How do private equity fees vary across public pensions?

Juliane Begenau

Emil Siriwardane

Stanford GSB & NBER & CEPR Harvard Business School

Motivation

- Public pensions increasingly invest in private equity and real estate
 - → \$1 trillion in capital flows since mid-2000s (Ivashina and Lerner, 2018)

- Active debate on fees, which are known to be large (~4-7% per year)
 (Gompers and Lerner, 1999; Metrick and Yasuda, 2010; Phalippou et al., 2018)
- Yet very little systematic analysis of costs in private markets, mainly because contracts are privately negotiated and fees are often not recorded
- Empirical hurdles to research on fee economics highlighted by recent SEC investigations of disclosure practices in private equity

This paper

- We sidestep the lack of direct data on fees by comparing net-of-fee returns of multiple pensions invested in the *same* private-market fund
- Data example → investors in the same fund with different realized returns:

Main Findings

- 1. Sizable within-fund variation in net-of-fee returns
 - → mainly driven by within-fund fee variation

- 2. Most funds have 2-3 tiers of investors in terms of fees
 - → Plus estimates of how fixed and performance fees differ across tiers
- 3. Some pensions pay higher fees in all of their PE funds ("pension effects")

- 4. Observables (e.g., size) account for a modest amount of these pension effects
 - → Several implications for theories of fee determination

Institutional Background

- General partners (GPs) manage PE funds and limited partners (LPs) provide the bulk of capital
- Terms are privately negotiated in a limited partnership agreement (LPA)
- Two building blocks of fee structures (e.g., Robinson and Sensoy, 2013):
 - Fixed annual management fee, typically 1-2.5% of committed capital
 - Variable performance fee (carry), typically 10-30% of fund profits
- PE funds generally have a fixed start and end date (10-15 year life)
 - This structure makes it is reasonable to compare returns within a fund

Data

- Net-of-fee cashflows for individual investors into private market vehicles from 1990-2019 (Preqin)
- Mainly sourced through FOIA requests → See associated white paper for an extensive discussion (Begenau et al., 2020)
- Fees include management, performance, and any other cost borne by LPs

 Merge with publicly available information from pension funds' annual reports on pension size, broad portfolio composition, etc.

Measuring Returns and Sample Definitions

Realized multiple or distributed value to paid-in capital (DVPI)

$$r_t^D := \frac{\text{Cumulative Distributions}_t}{\text{Cumulative Invested}_t}$$

Total multiple or total value to paid-in capital (TVPI)

$$r_t^M := r_t^D + \frac{\text{Net Asset Value}_t}{\text{Cumulative Invested}_t}$$

- → TVPI includes unrealized fund value, DVPI doesn't
- Within-fund variation in r_t^M or r_t^D based on the latest available data
 - This "core sample" is unique at the investor-fund level
- \$515 bn invested by 231 pensions in 2,535 funds managed by 931 GPs

Within-fund variation in net-of-fee returns

Potential Sources of Dispersion in Net-of-Fee Returns

		Sources of Dispersion	Large?	Evidence		
Data	a)	Measurement error	N	FOIA Audit + Pension Effects		
	a)	Measurement error	IN	FOIA Audit + Pension Ellects		
	b)	Accounting Differences				
		\rightarrow Recycable capital	N	FOIA accounting standards + IRRs		
		\rightarrow NAVs	N	Liquidated funds + analyze DVPI		
		See Begenau et al., 2020				
Gross Ret	a)	LP Mandates (e.g., ESG)	N	Analyze small LPs + old funds		
	b)	Co-investment	N	Drop + Small part of PE portfolios		
Fees			Y			

Characterizing Fee Dispersion

- 1. How do fee structures vary within a typical fund?
 - 1.1 Investor tiers in terms of fees
 - 1.2 Provide estimates of avg. within-fund variation of mgmt and carry fees

2. Are some pensions "top tier" investors in the sense that they consistently pay lower fees? What determines top-tier investor status

Investor tiers

- Clear bunching of returns → investors in a fund are tiered in terms of fees
- Machine learning methods suggest 85% of funds have 2-3 tiers of investors

What differs across investor tiers in a fund? A stylized example

• Compare net-of-fee returns *r* in a fund that has two tiers, *A* and *B*:

$$\Delta_t := r_{At} - r_{Bt}$$

$$= (m_B - m_A) \times t + (c_B - c_A) \times \max(g_t - 1, 0)$$

m is mgmt fee, c is perfm. fee, and g_t is the fund's gross-of-fee return at t

• Differences in c are pinned down by sensitivity of Δ_t to fund profitability:

$$\frac{\partial \Delta}{\partial g_t} = \begin{cases} 0 & \text{if } g_t < 1\\ c_B - c_A & \text{if } g_t \ge 1 \end{cases}$$

- Differences in m are pinned down by sensitivity of Δ_t to age
 - $\rightarrow m_B m_A$ also easier to detect when fund is young, before c is charged

Estimate of avg. difference in effective performance fee $\approx 12\ pp$

Note: Binscatter adjusts for age effects

Estimate of avg. difference in effective management fees $\approx 72\ bps$

Note: Binscatter adjusts for return effects

Are there top-tier pensions in terms of fees?

