Exports, Imports, and Earnings Inequality: Micro-Data and Macro-Lessons from Ecuador

Trade and Earnings Inequality

Trade and Earnings Inequality

> Questions:

- > Who is *exposed* to international trade, either through exports or imports?
- > What is the *incidence* of differences in trade exposure on earnings inequality?

Trade and Earnings Inequality

> Questions:

- > Who is *exposed* to international trade, either through exports or imports?
- > What is the *incidence* of differences in trade exposure on earnings inequality?

➤ This Paper:

- Theory: Export Channel vs. Import Channel
- ➤ Measurement:
 - ➤ New dataset from Ecuador (Customs + VAT + social security + ownership registers)
 - Individuαl-level exposure to exports and imports (labor + capital)
- > Main Findings: Largest gains from trade for middle class, mostly through export channel

- > Inspired by original factor content approach:
 - Deardorff and Staiger (1988), Krugman (2000), Leamer (2000)
 - ➤ Borjas, Freeman, and Katz (1992), Katz and Murphy (1992), Borjas, Freeman, and Katz (1997)

- > Inspired by original factor content approach:
 - Deardorff and Staiger (1988), Krugman (2000), Leamer (2000)
 - ➤ Borjas, Freeman, and Katz (1992), Katz and Murphy (1992), Borjas, Freeman, and Katz (1997)
- > What we like about it:
 - Intuitive supply and demand framework, sufficient statistics

> Inspired by original factor content approach:

- Deardorff and Staiger (1988), Krugman (2000), Leamer (2000)
- ➤ Borjas, Freeman, and Katz (1992), Katz and Murphy (1992), Borjas, Freeman, and Katz (1997)

> What we like about it:

Intuitive supply and demand framework, sufficient statistics

> What we hope to improve on:

➤ Robustness of theoretical foundations, granularity of the data fed into the analysis, tighter relationship between theory and data

Theory

- ► Home + ROW endowed with factors of production
- Perfectly competitive factor markets

> Assumptions:

- ➤ Home + ROW endowed with factors of production
- ➤ Perfectly competitive factor markets

No restrictions on:

Technology, preferences, good market structure

> Assumptions:

- ► Home + ROW endowed with factors of production
- Perfectly competitive factor markets

No restrictions on:

- Technology, preferences, good market structure
- > Question: What is the impact of trade on inequality?

- ➤ Home + ROW endowed with factors of production
- ➤ Perfectly competitive factor markets
- No restrictions on:
 - Technology, preferences, good market structure
- > Question: What is the impact of trade on inequality?

> Assumptions:

- ➤ Home + ROW endowed with factors of production
- Perfectly competitive factor markets
- No restrictions on:
 - Technology, preferences, good market structure
- > Question: What is the impact of trade on inequality?

Global factor demand

> Assumptions:

- ➤ Home + ROW endowed with factors of production
- ➤ Perfectly competitive factor markets
- No restrictions on:
 - Technology, preferences, good market structure
- > Question: What is the impact of trade on inequality?

Global factor demand

Trade Impact = (Shift in factor demand) x (Incidence of shift)

Assumptions:

- Home + ROW endowed with factors of production
- Perfectly competitive factor markets
- No restrictions on:
 - Technology, preferences, good market structure
- Question: What is the impact of trade on inequality?

Global factor demand

Trade Impact = (Shift in factor demand) x (Incidence of shift)

In terms of relative domestic factor demand and relative export exposure: $rac{L_f(w,w_T^*)}{L_0(w,w_T^*)} imes REE_{f,T}$

 $w_{0,A}$

Assumptions:

- Home + ROW endowed with factors of production
- Perfectly competitive factor markets
- No restrictions on:
 - Technology, preferences, good market structure
- Question: What is the impact of trade on inequality?

Global factor demand

Trade Impact = (Shift in factor demand) x (Incidence of shift)

In terms of relative domestic factor demand and relative export exposure: $rac{L_f(w,w_T^*)}{L_0(w,w_T^*)} imes REE_{f,T}$

 $w_{0,A}$

with
$$REE_{f,T} = \frac{1 + L_f^*(w_T, w_T^*)/L_f(w_T, w_T^*)}{1 + L_0^*(w_T, w_T^*)/L_0(w_T, w_T^*)}$$

> Why does trade shift relative factor demand?

