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Introduction

Computer vision algorithms can predict visually salient portions of images

Trained on large N, varied images

Calibrated using eyetracked 3-5 sec fixations

Accuracy has steadily improved, near maximal accuracy

We apply off-the-shelf algorithms to asset price charts
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Price Charts
Asset price charts are common

Two kinds of information:

Visual properties: Peaks, troughs, jumps...

“Distilled” features: Returns, variance, extrapolation...
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Expectations

Use past returns to form expectations

Equal weights 1/n

Recency bias ρ

Weight returns by visual salience
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Hypotheses

(Fact) Early attention to prices is determined by VS (algorithm)

(Hypothesis) VS weights returns when forming expectations

VS → expectations → experimental investment decisions
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Visual Salience



Saliency Attentive Model (Cornia et al.,
IEEE 2018)

Saliency Attentive Model (SAM)

Neural network predict salient pixels in images

Convolutional Neural Network (CNN hidden layers) with Long-Short Term
Memory (LSTM - refines features)

Trained using eye fixations and cross-validated on a set of over 23,000
domain-neutral images

Predictive power in Schelling matching, hider-seeker games (Li, Camerer,
2019)
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Saliency Affective Model (Cornia et al.,
IEEE 2018)
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SAM Training Images
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SAM’s performance for price paths

Eye-tracking experiment (N=57, 60 paths) to test SAM for price path images

Memory task at the end to force attention (standard)

”Ground-truth” density maps of human fixations

Compare fixations with SAM prediction
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SAM Price Paths Performance
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SAM Price Paths Performance

Table: Evaluation metrics
AUC Corr

SAM (domain-neutral) 0.87 0.78
SAM vs fixations (price paths) 0.81 0.52
Random vs fixations (price paths) 0.50 0.07

Explanation of Metrics

SAM and Price Path Characteristics
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Framework



Investors’ value function

Let X be a r.v. with past returns realizations x1, x2, ...., xi

V (X ) is a πk weighted average :
∑

k∈K πkv(xk)

v(xk) is based on preferences

Cumulative Prospect Theory (CPT) value function

v(xk ) =
{

xαk if xk ≥ 0
−λ(−xk )α if xk < 0

Corr(xk , πk) measures association of decision weights with xk
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Different Decision Weight Theories

Visual salience to prices (πVS
k ) for return xk

Compare with two well-established models in the literature:

CPT decision weights πCPT
k (Barberis, Mukherjee & Wang, RFS 2016)

Decision weights using high-low salience - πS
k (Bordalo, Gennaioli & Shleifer,

QJE 2012, AER 2013, etc.)

Formulae for Weights
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Illustrative price paths (not used in experiments)
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Distance and correlation between three
theories

Sum of absolute distance
from equal return weights

Path1 Path2 Path3
CPT 0.36 0.36 0.36
Sal 1.01 1.01 1.01
VS 0.20 0.29 0.26

Correlations between theories

Path1 Path2 Path3
CPT - Sal 0.68 0.68 0.68
CPT - VS -0.47 0.48 -0.39
VS - Sal -0.67 0.33 -0.04

20
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Experimental Data



Three experimental studies

Table: Experimental studies summary

Study I Study II Study III

Objective Test VS against
realistic price paths

Study temporal
ordering effects

Test VS in
simplified, controlled setting

Platform M-Turk M-Turk Laboratory

Price Path Types Empirical
(CRSP 2017)

Constructed
(same returns,
jumbled order)

Constructed
(only two

possible returns)

# of Subjects 500 500 275

# of Price Paths
1000

(evaluated
four times)

300
(evaluated

twice)

15
(dynamic paths
with 15 periods)

Details Details
22



Experimental Interface (Study I and II)
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Empirical Strategy



Decision weights and value functions

Step 1: Calculate V (X ) =
∑

k∈K πkv(xk)

Three different decision weights : πCPT
k , πS

k , and πVS
k

Value function: CPT (reference point=average path-specific return)

CPT theory, base case: α = 0.88, λ = 2.25 (KT parameters), weighting
δ+ = 0.61, δ− = 0.69

Salience theory, base case: θ = 0.1, ν = 0.7

Use Corr(xk , πk ) as a proxy for isolating the effects of decision weights on
V (X)

