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Abstract

Tackling real-world socio-economic challenges requires designing and testing economic policies. How-
ever, this is hard in practice, due to a lack of appropriate (micro-level) economic data and limited opportunity
to experiment. In this work, we train social planners that discover tax policies in dynamic economies that
can effectively trade-off economic equality and productivity. We propose a two-level deep reinforcement
learning approach to learn dynamic tax policies, based on economic simulations in which both agents and a
government learn and adapt. Our data-driven approach does not make use of economic modeling assump-
tions, and learns from observational data alone. We make four main contributions. First, we present an
economic simulation environment that features competitive pressures and market dynamics. We validate the
simulation by showing that baseline tax systems perform in a way that is consistent with economic theory,
including in regard to learned agent behaviors and specializations. Second, we show that AI-driven tax
policies improve the trade-off between equality and productivity by 16% over baseline policies, including the
prominent Saez tax framework. Third, we showcase several emergent features: AI-driven tax policies are
qualitatively different from baselines, setting a higher top tax rate and higher net subsidies for low incomes.
Moreover, AI-driven tax policies perform strongly in the face of emergent tax-gaming strategies learned by
AI agents. Lastly, AI-driven tax policies are also effective when used in experiments with human participants.
In experiments conducted on MTurk, an AI tax policy provides an equality-productivity trade-off that is
similar to that provided by the Saez framework along with higher inverse-income weighted social welfare.
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1 Introduction
Economic inequality is accelerating globally and is a key social and economic concern. Many studies have
shown that large income inequality gaps can have significant negative effects, leading for example to diminished
economic opportunity [United Nations, 2013] and adverse health effects [Subramanian and Kawachi, 2004].
In this light, tax policy provides governments with an important tool to reduce inequality, supporting the
possibility of the redistribution of wealth through government provided services and benefits. And yet, finding
the optimal tax policy is challenging. The basic reason is that while more taxation can improve equality,
taxation can also discourage people from working, leading to lower productivity.

The problem of optimally balancing equality and productivity has not been solved for general economic
settings, and even when the policy objectives can be agreed upon. Part of the challenge is that is hard to
experiment with real-world tax policies. In the place of experimentation, economic theory often relies on
simplifying assumptions that are hard to validate, for example about people’s sensitivity to taxes. Tax systems
that have been proposed range from no taxes at all (“free market”), to progressive and regressive tax systems
(reflecting whether the tax rate increases or decreases as income increases), to total redistribution.

In this paper, we introduce “The AI Economist,” a two-level deep reinforcement learning (RL) framework
to train social planners. The economic actors are adaptive, learning behaviors in the simulated world and
including in response to tax policy. The planner is also adaptive, learning tax policies that adapt to agent
behaviors and seek to achieve a particular policy objective. Neither economic actors nor the AI Economist have
prior knowledge, whether about the simulated world environment or economic theory. The AI Economist
learns a tax policy based only on observable data and without knowledge of the skill or utility functions of
workers or prior assumptions about the behavior of workers, and can be used to optimize for any desired
social outcome.

The AI Economist learns a tax schedule, analogous to the way in which US federal income taxes are
described. Taxes are computed by applying a tax rate to each part of an individual’s income that falls within a
tax bracket. For simplicity, we fix the intervals that correspond to each of these income brackets and learn
the tax rate for each bracket. The tax schedule learned by the AI Economist is not personalized; each agent
faces the same rates and bracket cutoffs. In a single tax period the tax schedule is determined via a deep neural
network, able to observe all public information about the world, including the position, income, and resources
held by agents.

Our approach to economic design is based on the use of simulations, making use of AI agents that learn
optimal behaviors. This use of simulation enables the testing of economic policies at large-scale, and including
the ability to measure a range of different metrics. In effect, we can compare the performance of millions
of economic designs, making use of economic agents whose behavior is learned in parallel. The simulation
framework can also be used to speed up experiments with existing proposals for tax systems, validating
assumptions and offering the ability to test ideas that come from economic theory.

We make the following contributions:

• We introduce a principled economic simulation that features competitive pressures, trade, and resource
scarcity.

• We validate that learned behavior conforms to results known from economic theory, for example agent
specialization.

• We frame the problem of learning optimal taxes in a dynamic economy as a two-level, inner-outer
reinforcement learning problem and describe a range of techniques to stabilize training for this two-level
RL problem, including the use of learning curricula and entropy-based regularization.
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• The AI-driven tax policies make use of different kinds of tax rate schedules than those suggested by
baseline policies, and our experiments demonstrate that the AI-driven tax policy can improve the trade-off
between equality and productivity by 16% when compared to the prominent Saez tax framework.

• We show that AI agents can learn tax-avoidance behaviors, modulating their incomes across tax periods.
The tax schedule generated by the AI Economist performs well despite this kind of strategic behavior.

• Without endorsing the particular tax schedules, we show that a learned policy can also be effective
in experiments with human participants and without additional recalibration. The policy achieves
an equality-productivity trade-off that is competitive with the state-of-the-art, together with higher
inverse-income weighted social welfare. This provides a preliminary suggestion that the AI Economist
methodology could also be applicable to more general, real world settings.

1.1 Related Work
Optimal Taxation. In economics, optimal tax theory is the study of the design of a tax system that maxi-
mizes a social welfare function subject to a set of economic constraints, while accounting for the fact that
individuals respond to taxes and transfers [Mankiw et al., 2009, Diamond and Saez, 2011]. The core challenge in
the design of optimal tax policies is that taxes and transfers can affect incentives to work, creating a trade-off
between equality and productivity [Mankiw et al., 2009, Diamond and Saez, 2011]. A particular concern is that
high income may correlate with high skill, leading higher skilled workers to choose to work less.

Ramsey [1927]’s early work tied consumption taxes on a good to a representative consumer’s elasticity of
demand for the good. The current dominant theoretical framework arose out of a series of papers by Mirrlees
and Diamond [Diamond and Mirrlees, 1971a,b, Mirrlees, 1976]. These authors consider a utilitarian social
planner—aiming to maximize the sum of individual utilities in a society. Saez [2001] builds on the Mirrlees
framework to derive optimal non-linear tax rates using models of the elasticity of earnings with respect to tax
rates, together with the shape of the income distribution.

Other work has expanded upon the Mirrlees framework to argue for a tax system that tries to achieve
a broader distributive justice [Piketty and Saez, 2013, Piketty et al., 2014, Saez and Stantcheva, 2016], or a tax
system in which the payments made by an individual merely match the benefits received [Mankiw et al., 2009,
Mankiw, 2010, Mankiw and Weinzierl, 2010].

The Mirrlees model is limited to optimal taxation in a single tax period, without considering dynamics,
for example the income histories of individuals in deciding taxes, or events with longer-term effects such as
education. The new dynamic public finance (NDPF) expands upon these frameworks to consider dynamic
economies, capturing additional real world effects, for example, allowing for the coordinated taxation of
capital and labor income [Golosov et al., 2003, Kocherlakota, 2005, Albanesi and Sleet, 2006, Kocherlakota,
2010].

Progress in optimal taxation theory has also come through a growing empirical and experimental literature.
This includes work that seeks to estimate labor supply elasticity to changes in taxation and redistribution [Gru-
ber and Saez, 2002, Chetty, 2012, Goldberg, 2016], and work that seeks to understand the behavioral response
of workers to tax policy through the use of cross-sectional data on taxation, labor supply, and individual
incomes [Slemrod, 1996, Goolsbee, 2000, Alesina et al., 2005]. Research in behavioral public finance [McCaf-
fery and Slemrod, 2006, Kuziemko et al., 2015, Alesina et al., 2018] makes use of experiments and surveys to
understand how people respond to different theories of taxation, redistribution, and public spending.

Our work adopts baselines from optimal taxation theory, by comparing the performance of the AI
Economist with tax policies that arise from the Saez framework, in this case, making use of estimated labor
elasticities in our simulated economies.
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Agent-based Modeling. Agent-based modeling (ABM) research [Holland and Miller, 1991, Bonabeau, 2002]
creates simulations of agents and institutions that interact through prescribed rules. ABM does not rely on
standard equilibrium models. Rather, it allows for dynamic, nonlinear behavior by agents and institutions,
and can adopt behavioral rules that are deduced from human experiments [Arthur, 1991].

The idea is to use ABM to enable policy-makers to simulate an artificial economy under different policy
scenarios, and quantitatively explore their consequences [Farmer and Foley, 2009]. ABM has been applied
to study tax compliance [Bloomquist, 2011, Miguel et al., 2012, Subburaj and Rao, 2018], and to derive optimal
taxation policy [Garrido and Mittone, 2013], based on heuristics and simple learning methods. Wider adoption
of ABM has proved challenging due to the complexity of realistically modeling human behavior and the
economy.

While our motivations are similar to ABM, our framework makes use of deep RL to optimize the behaviors
of economic agents with the effect that we study policy design in the presence of rational agent behavior.

Reinforcement Learning. Our learning approach relates to multi-agent reinforcement learning (MARL). In
MARL, agents need to learn together with other learning agents, creating a non-stationary environment [Lau-
rent et al., 2011]. This poses a challenge to the standard approach of learning from exploration [Sutton and
Barto, 2018a], since agents can easily mistake other agents’ exploration as environment randomness [Claus and
Boutilier, 1998]. A particular challenge presented by the AI Economist is that it presents a two-level learning
problem, in which the social planner learns a tax policy simultaneously with agents who learn how to optimize
their behavior. In effect, agents face a continuously changing reward function. As a consequence, past optimal
behavior might not be optimal at later times, which can present a significant learning challenge.

MARL has been effective in learning emergent cooperation in large-scale experiments on complex envi-
ronments [Bansal et al., 2017, Jaderberg et al., 2018, OpenAI, 2018]. Previous MARL algorithms have sought to
stabilize multi-agent learning by explicitly modeling missing state or policy information [Lowe et al., 2017,
Tacchetti et al., 2018, Shu and Tian, 2018], or assuming some information is shared between agents, including
the internal or global state or rewards [Sunehag et al., 2017, Foerster et al., 2017, Peysakhovich and Lerer, 2017,
Hughes et al., 2018, Letcher et al., 2018, Balduzzi et al., 2018].

In the present paper, we insist on each agent having a policy that only makes use of information that it
can individually observe. To make learning efficient, we allow for weight sharing during training. Learned
agent behaviors remain distinct, as a result of distinct local states, for example, location in the world, skill, and
endowment of resources. This presents a hybrid approach, improving learning efficiency without assuming
information or state sharing between agents.