- > Why does trade shift relative factor demand?
- \succ Export Channel (\neq in export exposure):

- > Why does trade shift relative factor demand?
- \succ Export Channel (\neq in export exposure):
 - Foreign factor demand \neq Domestic factor demand ($REE \neq 1$)

- > Why does trade shift relative factor demand?
- \triangleright Export Channel (\neq in export exposure):
 - Foreign factor demand \neq Domestic factor demand ($REE \neq 1$)
 - Examples: Matsuyama '07, Verhoogen '08, Sampson '14, Harrigan Reshef '16, Antras de Gortari Itskhoki '17

- > Why does trade shift relative factor demand?
- \succ Export Channel (\neq in export exposure):
 - Foreign factor demand \neq Domestic factor demand ($REE \neq 1$)
 - Examples: Matsuyama '07, Verhoogen '08, Sampson '14,

 Harrigan Reshef '16, Antras de Gortari Itskhoki '17 $\frac{w_{0,A}}{w_{0,A}}$
- \succ Import Channel (\neq in import exposure):

- > Why does trade shift relative factor demand?
- \succ Export Channel (\neq in export exposure):
 - Foreign factor demand \neq Domestic factor demand ($REE \neq 1$)
 - Examples: Matsuyama '07, Verhoogen '08, Sampson '14,

 Harrigan Reshef '16, Antras de Gortari Itskhoki '17 $\frac{w_{f,A}}{w_{0,A}}$ Channel
- \succ Import Channel (\neq in import exposure):
 - Domestic factor demand with access to foreign factors \neq Domestic factor demand without $(d \ln RD/d \ln w^* \neq 0)$

- > Why does trade shift relative factor demand?
- \succ Export Channel (\neq in export exposure):
 - Foreign factor demand \neq Domestic factor demand ($REE \neq 1$)
 - Examples: Matsuyama '07, Verhoogen '08, Sampson '14, $\frac{w_{f,A}}{w_{0,A}}$ Harrigan Reshef '16, Antras de Gortari Itskhoki '17 Import Channel
- > Import Channel (\neq in import exposure):
 - Domestic factor demand with access to foreign factors \neq Domestic factor demand without $(d \ln RD/d \ln w^* \neq 0)$
 - Examples: Stolper Samuelson '41, Feenstra Hanson '96, Grossman Rossi-Hansberg '08, Burstein Cravino Vogel '13

Need **net exports**: What is factor content of imports?

- \triangleright Nested CES preferences: CES between firms within sectors (σ) + Cobb-Douglas between sectors
- Nested CES technology: CES within domestic factors (η) + CES between domestic and foreign intermediate goods (ε) + Cobb-Douglas otherwise
- Perfectly competitive good markets

- \triangleright Nested CES preferences: CES between firms within sectors (σ) + Cobb-Douglas between sectors
- Nested CES technology: CES within domestic factors (η) + CES between domestic and foreign intermediate goods (ε) + Cobb-Douglas otherwise
- Perfectly competitive good markets
- \succ Export Exposure (EE_f):

$$\{\textit{EE}_f\} = \frac{(\text{Matrix Factor shares}) \times (\text{Leontief Inverse}) \times (\text{Vector of Gross Exports})}{\text{Total Factor Earnings}}$$

- ➤ Granular version of Leontief's factor content of exports (definition of factor + IO matrix)
- \succ Model does not restrict *levels* of firm demand and supply \longrightarrow EE_f unrestricted
- ightharpoonup Higher relative factor demand Higher relative price under trade

