self-Replication and the Bound on Robot Price

So our limit equals zero when σ ≥ 1, which includes the Cobb-Douglas case (“enough"
substitution is available). But it is positive when σ < 1. For instance, if the production
function is “almost" Leontief, labor costs will matter for unit cost no matter how cheap
machines are. In this latter case, (19) does restrict the value of νr. Specifically,

(22) Either σ ≥ 1, or σ ∈ (0, 1) and νr > (1− α)σ/1−σ.

4.3. Automation and the Declining Labor Share Under Long Run Growth. In conjunction
with sufficient consumer patience, the self-replication condition in the robot sector has strong
implications for long run growth, automation and income distribution.

THEOREM 1. Assume the self-replication condition (19) holds, and that for some m,

(23) βm

[
(1− δ) +

1

ck (1, {νok−1 supP ∗})

]
> 1.

where P ∗ is defined as in Proposition 1. Then:

(i) Per-capita national income grows: Y (t)→∞.

(ii) Each sector j that grows exhibits asymptotic full automation:

(24)

∑
o∈Oj r

o
j (t)∑

o∈Oj h
o
j(t)
→∞ as t→∞.

(iii) If preferences are asymptotically homothetic, the national income share of human labor
converges to zero as t→∞, and that of physical capital converges to 1.
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We describe the underlying argument; a formal proof is in the Appendix. Part (i) states that
per capita income grows (without bound) if (23) holds. This is a condition placed on the
primitives of the model. When the robot production function is quasiconcave, P ∗ is an easy-
to-compute singleton. Otherwise P ∗ is multivalued but still based on primitives. We show
that (23) is sufficient for an m-type to accumulate unbounded wealth.

The first difficulty is to account for moving capital prices. While bounds can be placed
on these prices, there will in general be capital gains (or losses). To sidestep the spikes
of accumulation and decumulation that could might arise from these anticipated gains and
losses, we cumulate the relevant Euler equations for financial wealth. Recalling the indirect
utilities vm and γ(t), the equilibrium rate of return on financial assets, we have:

(25) v′m(zm(t),p(t)) ≥ βmγ(t)v′m(zm(t+ 1),p(t+ 1)),

with equality holding if financial wealth is actively accumulated. From (9),

γ(t) =
1 + (1− δ)pk(t+ 1)

pk(t)
=

[
pk(t+ 1)

pk(t)

] [
(1− δ) +

1

pk(t+ 1)

]
,

where the second equality decomposes the return into the product of capital gains and the
rental income (augmented by any undepreciated capital) on a unit of wealth. If we compound
the Euler inequality in (25) over dates 0, . . . , t, where t ≥ 2, then we have

v′m(zm(0),p(0)) ≥ βt−1
m

(1− δ)pk(t) + 1

pk(0)

{
t−1∏
τ=1

[
(1− δ) +

1

pk(τ)

]}
v′m(zm(t),p(t)),

which eliminates temporary spikes and dips in capital gains. Because pk(τ) is bounded by
the option to automate: pk(τ) ≤ ck(1, ν

−1
k pr(τ)) ≤ ck(1, ν

−1
k supP ∗), we have:

(26) v′m(zm(0),p(0)) ≥
βt−1
m

[
(1− δ) + 1

ck(1,{νok
−1 supP ∗})

]t−2

ck (1, {νok−1 supP ∗})
v′m(zm(t),p(t)).

Applying (23), (26) implies that v′m(zm(t),p(t)) → 0 as t → ∞. Further bounds on equi-
librium prices {p(t)} (see Appendix) then allow us to conclude that the consumption expen-
diture of type m households must grow. With bounded debt, the same is true a fortiori for
per capita consumption and income in the economy. Because returns to capital are bounded
away from zero under self-replication, the option to automate liberates owners of capital
from labor scarcity as the economy grows.

Part (ii) asserts that any such sector that grows exhibits asymptotic full automation in the
sense of (24). The proof is easily obtained by contradiction: if a sector grows, at least one of
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its effective labor inputs must grow with it — this is a consequence of unbounded steepness
with respect to at least one effective labor input, and the fact that self-replication holds (so
the price of effective labor is bounded relative to capital). But the total available supply of
(raw) human labor is bounded. Therefore each such growing occupation within the sector
must have aoj(t)→∞. Because all bounded occupations become insignificant relative to the
growing ones, the result follows.

Part (iii) is the heart of our thesis, and needs a more subtle argument. We want to allow for
the case in which there is no uniform threshold for automation — the idea being that at any
human wage, there are always productive sectors where humans continue to be a desirable
presence. In fact, humans may well be persistently present in every occupation, asymp-
totically automated or not,13 but with asymptotic automation their income share cannot be
preserved. However, the presence of an unbounded number of occupations opens the possi-
bility of “human shelters" that provide opportunities for humans to stay ahead of automation
waves. To do so, they must perennially accumulate human capital, moving across occupa-
tions. Indeed, in these relatively protected sectors, the human wage could be very high. In
Proposition 2 below, we provide conditions under which in any equilibrium with growth, the
highest human wage across all sectors grows unboundedly over time. If humans acquire the
skills to enter these yet-to-be-automated sectors, their wages might conceivably grow in step
with per capita income.

At this point, the endogeneity of prices and wages that we’ve emphasized throughout takes
center stage. The willing absorption of humans into sectors requires that there be adequate
demand for those outputs. When all labor is clumped into an efficiency-unit aggregate, this
demand question is eliminated by definition, because relative wages cannot change over the
sectors that are thus aggregated with brute force. With an endogenous wage structure, this
is no longer the case. Part (iii) shows that if demand is asymptotically homothetic, then the
economy runs out of steam in its ability to shelter labor. For the human wage share to stay
positive in the long run, household expenditures shares on yet-to-be automated sectors must
remain sizable. Under asymptotic homotheticity, this cannot happen, so wage incentives do
not climb at the required pace.

Hometheticity is sufficient for Theorem 1, but not necessary. Without formalizing what
follows, consider a version of our model in which there is no homotheticity, so that demand
can keep shifting persistently with rising income. Then Theorem 1 would still remain true as
long as those shifting preferences favor subsets of goods in a way that is neutral, on average,

13To see why, consider the example of an `j function provided just after equation (2).
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to their susceptibility to automation. Under self-replication, there appears to be only one
way to break the stranglehold imposed by the theorem, and that is if preferences are both
non-homothetic and move progressively in favor of goods that aford human protection; it is
easy to construct examples of this.14

4.4. Persistent Growth in Human Wages. The discussion in Section 4.3 suggests that a van-
ishing share of labor income could co-exist with unbounded growth in human wages. Several
combinations of sufficient conditions can deliver such a result; we provide one. Suppose that
there is just one occupation per sector (nothing hinges on this). Consider the marginal rate of
substitution between humans and robots in producing effective labor in sector j, that is, the
marginal human input that needs to be added to keep effective labor constant as robot ser-
vices are decreased by a constant infinitesimal amount. Let θj denote the limiting marginal
rate of substitution as the ratio of human to robot labor in sector j converges to zero. This
serves as a measure of the “local relative efficiency" of robots relative to humans in sector j
in a neighborhood of the automation corner.