Step 2: Regress invested amounts (IA) on V (X ) (or proxy) and compare
coefficients

25
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Results



Study I - Correlational Measure

Table: Regressions for IA, Study I: Correlation Measure

(1) (2) (3) (4)
IA [%] IA [%] IA [%] IA [%]

Corr (x,πVS ) 0.670** 0.635**
(0.235) (0.237)

Corr (x,πCPT ) 0.289 0.984**
(0.242) (0.434)

Corr (x,πS ) -0.0271 -0.249**
(0.0689) (0.121)

Controls ON ON ON ON
Observations 4000 4000 4000 4000
R2 0.162 0.160 0.160 0.163
Standard errors in parentheses
* p < 0.1, ** p <0.05, *** p<0.01

- Controls include average returns, standard deviation, skewness
and individual fixed effects
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Study I - CPT Value Function

Table: Regressions for IA, Study I: Gain-Loss

(1) (2) (3) (4)
IA [%] IA [%] IA [%] IA [%]

VCPT (x,πVS ) 0.0955*** 0.106**
(0.0357) (0.0415)

VCPT (x,πCPT ) 0.0184 -0.0489
(0.0590) (0.0809)

VCPT (x,πS ) -0.0117 0.00768
(0.0242) (0.0285)

Controls ON ON ON ON
Observations 4000 4000 4000 4000
R2 0.162 0.160 0.160 0.162
Standard errors in parentheses
* p < 0.1, ** p <0.05, *** p<0.01

- Controls include average returns, standard deviation, skewness
and individual fixed effects
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Study I - CPT Value Function (Price
Differences)

Table: Regressions for IA, Study I: Gain-Loss (Reference Level = 0)

(1) (2) (3) (4)
IA [%] IA [%] IA [%] IA [%]

VCPT (x,πVS ) 0.286*** 0.211**
(0.0318) (0.0347)

VCPT (x,πCPT ) 0.281*** 0.122**
(0.0386) (0.0482)

VCPT (x,πS ) 0.143*** 0.0559*
(0.0269) (0.0308)

Controls ON ON ON ON
Observations 4000 4000 4000 4000
R2 0.183 0.179 0.167 0.188
Standard errors in parentheses
* p < 0.1, ** p <0.05, *** p<0.01

- Controls include average returns, standard deviation, skewness
and individual fixed effects
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Study II - Recency Effects Price Differences

Table: Regressions for IA, Study II: Recency Bias

(1) (2) (3) (4) (5)
IA [%] IA [%] IA [%] IA [%] IA[%]

VCPT (x,πVS ) 0.205* 0.217**
(0.107) (0.107)

VCPT (x,πCPT ,ρ = 0.95) 0.00417
(0.0418)

VCPT (x,πCPT ,ρ = 0.85) 0.0362
(0.0393)

VCPT (x,πCPT ,ρ = 0.50) 0.0961* 0.104*
(0.0583) (0.0585)

Controls ON ON ON ON ON
Observations 600 600 600 600 600
R2 0.030 0.011 0.015 0.024 0.045
Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01

- Controls include individual fixed effects
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Conclusion

Decision weights from domain-general VS

Expands concept of saliency

BGS salience is high-low contrast (”salience for decision”)

VS-weighted returns correlate with subjects’ investment

Prediction fairly robust across experimental studies that vary:

CRSP paths, and shuffled paths
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To Do

Train-test for optimal CPT, BGS Salience parameters

Preview: Salience gets much more accurate...

...but CPT and Salience ’compete’ for regression weight

Train finance-SAM on CRSP paths

Visually ”makeover” paths to maximize VCPT (x , πVS)

Y-axis, time period to center ”good” VS returns...
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Principal Component Analysis