- \triangleright Nested CES preferences: CES between firms within sectors (σ) + Cobb-Douglas between sectors
- Nested CES technology: CES within domestic factors (η) + CES between domestic and foreign intermediate goods (ε) + Cobb-Douglas otherwise
- ➤ Perfectly competitive good markets
- > Import Exposure (IE_f^C , IE_f^L): $\frac{\partial \ln RD_f}{\partial \ln w^*} = (\sigma 1)(IE_f^C IE_0^C) + (\varepsilon 1)(IE_f^L IE_0^L)$
 - $\succ IE_f^C$ measures consumer expenditure switching in response to cheaper foreign factors (data!)
 - If no intermediates IE_f^C = Average import share across sectors, weighted by factor f's share of domestic demand in each sector
 - \blacktriangleright If $\sigma > 1$, higher IE_f^C Lower relative factor demand Lower relative price under trade

- \triangleright Nested CES preferences: CES between firms within sectors (σ) + Cobb-Douglas between sectors
- Nested CES technology: CES within domestic factors (η) + CES between domestic and foreign intermediate goods (ε) + Cobb-Douglas otherwise
- ➤ Perfectly competitive good markets
- > Import Exposure (IE_f^C , IE_f^L): $\frac{\partial \ln RD_f}{\partial \ln w^*} = (\sigma 1)(IE_f^C IE_0^C) + (\varepsilon 1)(IE_f^L IE_0^L)$
 - $\succ IE_f^L$ measures firm expenditure switching in response to cheaper foreign factors (data!)
 - ➤ If no intermediates \longrightarrow $IE_f^L = 0$
 - \blacktriangleright If $\epsilon > 1$, higher IE_f^L —— Lower relative factor demand —— Lower relative price under trade

Measurement

Firms

- Corporate Income Tax
 - Firm revenues, costs, profits
- VAT (matched firm-to-firm data)
 - Transactions between all formal firms
 - Transaction-level imports & exports by firm

Workers

Firms

- Corporate Income Tax
 - Firm revenues, costs, profits
- VAT (matched firm-to-firm data)
 - Transactions between all formal firms
 - Transaction-level imports
 & exports by firm

- Social Security (matched employee-employer)
 - Income of all formal workers in the economy

Workers

Firms

- Corporate Income Tax
 - Firm revenues, costs, profits
- VAT (matched firm-to-firm data)
 - Transactions between all formal firms
 - Transaction-level imports
 & exports by firm

- Social Security (matched employee-employer)
 - Income of all formal workers in the economy

Capital Owners

- Civil Registrar (matched firm-owner)
 - Share of each private firm owned by each taxpayer
 - Profits of firms = return on "capital" (self-employed treated as labor)

Workers

Firms

- Corporate Income Tax
 - Firm revenues, costs, profits
- VAT (matched firm-to-firm data)
 - Transactions between all formal firms
 - Transaction-level imports
 & exports by firm

- Social Security (matched employee-employer)
 - Income of all formal workers in the economy

Capital Owners

- Civil Registrar (matched firm-owner)
 - Share of each private firm owned by each taxpayer
 - Profits of firms = return on "capital" (self-employed treated as labor)

Factors = 73 Labor groups (24 Province x 3 Education + others) + 1 Capital

Pro-rich through most of the income distribution...

Estimation

Ecuador's Factor Demand System

Ecuador's Factor Demand System

- \succ 3 micro-elasticities: η , ε , and σ
 - > Standard nested CES demand estimation using firm-level micro-data
 - ➤ Generic example ("factor/good" j, "firm/consumer" m, time t):

```
\ln(\text{expenditure})_{jm,t} = (1 - \epsilon) \times \ln(\text{price})_{jm,t} + (\text{fixed effect})_{m,t} + (\text{demand residual})_{jm,t}
```

Ecuador's Factor Demand System

- \succ 3 micro-elasticities: η , ε , and σ
 - > Standard nested CES demand estimation using firm-level micro-data
 - ➤ Generic example ("factor/good" j, "firm/consumer" m, time t):

$$\ln(\text{expenditure})_{jm,t} = (1 - \epsilon) \times \ln(\text{price})_{jm,t} + (\text{fixed effect})_{m,t} + (\text{demand residual})_{jm,t}$$

- > OLS biased (simultaneity) IV
 - > Shift-share variation based on foreign demand/supply shocks (CEPII BACI data)
 - Control for (sum of shares)x(time fixed effect) (Borusyak-Hull-Jaravel '19)