Given asymptotically homothetic preferences, we make the following “full-support" assump-
tion on limit demand: for each m and each price p� 0, dmi(p) > 0 for i ∈ I .

PROPOSITION 2. Suppose that the conditions of Theorem 1 hold, including asymptotic ho-
motheticity of preferences, and suppose that the full-support condition holds. Then:

(a) The highest wage earned by humans across sectors grows without bound as t → ∞, if
there is a sequence of goods i = 1, 2, . . . with θi → 0.

(b) The wage earned by every human grows without bound if education costs incurred in
order to move across any pair of occupations is bounded.

As a special case, all the conditions of the proposition hold when human labor is freely
mobile, when preferences are CES and Dixit-Stiglitz, and if the aggregator for effective
labor in each sector is as described in the example after equation (2). Theorem 1 tells us
that any growing sector must eventually be automated, so robot output must grow to meet
that rising demand. Given the limited endowment of human labor, this is only possible if the
robot sector itself is asymptotically automated. Hence the tail sequence of robot prices has
limit points contained in the set P ∗. (It will additionally converge if the robot technology

14Comin, Danieli and Mestieri (2019) describe non-homotheticities in demand which raise the share of
services and lower that of agriculture, and are associated with rising wage polarization. They do not investigate
the implications for the decline in overall labor income share. Karabarbounis and Neiman (2014) argue that
this decline is mainly intrasectoral, and not driven by changing intersectoral composition.
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is quasiconcave.) Because any sector i can be contested by humans, the corresponding tail
sequence of human wages is asymptotically bounded below by pr(t)/θi. Given that pr(t)
enters into a strictly positive compact set, the highest human wages diverge to infinity along
the double sequence t→∞ and {i} such that θi → 0.

When education costs are bounded, (b) states that the wage earned by every human must
grow. This is because wage differences across sectors are bounded. Hence if wages in any
sector grow, so must they also grow in every sector in which some humans choose to work.
However, if education costs are unbounded, some humans may remain trapped in certain
occupations with a finite limiting wage.

4.5. The Failure of Self-Replication. A failure of self-replication means that the price of
robots cannot be severed from human wages. Human workers are indispensable in the pro-
duction of robot services, causing robot prices to climb with wages as labor scarcity grows.
The scope for automation in all sectors is therefore restricted, so inducing wages to grow
faster. The example in Section 4.1 already makes this clear, but more can be said. Under
broad conditions, self-replication is formally necessary for Theorem 1.

To develop this argument, we place some restrictions on our general environment. Once
again, without any real loss of generality, we assume just one occupation per sector. The
first restriction is a general version of the condition that the production function fj defined
on capital and effective labor has an elasticity of substitution smaller than 1 in every sector
j. For any sector j, and any effective price of labor ω, consider the set Ξj(ω) of labor-capital
ratios ξ = `/k that minimize unit cost of production, and let

Λj(ω) ≡ min
ξ∈Ξj(ω)

ωξ(ω)

1 + ωξ(ω)

be the lowest ratio of labor income to total income in that sector thus generated. Just for
a moment, think of the production function fj in this sector as CES with elasticity of sub-
stitution lower than 1. Then we know that Λj(ω) is increasing in ω, with Λj(0) = 0 and
Λj(∞) = 1. In particular, given any lower bound ω > 0, we have

inf
ω≥ω

Λj(ω) > 0.

In our more general setting without constant elasticity (or indeed concavity), we impose the
above condition, and uniformly so across sectors:

(27) inf
j

inf
ω≥ω

Λj(ω) > 0.
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Next, we make additional assumptions on the production function for robots. We assume that
it is strictly quasiconcave, in addition to being linearly homogeneous. We assume further that
`r(h, 0) > 0 for some h > 0, so that the labor aggregate in the robot sector can be produced
by humans alone. This restriction is analogous to the feasibility of automation, as already
assumed. Call such a technology regular.

PROPOSITION 3. Suppose that (27) holds and the robot production function is regular. Then,
if the self-replication condition fails, in any equilibrium the share of human labor in national
income is bounded away from zero.

Proposition 3 makes it clear that both the asymmetry of human and physical capital accu-
mulation and the self-replication condition on the robot sector are needed for our results.
Indeed, the self-replication condition is logically necessary in a broad class of environments.
Without it, robot prices cannot be divorced from the wages of human labor. As labor becomes
more expensive, so do robots, and the forces of automation are attenuated — sufficiently at-
tenuated, as it turns out, under the conditions of Proposition 3 so that the share of human
labor does not decline in a sustained way over time.

4.6. Within-Occupation Human Capital. We now extend the theory to incorporate the ac-
quisition of intra-occupational skill. First note that the device of several occupations within
a sector can be interpreted to mean that these are different skill levels within the same job.
As long as there is a finite (or even compact) set of such skill levels, the theory already
accommodates such cases, by redefining different levels of skill as different occupations.
However, that is still in contrast to the unbounded scope for accumulation of physical capital
within any sector. Could our model be extended to similarly accommodate the unbounded
accumulation of skill within a sector?

We already know that the answer cannot be an unqualified yes: there are macroeconomic
models which generate balanced labor income shares once human capital can be accumulated
to an unbounded degree in efficiency units, with no changes in relative prices. So studying
this extension will help identify the precise nature of the asymmetry needed between physical
and human capital accumulation in our model.

For expositional clarity, we revert to the common-sense notion of an occupation, and do not
interpret varying levels of skill as constituting distinct occupations. We extend our model
to allow workers to acquire varying levels of skill within any given occupation, and place
no upper bound on the amount of such skill that can be accumulated. We model skill in the
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conventional manner, as a certain number of efficiency units. Let the production function
for effective labor services in occupation o in some sector be `oj(µ

o
jh

o, ro), where µo is the
productivity of a human in that occupation. (We’ve dropped sector subscripts for ease in
writing.) Wages are paid per unit of productivity, just as in the standard model based on
efficiency units, so the income of a person with productivity µo is woµo, where wo is the
occupation-specific “efficiency unit human wage."

Everything else in the model is kept unchanged, but we must specify the technology of
productivity acquisition. To this end, we extend the education function as follows: let
e(µ, µ′, o, o′) denote the units of education needed to move from “starting productivity" µ
in occupation o to “destination productivity" µ′ in sector o′, where o could be equal to o′. In
particular, one can both invest within an occupation and across occupations, generally with
heterogeneous cost implications. Moreover, continued on-the-job education can depend on
baseline levels of productivity already acquired in that sector.

We take e to be smooth in its first two arguments with partial derivatives denoted by e1 (with
respect to starting productivity) and e2 (with respect to destination productivity), typically
negative in the first case and positive in the second. We place the following restrictions on
the education function:

(H.1) For any o and S > 0, there is M <∞ such that e2(µ, µ, o, o) ≥ S for all µ ≥M .

(H.2) For any o, there is Lo ≥ 0 with e1(µ, µ′, o, o′) ∈ [−Lo, 0] for all (µ, µ′) and o′.

(H.3) For each occupation o′, there is a bound µ̂o′ such that for every starting o 6= o′ and
productivity µ, e(µ, µ′, o, o′) =∞ for µ′ ≥ µ̂o

′ .