Optimal taxation can be seen as a form of reward shaping, which has found a role in preventing undesired
social outcomes in multi-agent systems, such as unsustainable resource collection in tragedy-of-the-commons
style social dilemmas [Leibo et al., 2017]. Reward shaping has also been shown to induce cooperation in
spatiotemporal games [Mguni et al., 2019, Hughes et al., 2018, Jaques et al., 2018]. However, these works do not
consider the kinds of economic environments we study here, do not consider the design of tax policies, and
make use of manually-crafted reward shaping.

Machine learning forEconomicDesign. The problemof automatedmechanism designwas first formalized
by Conitzer and Sandholm [2002, 2004], and there are polynomial time algorithms for the design of Bayesian
incentive-compatible, optimal auctions [Cai et al., 2012a,b, 2013]. Dütting et al. [2019] were the first to study the
use of deep machine learning for the design of the allocation and payment rules of revenue-optimal auctions.
By insisting on incentive-compatible or approximately incentive-compatible designs, their framework can
reproduce known optimal designs and also be applied to problems out of reach of current theory. Subsequent
work has also adopted neural networks for the design of optimal auctions in settings with budget-constrained
bidders [Feng et al., 2018], for the design of auctions in settings with payment redistribution [Tacchetti et al.,
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2019], for single-bidder settings [Shen et al., 2019], as well as for problems of social choice [Golowich et al., 2018].
The use of machine learning for the design of auction mechanisms was earlier pioneered by Dütting et al.
[2014], who studied the design of payment rules for a given allocation rule. Another line of work explores the
sample complexity of the problem of learning an optimal auction, typically focusing on simpler settings [Cole
and Roughgarden, 2014, Morgenstern and Roughgarden, 2015, Balcan et al., 2016, Gonczarowski and Weinberg,
2018]. Earlier work studied the use of machine learning for the design of voting rules [Procaccia et al., 2009]
and for matching and assignment problems [Narasimhan et al., 2016, Narasimhan and Parkes, 2016].

In the aforementioned settings, the agents do not learn how to behave. Rather, the economic policies
(typically auctions) are designed such that truthful behavior is optimal for an agent. This avoids the need for
two-level learning, where agent behaviors are learned at the same time as an economic policy is learned. An
earlier literature did study the co-evolution of agent behaviors and economic designs, but without making use
of reinforcement learning and without studying tax polices [Byde, 2003, Phelps et al., 2002, 2010]. Stackelberg
equilibria have also been widely studied in other kinds of sequential environments, especially security games.
These are two-level problems where the policy of the first-mover (the defender) induces an environment for
the second-mover (the attacker) [Pita et al., 2008, Tambe, 2012]. Recent work has adopted MARL for the study
of security games [Wang et al., 2019, Shah et al., 2019]. Two-stage problems also arise in multi-agent problems
where the behavior of some agents is optimized in order to improve the overall system behavior [Dimitrakakis
et al., 2017, Carroll et al., 2019, Tylkin et al., 2020]. Other work has made use of reinforcement learning to study
resource allocation games such as Blotto [Balduzzi et al., 2019].

Closest in spirit to the present paper, but used for the design of allocation mechanisms rather than for
tax policy (for example matching sellers to buyer queries at Taobao and for internet advertising at Baidu),
is the work of Tang [2017] and Shen et al. [2020], who make use of RL to improve market design while also
allowing for agent behavior to respond to new rules. Thompson et al. [2017] have also advanced the idea of
the “Positronic Economist" (see also Vorobeychik et al. [2012] and Bünz et al. [2018]), which, borrowing from
Asimov’s positronic brain, describes a system that can be used to represent and then automatically analyze
the equilibria that correspond to the rules of economic mechanisms. Parkes and Wellman [2015] have written,
generally, about the role of economic design in economies in which transactions are increasingly mediated
through AI systems.

1.2 Outline
In Section 2, we describe our use of economic simulations and the structure of these simulations. We explain
the basic economic drivers and principles that govern the economic AI agents. We then showcase the resulting
social outcomes, such as equality and productivity, in such worlds. In Section 3, we describe how optimal
taxes can shape socioeconomic outcomes, and the central dilemma of balancing equality and productivity.
We introduce our RL approach to learning optimal taxes through interaction with economic simulations.
In Section 4, we provide empirical results that validate the effectiveness of the AI Economist in optimizing
social outcomes. We analyze the qualitative behavior of AI-driven taxes and economic AI agents. In Section 5,
we show that the AI Economist is also effective in experiments on Amazon Mechanical Turk (MTurk), with
human participants earning money. We conclude in Section 6 with a discussion of future directions, and
present our ethical review in Section 7.

2 Economic Simulations: Learning in Gather-and-Build Games
This section introduces our framework for studying economic design through simulation with AI agents. We
describe the core mechanics of the simulated environment, including the objective that AI agents are trained
to optimize, and we describe the emergent behavior that is typical of economic AI agents in this setting. For
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ease of exposition, we focus this section on experiments with no taxes applied (“free-market”) in order to
illustrate the kinds of social outcomes that taxes may help to correct and some of the challenges faced when
designing an optimal taxation scheme.

2.1 Notation and Preliminaries
In this work, we use notation that borrows from both the reinforcement learning and the optimal tax theory
literature, see Table 1.

t time
i, j, k agent indices
θ, ϕ model weights
s state
o observation
a action
r reward
π policy
γ discount factor
T state-transition, world dynamics
h hidden state

x endowment
xc coin
xs stone
xw wood
z income
l labor
u utility
T tax
τ tax-rate
πp planner policy
swf social welfare
ω social welfare weight
g social marginal welfare weight
gini Gini index
eq Equality index

Table 1: Notation. Subscripts are indices. Superscripts are labels.

Formally, we build on the framework of partial-observable multi-agent Markov Games (MGs) [Sutton
and Barto, 2018b], defined by the tuple (S, A, r,T, γ, o,I), where S and A are the state and action spaces,
respectively, and Iare agent indices. Bold-faced quantities denote vectors, e.g., a = (a1, . . . , aN ), the action
profile for N agents. MGs proceed in episodes that last H + 1 steps (possibly infinite), covering H transitions.
At each time t ∈ [0, H], the world state is denoted st . Each agent i = 1, . . . ,N receives an observation oi,t ,
executes an action ai,t and receives a reward ri,t . The environment transitions to the next state st+1, according
to the transition distribution T(st+1 |st, at). Agent-specific observations oi,t describe the portion of the state st
that agent i is able to observe.

Each agent learns a policy πi
(
ai,t |oi,t, hi,t; θi

)
that maximizes its γ-discounted expected return, where the

policy is conditioned on the history of past observations bymaintaining a hidden state hi,t , andwhere θi parame-
terizes the policy of agent i. Let π = (π1, . . . , πN ) denote the joint policy and π−i = (π1, . . . , πi−1, πi+1, . . . , πN )
denote the policy without agent i. Through reinforcement learning, agent i seeks a policy to solve

max
θi

Eai∼πi,a−i∼π−i,s′∼T

[∑
t
γ tri,t

]
, (1)

for discount factor γ ∈ (0, 1). Equation 1 describes an agent i that maximizes its expected reward, which
depends on the behavioral policies π−i of the other agents and the environment transition dynamics T. This
is a policy that best responds to the policies of other agents, given the dynamics of the simulated environment
and an agent’s observations.
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Figure 1: The Gather-and-Build game. Agents move around, collect resources (wood and stone) and build
houses. Agents cannot move through each others’ houses, or move through water. Agents can trade resources.

For data efficiency, all agents share the same parameters during training, denoted θ, but condition their
policy πi (ai |oi, hi; θ) on agent-specific observations oi and hidden-state hi. In effect, if one agent learns a useful
new behavior for some part of the state space then this becomes available to another agent. At the same time,
agent behaviors remain heterogeneous because they have different observations and hidden states.

2.2 Environment Rules and Dynamics
Overview. We introduce the Gather-and-Build game, a two-dimensional grid-world in which agents can
move to collect resources, earn coins by using the resources of stone and wood to build houses, and trade
with other agents to exchange resources for coins. Stone and wood stochastically spawn on special resource
regeneration tiles. Agents can move around the environment to gather these resources from populated
resource tiles that remain empty after harvesting until some new resources spawn.

Agents can choose to use one unit of wood and one unit of stone to construct a house, and this places a
house tile at the agent’s current location and earns the agent some number of coins. The number of coins
earned per house depends on the skill of an agent, and skill is different across agents. In addition, agents
start at different initial locations in the world. These heterogeneities are the main driver of both economic
inequality and specialization in our environment.

Agents can also trade resources, by submitting the number of coins they are willing to accept (an ask) or
are willing to pay (a bid), respectively, to an open market, for each of wood and stone. We provide a detailed
description of the environment and its underlying dynamics in the appendix (Section A).

Labor and Skill. Over the course of an episode (a single play out of the environment), agents accumulate
labor cost, which reflects the amount of effort associated with the actions taken by the agent. Each type of
action (moving, gathering, trading, and building) is associated with a specific labor cost. Each time an agent
performs one of these actions, its accumulated labor is incremented by the action’s associated labor cost.
As described below (Section 2.3), agent rewards depend positively on accumulated coin and negatively on
accumulated labor. The labor costs associated with each action type are calibrated so that agents need to be
strategic in how they choose to earn income, and all agents experience the same labor costs.

7



Following taxation theory, we allow agents in the environment to vary by skill, which describes howmuch
income an agent is able to earn per unit of labor. We capture this by providing, separately for each agent, (1) a
multiplier on the default number of coins earned from building a house, and (2) the probability of gaining
bonus resources when harvesting. The coin payoff for a house depends linearly on skill. An agent receives a
minimum of 10 coin per house built.

A building skill of 1 (the minimum value) means the agent earns this minimum payoff and a building skill of
2.5 means the agent receives 25 coin per house. The maximum skill value is 3. An agent’s collection skill is equal
to the average number of resources it receives each time it steps on a populated stone or wood resource tile.
As an example, for an agent with a collection skill of 1.2, it will always receive at least 1 resource from stepping
on a populated tile and there is a 20% chance it will also receive a bonus unit of the collected resource. The
minimum collection skill is 1 and the maximum is 2, ranging from never receiving bonus resource units to
always receiving them.

We conceptualize the coins that are generated when building a house as coming from a part of the wider
economy that our simulation does not directly model. An agent’s building skill— the coin the agent receives
from building —reflects the value that this external market places on a particular agent’s houses. The total
quantity of coins generated by the simulated agents during an episode reflects the value created by their
collective labor.