Elasticity of substitution between	Para- meter	Estimate (SE)	Expenditure measure	Price measure	IV based on $\sum_{v} (\mathbf{shift})_{v,t} \times (\mathbf{share})_{v,t_0}$	Unit of observation (N)	Fixed effects (clustering)	First- stage F-stat

Elasticity of substitution between	Para- meter	Estimate (SE)	Expenditure measure	Price measure	IV based on $\sum_{v} (\mathbf{shift})_{v,t} \times (\mathbf{share})_{v,t_0}$	Unit of observation (N)	Fixed effects (clustering)	First- stage F-stat
domestic factors	η	0.86 (0.46)	firm expenditure on factor	factor price	(foreign demand for product) × (factor export of product)	factor- firm-year (189,283)	firm-year & factor (factor)	9.6

Elasticity of substitution between	Para- meter	Estimate (SE)	Expenditure measure	Price measure	IV based on $\sum_{v}(\mathbf{shift})_{v,t} \times (\mathbf{share})_{v,t_0}$	Unit of observation (N)	Fixed effects (clustering)	First- stage F-stat
domestic factors	η	0.86 (0.46)	firm expenditure on factor	factor price	(foreign demand for product) × (factor export of product)	factor- firm-year (189,283)	firm-year & factor (factor)	9.6
domestic and foreign intermediates	ε	1.10 (0.19)	firm expenditure on domestic/foreign intermediates	intermediates price (domestic price inferred from factor prices of suppliers)	(foreign price of product) × (firm import of product)	firm-year (7,232)	firm-year (firm)	31.4

Elasticity of substitution between	Para- meter	Estimate (SE)	Expenditure measure	Price measure	IV based on $\sum_{v}(\mathbf{shift})_{v,t} \times (\mathbf{share})_{v,t_0}$	Unit of observation (N)	Fixed effects (clustering)	First- stage F-stat
domestic factors	η	0.86 (0.46)	firm expenditure on factor	factor price	(foreign demand for product) × (factor export of product)	factor- firm-year (189,283)	firm-year & factor (factor)	9.6
domestic and foreign intermediates	${\cal E}$	1.10 (0.19)	firm expenditure on domestic/foreign intermediates	intermediates price (domestic price inferred from factor prices of suppliers)	(foreign price of product) × (firm import of product)	firm-year (7,232)	firm-year (firm)	31.4
domestic firms (within-industry)	σ	1.37 (0.18)	consumer expenditure on firm	firm price (as inferred from factor prices of suppliers)	(foreign demand for product) × (firm use of factors that export product)	firm-year (80,216)	industry-year & firm (firm)	13.7

Elasticity of substitution between	Para- meter	Estimate (SE)	Expenditure measure	Price measure	IV based on $\sum_{v}(\mathbf{shift})_{v,t} \times (\mathbf{share})_{v,t_0}$	Unit of observation (N)	Fixed effects (clustering)	First- stage F-stat
domestic factors	η	0.86 (0.46)	firm expenditure on factor	factor price	(foreign demand for product) × (factor export of product)	factor- firm-year (189,283)	firm-year & factor (factor)	9.6
domestic and foreign intermediates	${\cal E}$	1.10 (0.19)	firm expenditure on domestic/foreign intermediates	intermediates price (domestic price inferred from factor prices of suppliers)	(foreign price of product) × (firm import of product)	firm-year (7,232)	firm-year (firm)	31.4
domestic firms (within-industry)	σ	1.37 (0.18)	consumer expenditure on firm	firm price (as inferred from factor prices of suppliers)	(foreign demand for product) × (firm use of factors that export product)	firm-year (80,216)	industry-year & firm (firm)	13.7

Counterfactuals

➤ What happens to factor prices as we go from counterfactual autarky to trade equilibrium?

$$(\Delta \ln w)_{trade} = (\Delta \ln w)_{exports} + (\Delta \ln w)_{imports}$$

Distribution of the gains from trade (Labor only)

Distribution of the gains from trade (Labor only)

Distribution of the gains from trade (Labor only)

Distribution of the gains from trade (Total)

Distribution of the gains from trade (Total)

