Taxing Property in Developing Countries: Theory and Evidence from Mexico

Anne Brockmeyer World Bank

Karina Ramírez Secretaría de Hacienda Alejandro Estefan University of Notre Dame

Juan Carlos Suárez Serrato Duke University & NBER

NBER Summer Institute, June 21, 2020

- Property taxes are an attractive source of revenue for local governments
 - Tool for redistribution in context where income tax compliance is weak
 - Tax base observable and immobile in short-term

> Yet property tax revenues in developing countries are low

Ratio of Tax Revenue to GDP in High vs Low Income Countries

Property taxes are an attractive source of revenue for local governments

- Tool for redistribution in context where income tax compliance is weak
- Tax base observable and immobile in short-term

> Yet property tax revenues in developing countries are low

Property taxes are an attractive source of revenue for local governments

- Tool for redistribution in context where income tax compliance is weak
- Tax base observable and immobile in short-term

> Yet property tax revenues in developing countries are low

• Weak administrative capacity

Property taxes are an attractive source of revenue for local governments

- Tool for redistribution in context where income tax compliance is weak
- Tax base observable and immobile in short-term

> Yet property tax revenues in developing countries are low

- Weak administrative capacity
- Household liquidity and credit constraints

How to optimally raise property taxes in a context of weak capacity and liquidity constraints?

How to optimally raise property taxes in a context of weak capacity and liquidity constraints?

Combine approaches from public finance and development literature

- **Tax systems perspective** (Slemrod and Gillitzer 2013)
- **Economists as plumbers** (Duflo 2017)

► Model optimal property taxation with limited admin capacity and liquidity constraints, based on Keen & Slemrod (2017)

- Model optimal property taxation with limited admin capacity and liquidity constraints, based on Keen & Slemrod (2017)
- **•** Estimate **revenue** effects of tax rates and enforcement:
 - 1 Tax rates: variation over time and across value bands [RD, DiD]
 - 2 Enforcement: letters to delinquent taxpayers [experiment]

- Model optimal property taxation with limited admin capacity and liquidity constraints, based on Keen & Slemrod (2017)
- **•** Estimate **revenue** effects of tax rates and enforcement:
 - 1 Tax rates: variation over time and across value bands [RD, DiD]
 - 2 Enforcement: letters to delinquent taxpayers [experiment]
- Examine the role of **liquidity constraints** in shaping taxpayer behavior:
 - **1 Tax payment modality** [descriptive regression kink]
 - 2 Early bird discounts & payment timing [bunching, dynamic discrete choice]
 - 3 Consumption response to tax change [IV]

- Model optimal property taxation with limited admin capacity and liquidity constraints, based on Keen & Slemrod (2017)
- Estimate **revenue** effects of tax rates and enforcement:
 - 1 Tax rates: variation over time and across value bands [RD, DiD]
 - 2 Enforcement: letters to delinquent taxpayers [experiment]
- Examine the role of **liquidity constraints** in shaping taxpayer behavior:
 - 1 Tax payment modality [descriptive regression kink]
 - 2 Early bird discounts & payment timing [bunching, dynamic discrete choice]
 - 3 Consumption response to tax change [IV]

Analyze optimal policy, informed by model and estimates

Empirical Findings

1 Administrative capacity constraints do not explain under-utilization

- Tax rate increases lower compliance but raise revenue
- Enforcement increases compliance and revenue
- 2 Liquidity constraints increase welfare cost of property taxes
 - Consumption falls when property tax payments increase quasi-exogenously
 - Tax increases lead more taxpayers to pay late or in installments
 - Timing response to discounts imply a high value for liquidity

Policy Implications

1 Model shows how liquidity constraints impact optimal tax system

- Policy instruments: tax rates, enforcement, liquidity provision
- Sufficient statistics: tax rate, enforcement, consumption elasticities
- 2 Liquidity constraints lead to lower tax rates
 - Gov't can set higher tax rates by easing liquidity constraints
 - Despite liquidity constraints, current tax rates are below optimal
- 3 Private costs limit welfare gains from enforcement
 - Despite 40% delinquency rate, compliance is close to optimal
 - Larger scope for raising welfare through tax increases

Model

Model Setup

Households

- · Live two periods, consume private good from income and save
- They also consume a government-provided public good

Government

- Finance public good by taxing property
- Set level of enforcement to collect taxes

