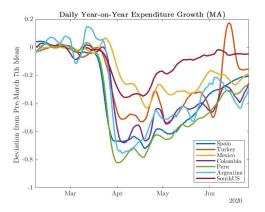
## Tracking the COVID-19 Crisis with High Resolution Transaction Data

Vasco M. Carvalho<sup>1</sup>, Juan García<sup>2</sup>, Stephen Hansen<sup>3</sup> Álvaro Ortiz<sup>2</sup> Tomasa Rodrigo <sup>2</sup> José V. Rodríguez Mora <sup>4</sup> Pep Ruiz <sup>2</sup>

> <sup>1</sup>University of Cambridge, Alan Turing Institute & CEPR <sup>2</sup>BBVA Research <sup>3</sup>Imperial College <sup>4</sup>University of Edinburgh, Alan Turing Institute and CEPR

## Introduction


• World awash with "naturally occurring transaction data".

- COVID-19: first recession economists have a real time microscope available.
- Likely to assume increasingly prominent role in research and policy.
- This paper: benchmarks properties of a large scale transaction dataset . + provides COVID-19 proof of concept.
- Economic consequences of the pandemic:
  - Estimates of costs for different lockdown restrictions on expenditure
  - Unequal burden in expenditure adjustment across income groups
- Economic drivers of the pandemic:
  - Differential mobility (to work) induced unequal disease outcomes across income groups

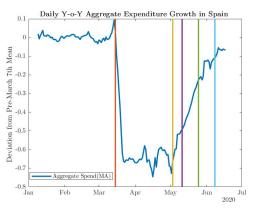
## Overview of BBVA Transaction Data

- Data for Spain consists of:
  - Universe of transactions by BBVA-issued credit and debit cards +
  - Universe of transactions at BBVA-operated Point of Sales (PoS)
  - Jan 1st 2019-26th of June 2020
- Large, tagged dataset:
  - 2.1 Billion Transactions
  - Geo-tagged + Sector of Expenditure
- BBVA Cardholders
  - 6 million cardholders
  - Home Postal Code (use to proxy income)
- International data from BBVA affiliates:
  - Argentina, Colombia, Peru, Mexico, Southern US States and Turkey
  - 3.8 Billion transactions

A Global Expenditure Contraction

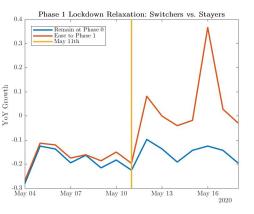


p.p. differences from pre-March 8th mean growth


- Global Expenditure Y-o-Y Daily Growth
- V-ish recovery patterns but
- Substantial cross-country heterogeneity
- High correlation with mobility declines

## Roadmap

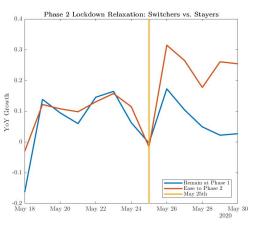
#### • Economic consequences of the pandemic:


- Estimates of costs for different lockdown restrictions on expenditure
- Unequal burden in expenditure adjustment across income groups
- Economic drivers of the pandemic

# Tracking the COVID-19 Crisis in Real Time Zoom in on Spain



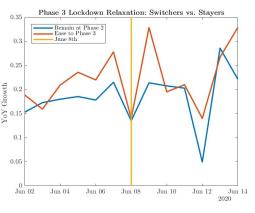
- Sharp decline on March 15th national lockdown
- Recovery when nationwide lockdown easing process starts (May 4th)
- Phase 1 Easing (May 11th): reopening of small/medium retail under capacity restrictions
- Phase 2 Easing (May 25th):reopening of large retail/malls + milder capacity restrictions
- Phase 3 Easing (June 8th):loosening of capacity restrictions
- We exploit differential timing in intensity of easing across provinces


Province-level Variation in Timing + Extent of Easing



Phase 1 Easing: Switchers vs. Stayers

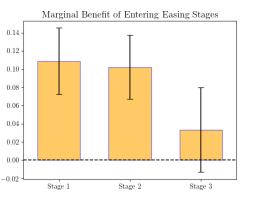
- Use geo-tagging of transactions to define province level time series of expenditures
- Phase 1 Easing (May 11th)
- Reopening of small/medium retail under capacity restrictions
- Some provinces enter Phase 1; some do not.


Province-level Variation in Timing + Extent of Easing



Phase 2 Easing: Switchers vs. Stayers

- Phase 2 Easing (May 25th)
- Reopening of large retail/malls + milder capacity restrictions
- Some provinces enter Phase 2; some do not.


Province-level Variation in Timing + Extent of Easing



Phase 3 Easing: Switchers vs. Stayers

- Phase 3 Easing (June 8th)
- Loosening of capacity restrictions
- Some provinces enter Phase 3; some do not.