Environment Scenario. All experiments were carried out using the specific world map shown in Figure 1,
which has four quadrants, mostly separated by water from each other (this blocks movement), and with
spatially clustered resources. We focus on games with four agents, and apply a fixed set of building skills,
chosen as the means of the quartiles of a clipped Pareto distribution with exponent a = 4 and scale m = 1.
Skills and starting locations are randomly assigned to agents. These building skills correspond to payoffs of
11.3, 13.3, 16.5, and 22.2 coins per house. In all experiments, we used episodes of length H = 1000 time steps.

2.3 Using Machine Learning to Optimize Agent Behavior
To ground our simulation in economic theory, we model the reward that the agents learn to optimize as a
utility function. Recall that xi,t denotes the endowment of resources (stone and wood) and coin owned by an
agent at time t. At time t, the utility experienced by an agent i is a function of the number of coins that it has
accumulated xci,t , and the total labor that it has exerted li,t . In particular, we adopt a utility function that is
concave and increasing in money, and linearly decreasing in labor:

ui(xi,t, li,t) = crra
(
xci,t

)
− li,t, crra (z) = z1−η − 1

1 − η , η > 0. (2)

Here, li,t is the cumulative labor associated with the actions taken by the agent up to time t, and the concave
isoelastic utility crramodels diminishing marginal utility over money [Debreu, 1968]. Parameter η controls
the degree of nonlinearity: higher η represents larger deviations from linear behavior. We assume that all
agents share the same form of utility function. This utility function is visualized in Figure 2 for a simple setting
without trading and where there is no labor cost associated with moving or gathering resources.

Rational economic agents optimize their total discounted utility over time, with

∀i : max
πi

Eai∼πi,a−i∼π−i,s′∼T


H∑
t=1

γ t
(
ui(xi,t, li,t) − ui(xi,t−1, li,t−1)

)︸                               ︷︷                               ︸
= ri,t

+ui(xi,0, li,0)

 . (3)
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Figure 2: Agent utility, as defined in Equation 2, in a simplified setting where utility only depends on the
number of houses built, for four agents with different skills n0 < . . . < n3. For clarity of this visualization,
each agent is assumed to receive a fixed income per house, which increases with skill, as described in Section
2.2. For each house built, each agent is also assumed to have exerted a fixed amount of labor. Hence, in this
simple example, agent utility only depends on the number of houses built. Each agent experiences a law
of diminishing returns (marginal utility decreases as income grows). As agent skill increases, the point of
maximal utility is reached at a higher number of houses built.

In the paradigm of RL, this is achieved by defining the instantaneous reward ri,t for agent i as the change
in utility of agent i at time t.

Equation 3 describes a multi-agent optimization problem, when the agents are simultaneously optimizing
their behavior, since the utility for agent i depends on the behaviors of other agents (for example, their
gathering, building and trading actions). For instance, another agent might block an agent’s access to resources,
which would impact how many houses the agent can build in the future and hence its future utility.

In general, such optimization problems are described as partially-observable multi-agent Markov games,
and optimal solutions correspond to refinements of Nash equilibria. A set of policies form a Nash equilibrium
as long as no agent wants to unilaterally deviate from its own policy. Refinements such as subgame-perfect
equilibria also require rational, off-equilibrium behavior. Although computing equilibria for complex envi-
ronments such as this remains out-of-reach, we will see that RL can nevertheless be used to achieve sensible,
emergent behaviors (and behaviors that also drive good tax policy, when coupled with the use of the AI
Economist).

Deep RL agents. We make use of a deep neural network to model agent policies,

ai,t ∼ π(oworldi,t , o
agent
i,t , o

market
i,t , otaxi,t , hi,t−1; θ). (4)

The output of this policy network includes a probability distribution over actions, with ai,t sampled from
this distribution. Not represented in the notation, the policy network also generates an updated hidden state
hi,t . The inputs to the network include the agent-specific hidden state and agent-specific observations, which
are decomposed as follows:
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Figure 3: Schematic overview of the general network architecture used in our work. Spatial observations
are processed by a stack of two convolutional layers (CNN) and flattened into a fixed-length feature vector.
This feature vector is concatenated with the remaining observation inputs and the result is processed by a
stack of two fully connected layers (MLP). The output is then used to update the hidden state of an LSTM and
action logits are computed via a linear projection of the updated hidden state. Finally, the network computes
a softmax probability layer for each action head. For the agent policy, there is a single action space and action
head. For the tax policy, there is a separate action space and action head for each tax rate the tax policy
controls (described below).

• oworldi,t : spatial observations from the nearby world.

• oagenti,t : the public agent state (such as resource and coin endowments), as well as the private agent state
(such as skill values and labor performed).

• omarket
i,t : the full market state, including available offers to buy/sell resources.

• otaxi,t : the tax rates in effect.2

Section A of the appendix provides exact details of the information available in the agents’ observations.
The learned hidden state hi,t is used to encode the history of past observations. Figure 3 depicts the general
network architecture used here.

Emergent Behavior of AI Agents. Figure 4 provides a breakdown of an example rollout of play by AI
agents across a single episode, once training has proceeded for a large number of episodes. Each agent

2We include tax information even for the free-market, when all tax rates are zero. This ensures that the structure of the
observations is the same for all taxation schemes.
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has a unique color. Agents are ordered from low to high skill as dark-blue, light-blue, yellow, and orange,
corresponding to payoffs of 11.3, 13.3, 16.5, and 22.2 coins per house, respectively.

This rollout reveals an interesting specialization of effort. The dark- and light-blue agents focus entirely
on collecting wood and stone (respectively), the orange agent focuses almost entirely on building houses, and
the yellow agent builds several houses early on before switching to collecting and selling.

This pattern of behavior and division of labor is typical of agents trained in this simulated environment,
and stems from the different incomes each agent can earn per house it builds, as well as the agents’ initial
locations in the world. In particular, the low skilled dark- and light-blue agents learn to shift their strategies
entirely away from building houses. These agents earn their income by selling resources to the higher skilled
agents, who choose to earn income through building (Figure 4, middle). The yellow agent earns enough
income from building to do so early on, making use of the nearby resources, but then switches strategies.

This specialization is a consequence of agents learning to maximize their own individual objectives. We do
not impose these roles or behaviors directly. Rather, this specialization arises as a result of differently skilled
workers learning to balance their income and effort. This emergent behavior helps to validate the framework
as an economic simulation, by reproducing a standard feature of real world economies, that of specialization.
Standard economic intuition states that agents should specialize in whichever means of production allows
them to most efficiently convert their labor to income, and this is consistent with the behaviors that the AI
agents discover.

Even with specialization, the agents’ incomes can vary considerably. While a free-market economy
maximizes productivity, it provides no guarantee on income equality. This is evident in the highly unequal
incomes experienced by the AI agents.

3 Machine Learning for Optimal Tax Policies
We now introduce a social plannerwho uses economic policy to improve social outcomes, in particular taxation
together with redistribution. The challenge is that taxation can reduce productivity. Workers may choose to
forgo labor as a result of paying tax on income, and thus gaining less utility for labor effort. This may have a
particularly strong effect on the higher skilled and thus more productive workers. Thus, there is a trade-off
between equality and productivity: the same interventions that allow wealth to be redistributed also result
in there being less wealth to redistribute in the first place. As a result of this coupling between taxation and
labor, determining an optimal tax policy poses a difficult, constrained optimization problem.

A conceptual view of the trade-off between productivity and equality for different tax policies is illustrated
in Figure 5. The spectrum of tax policies has two extremes: the free market, which only considers productivity
and does not raise any taxes; and pure redistribution, which divides all incomes equally amongst all workers
and thus achieves equality but at the potential cost of a large drop in productivity. Here, the notion of
optimality implies that a tax policy realizes a trade-off between equality and productivity along the Pareto
boundary linking these two extremes. The optimal tax literature has proposed several solutions, including the
tax formula proposed by Saez [2001] (shown here, together with the AI Economist, with purely illustrative
tradeoffs). But the results from optimal tax policy are limited to simple economic models, and require various
simplifying assumptions, for example about the effect of higher taxes on labor choices.

The remainder of this section describes our approach for studying optimal taxation. We describe the
kind of tax policy learned by the AI Economist, define the types of social objectives that can be adopted, and
describe how we use reinforcement learning to jointly optimize agent behavior as well as the tax policy used
in the economy.
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Figure 4: Breakdown of an example rollout in a no-tax environment. Agents labels are sorted according
to each agent’s building skill (dark-blue is lowest, orange is highest). These correspond to agent payoffs of
11.3, 13.3, 16.5, and 22.2 coins per house. The top panels illustrate the world state, including agent locations,
available resources, and built houses, as the episode progresses. The middle panels illustrate the accumulated
labor, coin, and utility of each agent over the episode. Highly skilled agents ultimately experience more utility.
The bottom panels illustrate the net coin received/spent from trading over the episode, for each of the four
agents. Each bar represents the net coin within a window of 25 timesteps, with upward bars indicating net
income (agent predominantly sold), downward bars indicating net cost (agent predominantly bought), and
color indicating the resource type. Agents with lower building skill choose to earn income through gathering
resources and selling them to the highly skilled agents.

3.1 Periodic Taxes with Bracketed Schedules
Income Taxes. There are many possible choices for tax policies. In this work, we focus on periodic income
taxes with lump-sum redistribution. Each tax period lastsM steps (we useM = H/10, so that there are ten tax
periods per episode). The taxes in period p, beginning at time step t and ending at time step t +M, are applied
to the income zpi earned by an agent i within that tax period.

At the start of each tax period, the planner chooses a tax schedule T(z) that specifies the amount of taxes
an agent will owe as a function of the income it earns during the period. At the end of each tax period the
total tax revenue is evenly redistributed back to the agents, so that the adjusted, post-tax income to agent i in
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AI Economist seeks a tax policy that optimizes this trade-off. The Pareto boundary is the set of maximal
trade-offs. Right: Taxes impact productivity (total income, represented by the area of the big squares), and
equality (the relative difference in sizes of the smaller squares). The AI Economist achieves the best trade-off
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period p is given by

z̃pi = z
p
i − T(z

p
i ) +

1
N

N∑
j=1

T(zpj ). (5)

At the end of an episode, each agent’s coin endowment is the sum of its post-tax incomes in each period:
xci,H =

∑
p z̃

p
i .

Bracketed Tax Schedules. To allow comparison across different schemes, we adopt income brackets for
describing a tax schedule, imitating the US federal taxation scheme. A bracketed schedule defines a set of
cut-off income levels mb, where b = 0, . . . B, for B income brackets. The edges of bracket b are [mb,mb+1], and,
by definition, m0 = 0 and mB = ∞. The social planner sets the tax schedule T(z) by choosing the marginal tax
rate τ ∈ [0, 1]B to be applied within each bracket.