(H.1) states that within any occupation, the marginal cost of skill acquisition ultimately be-
comes very high, as baseline productivity increases. (H.2) states that while a higher starting
productivity may bring down the cost of achieving any destination productivity in the same
or different occupation, the marginal savings are bounded. (H.3) states if an individual is
switching occupations, there is some upper bound to the productivity with which she can
immediately start in the new occupation. Of these three, the one that matters the most is
(H.1). This condition does not automatically seal off unbounded skill accumulation, be-
cause the equilibrium price and wage structure matters as well: the returns to skill may grow
fast enough to outpace the rising marginal cost. But as shall now see, the self-replication
condition suffices to prevent such an outcome.
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PROPOSITION 4. Suppose that within- and cross-sector human capital are accumulated via
an education function satisfying H.1–H.3. Suppose, moreover, that the self-replication con-
dition (19) is satisfied, and preferences are asymptotically homothetic. Then, if (23) holds,
there is sustained per-capita income growth, and the income share of labor goes to zero.

The Appendix contains a detailed proof; we describe the main step here. Under self-replication,
each sectoral price is bounded below and above over time by strictly positive, finite numbers,
just as before; see Lemma 2. In general, wages will not be bounded, but the argument that
follows separates two cases.

In the first, some occupational wage grows; see formal proof for precision regarding sub-
sequences, etc. But then, the feasibility of automation allows us to prove that the share of
human labor income in total effective-labor revenue in that occupation must converge to
zero; see part (ii) of Lemma 3. The second possibility is that some occupational wage is
bounded. Then (H.1) chokes off the incentive to acquire within-occupation productivity,
given that the price of education is bounded below. The gains from such acquisition include
direct wage benefits from the occupation, as well as cost savings on future investments, but
these are all bounded, by our conditions on the education function. At the same time, the cost
of incremental productivity climbs without bound. These observations ensure that when the
occupational wage is bounded, so is productivity per person. With this boundedness result in
hand, we can essentially follow the existing line of proof in Theorem 1. The two possibilities
taken together replicate our previous result.

4.7. Sectors With Full Human Protection. We’ve assumed that full automation is technically
feasible, but what of “protected" occupations in which production is impossible without
humans: `(0, r) = 0? Examples might include “live music" or “hand-made pottery," with a
human element in production by the very nature of the good. Of course, it is still possible
that the ratio of human to robot could become vanishingly small over time. In the live-music
example, it might be possible to increase the size of the audience without bound for any live
concert, and “hand-made pottery" could be judiciously redefined to include minimal human
intervention. The debate is philosophical and possibly endless, as anyone who’s seen Blade
Runner or heard of the Turing test will know.

For expositional simplicity, assume one occupation per sector. Say that sector (or occupation)
j is unprotected if `j(0, r) > 0 for r > 0, as assumed so far, and protected if `j(0, r) = 0 for
all r ≥ 0. When preferences are asymptotically homothetic, say that the asymptotic demand
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system dm(p) is elastic if
∑

i∈Q p
n
i di(p

n) → 0 along any sequence prices {pn} in which
pnQ →∞ while all other prices are bounded above.

PROPOSITION 5. Suppose that all intermediate goods sectors and some final goods sectors
are unprotected, and that the self-replication condition (19) holds. Then:

(i) Under (23), there is sustained per-capita income growth.

(ii) For every unprotected sector on which expenditure grows, there is asymptotic automation
and the output price is bounded.

(iii) For every protected sector on which expenditure grows, there is asymptotic automation
and the output price is unbounded.

(iv) Suppose that preferences are asymptotically homothetic, and that the expenditure shares
of all sectors converge to a limit expenditure share vector. Then the limit share of human
labor in national income is bounded above by the asymptotic share of expenditure on pro-
tected sectors. Moreover, if the demand system for every type is elastic, then once again the
share of human labor in national income converges to zero.

We omit a formal proof; much of it follows already covered ground. Part (i) is proved by
exactly the same argument as in part (i) of Theorem 1. The proof of part (ii) is a special
case of (ii) of Theorem 1, noting that the growth of output value is the same as the growth
of physical output — prices must be bounded. Part (iii) is new. There are two cases: either
the price of the protected good grows, or its physical output does. Under the former, the
price of the labor aggregate must grow in that sector — and so too must human wages, given
that robot prices are bounded, by self-replication. Asymptotic automation then follows from
Lemma 3(iii) in the Appendix.

In the latter case, with output growing, there are two possibilities: (a) The labor aggregate
also grows in that sector, but then we have asymptotic automation, given that the stock of
raw labor is bounded. Moreover, since the sector is protected, the price of the labor aggregate
must grow, and so must the price of final output. (b) The labor aggregate is bounded, but
then capital must grow, implying an ever-increasing price for the labor aggregate. That
in turn can only happen if the human wage grows, and once again we obtain asymptotic
automation. Moreover, the price of the final output must grow.

Exactly the same argument as in Theorem 1(iii) shows that the labor share as a ratio of ex-
penditure on all unprotected sectors converges to zero. Therefore the overall labor share in
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national income must be asymptotically bounded above by the asymptotic share of expendi-
ture on protected sectors. Finally, observe that all unprotected prices are bounded (Lemma
2(ii)) and all protected prices in growing sectors are unbounded. Moreover, by assumption,
all protected goods are final goods. Then, with an elastic demand system, the expenditure
share on all protected goods must fall to zero, and by the upper bound just established, so
must the share of human labor in national income.

5. Technical Progress

We extend the theory to incorporate directed technical progress. “Directedness" means that
technical progress is geared to input scarcity. The key assumption we make is that the op-
portunities for such progress are symmetric over all inputs, and across all sectors. This is
not to deny the possibility that the nature of science and technology might generate biases
in certain directions. But studying the effect of such exogenous biases would not need a
theory. If they were to favor unbridled automation, our earlier results would be a foregone
conclusion. If they favored the augmentation of human quality over robots, that would raise
the share of humans in national income instead.

The two possibilities combined point to a long run “balanced-growth" view of technical
progress; see Acemoglu and Restrepo (2018, 2019), with antecedents that include Hicks
(1932), Salter (1966), Galor and Maov (2000), and Acemoglu (1998, 2002), among many
others. Acemoglu and Restrepo (2018) generate balanced growth by assuming that newly
developed tasks lie in the human domain, enjoying temporary protection from the robot
invasion. But the robots are also hard at work, automating existing tasks and perennially
chasing the moving human frontier. Balance is achieved by equilibrium across these two
forces. This is a potentially fruitful approach, but one that is — perhaps unavoidably —
laden with questions. Why can’t new tasks that favor robots also appear on the frontier?
Or (the flip side): why cannot technical progress allow humans to recover their edge in old
tasks? What if there is technical progress in machines?