	Change in t	otal income	Change in labor income			
	Estimates	Shapley	Estimates	Shapley		
		$% R^2$		$% R^2$		
	(1)	(2)	(3)	(4)		
\overline{EE}	1.454	76.0 %	1.468	77.3 %		
	(0.000)		(0.000)			
IE^{C}	-4.097	11.2 %	-4.111	12.7 %		
	(0.001)		(0.001)			
IE^L	-1.267	12.8 %	-1.217	10.0 %		
	(0.002)		(0.002)			
R^2	93.2 %	100 %	92.5 %	100 %		
Obs.	2,702,120		2,612,925			

All three measures of exposure have expected sign

	Change in	n total income	Change	e in labor income		
	Estimates	Shapley	Estimat	1		
		$\%$ R^2		$\%R^2$		
	(1)	(2)	(3)	(4)		
\overline{EE}	1.454	76.0 %	1.468	77.3 %		
	(0.000)		(0.000)			
IE^{C}	-4.097	11.2 %	-4.111	12.7 %		
	(0.001)		(0.001)			
IE^L	-1.267	12.8 %	-1.217	10.0 %		
	(0.002)		(0.002)			
R^2	93.2 %	100 %	92.5 %	100 %		
Obs.	2,702,120		2,612,92	25		

All three measures of exposure have expected sign

R2 is high...

	Change in t	otal income	Change in labor income			
	Estimates	Shapley	Estimates	Shapley		
		$% R^2$		$% R^2$		
	(1)	(2)	(3)	(4)		
\overline{EE}	1.454	76.0 %	1.468	77.3 %		
	(0.000)		(0.000)			
IE^{C}	-4.097	11.2 %	-4.111	12.7 %		
	(0.001)		(0.001)			
IE^L	-1.267	12.8 %	-1.217	10.0 %		
	(0.002)		(0.002)			
R^2	93.2 %	100 %	92.5 %	100 %		
Obs.	2,702,120		2,612,925			

All three measures of exposure have expected sign

R2 is high...

	Change in t	otal income	Change in 1	abor income
	Estimates	Shapley	Estimates	Shapley
		$%R^{2}$		$%R^{2}$
	(1)	(2)	(3)	(4)
EE	1.454	76.0 %	1.468	77.3 %
	(0.000)		(0.000)	
IE^{C}	-4.097	11.2 %	-4.111	12.7 %
	(0.001)		(0.001)	
IE^L	-1.267	12.8 %	-1.217	10.0 %
	(0.002)		(0.002)	
R^2	93.2 %	100 %	92.5 %	100 %
Obs.	2,702,120		2,612,925	

... and mostly driven by export exposure

Sensitivity to Factor Mobility, Demand Estimates

	Pa $(\eta =$	Factors as in baseline (K: national; L: education+province), Parameters set to				
	K: national	K: national K: national				
	L: education + province	L: education	L: education +province +6-digit industry	High η	$High \varepsilon$	High σ
Relative trade impact at income percentile	(74 factors)	(5 factors)	(26,354 factors)	$(\eta = 1.4, \ \varepsilon = 1.10, \ \sigma = 1.37)$	$(\eta = 0.86, \\ \varepsilon = 2.3, \\ \sigma = 1.37)$	$(\eta = 0.86, \ \varepsilon = 1.10, \ \sigma = 4)$
50^{th} 10^{th} 90^{th}	0.00% -0.75% -0.80%	0.00% 0.31% -0.68%	0.00% -5.37% -4.78%	0.00% -0.63% -0.54%	0.00% 0.02% -2.12%	0.00% -0.52% -0.27%

Concluding Remarks

Summary

- How does trade affect earnings inequality?
 - Export channel \neq in export exposure $REE \neq 1$ simply measure REE
 - Import channel \neq in import exposure $\frac{d \ln RD}{d \ln w^*} \neq 0$ estimate $RD(w^*)$ flexibly ($IE, \eta, \varepsilon, \sigma$)
- Estimates from admin. micro-data (formal sector firms, workers, owners) in Ecuador
 - Largest earnings gains from trade to middle class
 - Mostly driven by the export channel
 - Export exposure (factor content of gross exports) a strong predictor

Thank you!