## Tracking the COVID-19 Crisis in Real Time D-i-D Estimates



- D-i-D estimates of province daily Y-o-Y expenditure growth on easing phase dummies
- Controlling for daily disease incidence in province.
- Extensive margin/size dependent shutdowns more damaging than capacity restrictions, conditional on being open.

## Roadmap

#### Economic consequences of the pandemic

- Estimates of costs for different lockdown restrictions on expenditure
- **O** Unequal burden in expenditure adjustment across income groups
- Economic drivers of the pandemic

## Reallocation of Consumption During COVID-19

Rich vs. Poor

#### Categories most and least correlated with postal code income in 2019:

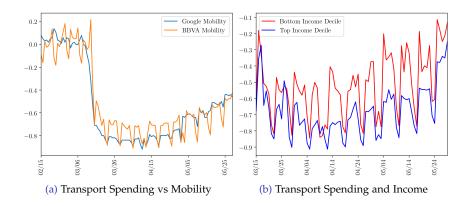
| High-Income Categories           |                   | Low-Income Categories    |                   |
|----------------------------------|-------------------|--------------------------|-------------------|
| Category                         | Corr. with Income | Category                 | Corr. with Income |
| Taxi                             | 0.67              | Gas Stations             | -0.48             |
| Sports                           | 0.62              | Supermarkets             | -0.35             |
| Beauty & Hairdressers            | 0.58              | Car Technical Inspection | -0.35             |
| Restaurants                      | 0.58              | Telephony                | -0.26             |
| Parking                          | 0.53              | DIY: Small Retail        | -0.25             |
| Fashion: Small Retail            | 0.42              | Insurance                | -0.25             |
| Mid- & Long-Distance Trains      | 0.41              | Tobacco                  | -0.23             |
| Pharmacy                         | 0.40              | Auto Sales/Repair/Parts  | -0.23             |
| Travel Agency: Physical Location | 0.38              | Veterinary               | -0.22             |
| Bars & Coffee Shops              | 0.37              | Miscellaneous            | -0.18             |

Restricted during lockdown

Rich consumption basket: social and luxury goods; market production.

Poor consumption basket: essential services; home production.

#### Reallocation of Consumption During COVID-19 Rich vs. Poor




- Higher income postal codes decreased spending most
  - Why? The rich are forced the consumption patterns of the poor.
- In paper: D-i-D setting + postal code disease incidence control:
  - Richest quintile's expenditure declines by 30p.p. more than poorest quintile

## Roadmap

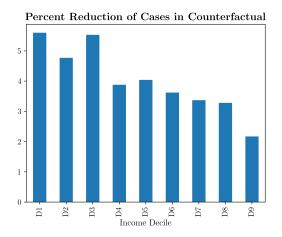
- Economic consequences of the pandemic
- **2** Economic drivers of the pandemic
  - Differential mobility (to work) induced unequal disease outcomes across income groups

## Transaction data as a Real Time Mobility Proxy



Google Mobility: percent change in time spent at work + transit stations as measured through mobile phone usage.

BBVA Mobility: percent change in national spending on transport categories, i.e. Bus, Trains, Urban Transport; Gasoline, Parking, Tolls, Taxi.


## Urban Transport as a Predictor of Disease Incidence

| Accumulated Incidence in Postal Code          |            |           |  |  |
|-----------------------------------------------|------------|-----------|--|--|
| Per capita Income ( $\times 10^4$ )           | 0.000036   | 0.000015  |  |  |
|                                               | (0.000043) | (0.00042) |  |  |
| Older than 65 ( $\times 10^4$ )               | 3.191***   | 2.268***  |  |  |
|                                               | (0.35)     | (0.42)    |  |  |
| Spending in Urban Transport ( $\times 10^4$ ) |            | 29.22***  |  |  |
|                                               |            | (7.459)   |  |  |
| N                                             | 286        | 286       |  |  |
| $R^2$                                         | 0.255      | 0.299     |  |  |

#### 1 S.D. increase in postal code urban transport spending leads to a 10% increase in cases per capita

In paper: Poisson panel regression on count of daily cases

## Urban Transport, Income and Disease Incidence



We impose on postal codes outside the top income decile the urban transport spending reduction of the top-income decile.

Use estimates from disease regression to predict reduction in COVID cases.

## Take Home Points

- Card spending data increasingly common in many countries
- Validation against external data shows this data is simultaneously:
  - Coincident consumption proxy
  - Household budget survey
  - Mobility indicator
- Economic consequences of the pandemic:
  - Estimates of costs for different lockdown restrictions on expenditure
  - Unequal burden in expenditure adjustment across income groups
- Economic drivers of the pandemic:
  - Differential mobility (to work) induced unequal disease outcomes across income groups