In this section, we adopt a more neutral view. There is a fixed number of sectors and tasks,
with technical progress taking place on the intensive rather than extensive margin. There
is no a priori restriction on sectors in which humans and robots can be active. In contrast,
Acemoglu and Restrepo study the extensive margin, where the task space is extended in the
asymmetric way already described. Within each sector/occupation, we allow for technical
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progress in machine capital, in human labor, and in robot services. Technical progress in
each of these sectors plays an important role in our analysis.15

The sole asymmetry we retain — one already developed — is the difference between the
scaling-up of physical and human capital. It will turn out that this asymmetry is augmented
in the presence of symmetric (though directed) technical progress. Moving away from this
symmetric benchmark, if there are stronger opportunities for technical progress that heighten
the productivity of machine capital or robots relative to humans, our results will a fortiori be
reinforced. And in the opposite case they will be moderated.

We presume that productivity growth in any factor in any given sector spills over to the same
factor in other sectors.16 There is empirical evidence of such spillovers (see, e.g., Bernstein
and Nadiri 1988 and Johnson 2018). Such spillovers will ensure that the rate of productivity
growth of any factor cannot diverge across sectors in the long run.17

5.1. Framework. To simplify the exposition we narrow the baseline model. First, we con-
sider only finitely many sectors and one occupation per sector. Second, we assume that the
`-aggregator in each sector exhibits perfect, linear substitution between robots and humans.
To allow for changes in the productivity of every input, we attach coefficients to all three
inputs as follows:

yj = fj(θjkj, µjhj + νjrj),

where the same assumptions are made on fj as before, and (θj, µj, νj)� 0 are intra-sectoral
factor productivities that can be changed by deliberate technical progress.

We assume that self-replication holds throughout. Because productivities will change over
time, the condition is stated relative to starting robot productivity νr(0) at date 0:

(28) νr(0) > lim
η→0

cr(η, 1).

Robot productivity in subsequent periods will be endogenous but no lower. So we impose no
restrictions involving these, but it is easy to see that all our results hold for any competitive
equilibrium for which (28) holds at some date t along the equilibrium path, and a fortiori at
all dates thereafter.

15Acemoglu and Restrepo abstract from non-robot machine capital in their model.
16Acemoglu and Restrepo (2019) assume a single sector, avoiding the complications from multiple sectors

and inter-sectoral spillovers. But this is not a fundamental source of difference in the results.
17In the complete absence of spillovers, Theorem 2 may not hold; details are available on request.
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5.2. Endogenous Technical Progress. Each factor-sector pair is serviced by a short-lived
inventor whose activities and returns are external to the economy in question.18 She can
increase the sectoral productivity of that factor. Assume that generic productivity πj(t) of a
factor in sector j at t can be increased at some rate ρj(t) through R&D investment. A fixed
proportion γ > 0 of this growth spills over to the same factor in other sectors, subject to a
maximum rate ρ̄ of productivity growth in any sector. So for any sector j:

(29) πj(t+ 1)− πj(t) = max

{
ρj(t)πj(t) + γ

∑
j′ 6=j

ρj′(t)πj′(t), ρ̄πj(t)

}
.

The associated R&D cost of the inventor is κ(ρj(t)), where κ′(0) = 0, κ′(ρ) > 0 and
κ′′(ρ) > 0 for all ρ. View R&D investment as a game played across sectors and factors by
inventors. Spillovers are in the public domain, utilized freely by all firms. The spillover into
sector j from other sectors depends on R&D investments by inventors in those sectors. As
these are correctly anticipated in a Nash equilibrium, the sector j inventor will invest in R&D
only if the spillovers into j from other sectors are smaller than ρ̄πj(t). This provides scope
for the inventor to license the proprietary advance ρj(t)πj(t) to firms operating in sector j in
period t+ 1. The license fee is levied per (natural) unit of the factor employed by the firm at
t+ 1.

Each inventor takes prices as given, as in the competitive innovation models of Grossman
and Hart (1979) and Makowski (1980). The maximum unit license fee Lj(t+ 1) that can be
charged by a date-t inventor is

(30) Lj(t+ 1) = qj(t+ 1)ρj(t)

where qj(t) is the factor price at t.19 Intuitively, the “effective factor price" for licensees must
rise by exactly the same proportion as the proprietary productivity advance.

Therefore, if xj(t) is the use of that factor in sector j at date t, the total return earned by the
inventor equals Lj(t+ 1)xj(t+ 1) = ρj(t)Ej(t+ 1), where Ej(t+ 1) ≡ qj(t+ 1)xj(t+ 1)

18We can fully integrate the inventor into the economy by providing her with a technology that depends on
machine capital and human/robot labor. We avoid that recursive extension here. However, one difference that
will arise is that the R&D sector will not be perfectly competitive, and will earn profits that typically constitute
a positive fraction of national income. The extent to which humans can be replaced by robots in the R&D
sector is then an additional determinant of the labor income share. This will be driven by the logic of cost
minimization in the production of R&D, in a manner similar to that in other sectors.

19One efficiency unit of the factor costs qj(t+1)/πj(t) for someone without access to the technical advance,
and qj(t+1)/(1+ρj(t))πj(t) for someone with access. The difference in unit cost is qj(t+1)ρj(t)/πj(t)(1+
ρj(t)), so this can be sucked out as a license fee per efficiency unit. Multiplying by the number of efficiency
units πj(t)(1 + ρj(t)) made possible by the advance, we obtain expression (30).
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is the total bill for that factor in sector j. Given the R&D choices {ρ′j(t)}j′ 6=j by inventors in
other sectors, and given that our inventor is specific to the sector at hand, she will invest until
κ′(ρj(t)) = Ej(t+ 1), provided κ′−1(Ej(t+ 1))πj(t) +γ

∑
j′ 6=j ρj′(t)πj′(t) < ρ̄. Otherwise,

she will invest max{0, ρ̄ − γ 1
πj(t)

∑
j′ 6=i ρj′(t)πj′(t)}. So in Nash equilibrium, the rate of

productivity increase must satisfy:

(31)
πj(t+ 1)− πj(t)

πj(t)
= max

{
κ′−1(Ej(t+ 1)) + γ

1

πj(t)

∑
j′ 6=j

ρj′(t)πj′(t), ρ̄

}

5.3. Equilibrium. An equilibrium looks in part like the competitive equilibrium in Sec-
tion 3.6. Because licensees transfer all their surplus to the inventor, their current pro-
duction decisions are the same as they would have been in the absence of license pur-
chases. With the rental rate on capital as numeraire, an equilibrium is a sequence of wages
{w(t), wr(t), we(t), wk(t)}, prices {p(t), pr(t), pe(t), pk(t)}, quantities {Fm(t), zm(t), em(t), jm(t), kj(t), rj(t), hj(t), yj(t)}
for every person and every sector, and productivity coefficients {θj(t), µj(t), νj(t)} for every
input, sector, and date, such that:

(a) Given the sequence of productivities, the remaining sequence of outcomes constitutes a
competitive equilibrium; and

(b) At every date, given equilibrium prices, all productivity changes and fees are the outcome
of a Nash equilibrium as described earlier in this section.

5.4. Automation and the Vanishing Labor Share with Technical Progress. To state the main
result of this section, we place two additional restrictions. First, we assume that household
expenditure shares on each final good are bounded away from zero:

[E] For any individual type m and good i, inf(p,z)�0 pixmi(p, z)/z > 0.