Given this, the total tax payment T(z) for an agent earning z in a tax period is determined by taking the
sum of the amount of income within each bracket [mb,mb+1] times that bracket’s marginal rate τb:

T(z) =
B−1∑
b=0

τb · ((mb+1 − mb) 1[z > mb+1] + (z − mb) 1[mb < z ≤ mb+1]) , (6)

where 1[z > mb+1] ∈ {0, 1} is an indicator function for whether z saturates bracket b and 1[mb < z ≤
mb+1] ∈ {0, 1} is an indicator function for whether z falls within bracket b.

3.2 Optimal Taxation
SocialWelfare Functions. The objective of optimal tax theory is described through a social welfare function
swf. Social welfare can be expressed in many ways. One approach considers the trade-off between income
equality and productivity. For this, the equality in an economy at some point in time can be defined as the
complement of the normalized Gini index on the distribution on wealth, this wealth defined as the cumulative
number of coins owned by an agent after taxation and redistribution.
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For an agent population with monetary endowments xc = (xc1, . . . , xcN ), we define equality eq(x
c) as:

eq(xc) = 1 − gini(xc) N
N − 1, 0 ≤ eq(xc) ≤ 1, (7)

where the Gini index is defined as,

gini(xc) =
∑N
i=1

∑N
j=1 |xci − x

c
j |

2N
∑N
i=1 x

c
i

, 0 ≤ gini(xc) ≤ N − 1
N
. (8)

Given this, eq = 1 implies perfect equality (all endowments of money are identical), while eq = 0means
perfect inequality (one agent owns all money). The productivity in an economy at some point in time is defined
as the sum of all wealth over all agents:

prod(xc) =
N∑
i=1

xci . (9)

We write eqt(xct ) and prodt(xct ) to denote the equality and productivity, respectively, based on the cumulative
endowment xct up to time t.

The primary social welfare function that we consider in this work optimizes a trade-off between equality
and productivity, defined as the product of equality and productivity:

swft(xct ) = eqt(xct ) · prodt(xct ). (10)

Another family of social welfare functions, and one that receives attention in the optimal taxation theory,
is the family of linear-weighted sums of agent utilities, defined for weights ωi ≥ 0:

swft(xct , lt) =
N∑
i=1

ωi · ui
(
xci,t, li,t

)
. (11)

Some illustrative choices for the weights adopted in this social welfare function include:

• Utilitarian: ωi = 1, indicating no preference for any agent

• Rawlsian: ωi = 1[xci,t = minj∈J xcj,t], which focuses on the poorest agents

• Inverse income-weighted: ωi = 1/xci,t , which preferences the agents with lower endowments over those
with higher endowments.

In this work, we will mainly make use of the product of equality and productivity as the social welfare
function, and it is this that the AI Economist is configured to optimize for. But many other choices are possible.
A key benefit of our framework is that it is compatible with any social welfare function.

For the purposes of comparing the performance of the AI Economist and other tax frameworks, we also
adopt a variation on the second family of social welfare functions, where we adopt inverse income-weighted
weights and consider agents’ cumulative endowment at the end of an episode.
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and paying taxes, and learn through balancing exploration and exploitation how to adapt their behavior to
maximize their utility. In the outer loop, the social planner adapts tax policies to optimize its social objective.

The Planner’s Problem. The planner can observe agent endowments, xi,t , as well as the global state of the
world, including agent positions, available resources, and market states. The planner cannot directly observe
agent skills or other endogenous values such as labor or utility functions. The planner does not personalize
taxes, but adopts a single tax schedule for all agents.

Similar to the agent policies, the planner can make use of the entire history of observations, via a learned
hidden state, to implement its tax policy. Based on the information available, it adopts a tax policy πp to set tax
rates τ in any given tax period. The planner’s objective is to optimize social welfare,

max
πp

Eτ∼πp,a∼π,s′∼T


H∑
t=1

γ t (swft − swft−1)︸             ︷︷             ︸
= rp,t

+swf0

 , (12)

where swft is used to denote the social welfare at time t, based on cumulative endowment and labor up
until that time, and the planner’s instantaneous reward rp,t is the change in social welfare at time t. Without
discounting, this objective reduces to the total social welfare at the end of an episode.

This planning problem includes the effect of agents’ behavior, encoded through agent policies π , and this
behavior of agents depends on the tax policy. As such, equation 12 encodes a difficult optimization problem;
because taxes affect agents’ income and thus utilities, the planner is effectively changing the agents’ MDP.3

3.3 Inner-Outer-Loop Reinforcement Learning
Reinforcement learning provides a suitable learning framework for adapting behaviors in a sequential envi-
ronment, and is used here to allow both the economic agents and the social planner to learn from experience
collected through trial-and-error strategies. We conceptualize the RL framework used in this paper as
including two levels of learning, namely an ‘inner’ loop and an ‘outer’ loop, as depicted in Figure 6.

3The problem has the flavor of a Stackelberg game in which the planner is a first-mover (Stackelberg leader), announcing a tax
schedule, and where the agents responding to this tax schedule (Stackelberg followers).
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In short, the key benefits of our RL framework are:

• the social planner can optimize taxes for any social objective swf, and

• given a choice of social welfare functions swf, the social planner does not need prior world knowledge,
prior economic knowledge, or assumptions on the behavior of economic agents.

The main challenge posed by this two-level RL problem comes from the fact that each level effectively
determines the MDP faced by the other level. As the planner learns and changes taxes, the agents’ utility
and reward landscapes change. In turn, as agents learn and adapt to new taxes, their behavior changes the
expected social welfare generated through the tax schedule. In this way, simultaneous learning creates an
unstable reward landscape for both the agents and the planner.

Inner Loop. In the inner loop, RL agents gain experience by performing labor, receiving income, and
paying taxes, and learn through trial-and-error how to adapt their behavior to maximize their utility. Given a
fixed tax policy, this is a standard RL problem in which agents iteratively explore and discover which behaviors
are optimal for their fixed utility function, while observing the active tax schedule.

However, because the tax policy is changing, and in turn the behavior of others, the agent is faced with
a non-stationary MDP. Specifically, the utility of agent i depends on its post-tax incomes xi (Eq 5). The
non-stationarity faced by agents can be understood by considering their learning objective in the context of a
changing tax policy (generalizing Eq 3):

max
πi

Eai∼πi,a−i∼π−i,τ∼πp,s′∼T

[
H∑
t=1

γ t
(
ui(xi,t, li,t) − ui(xi,t−1, li,t−1)

)
+ ui(xi,0, li,0)

]
. (13)

The agent’s expected future utility is conditional on both the current state and the current tax schedule.
Hence, as the planner’s policy πp changes, the taxes that an agent experiences will change, and agents face a
non-stationary learning environment in which they constantly need to adapt to a changing utility landscape.
As time goes on, because the post-tax income for the same type and amount of labor can change over time,
agent decisions that were optimal in the past might not be optimal in the present.

Outer Loop. In the outer loop, the social planner adapts its tax policy to optimize the social objective,
following the learning objective defined in Eq 12. Since the agents also change their behavior, the planner also
faces a non-stationary problem, due to the dependence of Eq 12 on the policy of each agent.

In order to allow both the agents and the planner to learn an optimal behavior, which considers the best
response of agents to the tax policy, the agents and the planner must be trained jointly. That is, there is little
point to training a planner using a set of fixed agent policies, since the social welfare achieved would not be
meaningful without considering the way agents’ behaviors would change in response.

It should also be pointed out that our terminology is not meant to imply any nested training structure.
When learning a tax policy, we train the agent policies and planner policies jointly, following standard
practice for multi-agent RL. Here, joint training entails both agents and the planner updating their weights
simultaneously during each training episode. Algorithm 1 in the Appendix provides a more detailed description
of the training framework.
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4 Improved Social Outcomes with AI Agents

4.1 Baseline Methods
We now show empirically that the AI Economist can outperform baseline tax policies. In particular, we will
compare the following tax models:

• free-market (no taxes),

• US federal single-filer 2018 tax schedule,

• Saez tax formula (adapted for a multi-period setting), and

• the AI Economist planner.

The specific tax rates set by these models are depicted in Figure 9. See the related work (Section 1.1) for a
broader discussion on the various tax frameworks proposed in the optimal tax literature, including linear tax
models and analytical approaches to dynamic taxation in sequential economies.4

All tax models set tax rates for a bracketed tax schedule, and use the same income brackets, following the
2018 US federal income tax schedule and scaling so that USD 1000 corresponds to 1 Coin:

m = [0, 9700, 39475, 84200, 160725, 204100, 510300,∞] (USD) (14)
= [0, 9.7, 39.475, 84.2, 160.725, 204.100, 510.3,∞] (Coin). (15)

US Federal Income Tax Rates (Single-filer, 2018). The bracket tax rates are given by:

τ = [0.1, 0.12, 0.22, 0.24, 0.32, 0.35, 0.37]. (16)

Saez Tax Formula (single-period). A prominent analytical treatment of optimal taxation is given by Saez
[2001], who proposes a closed-form solution for optimal tax rates in a single-period economy.

Let f and F denote the probability density and cumulative density function on income, respectively. The
Saez framework assumes the planner can observe the population’s distribution over incomes z ∼ f (z). Here,
z and the associated density functions refer to pre-tax income within a single tax period.

Saez [2001] works with the linear-weighted family of social welfare functions (Eq 11), and defines the social
marginal welfare weights as

gi =
dswf
dui

dui
dxci
= ωi

dui
dxci
. (17)

Weight gi represents the change in social welfare due to a change in agent i’s endowment.5 The weights
ωi, and implied social marginal welfare weights, gi, parameterize the planner’s objective, and encode a social
choice, for example emphasizing agents with low wealth over agents with high wealth. In instantiating Saez’s
framework, one available choice is to treat these social marginal welfare weights as the primitives in the model.
We do this, and set the social marginal welfare weights for the purpose of applying Saez’s framework to be

4We have also conducted experiments with linear planner models T(s) =
〈
w, snonspatial

〉
, but found they significantly underper-

form compared to all non-trivial tax models mentioned above. Furthermore, we found that pure income redistribution leads to
close-to-perfect equality, but very low productivity levels, and as a result, significantly worse social metrics. As such, we do not
include results for these models.

5In the optimal tax theory literature the derivative of utility is taken with regard to an agent’s consumption, which reflects its
available money after taxes and redistribution. Endowment plays the same role as consumption in our model.
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gi = 1
zi , also normalizing weights so that

∑
i∈I gi = 1 (see also Section 3.2). This framework does not explicitly

optimize for the product of equality and productivity. However, we find empirically that optimizing with this
choice for the social marginal welfare weights tends to improve the product of equality and productivity.