Model Setup

Households

- · Live two periods, consume private good from income and save
- They also consume a government-provided public good

Government

- Finance public good by taxing property
- Set level of enforcement to collect taxes

Key Features

- Liquidity-constrained households would like to borrow but cannot
- **Delinquency** depends on private cost of enforcement and depreciation of housing value

Optimal Tax Rate

▶ Welfare impact of increasing *t* to provide public goods *g*:

where :

- ε_t^{Pay} : Tax elasticity of compliance
- Δc^{Pay} : Effect of taxes on consumption
 - $\gamma:$ Coefficient of relative risk aversion
 - \tilde{z} : Tax debt gov't collects in future

• Optimal tax found by setting $MVPF_t = 0$

Optimal Compliance Rate

▶ Welfare impact of increasing enforcement α to provide public goods g:

$$MVPF_{\alpha} = \underbrace{rac{v'(g)}{rac{\partial m(\alpha)}{\partial lpha}}}_{=}$$

$$\underbrace{ rac{1-\mathcal{N}^{\mathsf{Pay}}}{(1- ilde{z})\mathcal{N}^{\mathsf{Pay}}rac{arepsilon_{lpha}^{\mathsf{Pay}}\mathcal{H}t}{lpha}-1}_{lpha}$$

Welfare Cost Per Dollar of Revenue

where :

- $\varepsilon_{\alpha}^{\mathsf{Pay}} \frac{Ht}{\alpha}$: Net revenue from enforcement
 - N^{Pay} : Compliance share
 - \tilde{z} : Tax debt gov't collects in future

 $-\frac{\partial m(\alpha)}{\partial \alpha}$: Welfare cost of enforcement

- To decide whether to increase enforcement or taxes, gov't compares MVPF_α and MVPF_t
- $MVPF_t$ depends on consumption changes, $MVPF_\alpha$ does not
- Providing liquidity increases MVPF_t, increasing welfare and reducing the relative value of enforcement

- To decide whether to increase enforcement or taxes, gov't compares MVPF_α and MVPF_t
- $MVPF_t$ depends on consumption changes, $MVPF_\alpha$ does not
- Providing liquidity increases MVPF_t, increasing welfare and reducing the relative value of enforcement

Sufficient statistics needed to implement the model: $\varepsilon_t^{\text{Pay}}$, $\varepsilon_{\alpha}^{\text{Pay}} \frac{Ht}{\alpha}$, Δc^{Pay}

Property Taxation in Mexico City

Property Taxation in Mexico City

Mexico City is a useful laboratory:

- 80% of people do not have a credit card
- 40% of taxpayers are delinquent
- Second largest city in the Western Hemisphere

Tax base depends on plot size, property characteristics, (approximated) market values - constant over time! • Property Value Determination

Tax rates change over time

• Liability =
$$(\mathsf{lump-sum} + \tau \cdot value) \cdot (1 - abatement)$$

Administrative Tax Data

▶ Universe of residential properties in CDMX: 2008–2013

- Tax ID, zip, area, characteristics, value
- Data on bills (liability, date, due date)
- Data on payments (amount, date, penalties, adjustments)

Study a balanced panel of properties and focus on:

- Payment amount (current MXN \$000's)
- Compliance share = payment / gross liability

Property characteristics Payment behavior Compliance behavior Tax vs income amount

Do Tax Rate Increases Raise Revenue?

Regression Discontinuity in Differences

Estimate year-on-year changes in tax compliance outcomes as:

$$\Delta Y_{i,t} = \alpha + \beta T_i + f(\hat{V}_i) + g(\hat{V}_i) T_i + \epsilon_{i,t},$$

where:

- $\hat{V}_i = V_i V_-$:distance in value to lower limit of the treated band
- $T_{i,t}$: dummy indicating property is in the treated band
- f and g are continuously differentiable functions

Tax Increases Raise Revenue in Short-Term

Revenue Increases Despite Fall in Compliance

Robust to using local-linear regression, optimal bandwidth, diff-in-disc

Medium-Term Responses to Taxes: Difference-in-Differences

Notes: Outcomes are normalized to their pre-treatment mean.

Revenue effects persist, current tax rates <<< Laffer rate (• No Real Response)

Does Enforcement Raise Revenue?
Experiment Design

Enforcement Letters Increase Compliance

Low Administrative Capacity Does Not Explain Under-Utilization

Both tax rates and enforcement raise revenue

• Reforms are substantial and follow enforcement practices

Lack of administrative capacity cannot explain under-utilization

But liquidity constraints can increase welfare cost of property taxes

Do Liquidity Constraints Affect

Tax Compliance?