As there are a finite number of goods, this is innocuous. Next, we make an additional as-
sumption on the production technology:

[F] There is some final good i for which limω→0 ci(1, ω) > 0.

It is easy to verify that Condition F holds as long as there is at least one final good sector
with constant capital-labor elasticity of substitution strictly smaller than 1.20

20We believe that both conditions E and F are technical. Condition E is possibly needed for the result, but is
mild. As for F, we do know that it can be replaced by other conditions. For instance, for any sector j, define the
intensive-form function gj(e) ≡ fj(e, 1). Then the following condition substitutes for F: [F′] There is some
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THEOREM 2. Assume the self-replication condition (28), and Conditions E and F. Then in
any equilibrium which exhibits unbounded accumulation of machine capital, the income
share of human labor in the economy as a whole must converge to zero as t→∞.

Theorem 2 resurrects our earlier prediction, and continues to highlight the effects of asym-
metry across human and physical capital accumulation. The theorem now makes a stronger
assumption on growth, asking that capital be accumulated in equilibrium. It is possible to
provide sufficient conditions for this, along the lines of Theorem 1. Technical progress in-
duces a downward drift on prices (relative to incomes), which is an “automatic" — albeit
endogenous — source of real income growth. For machine capital to be willingly accumu-
lated despite this drift, the degree of patience must clear a higher threshold (which depends
on the maximal rate ρ̄ of technical progress).

We outline the main steps to prove Theorem 2.

OBSERVATION 1. (a) For each factor and sector j, there is M <∞ such that factor produc-
tivity in j grows at rate ρ̄ if the factor bill qjxj for that factor exceeds M .

(b) If the spillover rate γ is positive, the relative productivity πj(t)/πj′(t) of any factor be-
tween any pair of sectors j and j′ is bounded.

Part (a) follows from (31). If the factor bill Ej(t + 1) is large enough, the right-hand-
side of (31) will equal the maximal rate ρ̄ of technical progress. This reflects the force of
the intensive margin in motivating technical progress in sector j. Part (b) ensures that the
benefits of technical progress in any sector spills over to other sectors, thereby preventing
the unbounded inter-sectoral divergence of factor productivity.

Next, the self-replication condition (28) places a bound on robot prices pr(t)/νr(t) in effi-
ciency units, relative to the capital rental rate 1/θr(t) (in effective units) in the robot sector.
Spillovers across sectors then imply that the same is true of every sector in the long run,
a consequence of Observation 1(b). This generates the following sector-specific bound on
efficiency-adjusted price of robot services relative to machine rentals:

sector j such that the infimum elasticity of the intensive form is positive:

inf
e>0

g′j(e)e

gj(e)
> 0.

Conditions F and F′ are not nested. A CES production function with elasticity of substitution smaller than 1
satisfies F but not F′. A Cobb-Douglas production function satisfies F′ but not F.
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LEMMA 1. Assume (28). For any j, there is Bj <∞ such that

(32) θj(t)
pr(t)

νr(t)
≤ Bj for all t

in any equilibrium.

OBSERVATION 2. If Conditions E and F hold, then in any equilibrium with K(t) → ∞, it
must be the case that ki(t)→∞ for some sector i.

This observation rules out the arcane possibility that unbounded accumulation of machine
capital will be accompanied by cross-sectoral cycles of ever-increasing amplitude, so that
capital in any given sector is bounded along some subsequence of dates. Condition E ensures
that sectoral expenditure shares cannot fluctuate “too much" across dates, so the output of
each good must track overall growth. Condition F implies a bounded ratio of output value
to machine capital for at least some sectors. In these sectors, the amount of machine capital
allocated must therefore grow.

Observation 2 implies that the rate of technical progress in machines must eventually occur
at the maximal rate ρ̄ in some sector. These advances spill over to every other sector. Hence,
the rate of technical progress in machine capital in any sector cannot fall behind the rate of
technical progress in human labor in the long run.

Combined, these three observations have the following implication. The asymmetric growth
in endowments in natural units between machine capital and human labor generates a bias
(at least weakly) in technical progress in favor of capital. That compounds the distributional
shift in favor of physical capital, so our preceding results concerning the long run income
share of human labor continue to hold in the presence of directed technical progress. Specif-
ically, in any sector j that employs human labor at any date t, humans must be cost-effective
relative to robots, which is the first inequality below:

wj(t)

µj(t)
≤ pr(t)

νj(t)
≤ Bj

θj(t)νj(t)
,

but the second inequality also applies, by Observation 1. Combining the two,

wj(t) ≤
µj(t)

θj(t)

Bj

νj(t)
.

Now, µj(t)

θj(t)
is bounded: as already noted, machine capital productivity grows at least as fast

as human productivity in every sector in the long run, while νj(t) is non-decreasing in t.



30

So human wages are bounded, implying that the share of human labor income in national
income must converge to 0 in the long run, as Kt →∞.

We remark on the very last line in the previous paragraph. It is true that human wages are
bounded, but only relative to our chosen numeraire, which is the rental rate on machine
capital in natural units. Because technical progress occurs in all sectors, machine capital
becomes highly productive over time, which leads to a progressive decline in the prices
of final goods, relative to the same numeraire. Human wages are bounded below in that
numeraire, and so by any measure of the cost-of-living — that is, relative to any index
number defined on the basket of final goods — real incomes must diverge to infinity. The fact
that the share of human labor in national income nevertheless converges to zero again reveals
the contrast between absolute and relative behavior in human incomes, already emphasized
at different points above.

As before, the argument for Theorem 2 rests on the underlying asymmetry between the
growth of physical capital and human labor in natural units. Unbounded capital accumulation
relative to human labor implies a corresponding asymmetry in factor bills, and thereby in
technical progress on the intensive margin. That induces a parallel asymmetry in rates of
technical progress, precisely unveiled by our insistence on the level-ground assumption that
the opportunities for technical progress are symmetric.

6. Concluding Remarks

We study long-term automation and decline in the labor share, driven by capital accumu-
lation rather than biased technical progress or rising markups. Our argument relies on a
fundamental asymmetry across physical and human capital in modern economies. While
physical capital can be scaled up for the same activity and accumulates in natural units,
human capital accumulates via education and training that alters choice into higher-skilled
occupations, but — from the vantage point of a household or individual — cannot scale up
the quantity of labor for a given occupation to an unlimited degree. Under a self-replication
condition on the technology of the robot-producing sector, we show that the share of capital
in national income approaches 100%.

The self-replication condition is central to our findings. So the condition itself merits greater
scrutiny. There is greater recognition that the “production of robots by means of robots" is
not merely a hypothetical possibility:
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“They are a dream of researchers but perhaps a nightmare for highly skilled computer program-
mers: artificially intelligent machines that can build other artificially intelligent machines . . . Jeff
Dean, one of Google’s leading engineers, spotlighted a Google project called AutoML . . . [which]
is a machine-learning algorithm that learns to build other machine-learning algorithms. With it,
Google may soon find a way to create A.I. technology that can partly take the humans out of
building the A.I. systems that many believe are the future of the technology industry." (The New
York Times, November 5, 2017.)