35

Statistical Feature Comp1 Comp2 Comp3 Comp4 Comp5 Comp6 Comp7 Comp8 Comp9 Comp 10 Comp11 Comp12
Eigenvalue 5.6443 4.7121 3.8542 2.1882 1.8790 1.4644 1.0494 1.0058 0.9989 0.9757 0.8988 0.8631
min price 0.4708
average price 0.4646
max price 0.4483
distance from starting price 0.3252
min price in % of path min price 0.2994
loss domain -0.3139
spread in % of max price 0.4542
std. dev. 0.4385
spread 0.3859
max return 0.3358 0.2627
min return -0.3778 0.2634
skewness 0.4791 -0.3375
momentum relative to path momentum 0.4081
momentum 0.4001
average return 0.3987
max return in % of path max return 0.2737 0.4907
min return in % of path min return -0.2605 0.527
no. of gains 0.5989
Relative Strength Index (RSI) 0.587
std. dev. in % of path std. dev. 0.5967
max price in % of path max price 0.694
spread in % of path spread 0.6533
runlength 0.6934
autocorrelation rt , rt−1 0.6778
period 0.9525
jump 0.9905
autocorrelation rt , rt−1 in % of path autocorrelation 0.9979
skewness in % of path skewness 0.9985
average return in % of path average return 0.9996

The table reports rotated factor loadings of the 12 factors with Eigenvalues greater than 0.8.
Eigenvalues are listed in the first row of the table. Loadings smaller than 0.25 are blanked out
to enhance readability of the table. Statistical features are ordered by their loadings on the
respective components, prioritizing components with a larger Eigenvalue.



Metrics Details

Area Under Curve (AUC)

Transform saliency map into a binary map based on a threshold value

Calculate True Positive rate (TP rate)

Ratio of true positives to the total number of fixations

TP rate is traced out for different threshold values to build a curve

AUC measures the area under this curve
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Metrics Details

Pearson’s Correlation Coefficient (PCC)

Pixel-wise correlation coefficient

Ideally want correlation to be positive and close to 1

Back
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SAM and Price Path Characteristics

Split price path with 250 daily returns into 10 equal blocks, calculate relative
SAM weight for each block

Check correlation of weights against large number of price path
characteristics, also use PCA

Main takeaways:

Earlier blocks, and blocks close to center of image have higher weights

Blocks with spikiness (low autocorrelation - no smooth streaks, sharper edges)
have higher weights

Blocks with higher spread have lower weights

Metrics can only explain about 20% of variance in weights, SAM is capturing
more than combination of traditional metrics can

38



SAM and Price Path Characteristics

Split price path with 250 daily returns into 10 equal blocks, calculate relative
SAM weight for each block

Check correlation of weights against large number of price path
characteristics, also use PCA

Main takeaways:

Earlier blocks, and blocks close to center of image have higher weights

Blocks with spikiness (low autocorrelation - no smooth streaks, sharper edges)
have higher weights

Blocks with higher spread have lower weights

Metrics can only explain about 20% of variance in weights, SAM is capturing
more than combination of traditional metrics can

38



SAM and Price Path Characteristics

Split price path with 250 daily returns into 10 equal blocks, calculate relative
SAM weight for each block

Check correlation of weights against large number of price path
characteristics, also use PCA

Main takeaways:

Earlier blocks, and blocks close to center of image have higher weights

Blocks with spikiness (low autocorrelation - no smooth streaks, sharper edges)
have higher weights

Blocks with higher spread have lower weights

Metrics can only explain about 20% of variance in weights, SAM is capturing
more than combination of traditional metrics can

38



SAM and Price Path Characteristics

Split price path with 250 daily returns into 10 equal blocks, calculate relative
SAM weight for each block

Check correlation of weights against large number of price path
characteristics, also use PCA

Main takeaways:

Earlier blocks, and blocks close to center of image have higher weights

Blocks with spikiness (low autocorrelation - no smooth streaks, sharper edges)
have higher weights

Blocks with higher spread have lower weights

Metrics can only explain about 20% of variance in weights, SAM is capturing
more than combination of traditional metrics can

38



SAM and Price Path Characteristics

Split price path with 250 daily returns into 10 equal blocks, calculate relative
SAM weight for each block

Check correlation of weights against large number of price path
characteristics, also use PCA

Main takeaways:

Earlier blocks, and blocks close to center of image have higher weights

Blocks with spikiness (low autocorrelation - no smooth streaks, sharper edges)
have higher weights

Blocks with higher spread have lower weights

Metrics can only explain about 20% of variance in weights, SAM is capturing
more than combination of traditional metrics can