Three Pieces of Evidence for Liquidity Constraints

- 1 Payment modality responds to tax rates Regression Kink DiD
- 2 Payment timing responds to early-bird discounts (Bunching)
- 3 Consumption responds to tax payment shocks

Tax Rate Schedule

Tax Rates and Payment

Tax Rates and Payment Modality

Tax Rates and Payment Modality

Tax Rate Effect on Early Payment: Difference-in-Differences

Payment Timing

Bunching Responses to Time Notches

Bunching Responses to Time Notches

Dynamic Model of Payment Timing

Taxpayers trade off liquidity with risk of missing discount:

Pay later:
$$i = 1$$

Pay today: $i = 0$
 $u(t, 1, \theta, y) = \theta_2$ Interest Rate_y
 $u(t, 0, \theta, y) = \underbrace{\theta_t + \theta_d + u_{ty}}_{\text{Net Hassle Cost}} - \theta_1 \underbrace{\text{Tax}(t, y)}_{1-\text{Discount}}$

Dynamic Model of Payment Timing

Taxpayers trade off liquidity with risk of missing discount:

Pay later:
$$i = 1$$

Pay today: $i = 0$
 $u(t, 1, \theta, y) = \theta_2$ Interest Rate_y
 $u(t, 0, \theta, y) = \underbrace{\theta_t + \theta_d + u_{ty}}_{\text{Net Hassle Cost}} - \theta_1 \underbrace{\text{Tax}(t, y)}_{1-\text{Discount}}$
Value from delaying: $u(t, 1, \theta, y) + \underbrace{\varepsilon_{ity}}_{\text{Time Shock}} + \beta \underbrace{\mathbb{E}[V(t + 1, \theta, y)]}_{\text{Value of Delaying}}$
where $\varepsilon_{ity} \sim \text{logit implies:}$

$$\mathbb{E}[V(t+1,1,\theta,y)] = u(t+1,0,\theta,y) + \gamma - \underbrace{\ln P_0(t+1,y)}_{\text{Conditional Choice Probability}}$$

Estimating the Dynamic Model

Model relates CCPs and discount rates/deadlines:

$$\ln\left(\frac{P_0(t,y)}{1-P_0(t,y)}\right) = -\theta_1 \{ \mathsf{Tax}(t,y) - \beta \mathsf{Tax}(t+1,y) \} - \theta_2 \mathsf{Interest}_y$$
$$- \beta \ln P_0(t+1,y) + \underbrace{\tilde{\theta}_t + \tilde{\theta}_d}_{\mathsf{Fixed Effects}} + u_{ty}$$

Estimate β , θ_1 , θ_2 via non-linear-least squares

Variation in Tax(t, y) and Interest_y identifies these parameters

Fixed Effects for day of year and day of week capture hassle costs

Conditional Choice Probability (Prediction), 2010

Conditional Choice Probability (Prediction), 2012

Conditional Choice Probability (Prediction), 2013

Estimation Results

A. Model Estimates				
	(1)	(2)	(3)	
	Tax Coefficient	Interest Coefficient	Discount Factor	
	θ_1	θ_2	eta	
Estimate	0.936	0.096	0.924	
	(0.180)	(0.064)	(0.041)	

- Model captures data pattern: people risk missing out on the discount by waiting until the day before the deadline
- Discount rate implies a daily interest rate of 8%
- Very high but consistent with interest rates from payday loans
- $\frac{\theta_2}{\theta_1} \approx 10\%$; without liquidity constraints, should be closer to 0

Estimation Results

D. Wenare Estimates				
(2)	(3)	(4)	(5)	
Consumer Surplus	Discount	Fiscal	Relative Value	
From Discounts	Deadlines	Cost	of Discounts	
10.35	Jan 31, Feb 28	7.80	1.33	
3.92	Jan 31	4.95	0.79	
3.26	Jan 10, 17, 31	6.53	0.50	
5.23	Jan 17, 31	6.84	0.77	
7.76	Jan 31, Feb 28	6.95	1.12	
	(2) Consumer Surplus From Discounts 10.35 3.92 3.26 5.23 7.76	(2)(3)Consumer Surplus From DiscountsDiscount Deadlines10.35Jan 31, Feb 283.92Jan 313.26Jan 10, 17, 315.23Jan 17, 317.76Jan 31, Feb 28	(2) (3) (4) Consumer Surplus Discount Fiscal From Discounts Deadlines Cost 10.35 Jan 31, Feb 28 7.80 3.92 Jan 31 4.95 3.26 Jan 10, 17, 31 6.53 5.23 Jan 31, Feb 28 6.84 7.76 Jan 31, Feb 28 6.95	