The self-replication condition is placed on the robot sector alone, but it has economy-wide
ramifications. If this condition fails, humans are generally guaranteed a positive share of
national income. For either some sectors of the economy are automated, in which case the
robot sector becomes active, and humans must obtain a positive share of value added in the
robot sector. Or there is no automation anywhere, in which case humans are not displaced
in any sector, and the standard theory applies. Therefore, in the absence of self-replication,
there is a route by which the benefits of physical capital accumulation could persistently flow
to humans.

Our paper also takes note of other escape routes from the possibility of an ever-falling labor
share: non-homothetic demand that progressively favors sectors that protect humans, grow-
ing sectors where humans are protected from full automation by the nature of technology,
or technical progress biased in favor of humans. However, while any of these scenarios is
possible, we do not see any reason why they should be inevitable.

Our emphasis throughout has been on the functional distribution of income. Whether a
household’s income remains on par with the economy — the question of the personal distri-
bution of income — will depend on whether they invest in financial wealth or human capital
(or neither, or both). This is a question we have not yet addressed, though our model pro-
vides the means to study it, and is something we plan to undertake. It will become necessary
to take closer account of both the heterogeneity of the population in their preference pa-
rameters, as well as to incorporate a detailed description of credit market constraints. Both
these features are currently present in the model, but play no more than a background role.
Finally, we note that despite its generality, the theory presented here is simple and tractable,
which may also allow it to be useful in analyzing effects of fiscal policies such as capital
taxes, education subsidies, universal basic income or other policy interventions to address
the distributional consequences of automation.
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Appendix: Proofs

Proof of Theorem 1. We begin with some preliminary observations.

LEMMA 2. For each j, there is pj > 0 such that in any equilibrium and at any date t,

(33) pj(t) ≥ pj > 0

whenever yj(t) > 0. If in addition, self-replication holds, then

(34) pj(t) ≤ cj
(
1, {νoj

−1 supP ∗}
)
<∞

for all j and at every date t, where P ∗ is defined in Proposition 1.

Proof. See Supplementary Appendix.

Consider unit costs for the effective labor aggregator ` (in a generic occupation o, subscript
removed), with human-robot price ratio ζ:

(35) co(ζ, 1) = min ζh+ r, subject to `(h, r) ≥ 1.

LEMMA 3. (i) Suppose that ζ > ζ ′. Then h ≤ h′ and r ≥ r′.

(ii) For any optimal selection h(ζ), ζh(ζ)→ 0 as ζ →∞.
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(iii) For any optimal selection h(ζ) and r(ζ), a(ζ) = r(ζ)/h(ζ)→∞ as ζ →∞.

Proof. See Supplementary Appendix.

Now we prove part (i). We first show that in an equilibrium and for any group m that sat-
isfies (23), we have zm(t) → ∞. Consider the indirect utility functions vm(z(t),p(t)) for
individual expenditure z(t) at any date t. In any equilibrium, an individual in this group has
F0 > 0 units of a financial asset at date 0, and thereafter makes educational and financial
asset choices (and consumption choices), under fully anticipated prices, which includes a
sequence of return factors {γ(t)} on financial holdings. She has several necessary condi-
tions that describe her behavior, but one set of these has to do with her choice of financial
assets. Because her initial income can be strictly positive if she so pleases (there is a positive
subsistence wage), her current expenditure zm(T ) must be strictly positive at some date T ,
but then zm(t) > 0 for all t ≥ T , by the unbounded steepness of vm in z at 0. For ease in
writing set T = 0. It follows that the Euler equation on financial assets must hold with a
particular inequality at every date t ≥ 0:

(36) v′m(z(t),p(t)) ≥ βmγ(t)v′m(z(t+ 1),p(t+ 1)).

If (36) fails, she could always transfer resources one period into the future and increase
lifetime utility. (Equality may not hold because human capital could have a higher rate
of return than financial assets, and the individual may not be able to marginally pull back
funds from future to present, because of credit constraints.) Now we compound this Euler
inequality just as in the main text to arrive at (26), reproduced here as:

(37) v′m(zm(0),p(0)) ≥
βt−1
m

[
(1− δ) + 1

ck(1,{νok
−1 supP ∗})

]t−2

ck (1, {νok−1 supP ∗})
v′m(zm(t),p(t)).

It follows from condition (23) that v′m(zm(t),p(t)) → 0 as t → ∞. But vm is strictly
increasing and concave for every p. Moreover, every active final goods price is bounded
above and below by (34) of Lemma 2.21 Therefore (37) can only hold if zm(t) → ∞ as
t → ∞. With a bounded credit limit on every other individual, we must conclude that
per-capita income Y (t) as defined in (17) must go to infinity.

For part (ii), we prove that any sector j must be asymptotically fully automated along any
subsequence in which its output grows. To show this, we argue first that effective labor in
some occupation o ∈ Oj in that sector must also grow. If this were false for every occupation

21If a final good is inactive it has no effect on vm anyway, as it is not consumed.
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in Oj , then by the unbounded steepness condition,

(38) ωoj (τ) = pj(τ)
∂

∂`oj
fj(kj(τ), `j(τ))→∞ as τ →∞

for some occupation o ∈ Oj . But we know that

ωoj (τ) = coj(w
o
j (τ), pr(τ)) ≤ νoj

−1pr(τ) ≤ νoj
−1 supP ∗ <∞,

where the first inequality comes from the fact that automation is feasible and the second
from self-replication and Proposition 1. But this boundedness of ωoj (τ) contradicts (38). So
effective labor `oj(τ) in some occupation o ∈ Oj grows. But

`oj(τ) = `oj(h
o
j(τ), roj (τ)) = `oj(h

o
j(τ), aoj(τ)hoj(τ)) ≤ `oj(1, a

o
j(τ)),

where “1" is the total human labor endowment. It follows that aoj(τ) → ∞ for each such
growing occupation.

Part (iii). For this part, we need the following

LEMMA 4. Let S be the set of all infinite-dimensional nonnegative vectors s ≡ (s1, s2, . . .),
with components in [0, 1] and

∑∞
j=1 sj = 1. Let s(t) be a sequence in S, and suppose that

there is ŝ ∈ S such that s(t) converges pointwise to ŝ = (ŝj). Let Ψ(t) be a corresponding
convergent sequence with components (Ψ1(t),Ψ2(t), . . .), where Ψj(t) ∈ [0, 1] for every j
and t, with Ψj(t)→ 0 as t→∞ for every j with ŝj > 0. Then limt→∞

∑∞
j=1 Ψj(t)ŝj(t) = 0.

Proof. See Supplementary Appendix.