To define the Saez framework, let α(z) denote the marginal average income at income z, normalized by the
fraction of incomes above z, i.e.,

α(z) = z · f (z)
1 − F(z) . (18)

Let G(z) denote the normalized, reverse cumulative Pareto weight over incomes above a threshold z, i.e.,

G(z) = 1
P(z′ ≥ z)

∫ ∞

z′=z
p(z′)g(z′)dz′. (19)

where g(z) is the normalized social marginal welfare weight of an agent earning income z. In this way, G(z)
represents how much the social welfare function weights the income above threshold z. Let elasticity e(z)
denote the average sensitivity of an agent’s income to changes in the tax rate, defined as

e(z) = dz/z
d(1 − τ(z))/(1 − τ(z)) . (20)

Saez [2001] shows that the optimal marginal tax-rate at pre-tax income z is

τ(z) = 1 − G(z)
1 − G(z) + α(z)e(z) . (21)

The salient property of this formula is that it does not depend on the agent’s utility function, but rather
depends on the population’s income distribution, f (z), this defining α(z) and G(z), and the tax elasticity
of income, e(z). Both of these quantities are, at least in principle, measurable. In practice, a challenge in
applying the Saez formula is in estimating the tax elasticity of income, which is highly non-trivial in real-
world economies. See Gruber and Saez [2002] for an extensive review of empirical approaches for the Saez
framework.

The resulting tax schedule depends sharply on the shape of the income distribution. A log-normal-like
income distribution, for example, leads to regressive taxes, with lower marginal rates at higher incomes, while
a Pareto-like distribution leads to progressive taxes, with higher marginal rates at higher incomes (see Mankiw
et al. [2009]).

Saez Tax Formula (multi-period). In our experiments, we apply the Saez formula to the multi-period
setting by estimating the tax elasticity of income at the start of each tax period, and then appealing to Eq 21.
For this, we make use of a buffer D =

{(
ziα, τiα

)}
α , which is a set of pairs of observed incomes and tax rates in

a window of previous tax periods, where the index α refers to a datapoint coming from agent iα .
Following Gruber and Saez [2002], we assume constant tax elasticity ẽ, with

zt = z0 · (1 − τt)ẽ. (22)

Hence, we can write:

log(zt) = ẽ · log(1 − τt) + log(z0), (23)

where z0 is the income that would result from zero taxes. Given the buffer D collected from multiple rollouts,
we estimate ẽ using ordinary least-squares regression on Eq 23. In particular, we make use of the 30,000 most
recent incomes and tax rates observed during rollout episodes, and find that this leads to stable estimates for
the average elasticity ẽ.
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AI Economist. For the AI Economist, we make use of a deep neural network to set the marginal tax rate in
each bracket, denoted

τ ∼ πp(oworldp,t , o
agent
p,t , o

market
p,t , otaxp,t , hp,t−1; ϕ). (24)

This shares the same general organization as the agents’ policy model (Section 2.3). Indeed, the planner and
agent policy networks use the same basic network architecture (Figure 3). However, the information in the
planner observations differs from that in agents in some important ways. For instance, the planner observes
the full spatial state of the world in oworldp,t , and the planner observes all agents’ public states in oagentp,t but does
not observe any of their private states, observing endowments but not skills. Section A of the Appendix offers
a detailed explanation of the different observations available to the agents and the planner.

4.2 Training Strategy: Two-phase Training and Tax Curricula
As discussed in Section 3.3, the joint optimization problem posed by the inner-outer RL approach can lead to
instability during learning. One source of instability is that high tax rates cause large income penalties during
training, even for actions that might be optimal under low tax rates. Effective agent behaviors can be hard to
learn due to this kind of noisy feedback from an unconstrained, suboptimal planner that generates random
tax rates. We have found this to be especially problematic in the initial phases of learning.

To stabilize learning we use a two-phase training approach. In the first phase, we train a collection of agent
models for a set of random seeds and without any taxes applied (the free-market scenario). This results in a
set of agent models (one for each random seed) that are well adapted to the general game dynamics.

In phase two, we resume training, but with one of the studied tax models active. In the case of the AI
Economist, we also allow the planner to continue to adapt, along with continued agent learning. To avoid
unstable learning dynamics created by the sudden introduction of taxes, we impose an annealing schedule over
the early portion of phase two, during which a maximum limit on the allowable, marginal tax rates is linearly
annealed from 10% to 100%.

Furthermore, we find that entropy regularization of the planner policy is necessary to achieve good outcomes
in the face of these complex, joint learning dynamics. Entropy regularization adds the policy’s entropy as an
additional, weighted term in the policy gradient objective, and is defined as

entropy(π) = −Ea∼π(.|s) [log π(a|s)] . (25)

The use of this entropy term promotes policies that explore more when used together with on-policy
learning, which samples trajectories according to the current policy π [Williams and Peng, 1991, Mnih et al.,
2016].

We perform experiments using the RLlib framework [Liang et al., 2018]. We use proximal policy gra-
dients [Schulman et al., 2017] and the Adam optimizer [Kingma and Ba, 2014] to compute policy gradients.
Samples were collected from 60 environment replicas in parallel, using a sampling horizon of 200 timesteps
between policy update iterations (a full episode consists of 1000 timesteps). Trajectories were chunked into
subsequences of length 50 for training the recurrent networks. For more details, see the Appendix. All
experiments performed phase two training with 400 million samples, which we found to be sufficient for
both agent and planner models to converge to stable policies. The annealing schedule allows the maximum
marginal tax rate to reach 100% by 54 million samples.

4.3 Equality, Productivity, and Social Welfare Metrics
We compare economic outcomes under the AI Economist with the free market (no taxation or redistribution),
a simulated US Federal tax schedule, and the tax policy that results from the Saez framework [Saez, 2001].
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For all four treatments we use reinforcement learning to optimize the behavior of the economic AI agents.
The results are shown in Figure 8. Productivity (left panel, higher is better) measures the total amount of
income generated within an episode (analogous to GDP). Taxation always results in a decrease of productivity
when compared with the free market, but the loss in productivity is the smallest under the AI Economist.
Income equality (middle panel, higher is better), which is defined as 1 - Gini index and computed at the end
of an episode (higher Gini index means incomes are less equal), is highest under the AI Economist. The
product of equality and productivity (right panel, higher is better) measures the balance between equality and
productivity. The AI Economist achieves a 16% gain improvement over the next best model, which is the Saez
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model. The AI Economist also improves equality by 47% compared to the free-market, at only an 11% decrease
in productivity.

As discussed in Section 3, the challenge in setting taxes stems from the inherent trade-off between equality
and productivity. This can be seen in the empirical results, where redistribution improves equality but at the
cost of productivity.6 This property naturally emerges in our simulations, by allowing agents to learn optimal
responses to taxes.

In summary, these results demonstrate (1) that our framework allows us to reproduce the central challenge
considered in optimal taxation theory, the trade-off between equality and productivity, (2) that the severity of
this trade-off depends on the choice of tax schedule, and (3) that RL can be used to optimize tax policies.

4.4 Tax Schedules and Wealth Redistribution after Taxes and Subsidies
Comparing Tax Schedules. All tax models control the marginal tax rates applied to each of seven income
brackets (see Figure 9, which illustrates the average bracket rate set by each model). We set up the economic
simulation such that the fraction of agent incomes per income bracket are in rough alignment with those in
the US economy7.

The 2018 US Federal tax rates are progressive, with a marginal tax rate that increases with higher income.
For the present setting, and with the social welfare objective that we adopt, the Saez tax framework mostly
sets a regressive tax schedule, with a marginal tax rate that decreases with higher income. The AI Economist
features a more idiosyncratic structure, with a blend of progressive and regressive tax schedules. In particular,
it sets a higher top tax rate (on income above 510), a lower tax rate for incomes between 160 and 510, and both
higher and lower tax rates on incomes below 160.

Effective Tax After Redistribution. The AI Economist’s tax schedule provides higher subsidies to low
income agents than the baselines. The agents have different skill levels, and the learned behaviors, incomes,
and amount of tax paid all depend heavily on skill. Figure 11 presents the agent-by-agent averages after sorting

6We also find in our experiments that total redistribution (such that all workers have the same income after redistribution) yields
perfectly equal but highly unproductive economies and very low equality-vs-productivity trade-offs.

7Based on preliminary experiments with the US Federal tax policy.
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Figure 11: Agent-by-agent averages after sorting by skill. Income before redistribution (top-left) shows the
average pre-tax income earned by each kind of agent. The amount of tax paid before distribution is shown in
the bottom left. The amount of tax paid after redistribution is shown in the bottom right (the lower skill agents
receive a net subsidy). The income after redistribution (top-right) shows the net average coin per agent at the
end of the episode (the lower-skilled agents have higher net income under the AI Economist’s tax scheme).

by skill. Income before redistribution (top-left) shows the average pre-tax income earned by each kind of
agent. Tax paid is shown in the bottom left. The effect of redistribution, which equally divides collected taxes
among the agents, is that the lower-skilled agents receive a net subsidy (bottom right). The income after
redistribution shows the net average coin per agent at the end of the episode (top right). The lower-skilled
agents have higher net income under the AI Economist than under the other models.

The Impact of Tax on Economic Activity. To form a better understanding of how taxes set by the AI
Economist improve over those set by the Saez formula, which provides the strongest baseline, we compare
their respective impacts on the agents’ economic activity (Figure 12). In both cases, the low-income agents
choose to specialize as “gatherer-and-seller” agents. Interestingly, these agents collect fewer resources under
the Saez policy, and the high-skilled “buyer-and-builder” agent compensates by increasing its own resource
collection (Left panel). This de-specialization contributes to the decreased income generated through building
under the Saez taxes (Middle panel), with this decrease accounting for weaker productivity.

Because the Saez formula leads to a more regressive tax structure than the AI Economist, the latter yields
higher equality through mechanical effects (i.e. stronger redistribution). Interestingly, the AI Economist also
improves equality through behavioral effects. Under the Saez scheme, the “buyer-and-builder” collects more
resources directly from the environment, meaning it makes fewer purchases from the other agents. Trading
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Figure 13: Left: Income of the highest-skilled agent for each tax period in an example episode with the AI
Economist (green line). The dashed grey line shows the agent’s average income. Right: Comparison of the
total amount of tax the agent owed based on its actual income (green) and the tax it would have owed if it
reported its average income in each period (gray). Each box in the column denotes the tax obligation in a
single period.

serves to redistribute the income achieved from building houses to the “gatherer-and-seller” agents, but,
owing to the behavioral differences, this redistributive effect is stronger under the AI Economist (Right panel).
From this perspective, the tax scheme discovered by the AI Economist appears better adapted to the complex
economic interactions that shape both equality and productivity.