VA/alfana Eatimates П

- ▶ Model allows us to guantify consumer surplus
- CS increases in discount and with later deadlines.
- ► CS >>> Fiscal Cost when later deadlines provide liquidity

Back

Consumption

Estimate tax-shock on consumption:

$$\ln C_{it} = \alpha + \beta_1 \ln P_{it} + \delta_1 \ln I_{it} + \gamma_1 X_{it} + \varepsilon_{it}$$

 $\beta_1 < 0 \implies$ liquidity constraints but income shocks may bias $\beta \uparrow$

Estimate tax-shock on consumption:

$$\ln C_{it} = \alpha + \beta_1 \ln P_{it} + \delta_1 \ln I_{it} + \gamma_1 X_{it} + \varepsilon_{it}$$

 $\beta_1 < 0 \implies$ liquidity constraints but income shocks may bias $\beta \uparrow$

Measure consumption from ENIGH HH survey

Instrument for P_{it} with reform-driven increases in tax liability

- Split-sample IV using property characteristics in admin/survey data
- Allow β_1 to vary by Income/Access to Credit

	(1)	(2)	(3)	(4)
log(Pay)	006	024	.002	012
	(.052)	(.055)	(.051)	(.053)
$\log(Pay) imes \log(pc\ income)$.066 ***		.046 **
		(.024)		(.023)
log(Pay) imes Lack of credit			041 ***	035 ***
			(.007)	(.006)
log(pc income)	.815 ***	.435 ***	.782 ***	.52 ***
	(.035)	(.13)	(.032)	(.129)

N=2,649. Regressions include delegación and year FE. Bootstrap SE based on 1,000 replicas in parentheses. Outcome is log(pc consumption).

	(1)	(2)	(3)	(4)
log(Pay)	006	024	.002	012
	(.052)	(.055)	(.051)	(.053)
$\log(Pay) imes \log(pc \ income)$.066 ***		.046 **
		(.024)		(.023)
log(Pay) imes Lack of credit			041 ***	035 ***
			(.007)	(.006)
log(pc income)	.815 ***	.435 ***	.782 ***	.52 ***
	(.035)	(.13)	(.032)	(.129)

N=2,649. Regressions include delegación and year FE. Bootstrap SE based on 1,000 replicas in parentheses. Outcome is log(pc consumption).

	(1)	(2)	(3)	(4)
log(Pay)	006	024	.002	012
	(.052)	(.055)	(.051)	(.053)
$\log(Pay) imes \log(pc \text{ income})$.066 ***		.046 **
		(.024)		(.023)
$\log(Pay) imes Lack$ of credit			041 ***	035 ***
			(.007)	(.006)
log(pc income)	.815 ***	.435 ***	.782 ***	.52 ***
	(.035)	(.13)	(.032)	(.129)

N=2,649. Regressions include delegación and year FE. Bootstrap SE based on 1,000 replicas in parentheses. Outcome is log(pc consumption).

► For HH in 25th income percentile & credit constrained, doubling property tax reduces consumption by 7.3%

Policy Analysis

Optimal Taxes

Takeaway

- **1** Evaluated possible reasons for under-utilization of property taxes
 - Administrative capacity: Government can raise revenue through tax rate and enforcement
 - Liquidity constraints: affect compliance behavior and increase welfare cost of taxation
- 2 Optimal tax and compliance model shows
 - Limited or no welfare gains from enforcement
 - Tax rate increases can raise welfare, even with liquidity constraints
 - Providing liquidity is a key aspect of property tax administration

Takeaway

- **1** Evaluated possible reasons for under-utilization of property taxes
 - Administrative capacity: Government can raise revenue through tax rate and enforcement
 - Liquidity constraints: affect compliance behavior and increase welfare cost of taxation
- 2 Optimal tax and compliance model shows
 - Limited or no welfare gains from enforcement
 - Tax rate increases can raise welfare, even with liquidity constraints
 - Providing liquidity is a key aspect of property tax administration

Thank you!