For any active sector j and date t, define

Ψj(t) =

∑
o∈Oj w

o
j (t)h

o
j(t)

pj(t)yj(t)
∈ [0, 1],

and set Ψj(t) = 0 if yj(t) = 0. This is well-defined: pj(t) > 0 whenever yj(t) > 0 (Lemma
2). We claim that if yj(t) → ∞ along a subsequence of dates, Ψj(t) → 0. To see this, pick
any limit point of Ψj(t) along the subsequence in question. Choose further subsequences
such that for every occupation o ∈ Oj , woj (t) is either bounded or diverges to infinity; retain
the original index t. Now, if woj (t) is bounded for some o ∈ Oj , then certainly

woj (t)h
o
j(t)

pj(t)yj(t)
→ 0
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as t → ∞. (Because pj(t) is bounded below, pj(t)yj(t) → ∞.) Otherwise, if woj (t) → ∞
for some o ∈ Oj , ζoj (t) = woj (t)/pr(t)→∞, given that pr(t) is bounded above (Proposition
1). By linear homogeneity of `oj and Lemma 3(ii),

woj (t)h
o
j(t)

pj(t)yj(t)
≤

woj (t)h
o
j(t)

woj (t)h
o
j(t) + pr(t)roj (t)

=
ζoj (t)hoj(t)

ζoj (t)hoj(t) + roj (t)
→ 0.

Aggregating these observations over all the occupations proves the claim.

If σ(t) denotes the share of human labor in national income, it follows that

σ(t) =

∑
o∈Oj w

o
j (t)h

o
j(t)

Y (t)
=

∑
j Ψj(t)pj(t)yj(t)

Y (t)

=

[∑∞
i=1 Ψi(t)pi(t)yi(t)

Y (t)

]
+

∑
j=e,r,k Ψj(t)pj(t)yj(t)

Y (t)
(39)

at every date t, where it is understood that any sector inactive at any date has an entry of 0 in
the sum above. Write for every final good i active at date t:

(40)
pi(t)yi(t)

Y (t)
=
∑
m

φm(t)smi(t),

where φm(t) ≡ Zm(t)/Y (t) is the ratio of current aggregate expenditure of type m to total
income, and smi(t) is the corresponding expenditure share on good i by type m. Combining
(39) and (40),

(41) σ(t) =
∞∑
i=1

Ψi(t)

[∑
m

φm(t)smi(t)

]
+

∑
j=e,r,k Ψj(t)pj(t)yj(t)

Y (t)

for all t. We will show that the right hand side of (41) converges to 0 as t → ∞. To this
end, pick any subsequence of dates (but retain original notation) so that σ(t) converges. Ex-
ploiting the fact that the number of sectors is countable, use a diagonal argument to extract
a further subsequence (again retain notation) so that each of the bounded sequences Ψj(t),
φm(t), smi(t), pj(t), and [pj(t)yj(t)]/Y (t) also converge.22 The last finite sum in (41) per-
tains only to three sectors: e, r and k. For any of these sectors, call it j, Ψj(t)→ 0 along any
subsequence for which j is consequential, and on any other subsequence pj(t)yj(t) must be
bounded, while Ψj(t) ∈ [0, 1]. Putting these observations together with Y (t)→∞, we must
conclude that this last finite term in (41) converges to 0. The rest of the argument concerns
the first set of terms in (41).

22In particular, the ratio φm(t) = Zm(t)/Y (t) is also bounded because of finite credit limits.



38

Let M be the set of all indices for which limt φm(t) > 0 for the subsequence under consid-
eration. If M is empty, we are done, so assume it is nonempty. Then, using the fact that the
interchange of a finite and infinite sum is always valid, we have
∞∑
i=1

Ψi(t)

[∑
m

φm(t)smi(t)

]
=
∑
m

φm(t)

[
∞∑
i=1

Ψi(t)smi(t)

]

=
∑
m∈M

φm(t)

[
∞∑
i=1

Ψi(t)smi(t)

]
+
∑
m6∈M

φm(t)

[
∞∑
i=1

Ψi(t)smi(t)

]
.(42)

Because φm(t) → 0 for all m /∈ M , the second term on the right hand side of this equation
converges to 0. It remains to show that same is true of the first term. It will suffice to show
that for each m ∈M ,

(43)
∞∑
i=1

Ψi(t)smi(t)→ 0

as t→∞ along our chosen subsequence. Because limt φm(t) > 0 for m ∈ M and Y (t)→
∞, it follows that expenditures diverge to infinity for a positive measure of individuals of
each type m. Let Zm(t) be the aggregate expenditure of type m and xmi(t) the aggregate
demand for good i by this type. By asymptotic homotheticity,

ŝmi ≡ lim
t
smi(t) = lim

t

pi(t)xmi(t)

Zm(t)
= lim

t
pi(t)d

m
i (p(t)),

We claim that each pi(t) is bounded above and below by strictly positive numbers. The upper
bound is given by Lemma 2. For the lower bound, suppose by contradiction that I , the set
of indices such that pj(t) → 0, is nonempty. Then, by assumption (ii) on the function dm,
we have lim inft dmi(p(t)) > 0 for some i ∈ I . But then that sector is active at all large
dates, which means that its price is bounded below (see (33) of Lemma 2), a contradiction.
Therefore the claim is true, and given assumption (i) on dm, it follows that ŝmi forms a
“bonafide share vector" with

∑
i ŝmi = 1. So the conditions in Lemma 4 are satisfied (ignore

index m). Therefore this Lemma implies (43), and the income share of human labor must
converge to zero. Recall (17) to write out income:

Y =
∑
i

piyi + peye + pkyk,
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and express it as the sum of (machine) capital and human income:

Y =
∑
i

piyi + peye + pkyk =
∑
j 6=r

[kj + prrj + wjhj]

=
∑
j 6=r

[kj + wjhj] + pr[yr − rr] =
∑
j 6=r

[kj + wjhj] + [kr + wrhr]

=
∑
j

[kj + wjhj] = K +
∑
j

wjhj.

That means that the income share of capital converges to 1.

Proof of Proposition 2. (a) Under the conditions of Theorem 1, including homotheticity,
there are sectors that grow to infinity, and are asymptotically automated. It follows that the
robot sector is active after some date T , so that for all t ≥ T ,

(44) pr(t) = cr(1, ωr(t)) ≤ cr(1, ν
−1
r pr(t)),

and moreover, yr(t) → ∞ as t → ∞. We claim that every limit point of pr(t) must lie in
the set P ∗ defined by the self-replication condition, as in Proposition 1. If this is false, then
using (44), there is ε > 0 and some subsequence of dates (retain notation) such that

cr(1, ωr(t)) ≤ cr(1, ν
−1
r pr(t))− ε,

which in turn implies the existence of ε′ > 0 such that

ωr(t) ≤ ν−1
r pr(t)− ε′

for all t large. It follows that ar(t) ≡ rr(t)/hr(t) must be bounded above. But then, because
yr(t) → ∞, we must have hr(t) → ∞, which contradicts the finite labor endowment of the
economy. So the claim is true.

By asymptotic homotheticity, the full support restriction on dm for every m, and the positive,
finite bounds on prices above and below, we see that every sector must grow. So every sector
i ∈ I is asymptotically automated. A necessary condition for this to happen is that

(45) lim inf
t
θiwi(t) ≥ inf P ∗.