Test using a fixed-effects regression:

$$r_{pf} = \underbrace{\alpha_f}_{\text{Fund fixed effect}} + \underbrace{\theta_p}_{\text{Pension fixed effect}} + \varepsilon_{pf}$$

	Pensi	Pension-Effects $(\theta_1 = = \theta_K)$						
Min. Age	F	р	p*	K	Ν			
1	5.41	< 0.01	< 0.01	205	10,848			
4	5.23	< 0.01	< 0.01	191	8,493			
8	4.13	< 0.01	< 0.01	158	4,923			

- p^* based on random assignment of returns within funds
- Consistently reject the null of no pension effects ($\theta_1 = ... = \theta_K$)

How large are pension effects?

- $\sigma(\theta_p) \approx$ 523 bps, compared to average within-fund range \approx 900 bps
- p10 vs. p90 pension in fees ≈ p50 vs. p60 PE fund returns

Why do some pensions consistently pay lower fees?

- We augment our fixed effects regression with observables X_{pf}
- This lets us assess several potential mechanisms:
 - 1. Some LPs lower the cost of raising capital (e.g., signaling effects)
 - → Pension size, share of the fund, initial commitment date
 - 2. LP preferences/governance
 - → Pension risk aversion (e.g., cash holdings)
 - → Variables that capture political agency frictions (Andonov et al. 2018)
 - 3. LP experience, bargaining position, and search costs
 - \rightarrow Size, proxies for PE experience, and LP-GP relationships

Characteristics and pension effects

Implications for fee economics

- Pension effects are largely unexplained by observables
- This suggests similar pensions pay consistently different fees
- Implications for potential mechanisms:
 - Some LPs lower the cost of raising capital
 - \rightarrow Mostly orthogonal to size and proxy for commit date (e.g., state regulations)
 - 2. LP preferences/governance
 - → No evidence for risk aversion and some for board composition
 - \rightarrow LPs could have heterogeneous beliefs need to be sustained over long sample
 - 3. LP experience, bargaining position, and search costs
 - → Possible, but must not load on observables
 - \rightarrow Unobserved bargaining skill and/or outside options

Conclusion

- Within-fund variation in net-of-fee returns implies that fees vary across pensions in the same private equity fund
- Some pensions consistently pay lower fees relative to others
- Evidence suggests unobserved bargaining skills play an important role
- We are actively exploring these issues in follow-up work

Assessing the magnitude of within-fund fee dispersion

• Pension *p*'s potential gain in fund *f* had it paid the lowest fee:

$$d_{pf} := \underbrace{a_{pf}}_{\text{Amount Invested}} \times \underbrace{\left(r_f^{max} - r_{pf}\right)}_{\text{Incremental return gain}}$$

where r_f^{max} is maximum net-of-fee return in fund f

Can aggregate potential gains (as % invested) in any subsample:

$$G = \frac{\sum_{p,f} d_{pf}}{\sum_{p,f} a_{pf}}$$

- $G \approx \$8.50 \text{ per } \$100 \text{ invested} \rightarrow \$44 \text{ billion} \text{ in potential dollar gains}$
 - \$4.69 per \$100 even in most conservative subsample

Robustness

- Measurement error
 - Audit via direct FOIA requests, plus hard to account for pension effects
- Alternative vehicles (e.g., coinvestment) and investor-specific mandates
 - Excluded from all analysis
 - Currently small part of public pension portfolios (likely to change)
 - Restrict to pre-2010 and smaller pensions
- Potential gains estimates:
 - Alternative return measures: cash multiple on investment (DVPI) and IRR
 - Lower bound on redistribution from fee dispersion
- · Pension effects:
 - Similar results using DVPI
 - Additional controls:
 - Reporting on performance fees
 - Reported expectations of aggregate PE performance

References

- Aleksandar Andonov, Yael V. Hochberg, and Joshua D. Rauh. Political Representation and Governance: Evidence from the Investment Decisions of Public Pension Funds. The Journal of Finance, 2018. Iuliane Begenau, Claudia Robles-Garcia, Emil N. Siriwardane, and Lulu Wang. An empirical guide to investor-level private equity data
- from pregin. Working paper, 2020. Paul Gompers and Josh Lerner. An analysis of compensation in the u.s. venture capital partnership. Journal of Financial Economics, 51
- (1):3 44, 1999, ISSN 0304-405X, doi: https://doi.org/10.1016/S0304-405X(98)00042-7, URL http://www.sciencedirect.com/science/article/pii/S0304405X98000427.
- Victoria Ivashina and Josh Lerner. Looking for alternatives: Pension investments around the world, 2008 to 2017. Working Paper, 2018.
- Andrew Metrick and Avako Yasuda, The economics of private equity funds, The Review of Financial Studies, 23(6):2303–2341, 2010.
- Ludovic Phalippou, Christian Rauch, and Marc Umber. Private equity portfolio company fees. Journal of Financial Economics, 129(3): 559-585, 2018.
- David T. Robinson and Berk A. Sensoy. Do Private Equity Fund Managers Earn Their Fees? Compensation, Ownership, and Cash Flow

Performance. The Review of Financial Studies, 26(11):2760-2797, 11 2013.