Additional Slides

Property Tax Elasticities from Diff-in-Diffs

Treatment year	Payment amount (1)	Payment in full (2)	Compliance share (3)
2010	.696	531	186
	(.067)	(.095)	(.06)
2011	.612	556	23
	(.044)	(.059)	(.038)
2012	.333	649	366
	(.028)	(.035)	(.023)

Notes: Elasticities are calculated using the elasticity formula $\epsilon_{y,t} = \frac{dy}{dt} \frac{t}{y}$, where both $\frac{dy}{y}$ and $\frac{t}{dt}$ are taken directly from the differences-in-differences estimates.

▶ Real Effects

No Real Response to Tax Rate Increases: Descriptive Evidence

No Real Response to Tax Rate Increases: DiD

▶ Back

Distribution of Property Characteristics by Value Band

	2008	2012
	(1)	(2)
Property count	1,420,259	1,420,259
Property value (MXN)	585,320	605,346
	(1,121,680)	(1,169,283)
Yearly liability (MXN)	1,457	1,788
	(10,097)	(11,985)
Mean tax rate $ imes$ 100	.1112	.1323
	(.1243)	(.1532)

▶ Back
Payment Characteristics by Year

	2008	2012
	(1)	(2)
Payment (current MXN)	1,014	867
	(5,957)	(5,535)
Compliance share	.773	.524
	(1.007)	(.713)
Payment type		
Zero payment	.201	.414
	(.401)	(.493)
Partial payment	.092	.083
	(.289)	(.276)
Full payment	.707	.503
	(.455)	(.5)

Back

Notes: N= 1,420,259 residential properties.

Property Value Determination

$$V_{it} = (A_{it}L_{it} + U_{it}M_{it})[1 - D_t \cdot (\mathbb{1}_{\{t-t_0 \le 40\}}(t-t_0) + \mathbb{1}_{\{t-t_0 > 40\}}40)]$$

- A_{it} : unit value of land in the neighborhood (last updated in 2009)
- ▶ U_{it} : unit value of construction (last updated in 2009)
- \blacktriangleright L_{it} : land area of the property
- M_{it} : construction area of the property
- ▶ $D_t = 0.01$: reduction applied per each year of antiquity
- ▶ t_0 : year of the construction of the property

Property Tax Bill

		GOBIERN Secretari Tesoreria	NO DEL DISTRITO FEDERAL a de Finanzas
A	A A		FECHA DE CORTE 13/Diciembre/2015
M ² de suelo (terreno) 301.00	M ³ de suelo construcción 221.00	Uso - Tipo H-02	IMPUESTO REAL \$945.06
Valor unitario por M ³ \$1,196.45	Valor unitario por M ^a \$4,366.87	Clase 4	SUBSIDIO OTORGADO POR EL GDF \$472.06
Valor del suelo	Valor de la construcción	Valor catastral	TOTAL A PAGAR PRIMER BIMESTRE
\$360,131.45	\$617,650.09	\$977,781.54	\$473.00
PAGO ANUAL ANTICIPADO (DEL 1 AL 31 DE ENERO) PAGO ANUAL ANTICIPADO (DEL 1 AL 29 DE FEBRERO)			
Vence Lineo de Lo 31/ENE/16 80076353764	r. DIMESTRE	Vence Linea de Ca 29/FEB/16 8007635376	pluro Importe 0000E7U6A8 \$2,693.00
Vence Linea de Caplura Importe 29/FEB/16 80076353760000E5B7AM \$473.00		Propuesta de Declaración de Valor Catastral y pago del Impuesto Prodal que se emise con fundamento en los artículos 15, 126, 127, 129, 130 y 131 del Código Fiscal del Distrito Féderal.	
ESTA D	DO DE CUENTA <u>76353</u> 76000-6	۱.	
	MANZANA REGIÓN		

Tax Payment as a Share of Household Income

Distribution of Tax Compliance Behavior (2009)

Distribution of Tax Compliance Behavior (2012)

Distribution of Compliance Over Time (2009)

Distribution of Compliance Over Time (2012)

Cadastral Value Distributions by Year, 2008–2012

No Manipulation of the Running Variable (McCrary 2008)

Back

No Discontinuity in Property Characteristics

Property Tax Revenue in Mexico City 2006-2013

Cadastral Values and Commercial Property Prices