To see why, note from the previous claim that lim inft pr(t) ≥ inf P ∗. If (45) is false,
then there is ε” > 0 such that θiwi(t) ≤ pr(t) − ε” along some subsequence of dates,
implying that lim inft hi(t)/ri(t) > 0 on that subsequence and contradicting asymptotic full
automation. Recalling the assumption that θi → 0 for some sequence of goods in I , it
follows immediately from (45) that supiwi(t)→∞ as t→∞.
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(b) We claim that for any number W , however large, there exists a time T such that for all
dates t ≥ T , wj(t) ≥ W for every sector j for which hj(t) > 0. If this claim is false,
there exists some sector q and a subsequence of dates (retain original notation t) such that
suptwq(t) ≡ Wq < ∞, but hq(t) > 0 for all t. Next, pick a sector i ∈ I that nearly attains
the supremum in (a). Because that supremum goes to infinity, and because educational costs
are bounded, we have for all large t,

(46) wi(t) > Wq + p̄e sup
j
|Eji − Ejq|,

where p̄e is some finite upper bound on education prices given by (34). It follows that for all
large t,

wi(t)− pe(t)Eji > wq(t)− pe(t)Ejq.

This shows that no individual can ever want to enter (or remain in) sector q from any sector
j (including j = q) for large enough t; i.e., hq(t) = 0 for all large enough t along the
subsequence, a contradiction.

Proof of Proposition 3. By the minimum subsistence bound on wages and (33) of Lemma
2, there is ω > 0 such that in any equilibrium, ω(t) ≥ ω for all t. Recalling the definition
of Λj(ω), we can easily use the linear homogeneity of fj and invoke (27) to see that there is
ε > 0 such that the income share of effective labor in sector j satisfies:

ωj(t)`j(t)

pj(t)yj(t)
= Λj(ω(t)) ≥ ε > 0,

for every t and every active sector j. Therefore, if Λ(t) denotes the overall income share of
effective labor at date t, then, because it is simply a convex combination of all the sector-
specific shares,

(47) Λj(t) ≥ ε > 0

as well, for every date t.

Now consider any sequence of dates (retain original index t) along which the overall income
share of human labor converges. Using a diagonal argument, extract a subsequence such
that in every sector j, Λj(t) converges — to a strictly positive limit, by (47), and the overall
shares of human labor income and robot income in effective labor income converges as well.
If the share of robot income in effective labor income converges to a number strictly smaller
than one, then the proof is complete. Otherwise, the share of robot income in effective labor
income converges to 1, and given that the latter has a positive limit share in national income,
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it follows that limj rj(t) > 0. In particular, for large dates, the robot sector is active, so that:

(48) pr(t) = cr(1, ωr(t)) ≤ cr(1, ν
−1
r pr(t)).

where the latter inequality comes from the feasibility of automation in the robot sector.

Now, self-replication fails by assumption, so limη→0 cr(η, 1) ≥ νr. Multiplying through by
prν

−1
r , and using the concavity of the robot cost function (the first part of our regularity

condition on fr), pr ≤ c(1, ν−1
r pr) for every pr > 0. Indeed, using (33) of Lemma 2 and the

unbounded steepness of c at pr = 0 (inherited in turn from the unbounded steepness of fr),
we make a stronger claim: there is ε > 0 such that

(49) pr(t) ≤ cr(1, ν
−1
r pr(t))− ε.

at every conceivable equilibrum price pr(t) at any date.23 Combining (48) and (49),

cr(1, ωr(t)) ≤ cr(1, ν
−1
r pr(t))− ε,

which in turn implies the existence of ε′ > 0 such that

ωr(t) ≤ ν−1
r pr(t)− ε′

for all t large. So, because the effective labor price is bounded away from what it would have
been with full automation, it follows that ar(t) = rr(t)/hr(t) must be bounded above. But
then, because effective labor in the robot sector can be produced by humans alone (the second
part of our regularity condition on fr), it must be that the share of human labor income in the
total value of robot production (equal to robot income) is bounded away from 0. Therefore
in this case, too, the share of human income in total effective labor income is bounded away
from zero, and the proof of the proposition is complete.

Proof of Proposition 4. In any equilibrium, all prices are bounded below (pointwise) by
strictly positive numbers, just as before; see (33) of Lemma 2. Under self-replication, Propo-
sition 1 additionally applies and robot prices are also bounded above exactly as before, and
independent of human productivity. In turn, this provides pointwise upper bounds on prices
in all sectors, see (34) of Lemma 2. That includes the same bound on price of capital, so part
(i) of Theorem 1 holds under the same conditions and following exactly the same proof.

The remainder of the proof consists in applying the following argument at more than one
point:

23Note first that pr(t) is bounded below (Lemma 2. Now consult Panel B, Figure 1. Because cr(1, pr) is
concave and initially lies strictly above the diagonal, it cannot converge back to the diagonal without actually
crossing it. So it must remain separated from the diagonal by some strictly positive number.
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Claim. Suppose that for some occupation o ∈ ∪jOj , the human wage per unit of productivity,
wo(t), is bounded on the equilibrium path by some w̄o <∞. Then human labor in efficiency
units is also bounded along that same path.

To establish the Claim, pick some S > 0 such that

(50) peS >
w̄o

1− β
+ p̄eL

o

where β is the largest discount factor among all types. Next, using (H.1), pick M <

∞, larger than initial productivity endowment and the cross-occupation bound, such that
e(µ, µ+ ∆, o, o) ≥ S∆ for all µ ≥ M . Suppose an individual contemplates a move beyond
a productivity of M without changing occupation; i.e., there exists t such that she moves
from µo(t − 1) ≥ M to µo(t) > µo(t − 1). Let ∆ ≡ µo(t) − µo(t − 1). Then the lifetime
wage gain as a result of this move is bounded above by w̄o∆/(1 − β). Also, the higher
productivity can lower the marginal cost of subsequent actions. By (H.2), these gains are
bounded above by p̄eLj∆, where p̄e is an upper bound on the price of education. So total
gains are bounded above by

(51)
w̄o∆

1− β
+ p̄eLj∆

On the other hand, the cost of this move is given by

pe(t)e(µ
o(t− 1), µo(t), o, o) = pe(t)e(µ

o(t− 1), µo(t− 1) + ∆, o, o) ≥ p
e
S∆.

Combining this expression with (50) and (51), we must conclude that the cost of the proposed
move exceeds its benefits, so it will never be made. That proves the Claim.

For parts (ii) and (iii), minor adjustments are needed. In (ii), we prove that any sector j must
be asymptotically fully automated along any subsequence in which its output grows. Just as
in the proof of Theorem 1, we can first show that effective labor in some occupation o ∈ Oj

in that sector must also grow. Now we consider two possibilities. If woj (t) grows along
some further subsequence, then the share of human labor income in total revenue accruing to
effective labor in that occupation must converge to zero along that subsequence; see part (ii)
of Lemma 3. The second possibility is that woj (t) is bounded. Then by the Claim, individual
productivity is also bounded, and — given that this occupation grows — it must become
asymptotically automated.

For part (iii), we need to show again that

Ψj(t) =

∑
o∈Oj w

o
j (t)h

o
j(t)

pj(t)yj(t)
∈ [0, 1],
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converges to zero, as in the proof of Theorem 1. Very similar (and minor) changes need
to be made as in the preceding paragraph, using the Claim. We omit the details. With this
established, there is no change in the rest of the argument to establish Theorem 1.

Proof of Theorem 2: See Supplementary Appendix.