4.5 Tax-Gaming Strategies
Figure 13 provides an example of the income and taxes collected during an episode of the AI Economist
environment, shown here after the tax policy has converged. Recall that each episode is divided into ten tax
periods of equal length. At the start of each period, a new tax schedule is set by the AI Economist according to
the new world state. Agents act in the environment, earn income, and taxes are collected at the end of the

23



period according to the tax schedule and redistributed.
We see emergent tax gaming, where AI agents learn to lower their average effective tax by alternating

between earning high and low incomes in each period, rather than smoothing their income across tax periods.
Figure 13 (left) shows there is considerable variability in income earned from period to period, shown here for
the highest skilled agent. Figure 13 (right) shows the total amount of taxes paid given this behavior, together
with the total taxes that would be paid if the income had been smoothed across periods.

We see this kind of tax avoidance behavior in our experiments for both the Saez and AI Economist models,
which feature lower top tax rates (regressive schedules), making it more tax-efficient to earn high incomes.
This underscores the richness of the simulation-based learning framework. Moreover, the AI Economist
remains effective even in the face of this kind of strategic behavior.

5 Improved Social Outcomes with Human Participants
We have also explored whether AI-learned tax policies improve social outcomes in economic simulations with
human participants who earn real money. To do so, we conducted experiments on the Amazon Mechanical
Turk (MTurk) platform, with participants based in the US. We find that the AI Economist tax policy can
transfer to simulations with people without extensive recalibration or fine-tuning. The AI Economist achieves
equality-productivity trade-offs that are competitive with the strongest baseline, the Saez tax policy (Equation
21), and achieves higher inverse income-weighted social welfare.

5.1 Experimental Methodology
Simulation Environment for Human Participants. We used the same world layout as in the AI experi-
ments. The world map features four quadrants, mostly separated from each other by water. Each quadrant
contains only stone, wood, both resources, or neither resource. Each participant controls an agent with a
fixed skill, set as the mean of the quartiles of a Pareto distribution with exponent a = 4 and scale m = 1, and
each starting in one of the four corners. This starting location was randomized for each episode.

Wemake severalmodifications to account for human response times, allowing for an acceptable experiment
duration and simplified controls:

• We disable trading. We experimented with several trade inferfaces, but found none that were us-
able enough. Even without trading, humans experienced the same economic drivers, namely utility-
maximization and diminishing returns, as the AI agents.

• The only kind of action that is associated with a labor cost is the build action. Moving around the
environment and collecting resources has zero cost. To compensate for this, the cost of building a house
is 50% higher than in the AI experiment (15 vs. 10 labor units per house).

• Each episode lasts five minutes. To allow for acceptable human response times we set the frame rate
to ten frames per second (each frame corresponds to a new world state). This provides participants
with enough time to achieve reasonable performance, partially correcting for the lower response times
compared with AIs.

• Each episode lasts 3000 timesteps rather than 1000 timesteps, with each tax period consisting of 300
timesteps (keeping ten tax periods in each episode).
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Graphical User Interface. We developed a web-based interface to let people operate in an economic
simulation similar to the one used in the AI experiments. For a full visualization of the experimental flow and
pages, see Appendix C. The interface (Figure 14) displays agents’ endowments (coin, stone, wood, houses), the
remaining episode time, the last change in coin endowment, the bonus in USD, the tax schedule, the current
active tax rate (which depends on the income in the current tax period), and the remaining time in the current
tax period.

We also provide participants with the number of profitable houses left to build (i.e., for how many more
houses in the current tax period will it still remain profitable to build). This decision aid helped participants to
better understand the economic environment, leading to less variance in the experimental results across trials.
Despite this guidance, participants frequently scored lower utility than in the AI experiments. Sometimes this
would come about because of adversarial behavior of others, especially resulting from people blocking other
people from accessing areas with resources, or finding ways to trap people in corners.

Zero-shot Transfer of Tax Models. The tax models were transfered from the AI-only setting. The US
Federal tax rates were unchanged. For the Saez model, we used the average tax rate observed during an episode
once training has converged. For the AI Economist, we identified an effective AI-driven tax schedule from the
AI experiments conducted with low planner policy entropy regularization.8 The particular tax schedule that
we use has a "Camelback" style shape, and is depicted in Figure 15. The effective taxes after redistribution are
shown in Figure 16. The "Camelback" policy achieves competitive equality-productivity and weighted social
welfare (Equation 11) in the AI-only simulations, compared to the Saez tax model.

The productivity was lower in experiments with people. This is due to suboptimal human behavior, as
well as lower human response times compared to AI agents. To ensure that all tax policies could still make use
of the full range of tax brackets, we calibrated the income bracket cutoffs to approximately match the income
bracket occupancy rates to those in the AI experiments, achieving this by scaling the income cutoffs down by
a factor of three.

The Experimental Protocol. We ran all experiments with US-based participants on Amazon Mechanical
Turk. Participants performedHITs (Human Intelligence Task). EachHIT consists of a sequence of four episodes,
with a tutorial before each episode, and a post-episode survey. For detailed descriptions and visualizations of
the experiment modules, see the appendix.

HITs were announced in batches of 40-60, where each unique participant could accept one assignment
from each batch (but could perform more than one HIT across different batches). Batches were sized so
that all assignments in the batch were completed within two hours, accounting for participant availability.
Participants were instructed not to communicate with each other. Experiments were conducted during
10am-12pm and 7-10pm, Pacific Time. All participants were grouped into groups of four. Each group went
through a sequence of four episodes, with each episode corresponding to a different tax policy (free market,
US federal, Saez, and AI), these applied in random order to control for learning effects.

Payment. Each participant received $5 base pay and a variable bonus of at most $10 for each HIT. The
bonus was proportional to the utility achieved by the participant, reflecting the post-tax income and the labor
cost at the end of each episode. The US dollar (USD) bonus was computed as

USD bonus = Utility × 0.06, (26)

8This model was chosen from a set of AI models that performed as well as or better than the baselines tax models. In particular,
we found that planner policies with high entropy did not generalize as well in the zero-shot transfer setting. We did not retrain or
fine tune the AI tax model.
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where utility was measured in units of Coins achieved by the participant in the episode. The effect is an
average payment per HIT of $11.26. Since the average duration of a HIT was approximately 30 minutes, the
effective income (approximately $20/hour) is substantially above the US federal minimum wage ($7.25/hour).
As such, we believe that the stakes should be high enough to encourage participants to try to maximize their
bonus and avoid behaviors that result in a decrease in utility.

We use a set of qualification HITs to build a pool of around 300 qualified participants who are familiar
with the instructions and the simulation environment. Qualification HITs used exactly the same rules and
environment as in the main task, with the only exception being that no information about taxes was given.
For instance, in the qualification, participants did not observe what the tax schedule was, nor an explanation
in the tutorial as to how taxes were applied. In the main task, participants completed a tutorial that explained
that taxes affected the income gained per house, and how this impacted their utility (and payments for the
HIT). In an exit survey, participants were asked about their strategy, why they thought they won or lost, and
what was confusing about the experiment.

5.2 Results
Experiment Data. We report results on two batches of experiments. In the first batch, groups were formed
with the participants who were available at the end of an episode. This allowed as many users as possible to
complete four episodes (we found during qualification batches that some participants experienced technical
issues that prevented them from completing four episodes in sequence). In the second batch, each group of 4
workers was fixed during a sequence of 4 episodes with 4 different tax models. The first batch consisted of 57
episodes with 58 participants. The second batch consisted of 68 episodes with 57 participants.

Feedback from participants and manual inspection of movement patterns in rollouts suggested that there
were episodes in which one or more participants suffered from connectivity issues (as evidenced by extreme
lag or disconnections), did not move around the world, or in which there were other factors that severely
affected proper participation. As such, we dropped episodes from the analysis in which the overall productivity
was less than 1000 Coin. This excluded 6 out of 57 episodes from the first batch and 8 out of 68 episodes from
the second batch for our analysis.

Statistical Analysis. For the first batch, we test whether the difference in the social welfare between the
tax models is statistically significant. In particular, for each participant a, we compute the mean value Zai
of the social objective (e.g., eq × prod) under each tax model i. We then perform a two-sided t-test for the
alternate hypothesis Ya;vw , 0, with p = 0.05. The data consists of the differences {Ya;vw = Zav − Zaw} for
each pair of tax models v and w, for each participant a that experiences both models.

For the second batch, where group consistency was enforced, we perform this test at the group level. For
each group g, we compute the mean value Zgi of the social objective (e.g., eq × prod) under each tax model i.
We then use a two-sided t-test to test the alternate hypothesis Yg;vw , 0with p = 0.05 on the set of differences{
Yg;vw = Zgv − Zgw

}
, for each pair of tax models v and w.

Improved Social Outcomes. In experiments with human participants, the "Camelback" tax schedule
achieves an equality-productivity trade-off that is comparable to the Saez model, and with better equality-
productivity performance than the US Federal and free-market approaches (see Figure 17). We observed large
variance in productivity across episodes, which can be attributed to adversarial behavior and other factors
that we discuss below.

We also evaluate the social welfare at the end of an episode, using inverse post-tax endowments as social
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Figure 14: The web graphical user interface that
human participants used in experiments.

Figure 15: The "Camelback" model used in experi-
ments with human participants. It features higher
tax rates for incomes between 39 and 160 Coins com-
pared to baselines.
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Figure 16: The effective taxes payable as a function of
income under the "Camelback" schedule. The taxes
grow faster under the Saez and AI Economist sched-
ules. Note that these do not include the effect of
subsidies. In effect, lower income workers receive
net subsidies.

welfare weights:

swfH(xcH, lH) =
N∑
i=1

ωi · ui
(
xci,H, li,H

)
, ωi =

ω̃i∑
j ω̃ j
, ω̃i =

1
xci,H
, (27)

where xci,H is the post-tax endowment of agent i at the end of the episode of length H , and ω is normalized such
that

∑
i ωi = 1. This evaluation objective places more weight on agents with lower endowments than those

with higher endowments, considering agent endowments at the end of an episode, and thus the cumulative
effect of tax policy over a sequence of ten tax periods.9

9This objective is related to the choice we make about the tax policy objective when instantiating the Saez framework, while
deviating in a couple of important ways. First, the Saez framework considers economies with a single tax period and does not
consider the effect of taxation policy on the cumulative endowment. Second, the particular choice we make in regard to the social
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(statistically significant at p = 0.05).

The results of the experiment with respect to this objective are shown in Figure 18. We can see that the
"Camelback" tax schedule significantly outperforms all baselines for this social welfare objective.