38



SAM and Price Path Characteristics

Split price path with 250 daily returns into 10 equal blocks, calculate relative
SAM weight for each block

Check correlation of weights against large number of price path
characteristics, also use PCA

Main takeaways:

Earlier blocks, and blocks close to center of image have higher weights

Blocks with spikiness (low autocorrelation - no smooth streaks, sharper edges)
have higher weights

Blocks with higher spread have lower weights

Metrics can only explain about 20% of variance in weights, SAM is capturing
more than combination of traditional metrics can

38



SAM and Price Path Characteristics

Split price path with 250 daily returns into 10 equal blocks, calculate relative
SAM weight for each block

Check correlation of weights against large number of price path
characteristics, also use PCA

Main takeaways:

Earlier blocks, and blocks close to center of image have higher weights

Blocks with spikiness (low autocorrelation - no smooth streaks, sharper edges)
have higher weights

Blocks with higher spread have lower weights

Metrics can only explain about 20% of variance in weights, SAM is capturing
more than combination of traditional metrics can

38



Principal Component Analysis Back

39

Statistical Feature Comp1 Comp2 Comp3 Comp4 Comp5 Comp6 Comp7 Comp8 Comp9 Comp 10 Comp11 Comp12
Eigenvalue 5.6443 4.7121 3.8542 2.1882 1.8790 1.4644 1.0494 1.0058 0.9989 0.9757 0.8988 0.8631
min price 0.4708
average price 0.4646
max price 0.4483
distance from starting price 0.3252
min price in % of path min price 0.2994
loss domain -0.3139
spread in % of max price 0.4542
std. dev. 0.4385
spread 0.3859
max return 0.3358 0.2627
min return -0.3778 0.2634
skewness 0.4791 -0.3375
momentum relative to path momentum 0.4081
momentum 0.4001
average return 0.3987
max return in % of path max return 0.2737 0.4907
min return in % of path min return -0.2605 0.527
no. of gains 0.5989
Relative Strength Index (RSI) 0.587
std. dev. in % of path std. dev. 0.5967
max price in % of path max price 0.694
spread in % of path spread 0.6533
runlength 0.6934
autocorrelation rt , rt−1 0.6778
period 0.9525
jump 0.9905
autocorrelation rt , rt−1 in % of path autocorrelation 0.9979
skewness in % of path skewness 0.9985
average return in % of path average return 0.9996

The table reports rotated factor loadings of the 12 factors with Eigenvalues greater than 0.8.
Eigenvalues are listed in the first row of the table. Loadings smaller than 0.25 are blanked out
to enhance readability of the table. Statistical features are ordered by their loadings on the
respective components, prioritizing components with a larger Eigenvalue.



Visual Salience weighting

Probability weighting:

πVS
k = pk×lk∑

k′
pk′×Ik′

with the salience weight lk = SAM(Pk−1) + SAM(Pk )
2

where SAM(Pk ) denotes the visual salience of price Pk as predicted by SAM
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Visual Salience weighting

Assumptions and properties:

Weighting depends only on visual features

Presentation format matters

Temporal ordering matters

Off-the-shelf (pretrained)

Returns close to salient points are overweighted
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CPT (Barberis et al, RFS 2016)

Probability weighting:

πCPT
k =

{
(w+(pk + ...+ pn) − w+(pk+1 + ...+ pn)) if 0 ≤ k ≤ n

(w−(p−m + ...+ pk ) − w−(p−m + ...+ pk−1)) if − m ≤ k ≤ −1

w+(p) = pδ+

(pδ+ +(1−p)δ+ )
1

δ+
and w−(p) = pδ−

(pδ−+(1−p)δ− )
1

δ−

Assumptions:

Visual presentation format is irrelevant

Temporal ordering of returns is irrelevant

δ+ = 0.61, δ− = 0.69

Overweights tails of distribution (= most extreme outcomes)
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CPT with recency effects (Barberis et al,
RFS 2016)

Temporal ordering of returns is irrelevant,

outside of recency parameter ρ

V (X) = 1
%

∑
k∈K ρ

t(k)πCPT
k v(xk )

% =
∑

k∈K ρ
t(k)