Overall, the relative performance of the AI Economist compared with the various baselines is similar for
the experiments with AI agents and the experiments with human participants. In particular, even though the
"Camelback" tax schedule is qualitatively different than the tax schedule that results from the Saez framework,
it yields a competitive equality-productivity tradeoff in comparison with the schedule coming from the Saez
model.

5.3 Discussion
The experiments with human participants are conducted in a zero-shot learning transfer setting, and the AI
Economist performs well, even though there are a number of differences between the two settings. Besides
the modifications to the environments, other factors affecting the transfer from the AI environment to the
human environment include:

• AI and human behavior differs substantially. For example, we have observed that humans display a higher
frequency of adversarial behavior, such as blocking other people. These kinds of behaviors are socially
suboptimal, but might seem optimal to people (keeping resources to oneself). This can be partially
attributed to a lack of trading, but also hints at a common human intuition that blocking off regions
with resources should be an effective strategy. In contrast, the AI agents learn a strategy that does not
include blocking: they might profit from trading and should not waste time on building houses to block
off regions.

marginal welfare weights, gi = 1
zi , when using Saez’s framework to derive an optimal tax policy, does not correspond directly to

even the single period version of this inverse-income weighted objective, since by setting gi = 1
zi it is as if

dui
dxci
= 1, and thus as if an

agent’s utility function is linear.
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• Learning effects. As human participants experiencemultiple episodes, their strategy improves, as observed,
for example, through lower average productivity and worse social metrics during qualification rounds.
This learning effect is partially controlled for by randomizing the order of tax models presented to
participants and only using experimental episodes where participants have already participated in one
or more qualification rounds.

• We set the payoff per house for each human agent using a preset skill. For real people, this is not the
only factor that affects the expected average payoff. For instance, people can have different strategies in
the simulation, which affects their average payoff and hence their implied skill. Hence, varying skill and
payoff as a simulation setting only partially emulates the effect of skill on the expected payoff and utility
that people experience.

Considering all these factors, we find these results for the AI Economist in the presence of human
participants encouraging. The AI-driven tax model did not require knowledge of economic theory, did not
require that we estimate the tax elasticity of labor, and was nevertheless able to learn a well-performing
tax policy for use with human participants tabula rasa. We were able to apply the model without requiring
recalibration of tax rates. The only calibration was to scale down the income brackets by a factor of three to
adjust for the relative productivity of human and AI agents and enable all income brackets to be exercised.

We emphasize that we do not endorse the particular tax schedule determined by the AI Economist for use in the
real economy.

Still, the encouraging transfer performance suggests there is potential for building AI-driven tax models
that can find application to the real world, as a new tool to be used by governments. Moreover, given that the
AI tax policy, which is dynamic in that its tax schedule changes across tax periods, substantially outperforms
the Saez formula in the AI simulations, an interesting direction for future research is to develop experiments
that can inform ways with which dynamic tax models can be applied to human settings.

6 Conclusion
We believe the intersection of machine learning and economics presents a wide range of exciting research
directions, and gives ample opportunity for new machine learning advances that will have significant positive
social impact. Our vision for the AI Economist is to enable an objective study of the impact of economic
policies on real-world economies, at a level of complexity that traditional economics research cannot easily
address.

For tax policies in particular, we are hopeful that this kind of research can increase equality and productivity
in the real world, helping to promotemore just and healthy economies. We also hope that the AI Economist can
foster transparency, reproducibility, and open and facts-based discussion about applying machine learning to
economic decision-making, through our public research publications and open-source code. As such, we hope
that future economic AI models can robustly and transparently augment real-world economic policy-making
and in doing so improve social welfare.

In this paper, the economic agents and social planner were trained using model-free RL in AI-based,
economic simulations. A key benefit of using model-free RL is flexibility: for instance, any social objective can
be used as the reward function for the planner. Moreover, it does not need any prior world knowledge to find
a well-performing tax policy. However, this approach assumes that the inputs and outputs to the agents’ and
planner’s policy models are sufficient and well-defined. For instance, the planner should be able to observe all
state information that is relevant for determining the optimal tax policy. Our initial experiments with human
participants suggest that, in our problem setting, the state observed by the planner was sufficient to generalize
well to human agents. In future work, it would be interesting to explore which state information of the real
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world should be captured by economic simulators to enable generalization of policies from simulation to the
real world.

This work is suggestive of the promise of AI-based, economic simulators for learning economic policies
with the potential to transfer well to the real world. We demonstrated that economic simulators can yield
AI agents with economic behaviors that are consistent with economic intuition, for example agents that
specialize as a consequence of their inherent skill level. Our experiments also show that policies trained in
such simulators can transfer well to settings with human participants, albeit for our limited problem setting.

Of course, these kinds of economic simulations still have many limitations. They do not yet model
human-behavioral factors and interactions between people, including other-regarding utilities, and consider
a relatively small economy. Moreover, the concept of skill and the associated payoff, as used in our work, is
still a limited representation of economic behavior in the real world. For instance, highly-skilled workers
are not paid the same hourly wage across different industries, and skill might be hard to clearly define and
measure clearly in certain professions. Future simulations could improve the fidelity of simulated economic
behavior by making use of real-world economic data, while advances in large-scale RL and engineering could
increase the scope of economic simulations.

7 Ethics and Normative Aspects
Ethics, trust, and transparency are an integral part of Salesforce’s approach to AI research. While the current
version of the AI Economist provides only a limited representation of the real world, we recognize that it
could be possible to manipulate future, large-scale iterations of the AI Economist to increase inequality and
hide this action behind the results of an AI system.

Furthermore, either out of ignorance or malice, bad training data may result in biased recommendations,
particularly in cases where users will train the tool using their own data. For instance, the exclusion from the
model of communities and segments of the work-force that are under-represented in training data might lead
to bias in AI-driven tax models. This work also opens up the possibility of using richer, observational data to
set individual taxation, an area where we anticipate a strong need for robust debate.

Economic simulation enables studying a wide range of economic incentives and their consequences,
including models of stakeholder capitalism. However, the simulation used in this work is not an actual tool
that can be currently used with malintent to reconfigure tax policy. We encourage anyone utilizing the AI
Economist to publish a model card and data sheet that describes the ethical considerations of trained AI-driven
tax models to increase transparency, and by extension, trust, in the system. Furthermore, we believe any
future application or policy built on economic simulations should be built on inspectable code and subject to
full transparency.

In order to responsibly publish this research, we have taken the following measures:

• To ensure accountability on our part, we have consulted academic experts on safe release of code and
ensured we are in compliance with their guidance. We shared the paper and an assessment of the ethical
risks, mitigation strategies, and assessment of safety to publish with the following external reviewers: Dr.
Simon Chesterman, Provost’s Chair and Dean of the National University of Singapore Faculty of Law,
and Lofred Madzou, AI Project Lead at the World Economic Forum’s Center for the Fourth Industrial
Revolution. None of the reviewers identified additional ethical concerns or mitigation strategies that
should be employed. All affirmed that the research is safe to publish.

• To increase transparency, we are publishing this technical paper, as well as a blog post, thereby allowing
robust debate and broad multidisciplinary discussion of our work.
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• To further promote transparency, we will have a timed open-source release of our environment and
sample training code for the simulation. This does not prevent future misuse, but we believe, at the
current level of fidelity, transparency is key to promote grounded discussion and future research.

With these mitigation strategies and other considerations in place, we believe this research is safe to
publish. Furthermore, this research was not conducted with any corporate or commercial applications in
mind.
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A Details of Environment
This section provides a more exhaustive description of the environment dynamics and the observations (and,
where appropriate, actions) available to agents and the social planner. We describe these separately for each of
the mechanics used to construct the simulation. Note that observations and actions are essentially the inputs
and outputs of the neural network policies trained using RL. Planner observations/actions are irrelevant for
baseline tax models, where tax rates are either fixed or calculated formulaically.

World Dynamics. The Gather-and-Build environment is organized over a 2D grid. Grid cells can be
occupied by agents, resources, houses, or other landmarks such as water. At the start of each episode, certain
cells are designated as ‘source’ cells that function to spawn new resource units.10 A given source cell only
spawns a single type of resource, i.e. wood or stone. If an agent moves to a cell that contains a resource, that
resource is added to the agent’s inventory and removed from the world at that location. At the start of each
timestep, resources randomly re-spawn at empty source cells according to the regeneration probability.

The state of the world is represented as a H ×W ×C tensor, where H andW are the size of the world and
C is the number of unique entities that may occupy a cell, and the value of a given element indicates that a
particular entity is occupying the associated location. The social planner is able to observe the full world state
tensor, while agent observations are restricted to views of the state tensor from a narrower, egocentric spatial
window. Our experiments use a world of size 25-by-25, where agent observations have size 11-by-11. Agent
spatial observations are padded as needed when their observation window extends beyond the world grid.

Movement and Gathering. Agents must navigate the world in order to collect resources and build new
houses. The action space of the agents includes 4 actions for moving up, down, left, and right. Agents are
restricted from moving on top of water cells, cells occupied by other agents, and cells containing houses built
by other agents. In this way, agents may create difficulty for other agents by restricting their available paths.

Before resources may be sold or used to build houses, they must be collected from the world. An agent
collects resources by moving itself on top of a resource-populated source cell. By default, this adds a single
unit of the collected resources to the agent’s inventory, with the possibility of a bonus unit also being collected,
the probability of which is determined by the agent’s collecting skill.

Agents observe the state of their inventories (including wood, stone, and coin) as well as their own
collecting skill. The planner is also able to observe agents’ inventories but cannot observe skill values.

Building. When an agent has both stone and wood in its inventory, it may spend one unit of each in order
to construct a house. The action space of the agents includes 1 action for building. Agents are restricted
from building on source cells as well as locations where a house already exists. Building places a house at the
location occupied by the agent and adds coin to the agent’s inventory, the amount of which is determined by
its building skill. Agents observe their own building skill, which the planner is not able to observe.

10For our purposes, we use the same, fixed layout of source cells each episode.
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Trading. Agents can buy and sell resources from one another through a trading mechanism structured as a
continuous double auction. This is conceptually similar to a commodities or stock exchange, where participants
do not interface directly but instead submit bids and asks to a market, which identifies and executes valid
trades. The action space of the agents includes 44 actions for trading, representing the combination of 11
price levels (0, . . . , 10 coin), 2 directions (bids and asks), and 2 resources (wood and stone). Note: agents buy
resources by submitting bids and sell resources by submitting asks. Each trade action therefore maps to a
single order (i.e. bid 3 coin for 1 wood, ask for 5 coin in exchange for 1 stone, etc.). Once an order is submitted,
it remains open until either it is matched (in which case a trade occurs) or it expires (after 50 timesteps). Agents
are restricted from having more than 5 open orders for each resource and are restricted from placing orders
that they cannot complete: they cannot bid with more coin than they possess and cannot submit asks for
resources that they do not have.