Check if recency parameter can account for temporal ordering effects
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Salience weighting (Bordalo et al, QJE 2012,
AER 2013)

Probability weighting:

πS
k = pk × hk with the salience weight hk = νκk∑

k′
ν

κk′ pk′
ν ∈ (0, 1]

where κk denotes the salience rank of xk , which is measured by:

κk = σ(xk , x̄k ) = |xk−x̄k |
|xk |+|x̄k |+θ

where x̄k is a reference value

Assumptions:

Magnitude of return difference to reference level x̄k determines weight

Salience rank is independent of p

Presentation format, and temporal ordering of returns is irrelevant

ν = 0.7, θ = 0.1

Back
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Convexity Score Details

Convexity score takes net area above the line

Normalizes it with riskiness of path

Spread between min and max return is a proxy for risk

CS = H+−H−
maxi (xi )−mini (xi ) (

p∏
i=1

(1 + xi )− 1)

Back
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Summary - Study I and II

500 MTurk participants

See 10 different price paths (fully randomized)

8 empirical price paths from Center for Security Prices (CRSP) universe
(Study I)

2 constructed paths (Study II)

Evaluate attractiveness, expected future return, perceived risk, and
percentage to invest (incentivized)
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Summary - Study I and II

Questionnaire on demographics, risk preferences, financial literacy, CRT

Fixed payment of $2

Variable payment based on one randomly selected investment decision

Average variable payment was $0.94

Average completion time 24min 15s
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Descriptive Statistics

Table: Descriptive statistics

US-Population (2017) MTurk Sample
Variable N = 321, 004, 407 N = 500
Age [years; median] 37.2 30.0
Gender [female=1] 50.2 32.2
Education [%]

No degree 12.6 0.2
High School 27.3 23.4
College incl. BA 48.2 64.2
Graduate or higher 11.8 12.2

Full employment [%] 77.2 85.6
Household size [mean] 2.58 3.08
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Paths for Study I

Center for Research in Security Prices (CRSP) 2017 universe → 8,453 stocks

Drop incomplete data, penny stocks (≤ $5) etc. → 4,246 stocks

10x10 portfolios based on deciles of two measures:

Stock return in 2017

Degree of price movement Measure

Randomly select 10 charts from each bucket, i.e., 1,000 unique charts in total

Participants paid based on actual realization of 2018 return

Back
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Paths for Study II
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Paths for Study II - Same Returns

51



Paths for Study II - Same Returns

51



Paths for Study II - Same Returns

51



Paths for Study II - Same Returns

51



SAM Predictions - Same Returns Back

52



SAM Predictions - Same Returns Back

52



SAM Predictions - Same Returns Back

52



SAM Predictions - Same Returns Back

52



Study I - Correlational Measure

Table: Regressions for IA, Study I: Correlation Measure

(1) (2) (3) (4)
IA [%] IA [%] IA [%] IA [%]

Corr (x,πVS ) 0.579** 0.537**
(0.236) (0.236)

Corr (x,πCPT ) 0.296 0.760*
(0.239) (0.420)

Corr (x,πS ) -0.0083 -0.195
(0.0688) (0.120)

Controls ON ON ON ON
Observations 4000 4000 4000 4000
R2 0.162 0.160 0.160 0.163
Standard errors in parentheses
* p < 0.1, ** p <0.05, *** p<0.01

- Controls include average returns, standard deviation, skewness
and individual fixed effects
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Study II - Recency Effects Back

Table: Regressions for IA, Study II: Recency Bias

(1) (2) (3) (4) (5)
IA [%] IA [%] IA [%] IA [%] IA[%]

VCPT (x,πVS ) 0.192* 0.177*
(0.105) (0.103)

VCPT (x,πCPT ,ρ = 0.95) -0.00534
(0.0455)

VCPT (x,πCPT ,ρ = 0.85) 0.0394
(0.0432)

VCPT (x,πCPT ,ρ = 0.50) 0.137** 0.127**
(0.0690) (0.0678)

Controls ON ON ON ON ON
Observations 600 600 600 600 600
R2 0.026 0.011 0.014 0.028 0.041
Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01

- Controls include individual fixed effects
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