A bid/ask pair form a valid trade if they are for the same resource and the bid price matches or exceeds
the ask price. When a new order is received (i.e. bid 3 coin for 1 wood) it is compared against complementary
orders to identify potential valid trades. When a single bid (ask) could be paired with multiple existing asks
(bids), priority is giving the ask (bid) with the lowest (highest) price; in the event of ties, priority then is given
to the oldest existing order. Once a match is identified, the trade is executed using the price of whichever
order was placed first. As an example, if the market receives a new bid that offers 8 coin for 1 stone and the
market has two open asks offering 1 stone for 3 coin and 1 stone for 7 coin, respectively, the market would pair
the bid with the first ask and a trade would be executed for 1 stone at a price of 3 coin: the bidding agent loses
3 coin and gains 1 stone and the asking agent loses 1 stone and gains 3 coin. Once a bid and ask are paired and
the trade is executed, both orders are removed from the market.

The state of the market is captured by the number of outstanding bids and asks at each price level for each
resource. Agents observe these counts both for their own bids/asks as well as the cumulative bids/asks of
other agents (representing the bids/asks that they could respond to). The planner observes the cumulative
bids/asks of all agents. In addition, both agents and the planner observe some historical information from the
market: (for each resource) the average trading price as well as the number of trades at each price level.

Taxation and Redistribution. The main text describes the general implementation of periodic, bracketed
taxes used in our environment (Section 3.1). On the first timestep of each tax period, the planner sets the
marginal tax rates that will be used to collect taxes when the tax period ends. For baseline models, these
are set either formulaically or using fixed rates. For taxes controlled by a deep neural network (i.e. AI
Economist), the action space of the planner is divided into seven action subspaces, one for each tax bracket:
{0, 0.05, 0.10, . . . , 1.0}7. Each subspace denotes the set of discretized marginal tax rates that the planner may
select.11 The action space takes this form because, when setting new rates, the planner samples 7 rates at once.

Agents observe:

• The tax rates of the current tax period

• The marginal rate at the income level earned within the current period so far

• Indicators of the temporal progress of the current tax period

• The set of sorted and anonymized incomes the agents reported in the previous period

The planner observes the same information as well as the non-anonymized income and marginal tax rate (at
that income) of each agent in the previous period.

11Discretization of tax rates only applies to deep learning networks.
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Action Details. In our implementation, both agents and planners use discrete action spaces. One advantage
of this choice is that it grants easier control over which actions the agent/planner models can sample at a given
time. We encode this using ‘action masks’ which we use to ensure that the policy network assigns effectively 0
probability to restricted actions. Action masking is useful for preventing invalid actions and is how we control
the tax annealing (see Section 4.2) for the AI Economist experiments.

In addition to the actions described above, we include a NO-OP action (“no operation”) in each action space.
(For the planner, each of the 7 action subspaces includes a NO-OP action.) The NO-OP action is interpreted as
essentially taking no action, allowing the agent to “idle” and the planner to leave a bracket’s tax rates unchanged
between periods.

Most importantly, we use these implementation features to enable the planner to observe every timestep
while only acting at the start of each new tax period. For timesteps other than those at the start of a tax period
we simply use the action mask to enforce that only NO-OP actions are sampled. This allows the planner to
use rich temporal information while also ensuring that policy gradients are only propagated from the action
samples used to control taxes.

B Training Hyperparameters and Experiment Settings
For each experiment, experience collection was parallelized over 60 replicas of the environment. Each training
iteration involved collecting h steps from each replica (using the latest policy parameters), followed by a
round of parameter updates using the collected samples. With a sampling horizon of 200 timesteps and
60 environment replicas, a total of 12000 timesteps were sampled per training iteration. Since each “agent”
experiences its transition per timestep, this is actually a total of 60000 transitions: 48000 for the 4 agents and
12000 for the planner. When doing policy updates, we divided each such set of transitions into minibatches
of size 3000 and perform one gradient update per minibatch. Therefore, each training iteration involved 16
updates to the agent parameters and 4 to the planner parameters. We use PPO to accomodate multiple updates
per training iteration.

Tables 2 and 3 provide details regarding the training hyperparameters and environment settings, respec-
tively, used in our AI experiments.

C Details on Experiments with Human Participants
All experiment modules used with human participants are shown and described in Figures 19 (lobby, tutorial),
20 (main graphical interface), and 21 (survey).
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Parameter Value
Training algorithm ppo
Number of parallel environment replicas 60
Sampling horizon (steps per replica) h 200
SGD minibatch size 3000
SGD sequence length 50
Policy updates per horizon (agent) 16
Policy updates per horizon (planner) 4
CPUs 15
GPUs 2
Learning rate (agent) 0.0003
Learning rate (planner) 0.0001
Entropy regularization coefficient (agent) 0.025
Entropy regularization coefficient (planner) 0.1
Gamma γ 0.998
GAE lambda 0.98
Gradient clipping 10
Value function loss coefficient 0.05
Number of convolutional layers 2
Number of fully-connected layers 2
Fully-connected layer dimension (agent) 128
Fully-connected layer dimension (planner) 256
LSTM cell size (agent) 128
LSTM cell size (planner) 256
All agents share weights True
Value/Policy networks share weights False
Planner gets spatial info True
Agents get full spatial observation False
Agent spatial observation box half-width 5
Phase one training duration 50M steps
Phase two training duration 400M steps
Phase two initial max τ 10%
Phase two tax annealing duration 54M steps

Table 2: Training hyperparameters.

41



Algorithm 1 Inner-Outer Loop Reinforcement Learning. Economic agents and social planner learn simulta-
neously. Bold-faced symbols indicate quantities for multiple agents. Note that agents share weights.
Require: Sampling horizon h, tax period length M
Require: On-policy learning algorithm A (for instance, A3C, PPO)
Require: Stopping criterion C (for instance, agent and planner rewards have not improved)
Ensure: Trained agent and planner policy weights θ, ϕ
s, o, op, h, hp ⇐ s0, o0, op,0, h0, hp,0 . Reset episode
θ, ϕ⇐ θ0, ϕ0 . Initial agent and planner policy weights
D,Dp ⇐ {}, {} . Reset agent and planner transition buffers
while training do

for t = 1, . . . ,h do
a, h⇐ π(·|o, h, θ) . Sample agent actions; update hidden state
if t mod M = 0 then . First timestep of tax period

τ, hp ⇐ πp(·|op, hp, ϕ) . Sample marginal tax rates; update planner hidden state
else

no-op, hp ⇐ πp(·|op, hp, ϕ) . Only update planner hidden state
end if
s′, o′, o′p, r, rp ⇐ Env.step(s, a, τ) . Next state / observations, pre-tax reward, planner reward
if t mod M = M-1 then . Last timestep of tax period

s′, o′, o′p, r, rp ⇐ Env.tax(s′, τ) . Apply taxes; compute post-tax rewards
end if
D ⇐ D ∪ {(o, a, r, o′)} . Update agent transition buffer
Dp ⇐ Dp ∪ {(op, τ, rp, o′p)} . Update planner transition buffer
s, o, op ⇐ s′, o′, o′p

end for
Update θ, ϕ using data in D,Dp and A.
D,Dp ⇐ {}, {} . Reset agent and planner transition buffers
if episode is completed then

s, o, op, h, hp ⇐ s0, o0, op,0, h0, hp,0 . Reset episode
end if
if criterion C is met then return θ, ϕ
end if

end while
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Parameter Value
Number of agents N 4
Episode length H 1000
World height 25
World width 25
Resource respawn probability 0.01
Max resource health 1
Skill distribution pareto
Starting agent coin xci,0 0
Iso-elastic utility exponent η 0.23
Move labor 0.21
Gather labor 0.21
Trade labor 0.05
Build labor 2.1
Minimum build payout 10
Build payment max skill multiplier 3
House lifetime inf
Max bid/ask price 10
Max bid/ask order duration 50
Max number of open orders per resource 5
Tax period duration M 100
Min bracket rate 0%
Max bracket rate 100%
Rate discretization (AI Economist) 5%
Bracket cutoffs {m0, . . . ,mB} us-federal
social welfare weights (Saez formula) gi inverse-income

Table 3: Environment settings.
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Figure 19: The starting point for each experiment was the lobby and tutorial (Figure 19). The tutorial explained
all rules of the world and the objective for each participant. It also explained how the variable part of payment
for the experiment was computed. In addition, an example of the graphical interface and keyboard controls
was shown. Participants were warned not to idle in the game. Participants were given 2 minutes before the
start of the experiment to read the tutorial. After this initial period, as soon as there were enough participants
to form a group, the lobby system presented the participants in the new group with the experiment’s main
page.
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Figure 20: The main experiment’s graphical user interface (Figure 20) showed (from top to bottom): the
endowment of the agent, the remaining time in the episode, the bonus amount earned so far, the spatial
state of the world, the tax information and current tax rate, the time left, the number of houses built and the
number of profitable houses left to build. Below all data, a reminder of the controls was shown as well. After
an episode was over, participants were returned to the lobby (if the participant had seen less than 4 episodes)
or survey (if 4 episodes had been seen).
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Figure 21: The post-experiment survey showed how much the participant had collected in terms of resources,
coin and bonus. It also asked questions about the participants experience, strategy and general feedback on
the experiment. For instance, participants could communicate technical issues, such as lag. At the end of the
survey, participants were given a confirmation code that allowed them to confirm successful completion of
the task on the Amazon Mechanical Turk platform.

46


	1 Introduction
	1.1 Related Work
	1.2 Outline

	2 Economic Simulations: Learning in Gather-and-Build Games
	2.1 Notation and Preliminaries
	2.2 Environment Rules and Dynamics
	2.3 Using Machine Learning to Optimize Agent Behavior

	3 Machine Learning for Optimal Tax Policies
	3.1 Periodic Taxes with Bracketed Schedules
	3.2 Optimal Taxation
	3.3 Inner-Outer-Loop Reinforcement Learning

	4 Improved Social Outcomes with AI Agents
	4.1 Baseline Methods
	4.2 Training Strategy: Two-phase Training and Tax Curricula
	4.3 Equality, Productivity, and Social Welfare Metrics
	4.4 Tax Schedules and Wealth Redistribution after Taxes and Subsidies
	4.5 Tax-Gaming Strategies

	5 Improved Social Outcomes with Human Participants
	5.1 Experimental Methodology
	5.2 Results
	5.3 Discussion

	6 Conclusion
	7 Ethics and Normative Aspects
	A Details of Environment
	B Training Hyperparameters and Experiment Settings
	C Details on Experiments with Human Participants

